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Abstract We investigate two control problems related to the aerodynamic optimiza-

tion of flows around airfoils in high-lift configurations. The first issue is the steady

state maximization of lift subject to restrictions on the drag. This leads to a bound-

ary control problem for the 2D stationary Navier-Stokes equations with constrained

controls functions belonging to L2(Γ ) under an integral state constraint. We de-

rive optimality conditions and treat the problem numerically by direct solution of

the associated nonsmooth optimality system. The second part is based on a k-ω-

WILCOX98 turbulence model. To deal with the curse of dimension, we discuss a

reduced-order model by adapting a small system of ODEs to solutions computed

with the full model.
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1 Introduction

We study some questions of numerical analysis for optimal boundary control prob-

lems to optimize the flow around airfoils. The associated background of applications

in fluid mechanics, active separation control, was subject of various papers written

from an engineering point of view. We only mention [5, 6, 26, 27, 28, 36], whose

considerations are close to our setting.

Mathematically, this class of problems belongs to the field of optimal control of

Navier-Stokes equations. Starting with the paper [1], an almost countless number of

associated contributions has been published. In particular, we refer to [8, 9, 11, 12,

13, 14, 32, 34]. Optimal flow control problems with state constraints were studied

in [10, 24, 25].

Our paper deals with two problems, both related to high-lift configurations,

where the lift is increased by suction or blowing of flow on part of a wing. In the

first part, we consider a steady state optimal boundary control problem for the two-

dimensional Navier-Stokes equations with low Reynolds number. Here, a linear-

quadratic integral functional expressing the lift is to be maximized under an integral

state constraint on the drag. The control acts on a part of the boundary of the do-

main and is taken from the space L2(Γ ). This raises some problems of regularity

which have to be solved. After a suitable transformation of the problem, we derive

first-order necessary optimality conditions. The associated nonsmooth first-order

optimality system of two coupled Navier-Stokes equations is solved numerically

following a method suggested by Neitzel et al. [21].

The second part of the paper deals with a nonstationary problem that accounts

also for turbulence. Here, the flow is computed on the basis of a k−ω WILCOX98

model including the nonstationary Navier-Stokes equations. The curse of dimen-

sion leads to very large computing times so that a model reduction is a method of

choice. To this aim, many authors have considered proper orthogonal decomposition

(POD). We mention e.g. [2, 18, 19, 35]. A reduced-order model (ROM) is consid-

ered in Section 3 due to [20] and [22]. The numerical application of this technique

is explained in Section 3 and first test examples are presented.

2 A stationary optimal boundary control problem

2.1 Definition of the problem

In this section, we discuss the stationary optimal control problem to maximize the

lift under a restriction on the drag. Here, we assume a low Reynolds number so that

we avoid the discussion of turbulence. The computational domain, i.e. the domain

of the flow field is denoted by Ω ⊂ R
n, n = 2,3, cf. Figure 1. Its boundary Γ = ∂Ω

covers in particular the boundaries of the wings shown in the figure. These parts of

the boundary, denoted by Γw, are assumed to be sufficiently smooth. The boundary
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Γ is the union of m connected components, Γ =
⋃m

j=1 Γj. We assume for simplicity

that the control g acts on a subdomain of Γw denoted by Γc. The set Γc stands for the

location of the slit for suction and blowing and we avoid a precise modeling of the

associated jet. The velocity field u around the wing is obtained as the solution of the

stationary incompressible Navier-Stokes equations

−ν∆u+(u ·∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \Γc,

(1)

where p denotes the pressure associated with the flow. The parameter ν = 1/Re is

related to the viscosity. The admissible controls are taken from the set Gad ⊂ L2(Γ )
defined by

Gad := {g ∈ H0(Γ ) : g(x) ∈ G a.e. on Γc}, (2)

where G is a bounded, convex, closed, and non-empty subset of R
n. For instance,

G can be given by lower and upper bounds, G = [Ga,Gb]. We also assume 0 ∈ G to

have the option of turning off the control. The space H0(Γ ) consists of all functions

h ∈ H0(Γ ) with
∫

Γj
h · n dγ = 0 for all j = 1, · · · ,m. For a discussion of the used

function spaces and such convex control constraints, we refer to [16] and [33].

The force on the wing in a direction e is given by the boundary integral

F =
∫

Γw

(ν∂nu− pn) · e dγ,

where n is the outward normal vector and we write for short ∂nu := ∂u/∂n. Let

the vectors el and ed indicate the directions of lift and drag. Now, we are able to

formulate our optimal control problem:

Find a control g ∈ Gad that maximizes the lift, i.e. minimizes the negative lift,

min Fl(u) := −
∫

Γw

(ν∂nu− pn) · el dγ (3)

subject to (1) and, with some given constant d0, to the integral state (drag) constraint

Fd(u) =
∫

Γw

(ν∂nu− pn) · ed dγ ≤ d0. (4)

2.2 Well-posedness and optimality conditions

The analysis of the optimal control problem (1)-(4) was developed in [16]; the asso-

ciated assumptions are satisfied by our setting. Below, we state the main conclusions

for (1)-(4). The solutions of the state equations (1) are defined in the very weak sense
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and it follows that for every control function g ∈ H0(Γ ) there exists a very weak so-

lution u ∈ Y := L2n/(n−1)(Ω) of (1), see [16], Section 2. For this result to hold, it is

essential to have
∫

Γi
g · ndγ = 0 for all connected components Γi of Γ . If g is small

compared to ν , then the solution u is unique.

The assumption of non-singularity implies that the Navier-Stokes equation is

uniquely solvable in a neighborhood of the reference control and state, we refer to

[7, Theorem 2.5] Notice that our optimal control problem is nonlinear and hence

belongs to the field of nonconvex optimization. Therefore, we have to deal with

locally optimal solutions. In what follows, ḡ is a locally optimal reference control

and ū is the associated state. A pair (ū, ḡ) ∈ Y×H0(Γ ) is called non-singular, if the

Navier-Stokes equations linearized at ū admit a unique very weak solution u ∈ Y for

all boundary data g ∈ H0(Γ ) and all distributed data f ∈ H−1(Ω) and the solution

mapping (g, f ) 7→ u is linear and continuous. This condition is fulfilled for small

ū, [23, Lemma B.1].

In the cost functional Fl defined in (3) and Fd defined in (4), the normal derivative

∂nu appears; therefore we need ∂nu∈ L1(Γ ). For Dirichlet boundary data g∈ L2(Γ )
this is not true, hence Fl and Fd were reformulated in [16], Subsection 2.4, to fl(u,g)
and fd(u,g) defined as

fi(u,g) =
∫

Ω
(νu ·∆ϕi +(u ·∇)ϕiu)dx−

∫

Γ

(

νg∂nϕi +(u ·n)(ϕi ·g)
)

dγ, (5)

i ∈ {d, l}, where u ∈ Y is regular enough. This transformation is obtained by mul-

tiplying (1) with some ϕ ∈ H2(Ω) and integrating twice partially so that Fi(u) =
fi(u,g), i ∈ {d, l}. To show the existence of an optimal solution, we have the prob-

lem that the cost functional is not bounded from below, because the solution of the

state equation is not necessarily unique for large data. To resolve this problem, we

modify the original cost functional to

J̃(u,g) := m(− fl(u,g))+
αm

2
‖u‖2

H1/2 +
α

2
‖g‖2

H0 . (6)

where αm is a small positive parameter. The function m : R → R is assumed to be

continuous, monotone increasing, and bounded from below. We have to modify also

the control constraints by

G̃ad ⊂

{

u ∈ Gad :

∫

Γw

(g ·n)(ϕi ·g)dγ = 0, i ∈ {d, l}

}

. (7)

If there is an admissible pair (ũ, g̃) ∈ H1/2(Ω)× G̃ad satisfying all constraints, i.e.

(1), (3) and (4), where fl and fd are substituted for Fl and Fd , respectively, then

the modified problem possesses at least one solution. To avoid specific numerical

difficulties and problems with traces and low state regularity, we confine ourselves

to a finite-dimensional control set Gad,q := {g ∈ H1/2(Γ ) : g = ∑
l
i=1 qiei, q ∈ Q}

with Q ∈ R
l , [[16], Section 4]. Due to g ∈ H1/2(Γ ), the associated state u belongs

to H1(Ω), so we are able to reformulate Fl and Fd to:
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f̂i(u) := −
∫

Ω
(ν∇u ·∇ϕi +(u ·∇)uϕi)dx, i ∈ {d, l}.

Then f̂i is twice continuously Fréchet differentiable from H1(Ω) to R and it holds

f̂i(u) = fi(u,g) = Fi, i ∈ {d, l}, for smooth states u associated to controls g. The

following theorem holds true:

Theorem 1. Let (ū, ḡ) ∈ Y×Gad a non-singular locally optimal solution for the

modified optimal control problem. Assume that there exist g̃ close to ḡ satisfying a

the standard linearized Slater condition. Then there is a Lagrange multiplier ξ ≥
0 associated with the integral state constraint (4), an adjoint state λ ∈ H1

0(Ω)∩
W 2,r(Ω)n, and an associated adjoint pressure π ∈W 1,r(Ω), for all r ∈ [2,∞), such

that (λ ,π) is the weak solution of the adjoint equation

−ν∆λ +(∇ū)T λ − (ū ·∇)λ +∇π = 0 in Ω

divλ = 0 in Ω

λ = el −ξ ed on Γw

λ = 0 on Γ \Γw

and the following conditions are satisfied: The variational inequality

∫

Γc

(α ḡ− (ν∂nλ −πn)) · (g− ḡ) ≥ 0 ∀g ∈ Gad,q

and the complementarity condition

ξ ( f̂d(ū)−d0) = 0, ξ ≥ 0, f̂d(ū) ≤ d0.

2.3 Numerical solution

We handle the optimal control above numerically by direct solution of the optimality

system that follows from Theorem 1 and is stated below, see also [16], Section 6.

Our computations are based on the following setting: The computational domain is

related to a 2D generic high-lift configuration and is shown in Figure 1.

The inflow u∞ acts through an inhomogeneous Dirichlet boundary condition at

the inflow boundary Γin The control boundary Γc was modelled by a nonhomoge-

neous Dirichlet condition, where the (bounded) suction and blowing occurs by a

small slot in the flap. A no-slip boundary condition, i.e. homogeneous Dirichlet

condition, was used for the remaining airfoil Γw and the wall boundaries Γwall .

At the outflow boundary Γout , we prescribe a so called ”do nothing” condition:

ν∂nu− pn = 0. For more details of the configuration see the technical report [6].

Thanks to the do nothing boundary condition, we can abandon the constraint
∫

Γj
u ·ndγ = 0, which was incorporated to guarantee existence of divergence free so-

lutions. With this simplification, the variational inequality and the complementarity
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Fig. 1 The generic high-lift configuration where the slit for the control function is implemented

on the flap.

condition in the optimality system given by Theorem 1 are equivalent to

ḡ = PG {1/α (ν∂nλ −πn)} in Γc

and

ξ = max(0,ξ + f̂d(ū)−d0),

where PG is the projection of R
2 to G. For G = [Ga,Gb], P is defined by P[Ga,G

b
]{g} :=

min{Gb,max{Ga,g}}. This projection permits to eliminate the control variable.

Then we have to solve the following nonsmooth optimality system consisting of

the state equation, the equation for the Lagrange multiplier ξ and the associated

adjoint equation:

−ν∆u+(u ·∇)u+∇p = 0 in Ω ,

divu = 0 in Ω ,

u = PG (1/α (ν∂nλ −πn)) on Γc,

u = 0 on Γwall ∪Γw \Γc,

u = u∞ on Γin,

ν∂nu− pn = 0 on Γout ,

−ν∆λ +(∇u)T λ − (u ·∇)λ +∇π = 0 in Ω ,

divλ = 0 in Ω ,

λ = el −ξ ed on Γw,

λ = 0 on Γin ∪Γwall ,

ν∂nλ −πn+(u ·n)λ = 0 on Γout ,

ξ = max(0,ξ + f̂d(u)−d0).
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We used the commercial Finite-Element code COMSOL Multiphysics with a damped

Newton method to solve the nonlinear system. The partial differential equations

were discretized by Taylor-Hood finite elements. The Reynolds number given by

Re = 106.25 is based on the chord length Lre f = 1.275 and the free stream veloc-

ity u∞ = 1. For the uncontrolled problem, we obtained a lift coefficient of Ca =
FA/(0.5u2

∞Lre f ) = 1.299 and a drag coefficient of Cd = DA/(0.5u2
∞Lre f ) = 0.701,

where FA is the resulting lift and DA the drag.

Fig. 2 Velocity field for the uncontrolled (left) and controlled case (right).

Fig. 3 Controlled case: absolute value of velocity field (left) and streamlines (right).

For the optimization process, we took the control cost parameter α = 0.001 and

the control constraints as box constraints G = [−1,+1], an academic choice to test

the solution method. The solution for the case without any drag constraint was max-

imal possible suction (i.e. g ≡ −1). The optimized lift is Ca = 1.313 and the asso-

ciate drag is Cd = 0.72, which is a lift gain of 1.1%. We imposed the upper bound

d0 = 0.717 on the drag, which is smaller than 0.72; hence this constraint should be

active at the solution. In fact, for the computed solution we obtain Cd = 0.717. Due

to this restriction, the computed lift Ca = 1.3127 is smaller than for the case without

state constraints, but still better than in the uncontrolled situation.
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3 The nonstationary case

3.1 Model reduction

In contrast to Section 2, we admit in the nonstationary situation high Reynolds num-

bers and consider a problem closer to the real setting of the high-lift configuration,

see e.g. [6, 28, 31]. Here, we have to deal with turbulence, which is simulated by a k-

ω-WILCOX98 model, we refer to [37]. Moreover, periodic actuation is applied. Due

to the high dimension of the discretized equations, the computing times for any for-

ward solution of the model are extremely large so that a mathematical optimization

of the periodic actuation is fairly unrealistic. In [6], a generic high-lift configuration

was investigated and one forward solution took about 48 hours. In the case of the

SCCH configuration, the computation time was nearly twice that number.

Therefore, model reduction is advisable. A widely used method is POD, [2, 15,

18, 19]. In the case of the high-lift configuration, the application of standard POD

does not align to the target of robust dynamical least-order models for the real flow.

To establish the ROM, the computed POD basis must be inserted as a Galerkin basis

in the real WILCOX98 model. The associated implementation is a time consuming

task. There were several approaches to deal with these problems, e.g. an extension

of POD to data compression of multiple operation points, see [17] for sequential

POD or [30] for DPOD. We follow an alternative approach suggested in [20, 22]

of a canonical reduction with parameter identification. Here, a very small system of

nonlinear ODEs is adapted to the computed flows in the actuated and non-actuated

case. This small system is easily tractable by optimization and we prefer to use a

model reduction that does not need full information on the original state equations.

In this section, we report on first experience in a simplified two-dimensional setting.

Our numerical results are promising for future optimization tasks.

3.2 Reduced-order model (ROM)

The procedure is as follows: First, for the unactuated system, N = 567 snapshots

ûn
i (x) := ûn(x, ti) were determined at equidistant discrete times ti, i = 1, · · · ,N, all

6 convective time units. Analogously, N snapshots ûa
i (x) := ûa(x, ti), i = 1, · · · ,N,

are computed for the actuated system by a URANS simulation with a WILCOX98

turbulence k-ω-model and a Reynolds number of 1.756 ·106. The actuation is g(t) =
Bcos(ωat), where B is the actuation amplitude, ωa = 2πSta the actuation phase, and

Sta = f ac/U∞ the Strouhal number with actuation frequency f a; c = 1 is the cord

length of the wing and U∞ = 1 the incoming flow velocity. We chose a fairly large

amplitude B to get significant differences between the frequencies of the operating

conditions .

Data analysis. Next, similarly to POD, all snapshots are processed. For this pur-

pose, we consider only the velocity field u in a certain reference domain, where the
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actuation has the main influence on velocity and lift, see Figure 4. Therefore, the

snapshot velocity data are weighted by the size of their area. We select the first two

POD modes of the actuated and non-actuated system carrying the highest energy.

For further details of POD see e.g. [15].

Filtering. The snapshots ûn
i and ûa

i are given on a time interval [0,T ]. To guaran-

tee a multiple of the associated wavelengths, we search for the maximal ka,kn ∈ N

such that the times T n = knωn and T a = kaωa fulfill T n < T and T a < T . We cal-

culate the phases φ n(t), φ a(t) and radii r̃n(t), r̃a(t) by

an
1(t)+ ian

2(t) = r̃n(t)eiφn(t),

aa
1(t)+ iaa

2(t) = r̃a(t)eiφa(t),

where (an
1(t),a

n
2(t)) and (aa

1(t),a
a
2(t)) are the first POD mode coefficient pairs of the

natural and the actuated case, respectively. To extract the dominant harmonic oscil-

lation from these POD coefficients, fluctuations of both, the radii r̃n(t), r̃a(t) and

the frequencies φ n(t),φ a(t), are neglected. With the average values ωn = ∂tφ
n(t),

ωa = ∂tφ
a(t) and rn = r̃n(t), ra = r̃a(t), we approximate our filtered coefficients

a1(t)+ ia2(t) = rneiωnt and a1(t)+ ia2(t) = rneiωnt . The associated filtered modes

are determined by

ui(x) = (ûn(x, t)−un
0,ai(t))T n :=

1

T n

∫ T n

0
(ûn(x, t)−un

0(x))ai(t) dt, i = 1,2,

ui(x) = (ûa(x, t)−ua
0,ai(t))T a , i = 3,4,

which we additionally orthonormalize. The expressions un
0 and ua

0 are the mean flows

un
0(x) = 1/N ∑

N
i=1 ûn

i (x) in the unactuated respectively ua
0(x) = 1/N ∑

N
i=1 ûa

i (x) in the

actuated case.

Low order dynamical system. The filter modes contain significant information

gained from the URANS solution by the k-ω-model. Following [20, 29], the main

idea of the ROM is to set up a small size system of ODEs for (a1(t), · · · ,a4(t))
T that

rebuilds the computed fluid flow best under the operating conditions. Similarly to

the work of Luchtenburg et al. [20], the dynamical system consists of the uniformly

oscillating of the unactuated and the actuated coefficient pairs (a1,a2) respectively

(a3,a4), which are coupled through the equations for amplified saturation. The dy-

namical system is set up as follows:

ȧ1 = σ̃na1−ωna2

ȧ2 = ωna1+σ̃na2

ȧ3 = σ̃aa3−ωaa4 +g31g+g32ġ

ȧ4 = ωaa3+σ̃aa4 +g41g+g42ġ

σ̃n = σn−β1(A
n)2 −β2(A

a)2

σ̃a = σa

(9)
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with An =
√

a2
1
+a2

2
, Aa =

√

a2
3
+a2

4
and g = Bcos(ωat), where B is the amplitude

of the actuation signal and ωa is the associated phase. Because the snapshots do not

carry transient data, we have to select the amplification rates σn, σa as follows:

• σn = 0.15 is an empirical value, if the cord-length of the wing is 1. Because the

flap is the active part of the configuration, we choose σn = 0.15U∞
c

f l
.

• σa = − 1
Tcon

where Tcon is the time that one vortex needs to pass the flap-length

c f l . We read off this value from the snapshots.

If the fluid flow is in the unactuated state, then we should have no energy in the

coefficients a3,a4, i.e. a3 = a4 = 0, hence Aa = 0. Moreover, we require σ̃n =
σn −β1(A

n)2 = 0 holds for the unactuated flow dynamics. This expresses the fact

that there is no additional energy contribution to the natural oscillatory behavior of

a1,a2. Thus β1 can be determined by

β1 = σn 1
(An)2 = σn 1

(rn)2
.

In the actuated case, the energy of the modes with the natural frequency vanishes.

To identify the parameter β2, we need an additional set of snapshots with a small

amplitude of actuation B where the energy Ãn, contained in the associated filtered

coefficients ã1, ã2, is not equal to zero. This is to determine the so-called vanishing-

ratio of the energy with respect to increasing B. For this actuation amplitude, we

compute the filtered coefficients and the associated energies (Ãn)2 and (Ãa)2. We

determine β2 by assuming that the energy in this system remains constant over all

amplitudes B by

σn = β1(Ã
n)2 +β2(Ã

a)2; (10)

notice that (Ãn)2, (Ãa)2 are associated with B.

The dynamical system (9) contains free parameters g31, g32, g41 and g42 to cal-

ibrate the selected actuation to the dynamical system. Remind that the actuation g

and its derivative ġ are g = Bcos(ωat) and ġ = −Bωa sin(ωat), where the actua-

tion amplitude B is our optimization variable. Therefore, we multiply the third and

fourth equation by g and ġ, respectively, and integrate over [0,T a]. This eliminates

g32, g42 and g31, g41, respectively. For instance

(ȧ3,g)T a = σa(a3,g)T a −ωa(a4,g)T a +g31(g,g)T a (11)

leads to

g31 =
(

(ȧ3,g)T a −σa(a3,g)T a +ωa(a4,g)T a

)

/(g,g)T a . (12)

Note that (ġ,g)T a vanishes in the long term average.

Computation of lift. Based on the dynamical system (ȧi)i, the lift is obtained by

the following ansatz with unknown coefficients ci j and ck

CL(a1,a2,a3,a4) = cl0 +
4

∑
i=1

c1iai + c5(A
n)2 + c6(A

n)4. (13)
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There is no limitation to the energy Aa of the actuated case with respect to increasing

B, hence Aa is not included in (13). The ansatz (13) is motivated by a global mo-

mentum balance equation and the constant and linear term in (13) are related to this

equation. The lift effect of base-flow variation can be lumped in c5(A
n)2 + c6(A

n)4

assuming slow transients, see [29] in this volume. The parameters ci j and ck are ob-

tained by a least-squares fit of CL((an
i )) and CL((aa

i )) to the original lift values of the

URANS simulation. The (an
i ) are the filtered coefficients of the unactuated case and

(aa
i ) are the filtered coefficients of the actuated case. Our goal is to fit the parameters

in the sense that the simulated lift values are reproduced by the lift formula (13) in

the unactuated case CLU based on (an
i ) as well as the lift values in the actuated case

CLA based on (aa
i ). This leads to the problem

min
ci j

F(ci j) = ‖CLA(·)−CL(ci j)((a
a
i (·)))‖

2 +‖CLN(·)−CL(ci j)((a
n
i (·)))‖

2.

Finally, we have to solve the following optimization problem

max
B∈B

ad

CL(a1,a2,a3,a4) (14)

subject to the ODE system (9), where Bad := [0, B̂] with an upper boundary B̂ ∈ R

and 0 as lower boundary.

Numerical example. A high-lift configuration with observation region Ω pre-

sented in Figure 4 was considered, see [20] for details.

Fig. 4 The SCCH high-lift configuration, where the periodic excitation is implemented on the flap.

The actuation amplitude was B = 3.5888 and we worked with the parameters

σn = 0.5906 g31 = 0.0284, g32 = 0.0000, ωn = 5.5407,

σa = −2.0042, g41 = 0.0000,g42 = −0.0019, ωa = 14.8412

for c f l = 0.254, β1 = 14.75 and β2 = 654.0806, calculated with an actuation ampli-

tude of B = 1.19. An example of the phase portraits for the coefficients a1, · · · ,a4 of
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the dynamical system (9) is presented in Figure 5.

Fig. 5 Phase portraits of (a1,a2) (left) and (a3,a4) (right) of system (9) with full actuation, starting

with (a1,a2) in the attractor rn and (a3,a4) = (0,0).

Calibrating the parameters of the lift formula (13) to this data, we get cl0 =
2.2238, c11 = 0.2295, c12 =−0.6858, c13 = 1.6717, c14 =−0.2963, c5 =−8.3606,

c6 = 39.7410. Figure 6 shows the coincidence of CL(ai) with the lift-values of the

URANS simulation, where (ai) are the filtered coefficients.

Fig. 6 Comparison of the lift values of the URANS simulation with those obtained by the lift

formula based on the filtered coefficients a1, · · · ,a4: Natural flow (left), actuated flow (right).

The mean values differ in both cases not more than 1%. Evaluating CL with the

ai’s as the solutions of the dynamical system, once computed with B = 0 and once

with the full actuation B = 3.5888, we get mean values of around 1.96 respectively

2.24 and the results presented in Figure 7.

Solving this dynamical system with several actuation amplitudes B = 0 to B =
4.3, we resolve the average lift values presented in Figure 8; for B = 0 an average

lift of 1.96 and for B = 3.5888 an average lift of 2.20.
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Fig. 7 Comparison of the lift values of the URANS simulation with those obtained by the lift

formula based on a1, · · · ,a4 of the dynamical system: Natural flow (left), actuated flow (right).

Fig. 8 Comparison of the calculated lift coefficients (continuous lines) with those obtained by the

URANS simulation (dashed lines) over the actuation amplitude B.

4 Conclusion

We considered two settings of high-lift configurations. In the case of steady state

Navier-Stokes equations with low Reynolds number, we established first-order nec-

essary optimality conditions for a problem with integral state constraint on the drag.

The main theoretical difficulty was the appearance of low regularity controls in a

Dirichlet boundary condition. The optimal control is obtained by direct numerical

solution of the established optimality system.

An associated nonstationary case with high Reynolds number was investigated by

a WILCOX98 turbulence model. To deal with the unavoidable curse of dimension,

a robust reduced order model was set up that fits best to snapshots computed by the

full system in the natural and the actuated state. The ROM reproduces the nonlinear

behavior of the system sufficiently well so that an optimization of periodic actuation

will lead to reasonable results.

In particular, the application of trust-region proper orthogonal decomposition

(TRPOD) should be considered to set up an improved reduced-order model. In [4]
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a ROM was used to minimize the total mean drag for a circular cylinder wake flow

by updating the ROM during a (TRPOD) approach, we refer also to [3].
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