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Abstract: In Computer Science and Statistics it is often desirable to obtain
tight bounds on the decay rate of probabilities of the type Pr{Sn−E[Sn] ≥ na},
where Sn is a sum of independent random variables {Xi}ni=1. This is usually
done by means of Chernoff inequality, or the more general Hoeffding inequality.
The latter inequality is asymptotically optimal as far as the expectations of
Xi-s go, but ceases to be so when the variances are also given. The variances
are taken into account in the stronger Bennett inequality, which despite its
potential usefulness is virtually unknown in CS community.

In this paper we provide a systematic account of the general method (based
on Laplace transform) underlying most asymptotically tight estimations of tail
probabilities, and show how it can be used in various situations. In particular,
we provide new and simple proofs of the Hoeffding and the Bennet bounds,
and obtain their natural generalization, which takes into account the first k
moments of Xi-s. We discuss also a typical application of the general method
to a concrete problem from Computer Science, and obtain estimations superior
to those previously known.

The main goal of this work is to give a clear, coherent exposition of the
general method and its various aspects, in the belief that a better acquaintance
with this powerful tool might prove beneficial in studies involving estimations
of tail probabilities, e.g., in analysis of performances of randomized algorithms.

1.1 INTRODUCTION

Let {Xi}∞i=1 be a sequence of independent random variables assuming values
in a bounded interval (which, without loss of generality, will be assumed to
be [0, 1]), and let Sn =

∑n
i=1Xi. Suppose we know something about the

distribution of each Xi, e.g., we know the exact distribution, or we know its
first k moments mk = E[Xk

i ]. In Computer Science, Discrete Mathematics and
Statistics, the need often arises to give upper bounds on tail probabilities of
the form: 1

Pr [Sn − E[Sn] ≥ na] .

In particular it is often desirable to obtain upper bounds which decrease expo-
nentially fast in n (for a fixed a).

The best known inequalities of this sort are the Chernoff and the Hoeffding
inequalities. The Hoeffding inequality [6] asserts that for Xi-s which assume
values in the interval [0, 1], and all have the same mean µ,

Pr [Sn − E[Sn] ≥ na] ≤

{(
α

β

)β (
1− α
1− β

)1−β
}n

, (1.1)

1Probabilities of the form Pr [Sn − E[Sn] ≤ −na] can be handled by defining Yi = C − Xi

(C a constant), S′
n =

∑n

i=1
Yi and using

Pr [Sn − E[Sn] ≤ −na] = Pr
[
S′
n − E[S′

n] ≥ na
]
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where

α = µ ; β = µ+ a .

The Hoeffding inequality generalizes the Chernoff inequality [3, 9], which makes
the same statement about {0, 1} random variables. The sum of random vari-
ables supported on [0, 1] turns out to be at least as well concentrated around
its mean as the sum of {0, 1} random variables.

Most research papers employing upper bounds on tails probabilities do not
go beyond the Hoeffding inequality. Notice, however, that (1.1) uses only the
mean µ, and ignores the variance σ2 of the Xi-s. It is reasonable to expect that
when we know both the mean µ and the variance σ2, a sharper result should
exist. It is indeed so; Bennett has shown in [4]2 that in this case (1.1) holds
with α and β defined as

α =
σ2

σ2 + (1− µ)2
; β =

σ2 + a(1− µ)

σ2 + (1− µ)2
(1.2)

When the variance assumes its maximal possible value (σ2 = µ − µ2), the
Bennett inequality (1.2) reduces to the Hoeffding inequality. In all other cases
it is strictly stronger. In particular, when the variance is zero, the Bennett
inequality asserts that tail probabilities equal to zero, as should be.

Despite the fact that the Bennett inequality should have had numerous ap-
plications, it is rarely if ever used in Computer Science literature. We believe
that one reason for this is the unappealing form it was given in [4], another is
its rather involved proof. This applies to an even larger degree to the natural
generalization of both the Hoeffding and Bennett inequalities, when the first k
moments of all Xi-s are known and equal, or to the direct computation of the
Laplace transform (underlying the proofs of both inequalities) when all Xi-s
have the same distribution.

It is precisely this situation the present paper attempts to amend. We de-
scribe in detail the generic method for obtaining the tail probabilities (Section
1.2), then use it to derive the Hoeffding and the Bennett inequalities (Sections
1.3 and 1.4, resp.). The latter is furnished with a new and simple proof, and
is given an attractive new form. Then we discuss the natural generalization
of the two inequalities, which leads to a mathematically rich theory (Section
1.5). Finally, we demonstrate the usefulness of the original generic method
by applying it directly to an interesting problem arising in Computer Science
(Section 1.6).

Throughout the paper a special effort has been made to simplify and clarify
the existing proofs. By gathering the various aspects of the method (which are
usually scattered in different advanced textbooks and rarely appear under the
same roof), we hope to give a deeper and more complete picture of it. If the
detailed exposition of the method and the example of its application to a typical

2In fact the Bennett bound holds also for variables that are unbounded from one side [4].
Here we restrict the discussion to bounded variables.
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CS problem described in this paper will lead someone to a more sophisticated
use of the method than just the Hoeffding inequality, we will have achieved our
goal in writing this paper.

1.2 BOUNDING TAIL PROBABILITIES WITH THE LAPLACE

TRANSFORM.

Let Ψ be the set of random variables distributed according to some class of
probability distributions. The goal is to give upper bounds on tail probabilities,
bounds that will hold for any sequence of independent random variablesXi ∈ Ψ.
The method we shall describe here was apparently presented for the first time
in a paper by Bernstein [2]. It uses the Laplace transform, and consists of the
following basic steps.

(1) Let χ be the indicator function of the event Sn−E[Sn] ≥ na. Observe
that for any t > 0,

χ ≤ e(Sn−E[Sn]−na)t . (1.3)

The latter function will be used as an approximation to χ. For any t > 0,

Pr[Sn − E[Sn] ≥ na] = E[χ] ≤ E[e(Sn−E[Sn]−na)t]

= e−nt(µ+a)
n∏
i=1

E[eXit]

=
(
e−t(µ+a)φn(t)

)n
, (1.4)

where

φn(t) =

(
n∏
i=1

E[eXit]

) 1
n

.

The function f(t) = E[eXt] is called the Laplace transform of X.

(2) Define Z(t) by:

Z(t) = sup
Y ∈Ψ

E[eY t]

By (1.3), for any t > 0,

Pr[Sn − E[Sn] ≥ na] ≤
(
e−t(µ+a)Z(t)

)n
. (1.5)

This is the fundamental inequality of the entire method.

(3) The next step is to attempt to express Z(t) as an explicit function of t
and the parameters defining the class Ψ, and to plug this function into
inequality (1.5). If the explicit form for Z(t) is hard to get, one should
attempt to find some other handy representation of it, i.e., an algorithm
to compute it, or a nice function which majorizes it.
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(4) The final step is to minimize with respect to t the right hand side of
inequality (1.5), as obtained in step (3).

Step (3) is the crucial step of the strategy. It requires an explicit (or at least
convenient) expression of Z(t) as a function of t and the parameters defining
the class Ψ. In all cases discussed in this paper, there will be a single member
X ∈ Ψ, whose Laplace transform E[eXt] simultaneously majorizes the Laplace
transforms of all other Y ∈ Ψ, for all t > 0. In this case Z(t) = E[eXt];
expressing E[eXt] explicitly, one gets an optimal bound, as far as the above
strategy is concerned.

1.2.1 The Optimality of the Method: Cramér’s Theorem

It is natural to ask how good the upper bound given by inequality (1.5) is. It is
easy to see that unless µ+ a = maxX, the inequality (1.3) is strict on a set of
positive probability, and therefore the bound of (1.5) is not optimal. However,
it turns out to be optimal in a certain asymptotical sense.

The following theorem is a special case of Cramér’s Theorem, one of the
cornerstones of the Large Deviations Theory (see [10] for more details). For the
sake of simplicity, we consider the case when all Yi-s have the same distribution.

Theorem 1 Let {Yi}∞i=1 be independent equi-distributed random variables tak-
ing values in the interval [0, 1] and having the mean µ, and let Sn =

∑n
i=1 Yi.

Then, for any δ > µ,

lim inf
n→∞

1

n
log Pr

[
Sn
n
> δ

]
≥ inf

t>0

(
−tδ + logE[eY t]

)
.

Proof:The theorem is obviously true when δ ≥ maxY : in this case the right-
hand side tends to 0 as t tends to ∞. In what follows we assume δ < maxY .

Let z, where δ < z < maxY , be a number, and let us choose t > 0 such that
E[(Y − z)eY t] = 0. Such a t exists: viewing E[(Y − z)eY t] = 0 as a function of
t, we see that this function is continuous, negative for t = 0 (since z > µ), and
positive for t =∞ (since z < maxY ).

Let F denote the probability distribution on [0, 1] corresponding to the ran-
dom variable Y . Define a new random variable Y (t) on [0, 1], distributed ac-
cording to F (t), defined by:

dF (t)(y) = E(eY t)−1 ety dF (y) .

Our first observation is that the mean of Y (t) is z. Indeed,∫ 1

0

y dF (t)(y) = E(eY t)−1

∫ 1

0

y eyt dF (y) dy

= E(eY t)−1E(Y eY t) = E(eY t)−1E(z eY t) = z ,

where the last inequality is due to our choice of t: E[(Y − z)eY t] = 0.
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Let also Dn and D
(t)
n denote the probability distributions corresponding to

the random variables Sn/n and S
(t)
n /n, respectively. It can be readily checked

that
dD(t)

n (y) = E(eY t)−n eyntdDn(y) .

Let ε > 0 be small enough such that z − ε > δ. Then,

Pr

[
Sn
n
> δ

]
≥ Pr

[
Sn
n
∈ [z − ε, z + ε]

]
=

∫ z+ε

z−ε
dDn(y) = E(eY t)n

∫ z+ε

z−ε
e−ynt dD(t)

n (y) .

Since for y ∈ [z − ε, z + ε] it holds e−ynt ≥ e−znt e−εnt, we may conclude

Pr

[
Sn
n
> δ

]
≥
[
E(eY t) e−zt · e−εt

]n ∫ z+ε

z−ε
dD(t)

n (y) . (1.6)

Now we need two key observations. First, since the mean of Y (t) is z, the Low
of Large Numbers implies that

Pr

[
S

(t)
n

n
∈ [z − ε, z + ε]

]
→ 1 ,

as n → ∞. Thus, the rightmost multiplier of (1.6) tends to 1, as n tends to
infinity.

Second, consider the function cz(t) = E(eY t) e−zt = E(e(Y−z)t). The
function is concave: c

′′

z (t) = E((Y − z)2e(Y−z)t) ≥ 0. Therefore, it has at
most one minimum. The necessary and sufficient condition for this minimum
is c

′

z(t) = E((Y − z)e(Y−z)t) = 0. But this is precisely how t was chosen in
the first place! Thus, the global minimum of cz(x) is achieved at our t.

Keeping the two observations in mind, and taking logarithms in (1.6), we
conclude:

lim inf
n→∞

1

n
log Pr

[
Sn
n
> δ

]
≥ inf

t>0
{−zt+ logE(eY t)} − tε .

Observing that inft>0{−zt+ logE(eY t)} is monotone non-increasing in z, and
letting z tend to δ and ε tend to 0, we conclude the proof of the theorem.

Since by inequality (1.5), for every n we have

1

n
log Pr

[
Sn
n
> δ

]
≤ inf

t>0
{−tδ + logE(eY t)} ,

we conclude that

lim
n→∞

1

n
log Pr

[
Sn
n
> δ

]
= inf

t>0
{−tδ + logE(eY t)} .

Thus, the bound of inequality (1.5) is asymptotically optimal.
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1.3 WHEN ONLY THE MEAN IS GIVEN: THE HOEFFDING BOUND

In this section we apply the method described in Section 1.2 to the case in
which all we know about (or all we want to use of) the Xi-s is that they have
the same mean µ. The Hoeffding inequality [6] claims that in this case, for any
a ≤ 1− µ,

Pr [Sn − E[Sn] ≥ na] ≤

{(
α

β

)β (
1− α
1− β

)1−β
}n

(1.7)

where

α = µ ; β = µ+ a .

Let Ψ(µ) be a class of random variables on [0, 1] having the mean µ. Following
the strategy of Section 1.2, we show:

1. There exists a unique member X ∈ Ψ(µ), which simultaneously attains
the maximum of all E(eY t), Y ∈ Ψ(µ), for all t > 0.

2. We plug the Laplace transform of X into the rightmost part of (1.3) and
optimize the resulting expression with respect to t.

1.3.1 Maximizing the Laplace transform

Let ρ(µ) be a random variable defined as

ρ(µ) =

{
1 with probability µ
0 with probability 1− µ .

Lemma 1.3.1 ρ(µ) has the maximal possible moments of any order among the
members of Ψ(µ).

Proof:This is obvious: all the moments mk of ρ(µ) are equal to m1 = µ, while
for any Y ∈ Ψ(µ),

mk(Y ) =

∫ 1

0

tk d σ(t) ≤
∫ 1

0

t d σ(t) = µ .

Corollary 1.3.1 For any t ≥ 0, E[eρ(µ)t] ≥ E[eY t] for any Y ∈ Ψ(µ).

Proof:This is an immediate consequence of the expansion

E[etX ] =

∞∑
i=0

tiE[Xi]

i!
=

∞∑
i=0

timi(X)

i!
,

and the fact that each mi is maximized by ρ(µ).

Notice that E[eρ(µ)t] = (1− µ) + µet .
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1.3.2 Obtaining the Inequality

Let δ = a+ µ. Combining Corollary 1.3.1 with the inequality (1.3), we get for
any t > 0:

Pr[Sn−nµ ≥ na] ≤
(
e−tδE[eρ(µ)]

)n
=
(

(1− µ)e−tδ + µet(1−δ)
)n

. (1.8)

What value of t > 0 makes this bound the best? We need to find the minimum
of B(t) = (1 − µ)e−tδ + µet(1−δ) over all t > 0. Differentiating B(t) with
respect to t, we conclude that the minimum is achieved at t = τ , where

eτ =
1− µ
µ
· δ

1− δ
.

Substituting t = τ into (1.8), and making the cancelations, we obtain:

Pr[Sn − nµ ≥ na] ≤

{(µ
δ

)δ (1− µ
1− δ

)1−δ
}n

, (1.9)

as claimed.

1.3.3 A Remark on the Form of the Upper Bound

The upper bound of equation (1.9) contains an expression of the form

F (α, β) =

(
α

β

)β (
1− α
1− β

)1−β

.

We shall meet the same kind of expression later, in the Bennett Inequality. It
is not hard to check that it will appear whenever the extremal distribution is
concentrated on two points. Here we would like to analyze this expression, and
give it a potentially useful alternative form.

Consider the Entropy function H(x), 0 ≤ x ≤ 1, and its three first deriva-
tives:

H(x) = −x log x− (1− x) log(1− x)

H ′(x) = log
1− x
x

; H ′′(x) = − 1

x(1− x)
; H ′′′(x) =

1

x2
− 1

(1− x)2

Taking the logarithm of F (α, β) and inserting ∆ = β − α we get

logF (α, β) = −β log β − (1− β) log(1− β) + β logα+ (1− β) log(1− α)

= H(β) + (α+ ∆) logα+ ((1− α)−∆) log(1− α)

= H(β)−H(α)−∆H ′(α) .

The Taylor expansion of H(β) at α gives:

H(β) = H(α) + ∆H ′(α) +
∆2

2
H ′′(α) +R2 ,
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where R2 is the remainder term of order 2; its exact form is

R2 =
1

2

∫ β

α

(β − t)2
H ′′′(t)dt =

1

2

∫ β

α

(β − t)2

(
1

t2
− 1

(1− t)2

)
dt .

Thus,

logF (α, β) =
∆2

2
H ′′(α) +R2 =

(β − α)2

2α(1− α)
+R2 .

In the case of the Hoeffding inequality we have α = µ, β = µ+ a. Thus, (1.9)
can be alternatively presented as follows:

Let {Xi}∞i=1 be a sequence of independent random variables on [0, 1], all
having the same mean µ. Then,

Pr[Sn − E[Sn] ≥ na] ≤ exp

(
− na2

2µ(1− µ)
+ nR2

)
The last equation becomes particularly useful when µ ≥ 1

2 : in this case R2 is
negative, and it holds

Pr[Sn − E[Sn] ≥ na] ≤ exp

(
− na2

2µ(1− µ)

)
. (1.10)

1.4 WHEN THE MEAN AND THE VARIANCE ARE GIVEN: A SIMPLE

PROOF OF THE BENNETT BOUND

In this section we apply the method described in Section 1.2 to the case in
which we know that all Xi-s have the same mean µ, and the same variance
σ2. Equivalently, they have second moment m2 = ν = µ2 + σ2. The Hoeffd-
ing inequality can be sharpened in this case; the sharper version is called the
Bennett inequality [4]:

For any a ≤ 1− µ,

Pr [Sn − E[Sn] ≥ na] ≤

{(
α

β

)β (
1− α
1− β

)1−β
}n

(1.11)

where

α =
σ2

σ2 + (1− µ)2
; β =

σ2 + a(1− µ)

σ2 + (1− µ)2
.

We establish the Bennett inequality in essentially the same way as the Hoeffding
inequality was established. Let Ψ(µ, ν) be the class of random variables on [0, 1]
whose mean is µ, and whose second moment is ν. Following the same strategy
as in Section 1.2, we show:

1. There exists a unique member X ∈ Ψ(µ, ν), which simultaneously attains
the maximum of all E(eY t), Y ∈ Ψ(µ), for all t > 0.

2. We plug the Laplace transform of this X into the rightmost part of (1.3)
and optimize the resulting expression with respect to t.
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1.4.1 Maximizing the Laplace transform

Define a random variable ρ(µ, ν) ∈ Ψ(µ, ν) by the following conditions: its
second moment is precisely ν, and it is supported on two points, one of which
is 1. Such ρ(µ, ν) is well defined: if ρ(µ, ν) assumes the value λ with probability
p, and the value 1 with probability q, then p, q, λ are determined by

p+ q = 1 ; pλ+ q = µ ; pλ2 + q = ν .

The solution of these equations can be expressed in the form:

λ =
µ− ν
1− µ

; p =
1− µ
1− λ

; q =
µ− λ
1− λ

. (1.12)

Lemma 1.4.1 ρ(µ, ν) has the maximal possible moments of any order among
the members of Ψ(µ, ν).

Proof:let {dl}∞l=1 be the sequence of moments of ρ(µ, ν). It suffices to show
that for any X ∈ Ψ(µ, ν) with moments {mi}∞i=1, and for all i ≥ 0 :

mi −mi+1 ≥ di − di+1

or

mi −mi+1

1− µ
≥ di − di+1

1− µ
=

(pλi + q)− (pλi+1 + q)

1− µ
=

pλi(1− λ)

1− µ
= λi

Let F be the distribution of X. Let Y be a random variable on [0, 1] with a
distribution function G defined by

dG(x) =
1

1− µ
(1− x) dF (x) .

It is easy to check that Y is well defined. It holds that

E[Y i] =
1

1− µ

∫ 1

0

xi(1− x)dF (x) =
mi −mi+1

1− µ

Since E[Y i]1/i is a nondecreasing function of i (see e.g., [12]), one has

mi −mi+1

1− µ
= E[Y i] ≥ (E[Y ])

i
=

(
m1 −m2

1− µ

)i
=

(
d1 − d2

1− µ

)i
= λi

as desired.

Arguing as in the proof of Corollary 1.3.1, we conclude that

Corollary 1.4.1 For any t ≥ 0, E[eρ(µ,ν)t] ≥ E[eY t] for any Y ∈ Ψ(µ, ν).

Notice that E[eρ(µ,ν)t] = petλ + qet .
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1.4.2 Obtaining the Inequality

Let δ = a+ µ. Combining Corollary 1.4.1 with the inequality (1.3), we get for
any t > 0:

Pr[Sn − nµ ≥ na] ≤
(
e−tδE[eρ(µ,ν)]

)n
=
(
e−tδ · (petλ + qet)

)n
, (1.13)

where p, q, λ are as in (1.12). Let B(t) = e−tδ ·(petλ+qet). Differentiating B(t)
with respect to t, we find that this expression is minimized for t = τ , satisfying

eτ(λ−1) =
q

p
· 1− δ
δ − λ

.

Notice that δ > λ, and thus τ > 0. Substituting t = τ , we get:

Pr[Sn − nµ ≥ na] ≤

{(
q

p
· 1− δ
δ − λ

) 1−δ
λ−1 q(1− λ)

δ − λ

}n

=

{(
µ− λ
δ − λ

)1− 1−δ
1−λ

(
1− µ
1− δ

) 1−δ
1−λ
}n

=

{(
α

β

)β (
1− α
1− β

)1−β
}n

,

with

α =
µ− λ
1− λ

=
σ2

σ2 + (1− µ)2
; β =

δ − λ
1− λ

=
σ2 + a(1− µ)

σ2 + (1− µ)2
.

This is exactly what we wanted to show.
The alternative form presented in Section 1.3.3 applies here as well. For Ben-
nett’s bound it says:

Pr[Sn − E[Sn] ≥ na] ≤ exp

(
−na

2

2σ2
+ nR2

)
(1.14)

with

R2 =
1

2

∫ β

α

(β − t)2

(
1

t2
− 1

(1− t)2

)
dt .

1.5 WHEN THE FIRST N MOMENTS ARE GIVEN: A GLIMPSE OF

THE GENERAL THEORY

Generalizing the results of Sections 1.3 and 1.4, we consider now the case when
all Xi-s have the same first n moments mk = E(Xk

i ), k = 0, 1, .., n. Although
the situation becomes considerably more involved, it can still be satisfactorily
analyzed, and the main results can still be stated in a clear way.

Let Ψ(m) be class of random variables on [0, 1] whose first n moments are
given by m = (m0,m1, ...,mn). In order to estimate the Pr [Sn − E[Sn] ≥ na]
using the strategy of Section 1.2, we need to
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1. Find an easy-to-handle expression for the function Z(t),

Z(t) = sup
Y ∈Ψ(m)

E[eY t].

2. Minimize with respect to t the expression

e−tδ)Z(t) ,

where δ = µ+ a.

The first question falls into the circle of problems related to the the so-called
Markov Moment Problem. The underlying general theory is elaborated in
the excellent (both in its scope and and conceptual clarity) book [11]. Our
presentation will be close to that of [11].

The answer to the first question is:

(a) There exists a unique member ρ(m) ∈ Ψ(µ), which simultaneously attains
the maximum of all E(eY t), Y ∈ Ψ(µ), for all t > 0.

(b) ρ(m) is discrete, and is supported on at most n points. That is, there
exist at most n points Ξ = {ξi}ri=0 such that Pr[ρ(m) = ξi] > 0.

(c) The points Ξ = {ξi}ri=0 can be efficiently computed; they are roots of
some explicitly constructed polynomial.

(d) Once the set {ξi}ri=0 is determined, the corresponding weights wi =
Pr[ρ(m) = ξi] can be obtained by solving the (nonsingular) system of
equations

r∑
i=0

wi ξ
j
i = mj , j = 0, ..., r . (1.15)

(e) Finally,

Z(t) =

r∑
i=0

wi e
ξit .

It is easy to perceive a similarity between the previously studied cases n = 1
and n = 2, and the current general situation.

Consider now the second question. Although in general there is no closed-
form solution, it can still be solved reasonably well. The function we wish to
minimize,

e−tδZ(t) =

r∑
i=0

wi e
(ξi−δ)t,

is concave, and thus has a unique minimum. Differentiating, we conclude that
this minimum is achieved at t = τ > 0 such that

r∑
i=0

wi(ξi − δ) eξiτ = 0 .
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While the form of the present solution is more complex than the one corre-
sponding to n ≤ 2, it is still not too hard to work with, both numerically and
theoretically.

It remains to give a justification to facts (a), (b), (c). Our main goal in the
rest of this section is to give the reader an intuitively clear outline of the relevant
parts of the general theory. While we shall make a keen attempt to make
the proofs mathematically sound, plausible but somewhat technically involved
details will occasionally be omitted. For full details and the full account of the
beautiful general theory, the reader is referred to [11].

1.5.1 Preliminaries: The Geometry of the Moment Space

Define the moment space Mn ⊆ Rn+1 as

Mn =

{
m = (m0, ..,mn) | mi =

∫ 1

0

ti dσ(t), i = 0, 1, .., n

}
,

where σ ranges over all probability distributions on [0, 1]. Observe that Mn is
precisely the convex hull of the moment curve

Cn =
{

(t0, t1, .., tn) | t ∈ [0, 1]
}
⊆ Rn+1 .

Indeed, Mn contains the moment curve: the vector (t0, t1, .., tn) corresponds
to σ, which has all its weight on the point t. Since Mn is obviously convex,
this implies conv (Cn) ⊆Mn. On the other hand, since an integral of a function
with respect to a probability measure can be viewed as a convex combination
of the function’s values, for any m and corresponding σ we have

m = (m0, ..,mn) =

∫ 1

0

(t0, t1, ..., tn) dσ(t) ∈ conv(Cn) .

Notice also that Mn, being a convex hull of a compact set Cn, is compact.
In what follows, given a vector of coefficients a = (a0, a1, .., an), we define

the polynomial Pa(x) as Pa(x) =
∑n
i=0 aix

i.
The following important structure theorem can be viewed as a dual charac-

terization of Mn:

Theorem 2 A sequence of real numbers s = {(s0, s1, ..., sn)} represents the
first n+1 moments (counting the zero-moment) of some probability distribution
on [0, 1] if and only if s0 = 1, and for any polynomial P (x) =

∑n
i=0 aix

i

nonnegative on [0, 1], the value of
∑n
i=0 aisi is also nonnegative.

Proof:If m is a moment sequence of some σ, and P (x) =
∑n
i=0 aix

i is a
nonnegative polynomial on [0, 1], we get:

n∑
i=0

aimi =

n∑
i=0

ai

∫ 1

0

ti dσ(t) =

∫ 1

0

P (t) dσ(t) ≥ 0 .
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This, together with the fact that

m0 =

∫ 1

0

t0 dσ(t) = 1 ,

establishes the “only if” part of the theorem.
Recall that any closed convex set is the intersection of the (closed) half-spaces

defined by its supporting hyperplanes. What are the supporting hyperplanes
of Mn? It is easy to visualize that Mn is the section of the cone Conen =
{cm | c ≥ 0; m ∈ Mn} by the hyperplane s0 = 0. Thus, to show the “if”
part, it suffices to show that any supporting hyperplane of Conen is of the form
a · s = 0, where Pa(x) is nonnegative on [0, 1]. Recall that from the “only if”
part we already know that for every such a, Mn and consequently Conen, are
contained in the half-space a · s ≥ 0.

Observe that cones with an apex at 0 have only supporting hyperplanes of
the form a · s = 0. Consider one such supporting hyperplane. Assume for
contradiction that the corresponding polynomial Pa(x) is not nonnegative on
[0, 1], i.e., there exists ξ ∈ [0, 1] such that Pa(ξ) < 0. Consider a distribution
whose entire mass is concentrated at ξ. Let m = (ξ0, ξ1, ..., ξn) be the moment
sequence of this distribution. Then, a · m = Pa(ξ) < 0, contrary to our
assumption that a · s = 0 is a supporting hyperplane of Conen.

1.5.2 On Finite Representations of m

Given a sequence of moments m = (m0, ...,mn) a finite representation (or just
representation) σ of m = (m0, ...,mn) is a probability distribution on [0, 1]
with moments given by m, whose support is a discrete set of (distinct) points
ξ0, ..., ξr ∈ [0, 1]. In what follows, the points {ξi}ri=0 will be called the roots
of the representation σ. The weights {wi}ri=0 associated these points will be
called the weights of σ.

Given a representation σ, define the index of a root ξi to be ind(ξi) = 1 if ξi
is 0 or 1, and ind(ξi) = 2 if 0 < ξi < 1. The index of a non-root will be defined
as 0. Define the index of the representation σ as the sum of the indices of its
roots.

Call a sequence of moments m = (m0, ...,mn) singular if it has a represen-
tation of index ≤ n.

Theorem 3 A sequence of moments m is singular if and only if there exists
a = (a0, a1, ..., an) such that a ·m =

∑n
i=0 aimi = 0, while Pa(x) =

∑n
i=0 aix

i

is nonnegative on [0, 1].
Moreover, for a singular m, there exists a unique (up to subsets of measure
zero) probability distribution σ whose moment sequence coincides with m. It is
precisely the least degree representation of m.

Proof:Let {ξi}ri=0 be the roots of a representation of index d, d ≤ n, of m.
Define a polynomial

P (x) = (1− x)ind(1)
∏
ξ 6=1

(x− ξ)ind(ξ) .
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It is a simple matter to check that the degree of P (x) is exactly d, and that
P (x) is nonnegative on [0, 1]. Let a = (a0, a1, ..., an) be the vector of coefficients
of P (x) =

∑n
j=0 ajx

j ; if d < n, we take ad+1 = 0, ..., an = 0. It holds that

a ·m =

n∑
j=0

aj

(
r∑
i=0

wiξ
j
i

)
=

r∑
i=0

wiP (ξi) = 0 ,

establishing the “if” part of the theorem.
Assume now there exists an a such that a ·m = 0 while Pa(x) is nonnegative

on [0, 1]. Let {ξi}ri=0, r ≤ n, be the roots of Pa(x) lying in the interval [0, 1].
Then, for any probability distribution σ with moments specified by m,

0 = a ·m = a ·
∫ 1

0

(t0, t1, ..., tn) dσ(t) =

∫ 1

0

Pa(t) dσ(t) .

Clearly, this is possible only when σ assigns measure 0 to the set [0, 1]−{ξi}ri=0.
Thus, σ must be supported on the set {ξi}ri=0 of index d ≤ n. Thus, m has a
representation of index ≤ n. This establishes the “if” part.

Putting together the observations we have made so far, we conclude that
any probability distribution σ on [0, 1] with moments specified by m, must
be supported on the zeroes of any representation of index ≤ n. Consider the
least-index representation of m. Its roots {ξi}ri=0 are uniquely defined, since
they form a subset of roots of any representation of m of index ≤ n, and in
particular of the one of the smallest possible index. The corresponding weights
{wi}ri=0 are also uniquely defined: since r ≤ n,

ξ0
0 ξ0

1 ... ξ0
r

ξ1
0 ξ1

1 ... ξ1
r

...
...

...
...

ξr0 ξr1 ... ξrr


−1

m0

m1

...
mr

 =


w0

w1

...
wr

 .

Notice that by choosing the least-degree representation we have ensured that
all wi-s are strictly positive.

Consider now a non-singular m. A representation of m of index n + 1 will
be called principal. Observe that there can be only two kinds of principal
representations:
For n even, it is either

0 = ξ0 < ξ1 < ... < ξn
2
< 1, or 0 < ξ0 < ξ1 < ... < ξn

2
= 1 . (1.16)

We call the two kinds the lower and the upper principal representations, re-
spectively.
For n odd, the lower and the upper principal representation will be, respectively,

0 < ξ0 < ξ1 < ... < ξdn2 e < 1, and 0 = ξ0 < ξ1 < ... < ξdn2 e = 1 . (1.17)

It will be shown that for a nonsingular m the upper and the lower principal
representations always exist, and, moreover, are uniquely defined.
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1.5.3 The Extremal Properties of Principal Representations

Without risk of running into confusion, let us identify for the rest of this section
random variables and their underlying distributions. Thus, Ψ(m) will denote
the set of all probability distribution on [0, 1] whose first n moments (not count-
ing m0) are given by m. The relevance of the principal representations to the
main theme of this paper comes forward in the following theorem:

Theorem 4 Let m = (m0,m1, ...,mn) be a sequence of moments of some prob-
ability distribution on [0, 1]. Assume further that m is non-singular. Then,
among all σ ∈ Ψ(m), the maximal k-th moment mk(σ), k > n, is achieved
on an upper principal representation of m. Similarly, the minimal mk(σ) is
achieved on a lower principal representation.

Proof:We will prove only the part concerning the upper principal represen-
tation; the part concerning of the lower one has a very similar proof, and is
omitted.

Using arguments similar to those used in establishing the structure of the
moment space (its convexity and its dual characterization), we arrive at similar
conclusions:

1. The set{
(m0, ..,mn,mk) | mi =

∫ 1

0

ti dσ(t), i = 0, 1, .., n, k

}
,

where σ ranges over all probability distributions on [0, 1], is precisely the
convex hull of the curve{

(t0, t1, .., tn, tk) | t ∈ [0, 1]
}
.

Thus, it is compact, and the maximum of mk on Ψ(m) is achieved.

2. Given a sequence of moments m and a real number sk, there exists a
probability distribution σ ∈ Ψ(m) whose k-th moment is equal to sk, if
and only if the linear form aksk +

∑n
i=0 aimi is nonnegative, whenever

the corresponding polynomial akx
k +

∑n
i=0 aix

i is nonnegative on [0, 1].

This implies that the maximal value of mk is defined by the linear programming
problem

Min

n∑
i=0

aimi subject to − xk +

n∑
i=0

aix
i ≥ 0 for any x ∈ [0, 1] . (1.18)

Notice that (1.18) is nothing but the dual of the primal program

Maxσ

∫ 1

0

tk dσ(t) subject to

∫ 1

0

ti dσ(t) = mi, i = 0, 1, .., n . (1.19)

What can be said about the vector a achieving the optimal value in (1.18)? We
need first a preliminary fact:
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Fact: A polynomial of the form P (x) = akx
k +

∑n
i=0 aix

i 6= akx
k, k > n, can

have at most n+ 1 nonnegative real roots (counting their cardinalities).
This fact can be proven by induction on n, using a simple corollary to Rolle’s

Theorem, implying that the number of nonnegative roots of P ′(x) is at least
that of P (x), minus one.

Claim 1.5.1 If a polynomial −xk +
∑n
i=0 aix

i, nonnegative on [0, 1], has less
than n+ 1 zeroes (counting their cardinalities) in [0, 1], the value of

∑n
i=0 aimi

is not optimal for the linear program (1.18).

Proof: Indeed, let P (x) be such a polynomial, and let {ξi}ri=0 be the set of
its distinct roots in [0, 1]. Let d(ξi) be the cardinality of the root ξi; if ξ is
not a root, let d(ξ) be 0. Let z(P ) =

∑r
i=0 d(ξi) be number of roots of P (x)

(counting their cardinalities) in [0, 1]. By our assumption, z(P ) ≤ n.
Let us represent P (x) as P (x) = R(x)Q(x), where R(x) has no zeroes in the

interval [0, 1], and Q(x) is of the form

Q(x) = (1− x)d(1)
∏
ξi 6=1

(x− ξi)d(ξi) =

n∑
i=0

bix
i .

Notice that the degree of Q(x) is z(P ) ≤ n. If it is strictly less than n, the
leading bi-s will be 0. If R(x) has no zeroes in [0, 1], let Q(x) ≡ 1.

Clearly, all d(ξi)-s (with a possible exclusion of d(0) and d(1)) must be even
– otherwise P (x) changes its sign on [0, 1]. Thus, Q(x) is nonnegative on [0, 1].
Since P (x) is also nonnegative there, and P (x) = R(x)Q(x), the polynomial
R(x) must be nonnegative on [0, 1] as well. In fact, since R(x) has no zeroes in
this interval, it must be strictly positive there. Let α > 0 be the minimum of
R(x) on [0, 1]. Consider now a new polynomial,

P1(x) =

n∑
i=0

(ai − αbi)xi = P (x)− αQ(x) = (R(x)− α )Q(x) .

By the choice of α, P1(x) is also nonnegative on [0, 1]. To conclude the proof
of the claim, it remains to show that the value of the linear form (as in (1.18))
corresponding to P1(x) is smaller than the one corresponding to P (x). Indeed,

n∑
i=0

(ai − αbi)mi =

n∑
i=0

aimi − α

n∑
i=0

bimi .

Keeping in mind that m is nonsingular, and that b = (b0, ..., bn) is the sequence
of coefficients of a nonnegative polynomial Q(x), we conclude that b ·m > 0.

We return to the proof of our theorem. By Claim 1.5.1, the maximal mk is
equal to some a ·m, such that the corresponding polynomial −xk + Pa(x) is
nonnegative on [0, 1], and has n + 1 roots (i.e., all its roots) there. Consider
a distribution σ whose moments are m0, ...,mn and mk = a ·m. Using the
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argument we have used many times by now, σ has all its weight on the roots
of −xk + Pa(x). Since all the inner roots are of even cardinality, we conclude
that σ is a representation of index n+ 1 or less. But it cannot be less: by our
assumptions m is nonsingular. Thus, σ is a principal representation. Moreover,
since −xk +Pa(x) has all its roots in the interval [0, 1], and its value at −∞ is
−∞, σ must have 1 among its roots. We conclude that σ is an upper principal
representation.

1.5.4 The Uniqueness of the Principal Representations, and their Efficient

Computation

Given the sequence of moments m = (m0,m1, ..,mn), let us define the two
polynomials P (x) and P (x) in the following manner. For n even define

P (t) = (1− x) det


m0 −m1 m1 −m2 ... mn

2−1 −mn
2

t0

m1 −m2 m2 −m3 ... mn
2
−mn

2 +1 t1

...
...

...
...

mn
2
−mn

2 +1 mn
2 +1 −mn

2 +2 ... mn−1 −mn t
n
2


and

P (t) = xdet


m1 m2 ... mn

2
t0

m2 m3 ... mn
2 +1 t1

...
...

...
...

mn
2 +1 mn

2 +2 ... mn t
n
2

 .

For n odd define

P (t) = x(1−x) det


m1 −m2 m2 −m3 ... mbn2 c −mbn2 c+1 t0

m2 −m3 m3 −m4 ... mbn2 c+1 −mbn2 c+2 t1

...
...

...
...

mbn2 c+1 −mbn2 c+2 mbn2 c+2 −mbn3 c+2 ... mn−1 −mn tb
n
2 c


and

P (t) = det


m0 m1 ... mbn2 c t0

m1 m2 ... mbn2 c+1 t1

...
...

...
...

mbn2 c+1 mbn2 c+2 ... mn tb
n
2 c+1

 .

Theorem 5 Let m be a nonsingular sequence of moments. Then the roots of
P (x) are precisely the roots of the lower principal representation of m, while
the roots of P (x) are precisely the roots of the upper principal representation
of m. Since these roots uniquely define the weights, the upper and the lower
principal representations are uniquely defined.

Proof:We already know that m admits an upper and a lower principal repre-
sentation. Let

0 < ξ1 < ξ2 < ... < ξr < 1 ,
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be the set of the inner roots of such a presentation. Notice that the corre-
sponding (i.e., depending on whether n is even or odd, and the representation
is lower or upper) P (x) is always of the form

P (x) = (1− x)ind(1) xind(0) det (Mr+1 × r+1(t)) .

Thus, it suffices to prove that {ξi}ri=1 are exactly the roots of M(t). Recall
that

m0

m1

...
mn

 = ind(0)w(0)


1
0
...
0

+

r∑
i=1

wi


1
ξ1
i

...
ξni

+ ind(1)w(1)


1
1
...
1

 .

It is easy to check that in each case M(t) was constructed in such a man-
ner that the contribution of the moment vectors corresponding to 0 and 1 is
nil. Moreover, the first r columns of M(t) are linear combinations of vectors
{(ξ0

i , ξ
1
i , ..., ξ

r
i )}ri=1, and the explicit computation of their coefficients shows that

these rows are independent. We leave the verification of this fact to the reader;
it follows easily from the non-singularity of the Vandermonde matrices.

But then, we are done. The matrix M(t) becomes singular if and only if
(t0, t1, ..., tr) belongs to the span of these vectors. This happens precisely when
t = ξi for some 1 ≤ i ≤ r.

1.5.5 The Computation of the Minimum Index Representation of a Singular

m

It remains to take care of the case when m is singular. In what follows let
P k(x) and P k(x), k < n, be defined as the corresponding polynomials for the
moment sequence (m0,m1, ..,mk).

Theorem 6 Assume that m has a representation σ of index k+1 < n+1, and
no representations of a lesser index. Assume further that σ has the form of an
upper (lower) principal representation of index k. Then it is indeed the upper
(lower) representation of (m0,m1, ..,mk), and its roots are the roots of P k(x)
(of P k(x),respectively). Furthermore, the polynomial P k+1(x) (respectively,
P k+1(x)) is identically equal to zero, while P k+1(x) (respectively, P k+1(x))
is not.

Proof:The fact that σ is a principal representation of (m0,m1, ..,mk) follows
directly from the definition of the principal representation. Thus, by Theo-
rem 5, its roots are the roots of P k(x) (or of P k(x), respectively). The second
part of the theorem can be verified using an argument similar to that used in
the proof of Theorem 5, and performing case analysis. We omit the technical
details.
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1.5.6 The Conclusion: Finding ρ(m)

Consider first the case when m is nonsingular. By Theorem4, the maximal
value of moments of all orders for X ∈ Ψ(m) is attained on the upper principal
representation of m. By Corollary 1.3.1, the maximal value of all Laplace
transforms E[etX], t ≥ 0, must be also attained there. Finally, by Theorem 5
the upper principal representation of m is unique. This is exactly the ρ(m) we
are looking for!

To find it, one needs to explicitly compute the polynomial P (x). By Theo-
rem 5, the roots of ρ(m) are precisely the roots of P (x). The weights of ρ(m)
can be computed by solving the system of linear equations 1.15.

Consider now the case when m is singular. The situation becomes simpler:
by Theorem 3 Ψ(m) consists of a single probability distribution σ (up to subsets
of measure 0). The corresponding random variable X will be our ρ(m).

How shall we find the roots of σ? By Theorem 6, it suffices to find the
minimum k+1 such that exactly one of P k+1(x), P k+1(x) is identically 0. Say,
it is P k+1(x). Then the roots of ρ(m) are exactly the roots of P k(x). The
weights are found as before.

1.6 AN APPLICATION: IMPROVED BOUNDS FOR THE LIST

UPDATE PROBLEM

In this section we apply the general strategy introduced in Section 1.2 to a
concrete distribution arising from a well-studied problem, and obtain better
results in simulations than those obtained by other methods.

The problem is the List Update Problem (see,e.g., [8, 7]), in which a set
of n items held as a linear list is accessed randomly, according to some fixed
probability distribution. Each request involves a search for a specific item
(identified uniquely by its key). The probability of accessing the i-th element
Ri, 1 ≤ i ≤ n, is pi. The pi’s are fixed but initially unknown. The list
is dynamically reorganized along a reference sequence, so as to improve the
relative ordering of the items. Each request is implemented as a sequential
search starting at the header. Clearly, the optimal static arrangement of the
items for this implementation is by decreasing order of the access probabilities.
The Counter Scheme (CS), which maintains a reference count for each element,
and rearranges the list in decreasing order of the counters, can be shown to
converge to the optimal ordering [7]. The goal is to estimate in advance the
number m of samples (equivalently, to find the stopping point) so that the
arrangement produced by the Counter Scheme after m rounds will be not much
worse than the optimal arrangement.

Hofri and Shachnai present in [7] a stopping point for this reorganization
process in the case in which the vector of access probabilities p̄ = (p1, . . . , pn)
is known, but the permutation assigning these probabilities to the elements
{Ri}ni=1 is not known. In what follows we assume p1 ≥ p2 ≥ ... ≥ pn. Denote
by Cm(CS|p̄) the expected average access cost to the list after m references,
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and by C(OPT | p̄) the actual optimal average access cost. Notice that

C(OPT | p̄) =

n∑
i=1

i pi .

Let σm denote the CS order of the list elements after the mth reference, and
let PrCS [σm(j) < σm(i)] be the probability that Rj precedes Ri in σm. In [7]
it is shown using the additivity of expectation that

Cm(CS|p̄) = C(OPT | p̄) +
∑

1≤i<j≤n

(pi − pj) · Pr[σm(j) < σm(i)] . (1.20)

The usual approach to estimating the gap Cm(CS|p̄)− C(OPT | p̄) is by pro-
viding good tail estimations on probabilities Pr[σm(j) < σm(i)]. Here we shall
use a superior (in particular, asymptotically optimal) method for estimating
these probabilities; the numerical simulations indeed show that the bounds ob-
tained by our method significantly outperform those based on Chebyshev and
Hoeffding inequalities.

Lemma 1.6.1 Assume that j > i, or, equivalently, pj < pi. Then,

Pr[σm(j) < σm(i)] ≤
(
1− (

√
pi −

√
pj)

2
)m

.

Proof:Let Yk, k = 1, ..,m, be a random variable, which takes value −1 if Ri
was referred to in the k-th stage, 1 if Rj was referred in the k-th stage, and
0 otherwise. Clearly, the Yk-s are independent, and they all have the same
distribution3

Yk =

 −1 pi
0 1− pi − pj
1 pj

. (1.21)

Let Sm =
∑m
k=1 Yk. The expectation of Yk is µ = pj − pi. Evidently,

Pr[σm(j) < σm(i)] = Pr[Sm ≥ 0] = Pr[Sm − nµ ≥ −nµ] .

The Laplace transform of Yk is

Z(t) = E[etYk ] = pie
−t + pje

t + (1− pi − pj) ;

thus, by (1.5),

Pr[Sm − nµ ≥ nµ] ≤ min
t>0

(Z(t))
m

= min
t>0

(
pie
−t + pje

t + (1− pi − pj)
)m

.

It is easy to check that the minimum of pie
−t + pje

t + (1− pi − pj) is attained

at τ = ln
√
pi/pj > 0, and its value is

2
√
pipj + 1− pi − pj = 1− (

√
pi −

√
pj)

2 .

3Indeed, since we know the distribution of the Yk’s, Z(t) is chosen as the Laplace transform
of Yk. Hence, our derivation here follows the steps of the Chernoff bound technique [3].
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This completes the proof of the lemma.

As an immediate consequence of Lemma 1.6.1 and inequality (1.20) we obtain
the most interesting result of this section:

Theorem 7 (A Stopping Point for the CS) For a list of n items with the
probability vector (p1, . . . , pn), and any 0 < ε < 1,

Cm(CS|p̄) ≤ (1 + ε)C(OPT | p̄) ,

provided that the number of references m satisfies

∑
i<j

(pi−pj)(1− (
√
pi−
√
pj)

2)m ≤ εC(OPT | p̄) = ε

n∑
i=1

i pi . (1.22)

We provide Tables 1.1 and 1.2, which compare the bound on m given by
Theorem 7 to the bounds obtained by estimating the probabilities Pr[σm(j) <
σm(i)] by means of Chebyshev and Hoeffding inequalities.

We use for our test the family of so-called Zipf distributions Zn, where
pi = 1/(Hni), Hn =

∑n
i=1

1
n . Numerical simulations show that the reference

process is often governed by a Zipf distribution, especially when keys are drawn
from a text file (as in Lisp [1]). Thus, they are close to the distributions
met in practice, and can serve as good test distributions. In comparison with
Chebyshev-based bounds (Table 1.1), which also take the variance into account,
the improvement dramatically increases as ε becomes smaller. The comparison
with Hoeffding-based bounds is even more favorable.

n\ ε 0.0001 0.001 0.01 0.05 0.1 0.15 0.2

10 22.06 5.77 3.25 2.77 2.41 2.36 2.24
20 11.66 4.63 3.61 2.96 2.6 2.47 2.38
25 9.85 4.48 3.78 3.00 2.66 2.51 2.46
50 6.78 4.45 4.13 3.04 2.72 2.52 2.52
100 5.56 4.78 4.14 3.10 2.73 2.71 2.58

Table 1.1 The required number of references for the reorganization process under CS to

approach the optimum within 1 + ε: The ratio between a Chebyshev-based bound and the

stopping point in Theorem 7.
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n \ ε 0.05 0.1 0.15 0.2

10 7.73 6.53 6.06 5.37
20 18.21 15.75 14.25 13.0
25 23.84 20.81 18.84 17.48
50 52.13 48.24 34.58 34.28
100 87.03 79.83 65.24 52.33

Table 1.2 The required number of references for the reorganization process under CS to

approach the optimum within 1 + ε: The ratio between a Hoeffding-based bound and the

stopping point in (1.22).
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