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We obtain matching upper and lower bounds for the amount of time to
find the predecessor of a given element among the elements of a fixed com-
pactly stored set. Our algorithms are for the unit-cost word RAM with mul-
tiplication and are extended to give dynamic algorithms. The lower bounds
are proved for a large class of problems, including both static and dynamic
predecessor problems, in a much stronger communication game model, but
they apply to the cell probe and RAM models. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Many problems in computer science involve storing a set S of integers and per-
forming queries on that set. The most basic query is the membership query, which
determines whether a given integer x is in the set. A predecessor query returns the
predecessor pred(x, S) of x in S, that is, the largest element of the set S that is less
than x. If there is no predecessor (which is the case when x is smaller than or equal
to the minimum element of S), then a default value, for example, 0, is returned.

Predecessor queries can be used to efficiently perform nearest neighbour queries
(i.e., find the element of S that is closest to the given integer x). They can also be



used to determine the rank of an element x with respect to S (i.e., the number of
elements in S less than or equal to x), even though this information is stored only
for elements of S.

The static dictionary problem is to store a fixed set and perform membership
queries on it; the static predecessor problem allows predecessor queries. If insertions
and deletions may also be performed on the set, we have the dynamic dictionary
problem and the dynamic predecessor problem, respectively.

The complexities of searching (for example, performing membership or prede-
cessor queries) and sorting are well understood under the assumption that elements
are abstract objects which may only be compared. But many efficient algorithms,
including hashing, bucket sort, and radix sort, perform word-level operations, such
as indirect addressing using the elements themselves or values derived from them.

Often, such algorithms are applied only when the number of bits to represent
individual elements is very small in comparison with the number of elements in the
set. Otherwise, those algorithms may consume huge amounts of space. For
example, van Emde Boas trees [42, 43] can be used to perform predecessor queries
on any set of integers from a universe of size N in O(log logN) time, but they
require W(N) space.

However, there have been important algorithmic breakthroughs showing that
such techniques have more general applicability. For example, with two level
perfect hashing [25], any n element set can be stored in O(n) space and constant
time membership queries can be performed. Fusion trees fully exploit unit-cost
word-level operations and the fact that data elements need to fit in words of
memory to store static sets of size n in O(n) space and perform predecessor queries
in O(`log n) time [27].

For the static predecessor problem, it has been widely conjectured that the time
complexities achieved by van Emde Boas trees and fusion trees are optimal for any
data structure using a reasonable amount of space [28]. We prove that this is not
the case. Specifically, we construct a new data structure that stores n element sets of
integers from a universe of size N in nO(1) space and performs predecessor queries in
time

O 1min 3 log logN
log log logN

,= log n
log log n
42 .

Using recent generic transformations of Andersson and Thorup [7, 10], the algo-
rithm can be made dynamic and the space improved to O(n), although the time
increases to O(min{ log logNlog log logN · log log n,` log n

log log n }).
We also obtain matching lower bounds for a class of problems that includes the

static predecessor problem. These lower bounds are proved in the powerful com-
munication game model and improve Miltersen’s W(`log logN) lower bound [35]
and Miltersen, Nisan, Safra, and Wigderson’s W((log n)1/3) lower bound [35, 37].
The key to our lower bounds is to use a better distribution of inputs on which to
consider the behaviour of the algorithm. However, this requires a more complicated
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analysis. The same approach has also been used to obtain an W(log log d/
log log log d) lower bound for the approximate nearest neighbour problem over the
universe {0, 1}d [15].

A description of related work is given in Section 2, followed by our lower bounds
in Section 3.4 and our new algorithms in Section 4. Throughout the paper log will
denote a logarithm to the base 2 and [i, j] will denote the set of j− i+1 integers
{i, i+1, ..., j}.

2. RELATED WORK

The simplest model in which the dictionary and predecessor problems have been
considered is the comparison model. In this model, the only operations that involve
the query key x are comparisons between x and elements of the set S. Using binary
search, predecessor and membership queries can be performed in O(log n) time on a
static set of size n stored in a sorted array. Balanced binary trees (for example, Red-
Black trees, AVL trees, or 2-3 trees) can be used in this model to solve the dynamic
dictionary and predecessor problems in O(log n) time. A standard information
theory argument proves that Klog(n+1)L comparisons are needed in the worst case
for performing membership queries on a static set.

Faster algorithms are possible when x or some function computed from x can be
used for indirect addressing. If S is a static set from a universe of size N, one can
trivially perform predecessor queries using N words of memory in constant time:
Simply store the answer to each possible query x in a separate location. This also
works for more general queries. If the number of bits, k, needed to represent each
answer is smaller than the number of bits b in a memory word, the answers can be
packed b/k to a word, for a total of O(Nk/b) words. For example, for membership
queries, k=1. In this special case, updates to the table can also be performed in
constant time.

If the universe size N is significantly less than 2b, where b is the number of bits in
a word, then packed B-trees [6, 12, 27, 40] are time and space efficient. Specifically,
using branching factor B [ b/(1+logN), insertions, deletions, and membership
and predecessor queries can be performed in O(log n/log B) steps using O(n/B)
words.

The most interesting data structures are those that work for an arbitrary universe
whose elements can fit in a single word of memory (i.e., N [ 2b) and use a number
of words that is polynomial in n, or ideally O(n). The static dictionary problem has
optimal constant-time data structures with these properties: Constant time mem-
bership queries can be obtained for any set of size n using an O(n2) word hash table
and a hash function randomly chosen from a suitable universal family [13].
Fredman et al. [25] improved the space to O(n) using two level perfect hashing.
Their data structure can be constructed in O(n) expected time. To evaluate the hash
functions, multiplication and division of logN bit words are used. Recently it was
shown that hash functions of the form

h(x)=axmod 2 KlogNL div2 KlogNL−r,
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for r [ Klog nL, suffice for implementing the two level perfect hashing data structure
[20, 21]. Notice that the evaluation of such functions does not depend on constant
time division instructions; a right shift suffices. Raman [40] proves that it is pos-
sible to choose such hash functions deterministically in O(n2logN) time. Using a
different type of hash function, Pagh [38] has recently shown how a linear space
static dictionary with constant query time can be constructed deterministically in
n(log n)O(1) time.

Dynamic dictionaries can be built using two level perfect hashing, rehashing
when necessary (with hash functions randomly chosen from an appropriate univer-
sal family), to perform membership queries in constant time and perform updates in
expected constant time [19, 21, 22]. Miltersen [36] has constructed a deterministic
dynamic dictionary using error correcting codes and clustering. It performs mem-
bership queries in constant time and performs updates in time O(nE) for any con-
stant E > 0. All of these data structures use O(n) space.

Although hashing provides an optimal solution to the static dictionary problem, it is
not directly applicable to the predecessor problem. Another data structure, van Emde
Boas (or stratified) trees [42, 43], is useful for both static and dynamic versions of the
predecessor problem. These trees support membership queries, predecessor queries, and
updates in O(log logN) time. The set is stored in a binary trie and binary search is
performed on the logN bits used to represent individual elements. The major draw-
back is the use of an extremely large amount of space: W(N) words.

Willard’s x-fast trie data structure [44] uses the same approach, but reduces the
space to O(n logN) by using perfect hashing to represent the nodes at each level of
the trie. In y-fast tries, the space is further reduced to O(n) by only storing
G(n/logN) approximately evenly spaced elements of the set S in the x-fast trie. A
binary search tree is used to represent the subset of O(logN) elements of S lying
between each pair of consecutive elements in the trie. Both of Willard’s data struc-
tures perform membership and predecessor queries in worst-case O(log logN) time,
but use randomization (for rehashing) to achieve expected O(log logN) update time.

Fusion trees, introduced by Fredman and Willard [27] use packed B-trees with
branching factor G(log n) to store approximately one out of every (log n)4 elements
of the set S. The effective universe size is reduced at each node of the B-tree by
using carefully selected bit positions to obtain compressed keys representing the
elements stored at the node. As above, binary search trees are used to store the
roughly equal-sized sets of intermediate elements and a total of O(n) space is used.
Membership and predecessor queries take O(log n/log log n) time. Updates take
O(log n/log log n) amortized time. (The fact that this bound is amortized arises
from the worst case G((log n)4) time bound to update a node in its B-tree.) This
data structure forms the basis of their ingenious O(n log n/log log n) sorting algo-
rithm. Fusion trees actually allow one to implement B-trees with any branching
factor that is O((logN)1/6), so for n [ (logN) (log logN)/36, the time bounds for fusion

trees can be improved to O(`log n) while retaining O(n) space. This is done by

using branching factor G(2 `log n) in the B-tree and storing 2G(`log n) elements in each
of the binary search trees. For the remaining range, n > (logN) (log logN)/36, Willard’s

y-fast tries have query time and expected update time O(log logN)=O(`log n).
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Andersson [6] uses similar ideas to construct another data structure with O(`log n)
time membership and predecessor queries, expected O(`log n) update time, and O(n)
space. As above, only G(n/2 `log n) elements are stored in the main data structure; the
rest are in binary search trees of height G(`log n). His idea is to reduce the length of
the representation of elements by a factor of 2 `log n using `log n recursive calls each
of which halves the length (as in van Emde Boas trees and y-fast tries). Essentially,
2 `log n equally spaced levels of the y-fast trie data structure are stored. At this point,
packed B-trees with branching factor 2 `log n and height O(`log n) are used.

Also using B-trees with compressed keys, Hagerup [28] can construct a static
ranking dictionary in O(n) time, given the elements in sorted order. His data structure
uses O(n) space and performs rank, selection, and, hence, predecessor queries, in
O(1+(log n)/log b) time.

Brodal [11] constructs a data structure that is similar to Andersson’s but uses
buffers to delay insertions and deletions to the packed B-tree. In the worst case, it uses
O(f(n)) time to perform updates and O(log n/f(n)) time to perform predecessor
queries, for any nice function f such that log log n[ f(n)[`log n . However, it uses
O(nNE) space, for some constant E> 0.

Thorup [41] shows that O(n log log n) time is sufficient to perform a batch of n
predecessor queries. He uses a trie of height log n log log n over an N1/log n log log n letter
alphabet. For each query, binary search is used to find the deepest trie node which is a
prefix of the query word, as in van Emde Boas trees or x-fast tries, in time
O(log(log n log log n))=O(log log n). This reduces the original problem to a collection
of subproblems of combined size n over a universe of size N1/log n log log n. In this smaller
universe, linear time sorting can be used to solve all the subproblems in a total of O(n)
time.

Interpolation search can be used to perform membership and predecessor queries in
a static set of size n in expected time O(log log n) under the assumption that the ele-
ments of the set are independently chosen from some distribution [39, 45].

Andersson’s exponential search trees [7] give a general method for transforming any
static data structure that performs membership and predecessor queries in time T(n)
into a linear space dynamic data structure with query and amortized update time TŒ(n),
where TŒ(n)[ T(nk/(k+1))+O(T(n)), provided the static data structure can be con-
structed in nk time and space, for some constant k\ 1. The root of the tree has degree
G(n1/(k+1)) and the degrees of other nodes decrease geometrically with depth. Instances
of the static data structure are used to implement the search at each node. Global and
partial rebuilding are used to update the data structure. Combined with fusion trees,
packed B-trees, and x-fast tries, exponential search trees give a solution to the dynamic
predecessor problem that uses worst case search time and amortized update time

O Rmin ˛
`log n

log logN· log log n

log n
log b

+log log n

ˇS
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and O(n) space. Andersson and Thorup [10] have combined a variant of exponen-
tial search trees with eager partial rebuilding to improve the resulting dynamic data
structure, achieving worst-case instead of amortized bounds for update time.

Although priority queues can be implemented from dynamic predecessor, there
are more efficient data structures. Thorup [41] gives a randomized priority queue
with expected time O(log log n) for insert and extractmin and a deterministic
priority queue with amortized time O((log log n)2). Using exponential search trees,
Andersson and Thorup [10] improve this bound to O((log log n)2) in the worst case.

Another problem that can be solved using predecessor queries is one dimensional
range search (i.e., find some element of S contained within a query interval, if one
exists). However, Alstrup, Brodal, and Rauhe [3] have recently obtained a static
data structure of size O(n) for storing a set S of n integers that supports range
search in constant time. Using this data structure, they can approximately count
(i.e., to within a factor of 1+E, for any constant E > 0) the number of elements of S
that lie within a query interval in constant time. They can also return all elements of
S contained within a query interval in time linear in the number of elements of S
reported.

One of the most natural and general models for proving lower bounds for data
structures problems, and one that is ideally suited for representing word-level opera-
tions, is the cell probe model, introduced by Yao [48]. In this model, there is a
memory consisting of cells, each of which is capable of storing some fixed number of
bits. A cell probe algorithm is a decision tree with one memory cell accessed at each
node. The decision tree branches according to the contents of the cell accessed. We
only count the number of memory cells accessed in the data structure; all computa-
tion is free. This means that no restrictions are imposed on the way data are repre-
sented or manipulated, except for the bound on the size of values that each memory
cell can hold. Thus, lower bounds obtained in this model apply to all reasonable
models of computation and give us insight into why certain problems are hard.

In this model, Fredman and Saks [26] showed that any dynamic data structure
supporting rank queries for sets of integers from a universe of size N requires
W(logN/log logN) amortized time per operation. A rank query asks how many
elements in a given set of integers are less than or equal to a given integer. It is
interesting that, for static sets, predecessor queries and rank queries are equally dif-
ficult [28].

Alstrup, Husfeldt, and Rauhe [4] considered a generalization of the dynamic
predecessor problem in a universe of size N: the marked ancestor problem in a tree
of N nodes. They proved a tradeoff,

t ¥ W 1 logN
log(ub logN)

2 ,

between the update time u and the query time t in the cell probe model with word
size b. If the word size and update time are both in logO(1)N, this gives a lower
bound of W(logN/log logN) for query time. They also construct a RAM algo-
rithm which matches this query time while using only O(log logN) time per update
and O(N) words, each containing O(logN) bits.
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Ajtai, Fredman, and Komlos [1] showed that, if the word length is sufficiently
large (i.e., nW(1) bits), then any set of size n can be stored, using a trie, in O(n) words
so that predecessor queries can be performed in constant time in the cell probe
model. On the other hand, Ajtai [2] proved that, if the word length is sufficiently
small (i.e., O(log n) bits), and only nO(1) words of memory are used to represent any
set of n elements, then worst-case constant time for predecessor queries is impos-
sible.

Miltersen [35] observed that a cell probe algorithm can be viewed as a two-party
communication protocol [47] between a Querier who holds the input to a query
and a Responder who holds the data structure. In each round of communication,
the Querier sends the name of a memory cell to access and the Responder answers
with the contents of that memory cell. The communication game model is more
general, since the response at a given round can depend on the entire history of the
computation so far. In the cell probe model, the response can depend only on which
memory cell is being probed, so different probes to the same memory cell must
always receive the same response. In fact, for many problems, the cell probe com-
plexity is significantly larger than the communication complexity [34].

Miltersen [35] generalized Ajtai’s proof to obtain an W(`log logN) lower
bound on time in this model for the problem of finding predecessors in a static set
from a universe of size N. In [37], it was shown that for certain universe sizes,
Ajtai’s proof and its generalization in [35] also gives an W((log n)1/3) lower bound
on time. These lower bounds (and the lower bounds in our paper) actually apply to
a large natural class of data structure problems introduced in [24]. Furthermore,
Miltersen [35] provides a general technique for translating time complexity lower
bounds (under restrictions on memory size) for static data structure problems into
time complexity lower bounds for dynamic data structure problems. In particular,
he shows that the time to perform predecessor queries is W(`log logN) if the time
to perform updates is at most 2 (logN)

1− E
for some constant E > 0.

Although the cell probe model is useful for proving the most generally applicable
data structure lower bounds, it does not permit one to analyze the particular
instructions necessary for these algorithms.

Fich and Miltersen [23] have shown that, for the standard RAM model (which
includes addition, multiplication, conditional jumps, and indirect addressing
instructions, but not shifts, bitwise Boolean operations, or division), the complexity
of performing membership queries in a set of size n stored using at most N/nW(1)

words (of unbounded size) requires W(log n) time. Thus, for this model, binary
search is optimal.

AC0 RAMs allow conditional jumps and indirect addressing, as well as any finite
set of AC0 instructions (such as addition and shifts, but not multiplication or divi-
sion). Hagerup [28] gave an AC0 RAM algorithm for the dynamic predecessor
problem that uses O(n) words and performs queries and updates in
O(1+log n/log b) time. Andersson et al. [9] showed how to efficiently implement
fusion trees on an AC0 RAM. In the same model, Andersson et al. [8] proved that
the time complexity of the static dictionary problem is G(`log n/log log n). Their
algorithm uses O(n) words and their lower bound holds even if 2 (log n)

O(1)
words are

allowed. It is intriguing that the somewhat unusual function describing the time
complexity in this case is the same as the one that we derive in a different context.
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On the pointer machine model, the time complexity of the dynamic predecessor
problem is G(log logN) [31–33].

3. LOWER BOUNDS

Our lower bounds are proved in the general language-theoretic framework
introduced in [35]. We begin with a brief description of the class of problems and
then show how certain problems in this class can be reduced to various data struc-
ture problems. Next, we present some technical combinatorial lemmas. This is
followed by a lower bound proof in the communication game model for any static
problem in our class. Finally, a number of corollaries are given, including tradeoffs
between update and query time for dynamic data structure problems.

3.1. Indecisive Languages and the Static Prefix Problem

Let S denote a finite alphabet that does not contain the symbol + and let E
denote the empty word. We focus attention on a special class of regular languages.

Definition 3.1. A regular language L ı Sg is indecisive if and only if for all
x ¥ Sg there exist z, zŒ ¥ Sg such that xz ¥ L and xzŒ ¨ L.

Thus, for an indecisive language, knowing that a particular word is a prefix of
the input does not determine the answer to the membership query for that input.

Suppose that L is an indecisive language that is accepted by a deterministic finite
automaton with q states. Then q \ 2, since the automaton accepts some words and
rejects others. Furthermore, the strings z and zŒ in Definition 3.1 can be chosen to
be of length at most q−1.

For any string y=y1 · · · yN ¥ (S 2 { + })g and any nonnegative integer j [N, let
PREj(y) ¥ Sg denote the string of length at most j obtained by deleting all
occurrences of + from the length j prefix, y1 · · · yj, of y. For example, if
y=01 + + 01, then PRE2(y)=01 and PRE5(y)=010. Let Z(N, n) denote the set
of strings in (S 2 { + })N containing at most n non- + characters.

Definition 3.2. Let L ı Sg and x ¥ Sg. The static (L, N, n, x)-prefix problem is
to store an input string y ¥ Z(N, n) so that, for any j ¥ [0, N], the query ‘‘Is
x ·PREj(y) ¥ L?’’ may be answered. When x=E, the static (L, N, n, x)-prefix
problem will also be called the static (L, N, n)-prefix problem.

If NŒ \N and nŒ \ n, then any string in Z(N, n) can be viewed as a string in
Z(NŒ, nŒ) by appending + NŒ−N to it. Thus the static (L, NŒ, nŒ, x)-prefix problem is
at least as hard as the static (L, N, n, x)-prefix problem.

The static (L, N, n, x)-prefix problem for any language L and any string x ¨ L
can be reduced to the static ({0, 1}g1, N, n)-prefix problem as follows. Given an
instance y ¥ (S 2 { + })N, let yŒ ¥ {0, 1, + }N be defined so that

y −i=˛
+ if yi= +

1 if yi ] + and x ·PREi(y) ¥ L
0 if yi ] + and x ·PREi(y) ¨ L.
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Then, by construction, x ·PREi(y) ¥ L if and only if PREi(yŒ) ¥ {0, 1}g1. Thus, the
static ({0, 1}g1, N, n)-prefix problem is the hardest such problem. Similarly, when
x ¥ L, the static (L, N, n, x)-prefix problem can be reduced to the ({0, 1}g1, N, n, 1)-
prefix problem.

3.2. Related Problems

Definition 3.3. The static (N, n)-predecessor-parity problem is to store a set
S ı [1, N] of size at most n so that for any value x ¥ [1, N], the parity of the pre-
decessor of x in the set S, parity(pred(x, S)), can be determined.

The static (N, n)-predecessor-parity problem is no harder than the static prede-
cessor problem. It can also be reduced to the static ({0, 1}g1, N, n)-prefix problem,
as follows. Given a set S ı [1, N] of size at most n, let y ¥ {0, 1, + }N be defined so
that

yi=˛
+ if i ¨ S
1 if i ¥ S and i is odd
0 if i ¥ S and i is even.

Then pred(j, S) is odd if and only if PREj−1(y) ¥ {0, 1}g1.
Conversely, the static ({0, 1}g1, N, n)-prefix problem can be reduced to the static
(2N, n)-predecessor-parity problem, as follows. Given a string y ¥ {0, 1, + }N, let
S={2i−1 | yi=1} 2 {2i | yi=0} ı [1, N]. Then PREj(y) ¥ {0, 1}g1 if and only if
parity(pred(2j+1, S))=1.

Definition 3.4. The point separation problem is to store a set of points in the
plane and decide whether they all lie on the same side of a query line.

The static ({0, 1}g1, N, n)-prefix problem can also be reduced to the point
separation problem, as follows. Given an instance z ¥ {0, 1, + }N of the prefix
problem, an instance of the point separation problem can be constructed as follows,
using ideas in [16, 17]. Suppose i1 < · · · < is−1 denote the indices of the non- +
characters of z. Let is=N+1 and P={pi1 , xi1i2 , pi2 , ..., xis−1is , pis}, where
pij=(2ij, 4i

2
j ) for j=1, ..., s and, for j=1, ..., s−1,

xijij+1=˛
(ij+ij+1, 2i

2
j+2i

2
j+1) if zij=0

(ij+ij+1, 4ijij+1) if zij=1.

Then, for k ¥ [1, N], PREk(z) ¥ {0, 1}g1 if and only if there are points in P on both
sides of the query line y=2(2k+1) x−(2k+1)2 (which is tangent to the parabola
y=x2 at the point (2k+1, (2k+1)2)).

The rank of an element x in a set S is the number of elements in S that are less
than or equal to x.

Definition 3.5. The rank problem is to store a set from an ordered universe so
that, for any element in the universe, the rank of the element in the set can be
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determined. The rank parity problem is to store a set from an ordered universe so
that, for any element in the universe, the parity of the rank of the element in the set
can be determined.

The rank parity problem is no harder than the rank problem. The static
((11)g1, N, n)-prefix problem is equivalent to the rank parity problem for subsets of
[1, N] of size at most n. Let y ¥ {1, + }N be a string and let S ı [1, N] be a set
such that yi=1 if and only if i ¥ S. Then PREj(y) ¥ (11)g1 if and only if
parity(rank(j+1, S))=1.

Definition 3.6. The (exact) range counting problem is to store a set from an
ordered universe so that, for any two elements x [ xŒ in the universe, the number of
elements in the set that are in the range [x, xŒ] can be determined.

The range counting problem is no harder than the rank problem.

3.3. Combinatorial Preliminaries

In this section, we state two combinatorial results which are important for the
lower bound proofs given in the next subsection.

The following form of the Chernoff–Hoeffding bound follows easily from the
presentation in [18].

Proposition 3.1. Fix H ı U with |H| \ r|U| and let S ı U with |S|=s be chosen
uniformly at random. Then

Pr[|H 5 S| [ rs/4] [ (`2/e3/4)rs < 2−rs/2.

The next result is a small modification and rephrasing of a combinatorial lemma
that formed the basis of Ajtai’s lower bound argument in [2].

Suppose we have a tree T of depth d such that all nodes on the same level have
the same number of children. For a=0, ..., d let Va be the set of nodes of T on level
a (i.e. at depth a) and for a < d let fa be the fan-out of each node on level a. Thus
|Va+1 |=fa |Va | for a=0, ..., d−1.

For any node v ¥ T, let leaves(v) denote the set of nodes in Vd that are descen-
dants of v and, if v is not the root of T, let parent(v) denote the parent of v. Let
A(0), ..., A(m−1) be disjoint sets of leaves of T and let A=1m−1

c=0 A(c). The leaves
in A(c) are said to have colour c. A nonleaf node v has colour c if leaves(v) contains
a node in A(c). For c=0, ..., m−1, let AŒ(c)={v | leaves(v) 5 A(c) ] f} denote the
set of nodes with colour c. Note that the sets AŒ(0), ...AŒ(m−1) are not necessarily
disjoint, since a nonleaf node may have more than one colour.

The density of a nonleaf node is the maximum, over all colours c, of the fraction
of its children that have colour c. A nonleaf node v is d-dense if it has density at
least d.

Let Rda (c) be the set of those nodes on level a that are coloured c and do not
have a d-dense ancestor at levels 1, ..., a−1. In particular, Rd1(c)=AŒ(c) 5 V1. The
fraction of nodes on level a that are in Rda (c) decreases exponentially with a.

Proposition 3.2. For 1 [ a [ d, |Rda (c)| [ d
a−1| Va |.

OPTIMAL BOUNDS FOR THE PREDECESSOR PROBLEM 47



Proof. By induction on a. The base case, a=1, is trivial since Rd1 (c) ı V1.
Now let 1 [ a < d and assume that |Rda (c)| [ d

a−1| Va |. If v ¥ Rda+1(c), then, by
definition, v has colour c and no ancestor of v at levels 1, ..., a is d-dense. Since v
has colour c, parent(v) also has colour c and, thus, parent(v) ¥ Rda (c). Furthermore,
parent(v) is not d-dense, so fewer than d ·fa of its children are in Rda+1(c). Hence,

|Rda+1(c)| < d ·fa |R
d
a (c)| [ d ·fa ·d

a−1 |Va |=da |Va+1 |,

as required. L

We now prove Ajtai’s Lemma:

Proposition 3.3 (Ajtai’s lemma). Let T be a tree of depth d \ 2 such that all
nodes on the same level of T have the same number of children. Suppose that at least a
fraction a of all the leaves in T are coloured (each with one of m colours). Then there
exists a level a, 1 [ a [ d−1, such that the fraction of nodes on level a of T that are
d-dense is at least

a−mdd−1

d−1
.

Proof. By Proposition 3.2, |Rdd(c)| [ d
d−1| Vd | for all colours c. Let A be the set

of all coloured leaves in T and let Rd=1m−1
c=0 R

d
d(c) ı A. There are m colours;

therefore |Rd| [ mdd−1| Vd |.
If w ¥ A ı Vd and none of its ancestors at levels 1, ..., d−1 are d-dense, then
w ¥ Rd. Thus w ¥ A−Rd implies that some ancestor of w at some level 1, ..., d−1 is
d-dense.

For a=1, ..., d−1, let da denote the fraction of nodes in Va that are d-dense.
Observe that because the fan-out at each level of T is constant, for any v ¥ Va,
|leaves(v)|=|Vd |/|Va |. Therefore, for each a, 1 [ a [ d−1, the number of leaf nodes
of T that lie below d-dense nodes in Va is da |Vd |. It follows that

|A−Rd| [ C
d−1

a=1
da |Vd |.

But |A−Rd|=|A|− |Rd| \ a |Vd |−mdd−1 |Vd |, so

C
d−1

a=1
da \ a−mdd−1.

Thus there is some a, 1 [ a [ d−1, such that da \ (a−mdd−1)/(d−1), as required.
L

The number of d-dense nodes can change significantly with a small change in d.
Consider a tree T of depth d \ 2, where all nodes on level l have fl=2el children,
for 0 [ l [ d−1. Then T has N=f0 · · ·fd−1=2E leaves, where E=e0+·· ·+ed−1.
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FIG. 1. An example related to Ajtai’s lemma

Let a \ 0 and e \ 1 be integers such that a [ e [ min{e1, ..., ed−2, ed−1} and let
m=2e(d−1)−a. Colour a fraction a=2−a of the leaves of T as follows: The x+1st
leaf is coloured if and only if the a least significant bits of the binary representation
of x are all 0. The colour of this leaf is a number in [0, m−1] whose binary repre-
sentation is formed by the concatenation of selected bits from x’s binary represen-
tation. Specifically, divide the binary representation of x into d blocks of length
e0, ..., ed−1. Then concatenate together the e most significant bits in each of the
middle d−2 blocks plus the e−a most significant bits in the least significant block.
The root of the tree T has density 1 and all other internal nodes have density 2−e.
Thus when d [ 2−e, all internal nodes are d-dense; whereas when d > 2−e, only the
root of T is d-dense. An example with d=4, e0=e3=1, e1=e2=2, e=1, and
a=1 is depicted in Fig. 1. The positions of the selected bits in the binary represen-
tation (i.e. those that determine the colour of the leaves) are shaded.

3.4. Lower Bounds for Static Problems

In this section, we present an adversary argument that proves a lower bound on
the time to perform prefix queries for any indecisive language, provided strings are
stored using only a polynomial amount of memory.

As discussed in the introduction, Miltersen [35] observed that one can phrase a
static data structure algorithm in the cell-probe model in terms of a communication
protocol between between two players: the Querier, who holds the input to a query,
and the Responder, who holds the data structure. Each probe that the Querier
makes to the data structure, a cell name, consists of log m bits of communication,
where m is the number of memory cells, and each response by the Responder, the
contents of that named cell, consists of exactly b bits of communication. The
number of rounds of alternation of the players is the time t of the cell-probe com-
munication protocol.

For technical reasons, we require that, at the end of the protocol, both the
Querier and the Responder know the answer to the problem instance. Since we are
considering decision problems, the answer to each problem instance is a single bit.
In this case, once one of the players knows the answer, the other player can be told
the answer in the next round. Therefore, if there is an algorithm for the static
(L, N, n, x)-prefix problem that uses at most t−1 probes, then there is a communi-
cation protocol that solves this problem in at most t rounds.
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The lower bound, in the style of [30], works top down, maintaining, for each
player, a relatively large set of inputs on which the communication is fixed. Unlike
[30], we actually have nonuniform distributions on the Responder’s inputs, so our
notion of large is with respect to these distributions. The distributions get simpler as
the rounds of the communication proceed.

If Z is a probability distribution on a set Z and B ı Z, we use mZ(B) to denote
the probability an element randomly chosen from the distribution Z is in B. Let
U(N, n) be the distribution which chooses an element y=y1...yN from Z(N, n) by
first choosing S ı [1, N] of size n uniformly at random and then, independently for
each j ¥ S, choosing yj ¥ S 2 { + } uniformly at random, and finally setting yj= +

for j ¨ S. That is, each of the (Ni )|S|
i strings in Z(N, n) with exactly i non- +

characters has probability (N−in−i )/[(
N
n )(|S|+1)

n].
The base case of the lower bound considers the situation in which no communi-

cation is performed. Specifically, we argue that there does not exist a large set of
positions A ı [1, N] and a large set of strings B ı Z(N, n) for which the static
(L, N, n, x)-prefix problem can be solved, for all j ¥ A and y ¥ B, without commu-
nication.

Lemma 3.4. Suppose that L ı Sg is an indecisive regular language accepted by a
deterministic finite automaton with q states. Let N \ n > 0 and suppose that
b \ 2(|S|+1)q, an \ max(8qb2, 12b3), and b \ 2−2b+1. Consider any set of positions
A ı [1, N], with |A| \ aN, and any set of strings B ı Z(N, n), with mU(N, n)(B) \ b.
Then, for any x ¥ Sg, there exist integers a, aŒ ¥ A and a string y ¥ B such that
x ·PREa(y) ¥ L and x ·PREaŒ(y) ¨ L.

Proof. Let x ¥ Sg. Consider the event that a string y randomly chosen from the
distribution U(N, n) has x ·PREa(y) ¥ L for all a ¥ A or x ·PREa(y) ¨ L for all
a ¥ A. We will show that the probability of this event is less than b. Since
mU(N, n)(B) \ b, it will follow that there exist integers a, aŒ ¥ A and a string y ¥ B
such that x ·PREa(y) ¥ L and x ·PREaŒ(y) ¨ L.

It is convenient to restrict attention to a well-spaced subset of A. Specifically, it is
possible to choose a0 < a1 < · · · < ab2 ¥ A such that |[ai−1+1, ai]|=ai−ai−1 \
N(|A|−1)/b2M \ |A|/b2−1. Since |A| \ aN \ an \ 8b2, it follows that |[ai−1+1, ai]|
\ |A|/b2−1 \ aN/b2−1 \ 7aN/(8b2) > aN/(2b2) for i=1, ..., b2.

Let S ı [1, N] with |S|=n be chosen uniformly at random. Then, since
q [ an/(8b2) and an/(4b2) \ 3b, applying Proposition 3.1 with H=[ai−1+1, ai]
and r=a/(2b2),

Prob[|[ai−1+1, ai] 5 S| < q] [ Prob[|[ai−1+1, ai] 5 S| [ an/(8b2)]

< 2−an/(4b
2) [ 2−3b.

Since b \ 4, there are b2 [ 2b intervals. Therefore, the probability that at least one
of them contains fewer than q elements of S is less than b22−3b [ 2−2b [ b/2.

Now consider any fixed choice for S that has at least q elements in each of these
b2 intervals. For each interval [ai−1+1, ai], consider the set Qi of the last q ele-
ments of S in the interval. L is an indecisive regular language. Therefore, for each
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fixed choice w for the symbols of y that occur before the first element of Qi, there
are strings z, zŒ ¥ (S 2 { + })q such that x ·PREai (wz) ¥ L and x ·PREai (wzŒ) ¨ L.
There are (|S|+1)q equally likely ways that the characters of y in positions indexed
by Qi will be assigned values. Thus, with probability at least (|S|+1)−q, either
x ·PREai−1 (y) ¥ L and x ·PREai (y) ¨ L or x ·PREai−1 (y) ¨ L and x ·PREai (y) ¥ L.
Therefore, the probability that this event does not occur is at most 1−(|S|+1)−q.

Since the choices of the portions of string y in each of the b2 intervals
[ai−1+1, ai] are independent, the probability that either x ·PREai (y) ¥ L for all
i=0, ..., b2 or x ·PREai (y) ¨ L for all i=0, ..., b2 is at most

(1−(|S|+1)−q)b
2
[ e−(|S|+1)

−qb2 < 2−2b [ b/2 < b

since b \ 2(|S|+1)q.
Because mU(N, n)(B) \ b, it follows that there exists a string y ¥ B such that neither
x ·PREa(y) ¥ L for all a ¥ A nor x ·PREa(y) ¨ L for all a ¥ A. L

Let L ı Sg be an indecisive regular language. We define a sequence of distribu-
tions on Z(N, n) and use it to demonstrate that no cell-probe communication pro-
tocol using nk memory cells of b bits can solve the static (L, N, n, x)-prefix problem
in t rounds. Given integers b, k, t, N, and n we will define two sequences of integers
Ni and ni for i=0, ..., t−1 with N0=N, and n0=n. The general idea of the lower
bound argument is to find, after each round, a portion of the Querier’s and Re-
sponder’s inputs on which the cell-probe communication protocol has made little
progress. After i rounds, the possible values of the Querier’s input will lie in an
interval of length Ni and, within this interval, the Responder’s input y will have at
most ni non- + elements. Thus, the Responder’s input can be viewed as an element
of Z(Ni, ni) together with a modified prefix xŒ consisting of x together with all
characters of y preceding this interval.

More precisely, let b, k, t, N, and n be positive integers and define

• a=n−1/(4t)

• u=8kt

• r=16bu/a

• f=8ru/a=128bu2/a2

• N0=N

• n0=n

• and, for i=0, ..., t−1, define Ni+1=(Ni/f)1/u and ni+1=ni/(ru).

We say that the tuple of parameters (b, k, t, N, n) satisfies the integrality condi-
tion if 1/a is an integer greater than 1 and, for every integer i ¥ [0, t], Ni and ni are
integers and Ni \ ni.

If n is the 4tth power of an integer larger than 1, then 1/a is an integer greater
than 1 and f and r are also integers. Since f \ ru and u \ 1, the condition Nt \ nt is
sufficient to imply that Ni \ ni for i ¥ [0, t]. Furthermore, if Nt and nt are both
integers, then ni=(ru) t− int and Ni=f(u

t−i−1)/(u−1)Nu
t−i

t are integers for i ¥ [0, t]. In
particular, the integrality condition will hold for (b, k, t, N, n) if n is the 4tth power
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of an integer larger than 1 and there are integers Nt \ nt such that n=(ru) tnt and
N=f(u

t−1)/(u−1)Nu
t

t .
Suppose that the integrality condition holds for (b, k, t, N, n). We define a prob-

ability distribution Zi on Z(Ni, ni) inductively, for i=t, ..., 0. The basis, Zt, is the
distribution U(Nt, nt). For every i < t, each string in Z(Ni, ni) can be thought of as
labelling the leaves of a tree Ti with depth u+1, having fan-out f at the root and a
complete Ni+1-ary tree of depth u at each child of the root. We choose a random
element of Zi as the sequence of leaf labels of the tree Ti, which we label using the
distribution Zi+1 as follows: First, choose r nodes uniformly from among all the
children of the root. For each successively deeper level, excluding the leaves, choose
r nodes uniformly among the nodes at that level that are not descendants of nodes
chosen at higher levels. (Notice that, since the root of Ti has f \ ru children, it is
always possible to choose enough nodes with this property at each level.) Indepen-
dently, for each of these ru nodes, v, choose a string wv ¥ Z(Ni+1, ni+1) from Zi+1
and label the leftmost leaf in the hth subtree of v with the hth symbol of wv, for
h=1, ..., Ni+1. Label all other leaves of Ti with + .

Lemma 3.5. Suppose that L ı Sg is a regular language accepted by a determinis-
tic finite automaton M with q states. Suppose (b, k, t, N, n) satisfies the integrality
condition, b \ 16, and 2b \ 4q. Let x ¥ Sg, A ı [1, Ni] with |A| \ aNi, and
B ı Z(Ni, ni) with mZi (B) \ b=2

−2b+1. Suppose there is a t− i round cell-probe
communication protocol, using m [ nk memory cells of b bits, that correctly deter-
mines whether x ·PREj(y) ¥ L for all j ¥ A and y ¥ B. Then there exist xŒ ¥ Sg,
AŒ ı [1, Ni+1] with |AŒ| \ aNi+1, BŒ ı Z(Ni+1, ni+1) with mZi+1 (BŒ) \ b, and a
t− i−1 round cell-probe communication protocol, using m cells of b bits, that
correctly determines whether xŒ ·PREjŒ(yŒ) ¥ L for all jŒ ¥ AŒ and yŒ ¥ BŒ.

Proof. We begin with an overview of the argument. Our goal is to identify a
node v in Ti and fix one round of communication in the original t− i round cell-
probe communication protocol to obtain a new t− i−1 round communication pro-
tocol that still works well in the subtree rooted at v.

We first focus attention on the message the Querier sends during the first round
of communication for each of its possible input queries (i.e. leaves in Ti). A node is
a good candidate for v if there is some message such that a large fraction of the
node’s children have a leaf among their descendants for which this message is sent.
Using Proposition 3.3 (Ajtai’s lemma), we show that there is always a level with
many nodes that are good candidates for v.

Next, we select v from among these nodes and fix the values of those leaves which
are not descendants of v so that the following property holds. If the Responder’s
string y is chosen according to the distribution Zi, the probability that v is one of
the r nodes chosen on its level, y ¥ B, and y is consistent with the fixed values of the
leaves not in v’s subtree is not too much smaller than the probability that y ¥ B.
Moreover, we can fix the response so that the probability that y is also one on
which the Responder gives this response is not too much smaller.

If v is one of the nodes chosen on its level, then only the leftmost descendants of
its children may have values other than + . This implies that the answer to the
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prefix problem is the same if any of the leaves in the subtree rooted at a given child
of v is the input query. Thus we can identify the portion of the string y below v with
an element in Z(Ni+1, ni+1), and the input query below v with the position of its
ancestor among the children of v.

Now, we proceed to give the details of our proof.

Finding the node v. We examine the behaviour of the Querier during the first
round of the original cell-probe communication protocol to find a set of candidates
for the node v. For each value of j ¥ A, the Querier sends one of m messages indi-
cating which of the m memory cells it wishes to probe. Colour the jth leaf of Ti with
this message.

To find the node v, we first find a level a of Ti with many a-dense nodes. Then we
fix the r(a−1) nodes chosen at higher levels and show that, with high probability,
many of the r nodes selected at level a are a-dense. We fix the choice of a set V of
Kb2/8L a-dense nodes at level a. Next we fix the levels of leaves that are not descen-
dants of V. All other leaves, except for the leftmost descendant of each of the Ni+1
children of each node in V, are set to + . Finally, for each node in V, we consider
the restriction of B projected onto the remaining unfixed leaves of the subtree
rooted at the node and choose the node that contains the highest density of
elements from Zi+1.

Since |A| \ aNi, it follows from Proposition 3.3 (Ajtai’s lemma) that there exists a
level a such that 1 [ a [ u and the fraction of a-dense nodes in level a of Ti is at
least (a−mau)/u. By the integrality condition, a [ 1/2. Furthermore, u > 6 and
m [ nk=a−4kt=a−u/2. Therefore

(a−mau)/u \ a(1−a
u
2−1)/u > 3a/(4u).

We now argue that there is a sufficiently large set of candidates for v among the
a-dense nodes at level a and a way of labelling all leaves of Ti that are not descen-
dants of these candidates so that the probability of choosing a string in B remains
sufficiently large.

Note that in the construction of Zi from Zi+1, the r nodes chosen on level a are
not uniformly chosen from among all nodes on level a. The constraint that these
nodes not be descendants of any of the r(a−1) nodes chosen at higher levels skews
this distribution somewhat and necessitates a slightly more complicated argument.

Consider the different possible choices for the r(a−1) nodes at levels 1, ..., a−1
of Ti in the construction of Zi from Zi+1. By simple averaging, there is some such
choice with mZŒi (B) \ b, where Z −

i is the probability distribution obtained from Zi
conditioned on the fact that this particular choice occurred. Fix this choice.

Let R be the random variable denoting the set of r nodes chosen at level a. Since
the choice of nodes at higher levels has been fixed, there are certain nodes at level a
that are no longer eligible to be in R. Specifically, each of the r nodes chosen at
level h < a eliminates its Na−hi+1 descendants at level a from consideration. In total,
there are

C
a−1

h=1
r ·Na−hi+1 < 2r ·N

a−1
i+1
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nodes eliminated from consideration at level a. There are fNa−1i+1 nodes at level a, so
the fraction of nodes at level a that are eliminated is less than 2r/f=a/(4u). Thus,
of the nodes at level a that have not been eliminated, the subset D of nodes which
are a-dense constitutes more than a fraction 3a/(4u)−a/(4u)=a/(2u).

We may view the random choice R of the r nodes at level a as being obtained by
choosing r nodes randomly, without replacement, from the set of nodes at level a
that were not eliminated. Applying Proposition 3.1 with r=a/(2u) and |R|=r,

Pr[|D 5 R| [ ra/(8u)] < 2−ra/(4u)=2−4b.

Since b \ 1, this probability is smaller than 2−2b=b/2. Let E be the event that at
least ra/(8u)=2b of the r elements of R are a-dense. Then mZ'i (B) \ b−b/2=
b/2, where Z'

i is the probability distribution obtained from Z −

i conditioned on the
fact that event E occurred.

Assume that event E has occurred. Then |D 5 R| \ 2b. Let V be the random
variable denoting the first 2b nodes chosen for R that are also in D. By simple
averaging, there is some choice for V with mZ ŒŒŒi (B) \ b/2, where Z −−−

i is the proba-
bility distribution obtained from Z'

i conditioned on the fact that this particular
choice for V occurred. Fix this choice.

Finally, consider the different possible choices s for the sequence of labels on
those leaves which are not descendants of nodes in V. By simple averaging, there is
some choice for s with mZg

i
(B) \ b/2, where Zg

i is the probability distribution
obtained from Z −−−

i conditioned on the fact that this particular choice for s
occurred. Fix this choice.

By construction, the distribution Zg
i is isomorphic to a cross-product of 2b

independent distributions, Zi+1, one for each of the nodes in V. Specifically, for
each v ¥ V, the string consisting of the concatenation of the labels of the leftmost
descendants of v’s children is chosen from Zi+1. (All other descendants of v are
labelled by + .) For v ¥ V and y chosen from Zg

i , let pv(y) denote the string con-
sisting of the Ni+1 characters of y labelling the leftmost descendants of the Ni+1
children of v. Let Bv={pv(y) | y ¥ B is consistent with s}. Then

b/2 [ mZg
i
(B) [ D

v ¥ V
mZi+1 (Bv).

Hence, there is some v ¥ V such that

mZi+1 (Bv) \ (mZg
i
(B))1/|V| \ (b/2)1/2b=1/2.

Choose that node v.

Fixing a round of communication for each player. Since v is a-dense, there is
some message c that the Querier may send in the first round such that
|AŒ|/Ni+1 \ a, where

AŒ={jŒ ¥ [1, Ni+1] | the jŒth child of v is coloured c};
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i.e., there is some input j corresponding to a descendant of the jŒth child of v on
which the Querier sends message c in the first round. We fix the message sent by the
Querier in the first round to be c.

For each node v ¥ V and string y ¥ B, let lv(y) ¥ Sg denote the string consisting
of the non- + characters of y labelling the leaves of Ti that occur to the left of the
subtree rooted at v. For each state p of the deterministic finite automaton M, let
Bv, p denote the set of strings yŒ ¥ Bv for which there exists y ¥ B consistent with s
such that pv(y)=yŒ and x ·lv(y) takesM from its initial state to state p. Since Bv is
the (not necessarily disjoint) union of the q sets Bv, p, there is a state pŒ such that

mZi+1 (Bv, pŒ) \ mZi+1 (Bv)/q \ 1/(2q).

Fix any function i: Bv, pŒ Q B so that, for each string yŒ ¥ Bv, pŒ, i(yŒ) is consistent
with s, pv(i(yŒ))=yŒ, and x ·lv(i(yŒ)) takes M from its initial state to state pŒ. In
other words, i(yŒ) witnesses the fact that yŒ ¥ Bv, pŒ.

There are only 2b different messages the Responder can now send. Therefore,
there is some fixed message cŒ for which

mZi+1 (BŒ) \ 1/(2q2
b) \ 2−2b+1=b,

since 2b \ 4q, where BŒ is the set of strings yŒ ¥ Bv, pŒ such that, in round one, given
the input i(yŒ) and the query c, the Responder sends cŒ. We fix the message sent by
the Responder in the first round to be cŒ.

Constructing the t− i−1 round protocol. Choose xŒ ¥ Sg to be any fixed word
that takesM from its initial state to state pŒ.

Consider the following new t− i−1 round protocol: Given inputs jŒ ¥ AŒ and
yŒ ¥ BŒ, the Querier and the Responder simulate the last t− i−1 rounds of the
original t− i round protocol, using inputs j ¥ A and y=i(yŒ) ¥ B, respectively,
where j is the index of some leaf in Ti with colour c that is a descendant of the jŒth
child of node v. Note that it does not matter which leaf of colour c in the subtree
rooted at the jŒth child of v is chosen. This is because every leaf in this subtree,
except the leftmost leaf, is labelled by + , so PREj(y) is the same no matter which
leaf in the subtree is indexed by j.

It follows from the definitions of AŒ and BŒ that, for inputs j and y, the original
protocol will send the fixed messages c and cŒ during round one. By construction,
the new protocol determines whether x ·PREj(y) ¥ L.

Since pv(y)=yŒ and j is the index of a leaf in Ti that is a descendant of the
jŒth child of node v, PREj(y)=lv(y) ·PREjŒ(yŒ). Furthermore x ·lv(y) and xŒ
both lead to the same state pŒ of M, so x ·PREj(y)=x·lv(y) ·PREjŒ(yŒ) ¥ L if
and only if xŒ ·PREjŒ(yŒ) ¥ L. Thus the new protocol determines whether
xŒ ·PREjŒ(yŒ) ¥ L. L

We now combine Lemmas 3.4 and 3.5 to prove the main technical result.

Theorem 3.6. Let L ı Sg be an indecisive regular language accepted by a
deterministic finite automaton with q states and let x ¥ Sg. There is a constant c > 0
such that if b \ max(16, 2(|S|+1)q), (ckb2t)4t [ n [ (ckb2t)8t, and N \ n (ckt)

t
, then
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there is no t round cell-probe communication protocol for the static (L, N, n, x)-prefix
problem using nk memory cells of b bits each.

Proof. Let c=256. Suppose that b\ max(16, 2(|S|+1)q), (ckb2t)4t [ n[ (ckb2t)8t,
and N\ n(ckt)

t
. To obtain a contradiction, suppose that there is a t round cell-probe

communication protocol for the static (L, N, n, x)-prefix problem using m[ nk

memory cells of b bits. Let nŒ=(ckb2t)4t [ n and kŒ=2k. Then nŒ[ n and m[ (nŒ)kŒ.
Let u=8kŒt, a=(nŒ)−1/(4t), r=16bu/a, f=128bu2/a2, N0=N, n −0=nŒ, and let
Ni+1=(Ni/f)1/u and n −i+1=n

−

i/(ru) for i=0, ..., t−1.
Note that f=128b×64(kŒ)2t2(nŒ)1/2t [ n. One can now easily check that since
N \ n (256kt)

t
, Nt \ n \ nt. As noted above, Nt \N/(fu

t
).

Therefore (b, kŒ, t, N, nŒ) satisfies the integrality condition and the algorithm
works correctly for all inputs j ¥ A=[1, N] and S ¥ B=Z(N, nŒ). Since
2b \ b \ 2q+1 \ 4q, b \ 2, Lemma 3.5 can be applied t times starting with
A=[1, N] and B=Z(N, n), to obtain xŒ ¥ Sg, AŒ ı [1, Nt] with |AŒ| \ aNt,
BŒ ı Z(Nt, nt) with mZt (BŒ) \ b=2

−2b+1, and a 0 round cell-probe communication
protocol that correctly determines whether xŒ ·PREj(y) ¥ L for all j ¥ AŒ and y ¥ BŒ.
This implies that x ·PREj(y) ¥ L for all j ¥ AŒ and y ¥ BŒ or xŒ ·PREj(y) ¨ L for all
j ¥ AŒ and y ¥ BŒ.

Since a=(nŒ)−1/(4t) and t \ 1, a1+t \ (nŒ)−1/2. Also, nŒ \ (256kb2t)4t and b \ 4q, so

an −t=
anŒ
(ru) t
=
nŒa1+t

(16bu2) t
\

(nŒ)1/2

16b(8kŒt)2) t
\
(256b2kt)2t

b t(32kŒt)2t
=42tb3t \ 16b3 > 8qb2

since t \ 1. But Nt \ nt > 0, b \ 2(|S|+1)q, and b=2−2b+1. Therefore, by Lem-
ma 3.4, there exist integers a, aŒ ¥ AŒ and a string y ¥ BŒ such that xŒ ·PREa(y) ¥ L
and xŒ ·PREaŒ(y) ¨ L. This is a contradiction. L

The following two results, which are direct consequences of the preceding result,
give us the desired lower bounds for the static prefix problem.

Theorem 3.7. For any indecisive regular language L, any string x, any positive
integer k, and any positive constant E, there exists a function n(N) [N such that any
cell probe data structure for the static (L, N, n(N), x)-prefix problem using (n(N))k

memory cells of 2 (logN)
1− E
bits requires time W(log logN/log log logN) per query.

Proof. Fix k, E > 0 and choose the largest integer t such that (logN)E \ (ckt)4t

where c is the constant from Theorem 3.6. Clearly cŒlog logN/log log logN \ t \
cœlog logN/log log logN for some constants cŒ, cœ > 0 depending only on k and E
(and the constant c). Let b=2(logN)

1− E
and set n=(cb2kt)4t. Then, for N sufficiently

large, b \ max(16, 2(|S|+1)q) and

n (ckt)
t
[ n (logN)

E/4
[ 5(logN)E28cŒ(logN)

1− E log logN
log log logN6 (logN)

E/4

<N.

Therefore, by Theorem 3.6, any cell-probe data structure for the static
(L, N, n, x)-prefix problem requires time at least t+1 using nk memory cells of b
bits each. L
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Theorem 3.8. For any indecisive regular language L, any string x, and any posi-
tive integers k, kŒ, there is a function N(n) such that any cell probe data structure for
the static (L, N(n), n, x)-prefix problem using nk memory cells of (logN(n))kŒ bits
requires time W(`log n/log log n) per query.

Proof. Fix k and kŒ and consider the largest integer t for which n \ (ckt)8kŒt
2+4t

(log n)8kŒt where c is the constant from Theorem 3.6. Then t \ cŒ `log n/log log n
where cŒ > 0 is a constant depending only on k and kŒ (and the constant c). Set
N=n(ckt)

t
and b=(logN)kŒ=[(ckt) tlog n]kŒ, so n \ (ckt)8kŒt

2+4t(log n)8kŒt=(cb2kt)4t.
For all t \ 3, (t+1) t+1 [ t2t and, hence by the choice of t, it follows that
n [ (cb2kt)8t. For N sufficiently large, b \ max(16, 2(|S|+1)q). Thus, by
Theorem 3.6, any cell-probe data structure for the static (L, N, n, x)-prefix problem
requires time at least t+1 using nk memory cells of b bits each. L

It follows from the reductions described in Sections 3.1 and 3.2 that the static
predecessor problem is at least as hard as any static prefix problem. Thus, we
obtain the following corollaries.

Corollary 3.9. Consider any cell probe data structure for the static predecessor
problem that stores each set S from a universe of size N using |S|O(1) memory cells of
2 (logN)

1−W(1)
bits. Then, in the worst case, queries take W(log logN/log log logN)

time.

A result similar to Corollary 3.9 was independently shown by Xiao [46].
As noted in Section 2, the static predecessor problem for a set S from a universe

of size N can be solved in constant time in the cell probe model using O(|S|)
memory cells if |S| ¥ (logN)O(1) [1]. With indirect addressing, it can also be solved
in constant time using |S|O(1) memory cells if N ¥ |S|O(1). Thus, in Corollary 3.9, the
worst case occurs for a set S of size (logN)w(1) and No(1).

Corollary 3.10. Consider any cell probe data structure for the static predeces-
sor problem. If each set of size n from a universe of size N is stored using nO(1)

memory cells of (logN)O(1) bits. Then, in the worst case, queries take
W(`log n/log log n) time.

The reductions in Sections 3.1 and 3.2 also imply that the same lower bounds
apply to the static versions of the predecessor parity problem, the point separation
problem, the rank problem, and the exact range counting problem.

3.5. Lower Bounds for Dynamic Problems

One can apply the results of Section 3.4 to obtain lower bounds for dynamic data
structures, using a translation argument given by Miltersen [35].

For a ¥ S 2 { + } and i ¥ [1, N], the operation update(i, a) applied to a string
y ¥ Z(N, n) updates the ith letter of the string to be a. It can only be applied if the
resulting string is also in Z(N, n).

Definition 3.7. Let L ı Sg and let x ¥ Sg. The dynamic (L, N, n, x)-prefix
problem is to maintain a string y ¥ Z(N, n) under update operations and support
the queries ‘‘Is x ·PREj(y) ¥ L?’’, for all j ¥ [1, N]. The semidynamic (L, N, n, x)-
prefix problem is a restricted version of the dynamic (L, N, n, x)-prefix problem in
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which the operation update(i, a) can only be applied when the ith letter of the string
is + and a ] + .

Because the semidynamic prefix problem is a restricted version of the dynamic
prefix problem, lower bounds for the former also apply to the latter.

Theorem 3.11. Consider any cell-probe data structure for the semidynamic
(L, N, n, x)-prefix problem. Suppose there are b=(logN)O(1) bits per memory cell
and the data structure uses 2O(b) memory cells. If the amortized time for updates is
nO(1), then the worst-case query time is not o(`log n/log log n ).

Proof. Suppose there is a data structure such that the amortized time for
updates is nO(1). Using static dictionary techniques from [26], we obtain a space
efficient solution to the static (L, N, n, x)-prefix problem.

Let y ¥ Z(N, n) and consider the configuration of the data structure that results
from updating the string + N to become y, one character at a time. At each time
step, at most one memory cell of the data structure is changed, so in n updates, nO(1)

memory cells are changed. Suppose that the indices of all these changed memory
cells, together with their new values, are stored in a perfect hash table that uses nO(1)

memory cells, each containing b bits.
To determine whether x ·PREj(y) ¥ L, given j ¥ [1, N], it suffices to simulate the

query algorithm used by the dynamic data structure. Each probe to a location i in
the dynamic data structure is simulated by searching the hash table for the key i. If
it is present, the associated value is used; otherwise, the value of location i in the
initial (empty) state of the dynamic data structure is used. Since the simulation of a
single probe can be done in constant time, the worst case query time in the static
data structure is O(t), where t is the worst case query time in the semidynamic data
structure.

It follows from Theorem 3.8 that t is not o(`log n/log log n ). L

The restriction of 2O(b) on the number of memory cells is reasonable, since it is
the number of different cells that can be accessed when performing indirect
addressing.

Exactly the same proofs apply to the dynamic predecessor problem with inserts
instead of updates.

Theorem 3.12. Consider any cell-probe data structure for the semidynamic pre-
decessor problem (i.e., no delete operations are performed) on [1, N] restricted to
sets of size at most n. Suppose there are b=(logN)O(1) bits per memory cell and the
data structure uses 2O(b) memory cells. If the amortized time for inserts is nO(1), then
the worst-case query time is not o(`log n/log log n).

Similar lower bounds, but for even larger word size, can be obtained in terms of
the universe size.

Theorem 3.13. Consider any cell-probe data structure for the semidynamic
(L, N, n, x)-prefix problem. Suppose there are b=2(logN)

1−W(1)
bits per memory cell

and the data structure uses 2O(b) memory cells. If the amortized time for updates is
2 (logN)

1−W(1)
, then the worst-case query time is W(log logN/log log logN).
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Proof. The proof is the same as for Theorem 3.11, except that we need to track
the parameters slightly differently and use Theorem 3.7 instead of Theorem 3.8.

Fix some E > 0 and suppose that b=2(logN)
1− E

. If the amortized time per update is
at most 2 (logN)

1− E
, then the time to perform n updates is O(nb). As in the proof of

Theorem 3.11, a hash table containing O(nb) entries of b bits each can be con-
structed. Now, let k=2 and set n to the value chosen in the proof of Theorem 3.7
as a function of b and N and k. Since n \ b, the hash table has size O(n2) and we
obtain a static data structure that meets the conditions of Theorem 3.7. Therefore it
has worst-case query time W(log logN/log log logN). L

Theorem 3.14. Consider any cell-probe data structure for the dynamic predeces-
sor problem on [1, N] restricted to sets of size at most n on which no delete opera-
tions are performed. Suppose there are b=2(logN)

1−W(1)
bits per memory cell and the

data structure uses 2O(b) memory cells. If the amortized time for inserts is 2 (logN)
1−W(1)
,

then the worst-case query time is W(log logN/log log logN).

When there is no a priori restriction on the number of memory cells used by the
dynamic data structure, we can obtain lower bounds for worst case query time
given an upper bound on the worst-case, rather than the amortized, update time.

Theorem 3.15. Consider any cell-probe data structure for the semidynamic
(L, N, n, x)-prefix problem. Suppose there are b=2(logN)

1−W(1)
bits per memory cell

and the worst-case time for updates is 2 (logN)
1−W(1)
. Then the worst-case query time is

W(log logN/log log logN).

Proof. Let E > 0 and suppose there is a data structure for the semidynamic
(L, N, n, x)-prefix problem such that the worst-case time T per update and the
number of bits b per memory cell are both bounded above by 2 (logN)

1− E
. If L ı Sg,

there are only (|S|+1) N possible different updates. At each of the at most T steps
in the update algorithm for a given update, there are at most 2b ways to branch
(depending on the value controlling the branch). Hence, the total number of differ-
ent memory cells that can be accessed during any update is at most (|S|+1) N2bT,
which is bounded above by 22

(logN)1− E/2

for N sufficiently large. Therefore it takes at
most bŒ=2(logN)

1− E/2
bits to describe which cell is updated at each step.

We now apply the same hash table construction as in Theorems 3.11 and 3.13 to
solve the static (L, N, n, x)-prefix problem. We get a table with at most nT=O(nbŒ)
entries each of bŒ bits. The remainder of the proof proceeds as in the proof of
Theorem 3.13 with bŒ replacing b. L

Theorem 3.16. Consider any cell-probe data structure for the semidynamic
(L, N, n, x)-prefix problem. Suppose there are b=(logN)O(1) bits per memory cell
and the worst-case time for updates is 2O(`log n). Then the worst-case query time is not
o(`log n/log log n ).

Proof. Consider a cell-probe data structure for the semidynamic (L, N, n, x)-
prefix problem with b=(logN)kŒ bits per memory cell and worst-case update time
T=2O(`log n).
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As in the proof of Theorem 3.15, the number of different possible memory cells
accessed during an update is at most (|S|+1) N2bT. Thus (logN)O(1)2O(`log n) bits
are needed to represent which memory cell is updated.

Let k=2. Following the proof of Theorem 3.8, choose N=n(ckt)
t
, where c is the

constant from the proof of Theorem 3.6 and t is G(`log n/log log n). Then
logN=2W(`log n).

Therefore, for this value of N, only (logN)O(1) bits are needed to describe which
memory cell is updated at each step of the dynamic algorithm. The hash table con-
struction results in a data structure for the static (L, N, n, x) prefix problem using
nT=O(n2) memory cells of (logN)kŒ bits each, for some constant kŒ > 0. A query
can be performed by simulating each step of the query algorithm for the semidynamic
data structure in constant time. From Theorem 3.8, it follows that the worst-case
query time for the resulting static data structure and, hence, for the semidynamic
data structure is at least cŒ `log n/log log n for some positive constant cŒ. L

There are analogous lower bounds for the semidynamic predecessor problem.

4. AN OPTIMAL STATIC PREDECESSOR DATA STRUCTURE

This section presents a new data structure for the static predecessor problem that
matches the lower bounds for query time in Section 3.4 to within a constant factor.
The previous best static predecessor data structures all use one of Williard’s small
space variants of van Emde Boas trees to do substantial range reduction. The
essential idea of this range reduction is that one is able to perform a binary search
on the binary representation of the query element to find the portion that is most
relevant for determining its predecessor.

Our key contribution is to replace most of the uses of this binary search by a
new, faster, multiway search that either reduces the number of bits in the relevant
portion of the binary representation by a large factor or significantly reduces the
number of elements under consideration. This technique was motivated by our
lower bound work: Our first algorithm was for the restricted class of inputs used in
our lower bound proof and these inputs provided us with key intuition.

At each round of the binary search procedure, Willard uses a perfect hash table.
This table stores the nodes at the middle level of the binary trie representing the
relevant bits of the subset still under consideration. To implement our multiway
search, we replace the binary search with a method for parallel hashing that exa-
mines several different levels of the binary trie at once. Because of limits on the
sizes of the tables we can accommodate, we are only be able to represent some of
the nodes at these different levels of the binary trie, namely, those with many leaves
in their subtrees. The missing nodes mean that we sometimes get a substantial
reduction in the size of the set under consideration, instead of always obtaining a
substantial range reduction.

We begin by describing our method for parallel hashing. Next, we explain how to
implement one round of multiway search. Then we build a data structure for the
predecessor problem when the set size, universe size, and word size are in certain
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ranges. Finally, we incorporate previous techniques and optimize parameters to
obtain a data structure for any range of parameters.

Throughout this section,

• the symbol OcP denotes the binary string of length k representing c ¥
[0, 2k−1],

• the symbol ScT denotes the binary string of length 2k representing c ¥
[0, 22k−1], and

• the symbol O cP denotes the binary string of length r+1 representing c ¥
[0, 2 r+1−1].

A string is stored right justified in a word (or a constant number of words), padded
with 0’s on the left, as necessary. For example, if there are b \ lk bits per word, a
string of length l over the alphabet [0, 2k−1] is stored as b−lk zero bits followed
by the concatenation of the k-bit binary representations of each of the l letters.

We describe the space requirements of some of our data structures in terms of the
total number of bits used, B, and a lower bound on the number of bits, b, in a
single word of memory. For any b that is at least the lower bound, the data struc-
ture can be configured to use O(B/b) words.

Parallel Hashing

We begin by showing that, if the word length b is sufficiently large, it is possible
to evaluate q independent linear space perfect hash functions in parallel in constant
time and, hence, perform membership queries in q dictionaries in parallel in con-
stant time.

Lemma 4.1. Let S1, ..., Sq ı [0, 2k−1] be sets of size at most 2 r, where r < k. If
memory words contain b ¥ W(kq2) bits, then there is an O(kq2(r+1) q)-bit data structure
that can be constructed in O(kq2(r+1) q) time and supports q parallel membership
queries z1 ¥ S1?, ..., zq ¥ Sq? in constant time.

Proof. Let i ¥ [1, q]. Since Si contains at most 2 r elements, it is possible, in
O(k22r) time, to (deterministically) construct a two-level hash function hi: [0, 2k−1]
0 [0, 2 r+1−1] which is one-to-one on Si [20, 25, 40]. More specifically, it is
possible to find constants ai, ai, 0, ..., ai, 2r+1−1 ¥ [0, 2k−1], pi, 0, ..., pi, 2r+1−1 ¥ [0,
2 r+1−1], and ri, 0, ..., ri, 2r+1−1 ¥ [0, r] and functions fi: [0, 2k−1]0 [0, 2 r+1−1]
and gi, j: [0, 2k−1]0 [0, 2 ri, j−1], for j=0, ..., 2 r+1−1, such that

fi(x)=aix mod 2k div 2k−1−r,

gi, j(x)=ai, jx mod 2k div 2k−ri, j for j=0, ..., 2 r+1−1, and

hi(x)=pi, fi(x)+gi, f(x)(x).

The data structure consists of the (2q−1) k-bit string a=OaqPO0POaq−1PO0P · · ·
O0POa1P and four 2 (r+1) q element arrays A, R, P, and M, where, for j1, ..., jq ¥
{0, 1} r+1,
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• A[O j1 P · · · O jq P ]=Oaq, jqPO0P · · ·O0POa1, j1P ¥ {0, 1}k(2q−1),

• R[O j1 P · · · O jq P ]=O2 rq, jqPO0P · · ·O0PO2 r1, j1P ¥ {0, 1}k(2q−1),

• P[O j1 P · · · O jq P ]=O p1, jq P · · · O pq, jq P ¥ {0, 1} (r+1) q, and

• M[O j1 P · · · O jq P ]=Ox1P · · ·OxqP ¥ {0, 1}kq, such that, for i=1, ..., q,
either hi(xi)=ji and xi ¥ Si or hi(xi) ] ji and ji ¨ hi(Si).

This data structure can be stored using (2q−1) k+2k(2q−1) 2(r+1) q+(r+1) q2(r+1) q+
kq2(r+1) q ¥O(kq2(r+1) q) bits. The time to construct the data structure is O(kq22r) for
finding the q two-level hash functions and O(2(r+1) q) for constructing the arrays.

Given a word Z containing the string Oz1P · · ·OzqP ¥ ({0, 1}k)q the function
h(z1, ..., zq)=(h1(z1), ..., hq(zq)) can be computed in constant time as follows.

• Expand Z so that there are (2q−1) k bits with value 0 between each k-bit
character of Z. To do this, multiply Z by the string (O0P2q−2O1P)q to give the string
(O0Pq−1Oz1P · · ·OzqP)q. Then perform a bitwise AND with the string (O0P2q−11k)q to
obtain the stringW=Oz1PO0P2q−1Oz2PO0P2q−1 · · ·O0P2q−1OzqP.

• Multiply z1, ..., zq by the constants a1, ..., aq, respectively. This is done by
multiplyingW by the string a to obtain the string

Saq×z1T · · ·Sa1×z1TSaq×z2T · · ·Sa1×zq−1TSaq×zqT · · ·Sa1×zqT ¥ {0, 1}2kq
2
.

Then, perform a bitwise AND with the string (0k1 r+10k−r−1S0Tq−2)qS0T, to obtain
FŒ= O f1(z1)P 0 2k(q−1)− r−1O f2(z2)P 0 2k(q−1)− r−1 · · · O fq−1(zq−1)P 0 2k(q−1)− r−1

O fq(zq)P 02k(q−1)+k−r−1.

• Compress FŒ to get F=O f1(z1)P O f2(z2)P · · · O fq(zq)P ¥ {0, 1}(r+1) q.
To do this, multiply FŒ by the bit string (02k(q−1)−r−21)q and then AND the result
with the bit string 1q(r+1)0 (2q(q−1)+1) k−q(r+1) to obtain the bit string O f1(z1)P · · ·
O fq(zq)P 0(2q(q−1)+1) k−q(r+1). Finally, shift the result right (2q(q−1)+1) k−q(r+1)
bit positions.

• Multiply z1, ..., zq by the values a1, f1(z1), ..., aq, fq(zq), respectively. This is done
by multiplyingW by A[F], which gives

Saq, fq(zq)×z1T · · ·Sa1, f1(z1)×z1T · · ·Saq, fq(zq)×zqT · · ·Sa1, f1(z1)×zqT.

Then, perform a bitwise AND with the string (0k1kS0Tq−2)qS0T, to get

O0POz −1 PS0T
q−2O0POz −2 PS0T

q−2 · · ·O0POz −q−1 PS0T
q−2O0POz −q PS0T

q−1,

where z −i=ai, fi(zi)zi mod 2k. Compress this string by multiplying it by (S0Tq−2

O1P)q, taking the AND with 1qk0 (2q−1)(q−1) k, and shifting right (2q−1)(q−1) k bit
positions to obtain ZŒ=Oz −1 PO0P · · ·O0POz

−

q P,

• Multiply z −1, ..., z
−

q by the values 2 r1, f1(z1), ..., 2 rq, fq(zq), respectively. As in the
first two steps, this is done by multiplying ZŒ by (O0P2(q−1)O1P)q, performing a
bitwise AND with the string (O0P2q−11k)q, and multiplying by R[F], which gives

S2 rq, fq(zq)×z −1 T · · ·S2
r1, f1(z1)×z −1 T · · ·S2

rq, fq(zq)×z −q T · · ·S2
r1, f1(z1)×z −q T.
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Then, perform a bitwise AND with the string (1k0kS0Tq−2)qS0T, to obtain

GŒ=Og −1 PO0PS0T
q−2Og −2 PO0PS0T

q−2 · · ·Og −q−1 PO0PS0T
q−2OgqPO0PS0Tq−1,

where g −i=gi, fi(zi)(zi)=z
−

i div 2k−ri, fi(zi) ¥ {0, 1} ri, fi(zi). Note that since ri, fi(zi) < r < k,
it follows that Og −i P=0

k−r−1O g −i P .

• Compress GŒ to get G=O g −1 P · · · O gq P ¥ {0, 1} (r+1) q. As above, to do
this, multiply G by the bit string (02k(q−1)−r−21)q, AND the result with the bit string
1q(r+1)02kq(q−1)+k−(r+1)(q−1) and shift right 2kq(q−1)+k−(r+1)(q−1) bit positions.

• AddP[F]=O p1, f1(z1) P · · · O pq, fq(zq) P andG to obtainH=O h1(z1)P · · ·
O hq(zq)P .

To complete the membership queries, compare the corresponding k-bit fields of
M[H] and Z. Since hi is one-to-one on Si, it follows that zi ¥ Si if and only if zi is
in the (q+1−i)th least significant k-bit field ofM[H].

To compare the corresponding fields in parallel, compute E, the exclusive OR of
M[H] and Z. Next compute the AND of E and (01k−1)q and subtract the result
from (10k−1)q. Finally, AND the result with (10k−1)q and the complement of E to
get the string whose k(q+1−i)th least significant bit is 1 if and only if zi ¥ Si for
i=1, ..., q and all of whose other bits are 0. L

Multiway Search in a Trie

Next, we explain the fundamental primitive for our new technique which is based
on parallel hashing. Let S denote a set of s strings, 1 < s [ n, of length L over the
alphabet [0, 2k−1] and let T denote the trie of branching factor 2k and depth L
representing this set. Each node at depth d of T corresponds to the length d prefix
of some element of S. Thus T contains at most Ls+1 nodes. A node v in T is said
to be n-heavy (which we will simply refer to as heavy since the value of n will always
be understood) if the subtrie rooted at v has at least max(s/n1/L, 2) leaves. Any
ancestor of a heavy node is a heavy node. The root of T is always heavy and no leaf
is heavy. For 0 < d < L, there are at most n1/L heavy nodes at depth d.

Lemma 4.2. Let T be a trie of depth L over the alphabet [0, 2k−1] with at most
n leaves. If 2L(L−1) [ log n and memory words contain b ¥ W(kL2) bits, then there
is an O(kLn)-bit data structure that can be constructed in O(kLn) time such that,
given a string x=x1 · · · xL of length L over [0, 2k−1], the longest proper prefix of x
that is a heavy node in T, and the length of this prefix, can be determined in constant
time.

Proof. If L=1, the empty word is the only proper prefix of x, so we may
assume that L > 1. Let Sd={z ¥ [0, 2k−1] | yz is a heavy node at depth d for some
heavy node y at depth d−1}, for 0 < d < L. Since T has at most n1/L heavy nodes
at depth d, it follows that Sd has size at most n1/L.
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We use a slight variant of the data structure in Lemma 4.1, with q=L−1 and
r=K(log n)/LL. Specifically, if M[O j1 P · · · O jq P ]=Oy1P · · ·OyqP, then there
exists 0 [ e [ q such that y1 · · · ye is a heavy node, hi(yi)=ji for 1 [ i [ e, and
hi(yi) ] ji for e < i [ q. Furthermore, if e < q, then y1 · · · yez is not a heavy node for
all z ¥ {0, 1}k with he+1(z)=je+1. Note that yi ¥ Si and hi is one-to-one on Si for
i=1, ..., e. Hence, if h(x1, ..., xq)=(j1, ..., jq) and x1 · · · xd is the longest proper
prefix of x which is a heavy node, then d [ e and xi=yi for i=1, ..., d.

Thus, to find the length, d, of the longest proper prefix of x which is a heavy
node, it suffices to compute H=O h1(x1)P · · · O hq(xq)P and find the length of
the longest common prefix of M[H] and X=Ox1P · · ·OxqP. This can be computed
by computing E, the exclusive OR ofM[H] and X, computing the prefix OR of E,
taking the AND with O1Pq, then computing the Hamming weight of the resulting
string (which can be done by multiplying the string by O1Pq, shifting right k(q−1)
bits, and taking the AND with the string 1k), and finally subtracting the result from
q. Alternatively, look up the prefix OR of E in a hash table of size O(kq) contain-
ing the strings {0kq−i1 i | i=0, ..., kq} stored together with the corresponding values
of d.

The prefix of length d of x can be obtained by shifting x right k(L−d) bit posi-
tions.

The data structure uses O(kLn) bits and can be constructed in O(kLn) time. This
follows from Lemma 4.1 using the fact that (r+1) q < ((log n)/L+2)(L−1)=
[(L−1)(log n)+2L(L−1)]/L [ [(L−1)(log n)+log n]/L=log n. L

The Static Predecessor Data Structure

Now, we present our new data structure for the static predecessor problem. It is
constructed recursively, using multiway search in a tree, described above.

Lemma 4.3. If n, u, and c are positive integers such that n \ uu, c [ u, and
memory words contain b \ 2uc+2 bits, then there is a static data structure for repre-
senting a set of at most n integers from the universe [0, 2u

c
−1] that supports prede-

cessor queries in O(u) time, uses O(n2/u2) words, and can be constructed in O(ucn2)
time.

Lemma 4.3 follows immediately from the following technical lemma, by setting
L=1, a=u, and s=n. This technical lemma will be in a convenient form for the
recursive construction. At each stage in the recursion, either the size s of the set
being represented will decrease by at least a factor of n1/u or the number of bits
required to represent each element will decrease by a substantial amount. The
parameters a and c are upper bounds on the number of additional rounds of set-
size reduction and range-size reduction, respectively, that can be performed.

As a result of a round of range-size reduction, the number of bits required to
represent an element will decrease to the largest power of u less than the current
value. If another range reduction is performed next, then the power of u will
decrease by one. When set-size reduction is performed, the range also gets smaller,
but the size of the resulting range may vary. Although the number of bits will not
necessarily be a power of u, it will be a small integer multiple L of a power of u,
where L [ u.
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Lemma 4.4. If a, c, L, n, s, and u are integers such that a, c ¥ [0, u], n \ uu,
L ¥ [1, u], s [ na/u, and memory words contain b \ [2(u−1)2−1] Luc bits, then there
is a static data structure for representing a set of s integers from the universe
[0, 2Lu

c
−1] that supports predecessor queries in O(a+c) time, uses O(sn/u2) words,

and can be constructed in O(sLucn) time.

Proof. If a=0 then s=1 and it suffices to store the element. Therefore, we
assume that a > 0.

If c=0 and L=1, then the universe is [0, 1] and a 2-bit characteristic vector
suffices. If c \ 1 and L=1, then Luc=LŒucŒ, where LŒ=u and cŒ=c−1. Therefore,
we may assume that L > 1.

Let S be any set of s [ na/u integers from the universe [0, 2Lu
c
−1] and let T0

denote the binary trie of depth Luc representing S.
For j ¥ [1, c], let Tj be the trie of depth Luc−j and branching factor 2u

j
that con-

sists of all nodes in T0 at levels divisible by u j, where node v is the parent of node w
in Tj if and only if v is the ancestor at distance u j from w in T0. Then Tj represents S,
when viewed as a set of strings of length Luc−j over the alphabet [0, 2u

j
−1].

Note that the set of nodes of Tj is exactly the set of nodes of Tj−1 at depths divi-
sible by u. Furthermore, the children of each nonleaf node v in Tj are the leaves of
the subtrie of depth u rooted at v in Tj−1.

For every node v in Tc, let minS(v) denote the smallest element of S with prefix v
and maxS(v) denote the largest element of S with prefix v.

The data structure is built recursively. For the purposes of analysis, we will asso-
ciate each recursive instance of the data structure with a node in one of the trees
Tc, ..., T0. The entire data structure will be associated with the root of Tc. The
subproblems for sets of strings of length 1 < LŒ [ u over the alphabet [0, 2u

j
−1]

will be associated with distinct nonleaf nodes of Tj. The data structure consists of
the following parts:

1. the data structure described in Lemma 4.2, with T=Tc and k=uc,

2. for each nonheavy node v in Tc that has a heavy parent and for each heavy
node v in Tc:

(a) maxS(v), minS(v), and pred(minS(v), S),

3. for each heavy node v in Tc with at least two children:

(a) a linear size perfect hash table containing the letters (in [0, 2u
c
−1])

labelling edges from v to nonheavy children of v,

(b) a recursive instance of the data structure for the set S −v={vŒ ¥
[0, 2u

c
−1] | v · vŒ is a child of v} of size at most s (which we associate with node v in

Tc−1), and

4. for each nonheavy node w at depth 0 < d < L in Tc with a heavy parent
and at least two leaves in its subtree:

(a) a recursive instance of the data structure for the set S −w={vŒ ¥
[0, 2u

c
−1]L−d | w · vŒ ¥ S} of size at most s/n1/L [ s/n1/u [ n (a−1)/u (which we asso-

ciate with node w in Tc, if d < L−1, or node w in Tc−1, if d=L−1).
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To find the predecessor of x ¥ [0, 2k−1] in the set S, first determine the longest
prefix v of x that is a heavy node in Tc, as described in Lemma 4.2. Suppose that v is
at depth d.

If v has at most one child, then

pred(x, S)=˛
pred(minS (v), S) if x [ minS (v)

minS (v) if x >minS (v).

Now consider the case when v has at least two children. Determine whether some
child of v is a prefix of x, using the hash table containing all of v’s nonheavy
children. By definition of v, if there is such a child, then it is not heavy.

If no child of v is a prefix of x, then

pred(x, S)=˛
pred(minS (v), S) if x [ minS (v)

maxS (v · pred(xd+1, S
−

v)) if x >minS (v).

Find pred(xd+1, S
−

v) using the recursive instance of the data structure for the set S −v.
Note that v · pred(xd+1, S

−

v) is either a nonheavy child of the heavy node v or is itself
heavy, so the largest element of S in the subtree rooted at this node is stored expli-
citly.

Finally, consider the case when some child w of v is a prefix of x. If w has exactly
one leaf in its subtree, then

pred(x, S)=˛
pred(minS (w), S) if x [ minS (w)

minS (w) if x >minS (w).

Otherwise,

pred(x, S)=˛
pred(minS (w), S) if x [ minS (w)

w ·pred(xd+2 · · · xL, S
−

w) if x >minS (w).

Find pred(xd+2 · · · xL, S
−

w) using the data structure for the set S −w.
It follows by induction that predecessor queries are supported in O(a+c) time.
Next, we analyze the storage requirements of the entire data structure (including

all recursive instances of the data structure for the subproblems).
First, we count the total space used by part 2(a) of the construction. There are at

most sLuc−j+1 nodes in Tj some of which contribute a constant number of words.
If j=c, these words are at most Luc [ uc+1 bits long. If j < c, these words are at
most u j+1 bits long. This gives a total of O(csLuc+1) bits.

Now, we count the total space used by part 3(a) of the construction. Since each
tree Tj has s leaves, there are at most 2(s−1) nodes in Tj with siblings (i.e., that are
children of nodes with at least two children). Each of these nodes can be viewed as
contributing at most a constant number of u j-bit entries to its parent’s perfect
hash table. Thus, over the entire recursive data structure, the hash tables use
O(;c

j=0 su
j)=O(suc) bits.
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Finally, we count the total space used by part 1 of the construction. The only
association of nodes of Tc with recursive instances of the data structure occur as a
result of part 4(a) of the construction. Since these nodes are nonheavy children of
heavy nodes, they have siblings in Tc. Therefore, at most 2(s−1) nodes in addition
to the root are associated with an instance of the data structure. For each such
node, part 1 of the construction is an instance of the data structure of Lemma 4.2
with T the subtree (of depth at most L) rooted at this node and k=uc, which uses
O(Lucn) bits. In total, O(sLucn) bits are used.

Similarly, for j < c, each node in Tj that is associated with a recursive instance of
the data structure either has a sibling (in case the instance arose from part 4(a) with
d < L−1), or is also a node in Tj+1 with at least two children (in case the instance
arose from part 4(a) with d=L−1 or from part 3(b)). Since each tree has s leaves,
it contains at most s−1 nodes with two or more children and at most 2(s−1) nodes
with siblings. For each such node, part 1 of the construction is an instance of the
data structure of Lemma 4.2 with T the subtree (of depth at most u) rooted at this
node and k=u j, which uses O(u j+1n) bits. In total, over all trees Tj, with j < c, the
number of bits used is O(;c−1

j=0 su
j+1n)=O(sucn).

Altogether, O(csLuc+1)+O(suc)+O(sucn)+O(sLucn)=O(sLucn) bits are used.
Since b ¥ W(Luc+2), only O(sn/u2) words are needed.

It remains to determine the construction time of the data structure. The only two
time-consuming parts of the construction are 1 and 3(a). Since the time needed to
construct an instance of the data structure from Lemma 4.2 is bounded above by
the same quantity as the upper bound on the number of bits used, it follows that
O(sLucn) time suffices to construct all the instances that occur in some part 1
during the recursive construction. A perfect hash table with 2(s−1) or fewer u j-bit
elements (or a collection of perfect hash tables with a combined total of 2(s−1)
elements) can be constructed in O(s2u j) time [40]. Thus O(s2uc) ı O(sLucn) time
suffices to construct all the instances that occur in some part 3(a) during the recur-
sive construction. L

The data structure of Lemma 4.3 is not quite enough on its own to achieve our
desired result, since it requires a particular relationship between the universe size
and the set size. Also, Lemma 4.3 requires word size greater than the logarithm of
the universe size. However, combining this with packed B-trees and a small number
of rounds of range reduction using Willard’s x-fast tries, we obtain an upper bound
that matches our lower bound for the static predecessor problem in Section 3.4.

Theorem 4.5. There is a static data structure for representing n integers from the
universe [1, N] that uses O(n2log n/log log n) words of logN bits and answers pre-
decessor queries in time O(min{ log logNlog log logN ,`

log n
log log n }). Moreover, this data structure

can be constructed in O(n2+E) time for any E > 0.

Proof. Let b=logN. If n < 24(log logN)
2/(log log logN), then

(log n)/log b [ (log n)/log logN<`8 log n/log log n

[ 4`2 log logN/log log logN,
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for N sufficiently large. In this case, we use Fredman and Willard’s fusion
trees [27] which, as shown by Hagerup [28], can be parameterized to use O(n)
words, support predecessor queries in O(1+(log n)/log b) time and can be con-
structed in O(n) time.

Now assume thatn \ 24(log logN)
2/(log log logN). Then `log n/log log n \`2 log logN/

log log logN for N sufficiently large. Therefore, it suffices to give an
O(log logN/log log logN) query time in this case. Let u be the smallest integer
such that uu \ logN. Then, for N sufficiently large, (log logN)/log log logN [ u [
2(log logN)/log log logN [`(2 log n)/log log n and uu [ (logN)2 [ n1/u. Observe
that since (u−1)u−1 < logN, uu/logN [ uu/(u−1)u−1 [ u(1+1/(u−1))u−1 [ eu.
Therefore 2uu−2 [ (2e logN)/u[ logN, for u\ 2e, which holds forN sufficiently large.

In this case, the data structure has two parts. The first part consists of the top
K4 log uL levels of Willard’s x-fast trie [44]. This reduces the problem of finding the
predecessor in a set of size n from a universe of size N to finding the predecessor
in a set of size at most n from a universe of size 2k, where k=(logN)/
2 K4 log uL [ (logN)/u4 [ uu−4.

For each resulting subproblem, the set size is at most n, b=logN \ 2uu−2, and
the universe size is at most 2k [ 2u

u−4
. Therefore, the data structure of Lemma 4.3,

with c=u−4, can be used. The time spent by the query in this portion of the data
structure is O(u) and the query takes only O(log u) steps in the x-fast trie portion of
the data structure. Thus, the total query time is O(log logN/log log logN).

There are O(u4) subproblems. By Lemma 4.3, the data structure for each
subproblem uses O(n2/u2) space and the truncated x-fast trie uses O(n logN) ı
O(n2) space. Thus the total space used is O(n2u2) ı O(n2log n/log log n).

For each subproblem, the data structure can be constructed in O(n2uu−4) time,
for a total of O(n2uu) time over all subproblems. Each level of the x-fast trie can be
constructed in time O(n2logN)=O(n2uu), using the time bounds for hash table
construction [40], and there are O(u4) levels. Thus, the total construction time is
O(n2uu+4), which is O(n2+E) for any constant E > 0. L

Our algorithm also works for sets of positive floating point numbers that use a
fixed number of bits for the exponent followed by a fixed number of bits for the
mantissa, where the exponent is expressed using biased notation. This is because
lexicographic ordering of the binary strings representing numbers in this way is
consistent with the numerical order of these numbers [29].

Similarly, our algorithm can be used for sets of rational numbers with numerators
and denominators at most k ¥O(b) bits long, if each rational number x/y, where
x ¥ [0, 2k−1] and y ¥ [1, 2k−1] is represented by the 3k-bit binary representation of
the integer Nx4k/yM. To see why, note that if Nx4k/yM< NxŒ4k/yŒM, then x4k/y < xŒ4k/yŒ
and if Nx4k/yM=NxŒ4k/yŒM, then (x4k/y)−1 < xŒ4k/yŒ< (x4k/y)+1, so −1 < −yyŒ/
4k < xŒy−yŒx < yyŒ/4k < 1 and, hence, x/y=xŒ/yŒ, since xŒy−yŒx is an integer.

Algorithms for Related Problems

Observe that any data structure for the static predecessor problem for sets of size n
from the universe [1, N] can be augmented (using O(n) additional space) to solve the
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static (L, N, n, x)-prefix problem for any language LıSg and any string x ¥Sg using
only a constant amount of additional time. Specifically, given a string y ¥ (S2 {+ })N,
consider the set S={i | yi ¥S}. Add a hash table of size O(n) storing each element of
S2 {0} in a different location. Together with each element j ¥ S2 {0}, also store the
answer to the query ‘‘Is x·PREj(y) ¥ L?’’ To determine whether x·PREj(y) ¥ L for an
arbitrary element j ¥ [0, N], first use the hash table to determine whether j ¥ S2 {0}
and, if so, return the precomputed answer. Otherwise, find the predecessor jŒ of j in S.
Then use the answer to the question ‘‘Is x·PREjŒ ¥ L?’’ stored in the hash table.

Similarly, the static-predecessor-parity problem, the static rank-parity problem,
and the static rank problem can be solved within the same time bounds.

The point separation problem for a set of points in the plane, with coordinates
that are rational numbers expressed as the quotient of two b-bit words is considered
by Chazelle [16]. He shows that asking whether a query (do all points in the set lie
on the same side of a given line?) reduces to finding the predecessor among the
slopes of the lines comprising the convex hull of the points in the set. Thus, this
problem can be solved in time O(min{(log b)/log log b,`(log n)/log log n }).

Exponential search trees [7, 10] can be combined with our static data structure
to give a linear size dynamic data structure.

Corollary 4.6. The dynamic predecessor problem for a set of up to n integers
from the universe [1, N] can be solved on a RAM with O(n) words of logN bits, in
time O(min{(log log n) log logNlog log logN ,` log n

log log n }).

5. CONCLUSIONS

In this paper, we achieve asymptotically matching upper and lower bounds for the
static predecessor problem and the static prefix problem for indecisive languages. We
obtained the lower bound first and then worked for a long time trying to improve it.
Eventually, in an attempt to understand the reasons for our difficulties, we started
looking for a communication game algorithm that would be efficient for inputs drawn
from the hard distribution used in our lower bound. The algorithm we obtained for this
problem directly led to the development of our algorithm in Section 4. This is an
example where the insight obtained from a lower bound can lead to a substantially
improved algorithm.

Further connections have been made between the approximate nearest neighbour
problem for inputs in [1, N]d, for constant d, and our bounds for the predecessor
problem. Amir et al. [5] give a reduction from the predecessor problem to the
approximate nearest neighbour problem in one dimension to derive an
W(log logN/log log logN) lower bound for the approximate nearest neighbour
problem. Using an extension of our data structure, Cary [14] gives a data structure
that matches this lower bound for any constant number of dimensions.

It would be nice to remove the log log n factor in the numerator in the first term
of the minimum in Corollary 4.6 so that our upper and lower bounds would match
for the dynamic versions of these problems.
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For the static version of the predecessor data structure, could an algorithm be
obtained that uses linear or nearly linear space, rather than quadratic space without
using the full power of exponential search trees? A key place where there is room
for improvement in our arguments is in Lemma 4.3 when the set size is reduced.
Our construction and analyses do not take advantage of the fact that the set may be
drastically reduced in size, rather than simply reduced periodically by n1/u factors.
The ability to adjust to different set sizes is one of the main advantages of expo-
nential search trees and, in order to do this, one may need a similar structure.
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