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Abstract. We consider linearly elastic composite materials made by mixing two
possibly anisotropic components. Our main hypothesis is that the Hooke's laws of
the two components be well-ordered. For given volume fractions and average strain,
we present optimal upper and lower bounds on the elastic energy quadratic form.
We also discuss bounds on sums of energies and bounds involving complementary
energy rather than elastic energy. Our arguments are based primarily on the Hashin-
Shtrikman variational principle; however, we also discuss how the same results arise
from the "translation method", making use of the analysis of Milton. Our bounds
are equivalent to those established by Avelleneda and closely related to the "trace
bounds" established by Milton and Kohn. The optimal energy bounds, however,
are presented here as the extreme values of certain convex optimization problems.
The optimal microgeometries are determined by the associated first-order optimality
conditions. A similar treatment for mixtures of two incompressible, isotropic elastic
materials has previously been given by Kohn and Lipton.

1. Introduction. The macroscopic properties of a linearly elastic composite are
described by its tensor of effective moduli (Hooke's law) o*. This fourth-order
tensor depends on the microgeometry of the mixture and on the elastic properties of
the components.

Suppose that a* arises by mixing two materials cr, and a2 with volume fractions
6j and 62, respectively. It is well known that a* must satisfy Paul's bounds, also
called the Voigt-Reuss bounds:

((vr1+Wr'£> £> ̂ ̂  ^ q o-1)
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for any symmetric, second-order tensor g . These bounds, however, are not optimal;
for most choices of £ it is impossible to saturate either inequality. Thus it is natural
to seek bounds that improve on (1.1).

Recent work has led to results that not only improve upon (1.1) but do so
optimally. By optimal bounds on (a*£,, £), we mean a pair of functions f± =
f±(ox, a2, (9,, d2, £) such that

/_<(**£,£></+ (1.2)
and such that each inequality can be saturated (for any £) by a microstructure (which
depends on £). Optimal bounds of this type have been established for mixtures
of two incompressible isotropic elastic materials in [22], for mixtures of two well-
ordered isotropic materials in [4, 5], and for the analogous problem of plate theory
in [13]. Avellaneda's work [4, 5] also discusses the optimal upper and lower bounds
for a sum of elastic energies, i.e., bounds of the type

/_ < {a% ,{,) + ■■• + (o'ZN , ZN) <f+, (1.3)
where are specified second-order tensors. It is equally natural to consider
bounds on complementary energy, e.g.,

/_ < ((aT'f, ,£,) + ••• + <(ff w «*> < /+, (1-4)
and this, too, is addressed in [4, 5],

The literature just cited has some gaps and deficiencies, however, which this paper
is designed to rectify. First, most attention has been devoted to the case when each
component material is isotropic. It is well known to experts that similar results hold
for mixtures of two well-ordered anisotropic materials, but this fact is difficult to
glean from the literature. The presentation given here, by contrast, places no sym-
metry hypothesis on or a2 ■ Second, the analysis of [4, 5] gives f and /_ as
the extreme values of certain nonconvex optimizations in a rather high-dimensional
space. That approach, though elegant in concept, makes the task of actually evaluat-
ing the bounds rather difficult. Our analysis gives f+ and /_ as the extreme values
of certain convex optimizations. For the bounds on a single energy (1.2), this opti-
mization is over the relatively low-dimensional space of second-order tensors. Third,
the optimality of these bounds depends on a link between the Hashin-Shtrikman vari-
ational principle and the formula for the effective moduli of a sequentially laminated
composite. In most prior treatments this link is obtained by "inspection". Here, by
contrast, the link is explained by the observation that the Hashin-Shtrikman principle
is exact for a laminated composite. (A similar explanation can also be found in [28].)

Our method, which is based on the Hashin-Shtrikman variational principle, re-
quires that the Hooke's laws of the component materials be well-ordered. This means
that

(otf, ri) < (o2ri, ti) (1.5)
for every second-order tensor rj. When cr, and er, are isotropic, (1.5) requires
that the smaller bulk and shear moduli belong to the same material (ct,) . We do
not assume that cr, and a2 are isotropic. If they are anisotropic, however, their
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orientations are understood to be fixed; thus we are not discussing polycrystalline
composites.

It should be emphasized that the symmetry of the effective Hooke's law a* is not
restricted in (1.2)—(1.4). Tighter bounds obtained by restricting the symmetry of a*
will be found in [24, 25].

Besides offering an alternative viewpoint on optimal energy bounds, we also dis-
cuss the translation method (Sec. 4), and the pairwise equivalence of upper and
lower bounds for energies and complementary energies (Sec. 8). It was Milton who
first found a link between the Hashin-Shtrikman variational principle and the newer
translation method [28], Section 4 specializes his argument to the case of the energy
bound (1.2), which is much more transparent than the general case. The pairwise
equivalence of the four different Hashin-Shtrikman bounds was observed in [29] for
mixtures of well-ordered materials. That result is generalized in Sec. 8, using a new
argument that requires neither well-ordering nor any specific representation for the
optimal bounds.

There are several specific reasons to seek optimal bounds of the type (1.2)—(1.4).
The optimal lower bound {a*!; ,£)>/_ has recently been used by Francfort and
Marigo in modelling the accumulation of damage [10], The optimal lower bound on
complementary energy ((cr*)^1^, £} > /_ is central to our recent work on structural
optimization [3], After extension to permit the component materials to have different
stress free strains, the optimal lower bound ,£)>/_ is also relevant to the
calculation of phase diagrams for coherent mixtures of crystalline solids [20, 21].
From a broader perspective, optimal bounds arise in the " (7-closure problem", which
seeks a characterization of all composites a* achievable as mixtures of <Tj and a2
in specified volume fractions dx, d2. The optimal energy bounds (1.2)-(1.4) offer a
partial solution, by specifying the extreme values of certain linear functions of a*.

The optimal energy bounds (1.2)—(1.4) can also be viewed as extensions of the
well-known Hashin-Shtrikman bounds on the effective bulk and shear moduli of an
isotropic composite. In their now classic work [15], Hashin and Shtrikman consid-
ered isotropic mixtures a* made from two well-ordered isotropic components. They
established upper and lower bounds on the effective bulk modulus k* and shear
modulus n* . Both bounds are now known to be optimal [11, 27, 32]. Several au-
thors have extended these results to bounds on the "generalized bulk modulus" and
"generalized shear modulus" of a possibly anisotropic composite [11, 17, 29, 43].
Two possible definitions of the generalized bulk modulus are

\{o*I,I) or ((a*)"1/,/)-1,
N

where N is the spatial dimension and I is the second-order identity tensor. Thus
the optimal upper and lower bounds on a single energy (ct*£ , £) or complementary
energy ((cr*)-1^, <^) represent extensions of the generalized bulk modulus bounds.
Two possible definitions of the generalized shear modulus are

1 "
or x

i=i
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where {£,}f=l is an orthonormal basis for the space of trace-free second-order tensors.
Thus, bounds of the type (1.3) or (1.4) can be viewed as extensions of the generalized
shear modulus bounds.

The bounds presented here are in principle computable, but they are not explicit;
we do not attempt to solve the relevant convex optimizations analytically. Explicit
bounds of the type (1.2) are available, however, for isotropic <t, and a2 in the
following cases: (i) both materials are incompressible [22]; (ii) the spatial dimension
is N = 2 [1,13]; and (iii) the spatial dimension is N = 3 and cr, = 0 [3, 13].

It is natural to ask whether similar results might hold without the hypothesis of
well-ordering (1.5). In two space dimensions, if cr, and a2 are isotropic, then the
optimal energy bound (1.2) is known explicitly even in the non-well-ordered case [1,
13]. Our forthcoming paper [2] is concerned with the optimal lower bound , £) >
/_ , for mixtures of two non-well-ordered isotropic materials in three (or more) space
dimensions.

Other extensions of these results are to mixtures of materials with different stress-
free strains [21] and to mixtures of a linearly elastic material with a physically non-
linear one.

The remainder of this introduction is devoted to establishing notation and review-
ing basic facts about composite materials. We identify an elastic material with its
Hooke's law a , a positive definite symmetric tensor mapping symmetric (strain) ten-
sors to symmetric (stress) tensors. There are several different ways to formalize the
notion of a composite material made by mixing and er2 in volume fractions 0,
and 0, (0, > 0, 6-, > 0, 0, + 0, = 1). One can use the spatially periodic theory
(see, e.g., [6, 35]), the theory of random composites (see, e.g., [14, 33]), or the theory
of (/-convergence (also known as //-convergence, see, e.g., [11, 30, 39, 44]). The
spatially periodic viewpoint is the easiest to work with. Moreover, it is sufficient for
the purpose of proving bounds. (For rigorous proofs of this assertion, see [14] in the
random setting and [8] in the context of (7-convergence.) We shall therefore prove
our bounds in the spatially periodic setting only.

A spatially periodic composite is described as follows. Let Q = [0, 1]A be the unit
cube in physical space. The microstructure is determined by ^-periodic functions
Xi(y) and x2(y)' with

X\{y) = 0 or 1 almost everywhere and x2(y) = * - X\ 00- (1-6)
The locally varying Hooke's law is

°e(y) = xl (7)^+ *2(7)^' (L7)
where cr, and er, are the Hooke's laws of the two components and e is the length
scale of the microstructure. The volume fraction of material i is evidently

0, = [ x,(y)dy, i=l,2. (1.8)
Jq

The effective Hooke's law a* of the composite is characterized by

(<7*£, f) = inf f (er(y)[£ + e{</>)], £ + e(<f>))dy, (1.9)
<t> Jo
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where 0 ranges over (2-periodic "elastic displacements", e{<j>) represents
+ 'V(f>), and a(y) is the "microscopic Hooke's law"

o{y) = +x2(y)°2- (L1°)

Its physical meaning is as follows (see, e.g., [6, 35]). Consider a boundary-value
problem involving a region Q occupied by the composite, for example,

e("£) = l(Vue + 'Vw£)>
V • {oEe(u£) = f in ft,

ue — 0 at dQ.

As the length-scale e tends to zero, the solution ue converges to that of the effective
equation

e{u) = j(Vu + Vm) ,
V • (a*e(u)) = f in Q,

u = 0 at dQ..
Thus a* describes effective or macroscopic behavior as the length scale of the mi-
crostructure tends to zero.

We note some ambiguity in our use of the word "microstructure". Sometimes, as
above after (1.7), this term refers to a spatially periodic mixture of ax and a2. Else-
where, as above following (1.2), it refers to a limit of spatially periodic composites—
or equivalently, by virtue of [8], to a composite in the sense of (7-convergence.

We are concerned with optimal bounds on a*, when a, , a2, 0, and 92 are held
fixed, as the microstructure varies.

2. The Hashin-Shtrikman lower bound. We focus initially on lower bounds for
the elastic energy quadratic form (o*£, £). Lower bounds on sums of energies are
discussed in Sec. 4; upper bounds and complementary energy bounds are the focus
of Sec. 5.

We assume that a, and <x, are strictly well-ordered, i.e., crl < a2 in the sense
that

(orf, tj) < {a2tj, tj) for all rj ̂  0. (2.1)
The hypothesis of strict well-ordering rather than the weaker < a2 is entirely a
matter of technical convenience. All our results actually extend to the nonstrictly
well-ordered case. One approach is to repeat the arguments presented here with
appropriate care (see Remarks 2.2 and 3.6.) Another approach involves perturbing
to the strictly well-ordered case and then passing to the limit in the bound (see
Proposition 8.1).

We work throughout in an N-dimensional physical space, to encompass both
two-and three-dimensional elasticity simultaneously. Let S be the [N(N + l)/2]-
dimensional space of Nx N symmetric tensors, with the usual inner product (£,??) =
tr(£?/). For any subspace V of S, we write nv£, for the orthogonal projection of £
onto V . If k g Ra , k ^ 0, we set

V(k) = {k ® v + v ® k : v e R^}; (2.2)
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it is an TV-dimensional subspace of S. These subspaces play a special role, because
V(k) is the space of Fourier transforms of strains at frequency k . Notice that V{k)
really depends only on k/\k\.

Our version of the Hashin-Shtrikman lower bound is presented as Proposition 2.1.
Its basis is the celebrated Hashin-Shtrikman variational principle. First introduced
by Hashin and Shtrikman in [15], this method for bounding a* has since been
elaborated upon by many authors, including Hill [16], Walpole [40], and Willis [41],
Those authors controlled the "nonlocal term" through hypotheses on the symmetry of
a*, coupled with properties of the elastic Green's function. We handle the nonlocal
term differently, using Fourier analysis. This approach, developed in [29], has the
advantage of requiring no hypotheses on the symmetry of a* . A viewpoint closely
related to ours has been used by Wu and McCullough [42],

Proposition 2.1. Assume that cr, < er7. Let a* be the effective Hooke's law of
a composite made from cr, and a2, in volume fractions dx and 02, respectively.
Then we have the following lower bound, for any £ e S :

{o*Z, £) > <<?,£, £ > +02sup[2(£, t])- {(a2 -a )"'>/, rj) - 0, g(tj)], (2.3)
i

in which the function g(rj) is defined by

g(t]) = sup \nn>/2vlk)(Jl ^|2. (2.4)
l*l=i

Proof. We start from the definition of cr*, (1.9). Adding and subtracting the
"reference energy" (<7,(<j; + e(<f>)), £ + e(<f>)) gives

, £) = inf |y ((a(y) - tx,)(£ + e(<j>)), £ + e{4>)) 4- J + e{<!>)), £ + £(0)) .
2 (2.5)

Let us rewrite the first term on the right-hand side, using the positivity of a2 - ax
and "convex duality":

[ {{0{y)-0\){£ + e(4>)), £ + e(<p))= f x2({o2 - <t,)(£ + <?(</>)), £ + e((p))
Jq Jq n f,\r r _i

= sup / 2x2(*l,Z + e(<t>))- x1{(o2-ax) fj,rj).
n(y) Jq Jq

Here fj = fj(y) ranges over periodic vector fields, and the supremum is achieved
when

*2(>?-(<x2-ffi)(f + <?(0))) = °. (2.7)
One can get an inequality by making a special choice of fj in (2.6). We take fj(y) = rj,
where t] is any constant tensor. This gives

f ((a{y)~o+ e(<j>)), t + e((p))Jq

>2d2{ri,t)-d2{(o2-al)~lri,ti)+ [ 2x2(r], e(<!>)).
Jo
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Substitution into (2.5) yields the following, after a bit of simplification:

{o*Z,Z) >(o1i,Z) + 262{r1,Z)-d2({(T2-ol)-lri, n)
(2.8)4- inf [ [(<7,e(0), e{(f>)) + 2x2(*1, e(</>))].

Jo
It remains to bound the infimum over (f> in (2.8); this is the "nonlocal term"

referred to above. Let us rewrite it as

\o}-e(4>)\2 + 2x2(o^'tl, ofe((f>))] , (2.9)I
where of is the positive square root of cr, , viewed as a symmetric linear map on
the space S of symmetric tensors. An application of Plancherel's formula shows that
(2.9) is the same as

[\o}e($)(k)\2 + 2Rex2(k){e~i2ti, o}e((t>)(k))] , (2.10)
k€ZN

where *2(y) = Y*X2{k)e2Klky, and (•, •) is the symmetric inner product on complex
matrices. Choosing 4> to minimize (2.9) is the same as choosing </> to minimize
(2.10), which may be done separately at each k . Frequency 0 is special: it contributes
nothing to (2.10), since e(0)(0) = 0 for any periodic 0. When k / 0, the optimal
value of y = o,-e{(j))(k) is obtained by minimizing

4,|y| +2Rejf2(fc)(<7, Jrj, y) (2.11)

over the space of all possible values of ofe(4>)(k), which is the complexification of
1

of V(k). Some linear algebra shows that the optimal choice is

y =

(see, e.g., [20, Lemma 3.2]), and substitution into (2.11) gives the value

-\m\2KrV{k)orv\2.
We thus deduce this exact expression for the nonlocal term

inf(2.9) = -El*2(*)|2|VWr^2- (2"12)
fcj* 0 '

The desired bound is now quite easy. Since V(k) depends only on k/\k\, it is
immediate from (2.4) that

. 7. "V
a? V(k)

An application of Plancherel's formula gives

In i <7, ~-t]| <

ElWI2= [ lz2(y)-02|2 = 0,02. (2.13)
k* o J<2
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Combining these two relations, we see that

inf(2.9 )>-0lO2g(ri).
<t>

Returning to (2.8), we have shown that

0 > <*,£, Z) + 2e2(n,Z) - d2((a2 - a^rj, n) - d^g^) (2.14)
for any (constant) symmetric tensors g, rj. Maximizing the right-hand side with
respect to t] yields the desired bound (2.3). □

Remark 2.2. A similar bound holds when cr, and o2 are only weakly well-
ordered, i.e., if cr, < (T-, but a2 - cr, has a nontrivial null space. In that case, r/
must be restricted to the range of a2 - cr, in (2.3).

Remark 2.3. Notice that g(rj) is convex, since (2.4) defines it as the maximum
of a family of nonnegative quadratic forms. Thus the essential term in the lower
bound,

sup[2(£, t]) — ((cr2 — cr,)-' ??, n) - 6{g(r])\,

is a concave maximization.
To evaluate this lower bound, it is obviously necessary to understand the func-

tion g(t]). This has been studied in the metallurgical literature, for a broad class of
anisotropic cr, ; see [23] and the references cited there. (For a mathematical expla-
nation of the significance of that literature, see [20].) The case when cr, is isotropic
is treated in Sec. 7.

3. Attainability of the bound. In this section we show that the bound (2.3) is at-
tainable. Specifically, for each value of £ we shall exhibit a composite (by describing
the microstructure) for which (2.3) is an equality. It follows that (2.3) is an optimal
bound, in the sense that there can be no better bound which depends only on £ , 0, ,
02 j > and (?2.

Our method is that of sequential lamination. By now a familiar construction, this
method has been used to establish the optimality of many dilferent bounds; see, e.g.,
[4, 11, 26, 27, 38]. At the heart of our argument is a "layering formula" presented
as Proposition 3.2. It was first established by Murat and Tartar in the context of
conductivity [38] and by Francfort and Murat for elasticity [11], Its close link to
the Hashin-Shtrikman bound figures prominently in much of the recent literature on
energy bounds [4, 5, 22, 24, 25, 29, 38], The logic behind this linkage is understood
by the experts, but is not explained clearly in the literature. We hope the treatment
given here will appear less mysterious.

It may seem like cheating that we prove the bound for spatially periodic compos-
ites and then prove attainability using sequentially laminated ones. In fact, this is
perfectly legitimate. Though sequentially laminated composites are not themselves
spatially periodic, their effective tensors can be approximated arbitrarily well by ones
associated with periodic microstructures. See Sec. 3 of [22] for a further discussion
of this point and for a more expository treatment of sequential lamination.

The link between lamination formulas and the Hashin-Shtrikman principle arises,
in essence, because the latter is exact for the special case of a (simply) laminated
microstructure. This is the basis of the following result.
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Proposition 3.1. Let a and /? be two (possibly anisotropic) Hooke's laws, with
a < P . Let a* be the effective Hooke's law of the composite obtained by layering
a and p in volume fractions 6a, 6^ = 1 - 6a respectively, in layers orthogonal to
a unit vector k . Then a* is determined by the formula

dfi(a*-a)~l = (P - a)~{ + 6Ja(k), (3.1)

where fa{k) is the (degenerate) Hooke's law associated to the quadratic form

(fa(k)i,Z) = \na ̂ v(k)a~k\2. (3-2)

Proof. This is equivalent to Theorem 4.1 of [11]; however, we shall give a new
proof, parallel to that of Proposition 2.1, which clarifies the link between (2.4) and
(3.2).

A layered composite can be considered spatially periodic, if we use a coordinate
system such that k is parallel to one axis. As usual, a* is defined by

(o'Z, £) = inf [ <<tOOK + e^)], £ + e(<j>)) dy, (3.3)
0 Per J Q

where a(y) corresponds to the layered microstructure. It is well known that in this
case the optimal (j) — 4> is piecewise linear; in other words, the "strain" £ + e(<j> )
is constant within each material.

Since a < ft , we are in the setting of the Hashin-Shtrikman variational principle.
Let us re-examine (2.5)—(2.12) as they apply to the layered microgeometry. Since the
optimal (j> for (3.3) is piecewise linear, we have (for the layered microstructure only)

(<r*£, £} = inf [ (a(y)K + e(</>)\, i + e{<j>)) dy, (3.4)
06PCS J q

in which PCS denotes the space of periodic displacement with constant strain in
each of the layers. (PCS stands for "piecewise constant strain".) Arguing as for (2.6)
gives

((<r*-<*)£,£)= inf sup (20Jri,t)-6J(P-a)
0€Pcs n I

J , em + (ae(4>), e{<p))] dy 1,
(3.5)

in which tj ranges over (constant) symmetric tensors. We may switch the inf and
sup in (3.5) by applying a standard saddle point principle (see, e.g., [9]). This yields

({am-a)Z,Z) = sw\20li(ri,Z)-6ll{{fi-a) ' rj, rj)

+ inf
06PCsyGf [2Xp(l,e(<l>)) + {o<e(4>),e(4>))]4yY

(3.6)

Because the microstructure is layered, the constraint of piecewise constant strain
is redundant; the right-hand side of (3.6) is unchanged if we let cp range over all
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periodic displacement fields. The minimum over 0 can be computed by Fourier
transform, as in (2.9)—(2.12), leading to

= -J2\Xp(l)\2\naV2V(l)a~lrl\2- (3-7)
1^0

Since the microstructure is layered, xfi(l) vanishes unless / is parallel to k . Thus
(3.7) becomes

inf = - >J*«(0I I 1}l\2V(k)L

„ r a"2V(k)a ■

We thus have the exact formula

i(0-V - , Z) = sup [(ri , {) - > <(jj - «)" V >/) - \6a(fa(k)r,, »,)]. (3.8)
i

Taking the Legendre transform of each side yields (3.1). □
The advantage of the layering formula (3.1) is that it is easy to iterate. Specif-

ically, consider a family of "sequentially laminated composites" constructed as fol-
lows: <t*0) = a2, a*X) arises by layering a*Qj with <7, , er*2) arises by layering rr*A)

with ox , and so forth. Iteration of (3.1) leads easily to formulas for (o*, - ax)~x ,
r = 1,2,.... After some bookkeeping, one deduces the following:

Proposition 3.2. Fix an integer p > 1; unit vectors in ; real numbers
{miYi= i 0 - mi - 1 ' ; and a real number 6{ , 0 < < 1 . Let cr1
and o~f be two Hooke's laws with ax < o~,. Then there is a sequentially laminated
composite made by mixing ax and a2 in volume fractions 0, and 02 = 1 - 0, ,
whose effective Hooke's law o* is characterized by

02{a= {o2-ax)~l +6X (3.9)
/=i

We omit the proof since it is presented quite clearly in several places, including [22],
However, we note that the associated microstructures consist of plate-like inclusions
of material 2, arranged appropriately in a matrix of material 1. If p > 2 then
the sequentially laminated microstructure achieving (3.9) is not unique: different
ways of labelling {(mj, ^()} yield different microstructures. In particular, any of the
vectors vi can be chosen as the normal vector determining the plane of the plate-like
inclusions. (However, the inclusions must all be aligned.)

Remark 3.3. The layering formulas (3.1) and (3.9) are actually valid for every
pair of Hooke's laws ax and cr2, not necessarily well-ordered, provided only that
aj - ax is invertible. This observation, which will be crucial in [2], is proved in [11].

Remark 3.4. If <a2 but o2-ax has a nontrivial kernel, then a* -ax has the
same kernel and (3.9) holds when restricted to the image of a2 - ox. This is easy to
deduce from the above results by a perturbation argument. A similar assertion holds
for any pair of Hooke's laws ax and ct, , not necessarily well-ordered; see [11] for
this more general assertion.

We are now equipped to prove the optimality of the lower bound (2.2).
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Theorem 3.5. Assume that a{ < o2. Then for any choice of £ and any volume
fractions 6l, d2 = I — 6l, there is a sequentially laminated microstructure that
achieves equality in (2.2).

Proof. Following [19, 22], we shall use the optimality condition for the maximiza-
tion over rj in (2.3) to construct an extremal microstructure. The essence of the
bound is the concave maximization

sup[2(£, rj) - ((tx2 - rj) - dlg(r])], (3.10)
i

with g defined by (2.4), or equivalently

g(T]) = sup(/CT {v)ri, t]). (3.11)
M=i 1

Since (3.10) is strictly concave, there is a unique extremal rj*.
The function g is not smooth, so the appropriate tool for obtaining first-order

optimality conditions is the subdifferential calculus or the calculus of generalized
gradients; see, e.g., [7], At the extremal rj* we must have

0 e 2£ - 2(a2 - ox)~xn - d^g^), (3.12)

where dg(rj*) is the subdifferential of g at rj*. Since g(rj) is the supremum of
a continuously parametrized family of nonnegative quadratic functions, its subdif-
ferential is the convex hull of the gradients of those quadratic functions which are
extremal. This gives

dg(n) = jX]2w//CT|(I/,)?7* j ' (3-13)

in which each vi must be extremal for (3.11) at ?/ = //*, 0 < mi < 1, and m,• = 1 •
(We need only consider finite sums with at most p = N(N + \)/2+ 1 elements, by
Caratheodory's theorem.) Combining (3.12) and (3.13) gives the optimality condi-
tion

£ = (<r2 - c^rV + 0x^mifOx(Vi)n. (3.14)
Taking the inner product with rj* gives

(£, rf) = ((<J2 -CTjrV , 1*) + eig{tj*); (3.15)

therefore, the extremal value of (3.10) is

2({, rf) — {(o2 — a{)~1 rj*, t]*) - 6lg{r]*) = (<?, tj*),

and the bound (2.3) can be expressed as

(o*Z,Z)>(olZ,Z) + e2(Z,ri*). (3.16)
To achieve equality, consider the composite provided by Proposition 3.2 with the

parameters mi, uj taken from the optimality condition (3.14). Comparing (3.9)
with (3.14), we see that its effective Hooke's law a* satisfies

02(ct* - a, )~y=
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So for this composite
= (3.17)

In other words, this composite achieves equality in (3.16). □
Remark 3.6. If er, < a1 but o2 - a] has a nontrivial null-space, then the bound

is still optimal. The proof proceeds as above but with ?/ restricted to the image of
a2 — cTj . We make use here of Remarks 2.2 and 3.4.

Remark 3.7. It is natural to ask what is the minimum rank of lamination
Pmin required for achieving the bound (2.3). The estimate given above, p <
N(N + l)/2 + 1 , is generally far from optimal. To evaluate /?min, one must ask
what is the dimension of the smallest linear space containing {fg {v^rf} , where rj*
is extremal for (3.10), and {i/.} are extremal for (3.11) at t] = rj* . When cr, and a2
are isotropic, it turns out that pmm < N in space dimension N . In other words, rank-
N lamination is sufficient to achieve the optimal lower bound on (o*€, £) in that
case. The proof is parallel to that of Theorem 3.8 in [22], Rank-TV lamination also
suffices for achieving the optimal upper bound on {a*£,, S) and the upper and lower
bounds on complementary energy ((er*)~'c!;, £) when ox and a1 are isotropic. □

Remark 3.8. The value of the optimal bound (2.3) is a C1 function of £ . Indeed,
the right-hand side of (2.3) is strictly concave in t/, so the extremal t] is unique and
it depends continuously on £ . Let us denote it by t][£,}. It is a standard result from
convex analysis that in this circumstance

Sp SUP[2(^, n) - {{a2 -ax)~Xrj, rj) - 6lg(ri)\ = 2t][^].
OQ ,i

So the gradient of the optimal energy with respect to £ is 2(a£ + d7rj[^]), which is
continuous in £ . □

4. Alternative proof of the bound by the translation method. The "translation
method" for bounding effective moduli is newer than the Hashin-Shtrikman vari-
ational principle. First applied by Murat and Tartar [37, 38] and by Lurie and
Cherkaev [26], it has since been used successfully for many applications. The name
"translation method" was introduced by Milton in his recent comprehensive study
[28]. The basic idea is to "translate" the microscopic Hooke's law a(y) by a con-
stant "quasi-convex" tensor t and then to use an elementary bound (see Propositions
4.1 and 4.2). There are usually many plausible choices for r. This is at once the
method's greatest strength (it is flexible) and its greatest weakness (one must choose
r correctly to get a good bound).

For a long time it seemed that the translation method and the Hashin-Shtrikman
principle were unrelated. The link between them was found by Milton [28], He
showed that certain "trace bounds" originally derived using the Hashin-Shtrikman
method can also be derived by translation. There are several practical reasons for
exploring this connection further. First, it offers a link between translation bounds
and the construction of sequentially laminated composites. Second, it displays a
special class of translations that might be useful in other situations. Third, it provides
a possible route for extending the Hashin-Shtrikman bounds to mixtures of non-well-
ordered components.
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Milton's treatment in [28] is somewhat complicated, because it refers to the general
"trace bound". (That is equivalent to our bound on a sum of energies; see Sec. 5.)
Here we present the specialization of Milton's argument to the bound on a single
elastic energy. Besides providing some explication of Milton's work, this section lays
the groundwork for our paper [2], which extends the optimal lower bound (2.3) to
mixtures of two non-well-ordered isotropic materials.

We begin with a review of the translation method as it applies to linear elasticity.
Recall the definition of a*:

(<7*£,£> = inf/ <ff(;v)[Z + e(<f>)\, Z + e(<j>))dy, (4.1)
<t> Jq

where the infimum is over all (2-periodic <t> and e{4>) = + 'V</>). There is a
well-known lower bound, the "harmonic mean" or "Reuss" bound:

a * >{^ja~l(y)dy^ . (4.2)

It arises from (4.1) by forgetting that e = e(<p) should come from a displacement
and minimizing instead over the larger class of tensor fields e — e(y) that satisfy
only the "algebraic" constraint

Soe(y)dy = 0. (4.3)

To improve on (4.2), we should augment (4.3) by some additional algebraic relation
satisfied by strains. This may be done as follows. Consider a constant fourth-order
tensor r with the symmetry of a Hooke's law. We call r quasiconvex on strains if it
satisfies

{te{<f>) , e(4>)) dy > 0 (4.4)So
for any (^-periodic <j>. Given any such tensor r, we have an associated lower bound
on (o*£, £):

, O > inf f (er0>)[£+ <?(>>)], £ + e{y)) dy , (4.5)
e(y)jQ

in which e(y) is constrained by (4.3) and also

/.
(■ce(y), e(y)) > 0. (4.6)

Clearly (4.5) is at least as good as (4.2), since the latter arises by omitting the
constraint (4.6); however, (4.5) is not easy to evaluate. A more easily computed
bound is obtained by considering an "augmented" variational principle, in which
A > 0 appears as a "Lagrange multiplier" for (4.6):

[ {o{y)[$ + e{y)\, £ + e{y))dy -A f {re{y), e{y)), (4.7)
Jq Jq

which is to be minimized now subject only to (4.3). There is no loss of generality in
taking A = 1 , since we can always replace r by At . This leads to one version of the
translation bound (cf. [28, (8.1)]):
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Proposition 4.1. Let a* be the effective Hooke's law of a mixture of two or more
elastic materials. Let t be any constant fourth-order tensor which is quasiconvex on
strains. Then

(<?*£, 0 > inf f (ff(y)K + *(y)] » £ + e(y)) dy - [ (re{y), e{y)) dy] , (4.8)e(y) Uq Jq

in which e(y) ranges over all symmetric second-order tensor fields with mean value
zero.

Proof. The right-hand side of (4.8) is clearly smaller than the right-hand side of
(4.5) if e(y) satisfies (4.6). When this constraint is dropped, the right-hand side of
(4.8) can only decrease. □

A second version of the translation method, more explicit in character, obtained
by evaluating the right-hand side of (4.8) (cf. [28, (7.7)]) is:

Proposition 4.2. In the context of Proposition 4.1, suppose r satisfies the additional
"admissibility" constraint

v(y) - t > 0 for every y, (4.9)

in the sense that a(y) - r determines a nonnegative quadratic form. Then

a* > (a(y) - i)_1 dy^j + t. (4.10)

Proof. We rewrite (4.8) as

((ct* -t){, {) > inf f ({p{y)-t)[Z + e{y)], £, + e{y)) dy, (4.11)
e{y) Jq

subject to JQ e(y) = 0 . Assume for the moment that

((cCy) - "Ov, rj) > e\rj\2 (4.12)
for some e > 0, independent of y. Then the right-hand side of (4.11) is strictly
convex in e(y), so it has a unique optimal e*(y), which satisfies

(a(y)~?M + e*(y)] = rj* (4.13)

for some constant tensor . We deduce from (4.13) that

£ = f (°(.y) ~ r)~'l* dy,Jq
so

n = (yj^{y)-z)~x dy) ^;

therefore, (4.11) yields

((ff* - t){ , {) > [ {{o{y)-t)[Z + e*{y)]t Z + e\y))
Jo

L{*!*,£ + e*(y)) = (rj*, £).
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Thus

{{a*-x)^,^)>Uj^a{y)-x)~xdy^

for every d; . This is equivalent to (4.10).
If the inequality (4.9) is not strict, i.e., if (4.12) does not hold, we may argue

as above with a(y) replaced by a(y) 4- e/4, where /4 is the fourth-order identity
tensor. Passage to the limit e —► 0 yields (4.10), provided that the right-hand side is
interpreted appropriately. □

Remark 4.3. Note that "well-ordering" plays absolutely no role in the above. Also,
the "admissibility condition" (4.9) is required only for Proposition 4.2, not for Propo-
sition 4.1. If (4.9) fails, however, then the right-hand side of (4.8) will be -oo for
some (and possibly all) choices of d;.

Remark 4.4. From (4.9) and (4.10) we have that o* - x > 0. So (4.10) can also
be written in the equivalent form

-t) 1 < [ (a(y)-x) 1 dy. (4.14)
Jo

To make use of these bounds, it is of course necessary that we be able to recognize
when t is quasiconvex on strains. The following lemma is familiar from the theory of
quasiconvexity and compensated compactness [11, 31] and is in any case elementary.

Lemma 4.5. Let r by a constant fourth-order tensor with the symmetries of a
Hooke's law. Then x is quasiconvex on strains if and only if

<t£,£}>0 for ieV(k) (4.15)

for every k ± 0. Here V(k) is defined by (2.2).
Proof. If t satisfies (4.15) then (4.4) holds, by an application of Plancherel's

theorem. Conversely, if (4.15) fails for some Z0 e V(kQ), then one easily constructs
a counterexample to (4.4) by taking <f> to be a suitable function of y • kQ. (We may
suppose without loss of generality that k0 has integer components, so (f> can be taken
to be Q-periodic.) □

We turn now to the task of recovering the Hashin-Shtrikman lower bound (2.3)
by the translation method. The key is to consider the special translations x = x^
defined by

(x,Z,t) = {<TlZ,Z)-g(ti)-l(Tl,Z)2, (4.16)

where t] is any symmetric second-order tensor and g{t]) is defined by (2.4).

Lemma 4.6. The translation xn is quasiconvex on strains.
Proof. We note that g(rj) >0 if rj ^ 0, so (4.16) makes sense. Indeed, if

_ 1 i
g(r]) were zero then ct, 1t] would be orthogonal to <7/ V(k) for every k ; but then
(r), df) = 0 for every d; e V(k) and every k. When £ = v®k + k®v, this says
(tjk , v) = 0 for all v , so rjk = 0 . As k varies, this forces rj = 0 .
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To prove quasi-convexity on strains, we need only verify (4.15). If k / 0 and
€ V(k), then

(£, t])2 = (ofe, o'^)2
= {a

<(ff lt,Z)-g(ri).
It follows that

as desired. □
(t„£,£) = (olZ,Z)-g{ri) l(r,,tf>0

Lemma 4.7. Consider a composite made from two materials ax and a2 which are
well-ordered, i.e., such that ol < a1. Then is admissible in the sense of (4.9).

Proof. We need only check that and <x2> T The first relation is true
since

The second follows from the first, since ct, > . □
We have given two slightly different formulations of the translation bound, in

formulas (4.10) and (4.14). There are correspondingly two different approaches to
recovering (2.3). We shall present them both, in part to highlight the fact that they
are not quite the same.

Our first approach is based on (4.14). It suffices to show that

(<?*£, Z) > (*!<£,{) + 02[2{£, tj) - ((er, - ax)~Xr], rj) - 6[g(ti)] (4.17)

for any (constant) £ and t], since (2.3) is then obtained by optimization over t].

Proposition 4.8. Assume that ct, < o1. For any constant tensor 77, consider the
translation , defined by (4.16), and the associated "translation bound"

(ff*-T,) 1 < J (oiy) ~ *,) ldy. (4.18)

When evaluated at rj, (4.18) becomes

62{(o* -ax)~Xr\, rj) < {{o2~ ox)~Xrj, tj) + dxg(tj). (4.19)

This relation is equivalent to the validity of (4.17) for every £ , with t] held fixed.
Proof. We may write (4.16) in the form xt< — ox- g{t])~lrj ® rj. In this notation

a2~Tr, = (<r2-ai ) +

Now recall the following elementary fact of linear algebra: if D is a symmetric
invertible matrix, c a real number, and u a vector, then H = D + cu<g>u is invertible
and

H X = D 1  ———D~\u®u)D~X. (4.20)
1 + c(u, D u)
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In particular, contracting with u®u,

c(H~lu, m) = 1 -    1 (4.21)
1 + c{u, D u)

If D is singular one can apply the above to D + el and pass to the limit s —> 0.
When evaluated at tj, the translation bound (4.18) becomes

da* - T„rV ^ d\^a\ - T,rV i)+e2((<72-Tr,yii, >?>. (4.22)
Several applications of (4.21) give

n) = i 1
" ' 1 +g(*l) 1 ((cr* — o- ) V i/) '

S(>7) '((^ -t.) lri,tj) = 1
" ' 1 + £(»/) '((ff2-ffi) V >7>

g(^) '((a, - Tn) 'f7, »/) = 1 - = 1.

Thus (4.22) is equivalent to

1 d
> 2

l + Sfa) <(ff*-«7,) V > f) 1+*(»/) ((^-^l) '/»'/>

which leads after elementary manipulation to (4.19).
Now let us verify that (4.19) is equivalent to the validity of (4.17) for every £.

One can rewrite (4.17) as

202(£, »/) - (((J* - ffj)^, Z) < 62[{{o2 - rj) + 6lg(ri)]. (4.23)

We know a* > cr, as a consequence of the harmonic mean bound and the hypothesis
that <t7 > <t, , so the maximum of the left-hand side of (4.23) is achieved when
d2rj = (a* - ffj)£, and its value is d\{rj, (a* - cr,)-1?/). Thus (4.23) holds for all £
if and only if

d\{rj, (a* - cTj)-'?7) < 02[((<t2 - a\)~lij, >?) + fljgfa)].

This is the same as (4.19). □
Our second approach to recovering (2.3) makes use of (4.10) instead of (4.14). It

is this approach that generalizes to the non-well-ordered case; see [2]. Actually, (4.10)
seems to us the more natural starting point, since we are seeking a lower bound on

, £) . Though it leads once again to the optimal bound (2.3), it does not arrive
there via (4.17).

Proposition 4.9. When evaluated at £ using the translation , (4.10) asserts that

(o*Z, {) > (<?,£, f) + MRlH  . (4.24)
+a\) n>n)

After optimization over rj, (4.24) is equivalent to the optimal bound (2.3).



660 GREGOIRE ALLAIRE and ROBERT V. KOHN

Proof. Recall that (4.10) was derived from the variational principle (4.8). So our
goal is to calculate

inf [ [{a{y){Z + e{y)), £ + e{y)) - (t e(y), e{y))]dy,
e(y)Jo (4.25)

where e(y) ranges over (2-periodic symmetric tensor fields with mean value zero.
From the proof of Proposition 4.2, it is clear that an optimal e*{y) exists which is
piecewise constant. If e* = in material i, then the optimality condition for (4.25)
is

g~\n)(n,£, + ex)n = c, (4 26^
t(°2 ~°\) + ® + e2) = c

for some constant second-order tensor c. Using (4.20), we deduce from (4.26) that

£+<■2- ,, <4-27>
g(n) + {{°2-°\) i)

Since 6[el + d2e2 = 0, we get from (4.27) that

<l>ei)=n , J*?'® X-1 :• (4-28)
0l+g(*l) ((^2_CTl) »/•?}

Substitution into (4.25) yields

i
[(o(y)($ + e*), { + e*) - <t/ , e')]dy = ,Z) + (Z,c)

= (o1{,Z) + g(ri) {rj, {)(»/, £>,).

Combining this with (4.28) gives (4.24).
In general, (4.24) is not at all the same as (4.17); however, we assert that the two

coincide after optimization in t]. To prove this, we must show that

<**£, £> > , i) + sup - g2<,?>0    (4.29)
" QXg{*l) + ({°2~ °\) I'l)

is equivalent to (2.3). One proof is based on the observation that (2.3) and (4.29) have
the same optimality condition (3.12). A less direct but more elementary argument
proceeds as follows. Let t]* be extremal for (2.3). We know from (3.15) that

{£, n) = 9xg(i*) + <(<72 -^rV. n)- (4-3°)
When evaluated at rj = rj*, (4.24) becomes

> {<*£, Z) + 02{t, V)- (4-31)

We proved in Sec. 3 that no better bound is possible, i.e., that there is a microstructure
achieving equality in (4.31). (Note that (4.31) is the same as (3.16).) So rj* must
achieve the optimum in (4.29) as well, and (4.29) is equivalent to (2.3). □
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5. Sums of energies. We explained in Sec. 2 and 3 how the Hashin-Shtrikman
variational principle gives the optimal lower bound on (o*£, £) as the extremal value
of a concave maximization. The same approach also works for sums of energies. We
sketch that extension here.

As usual, we consider composites a* made from two well-ordered, possibly aniso-
tropic, materials a, and a2, in volume fractions and d2 respectively. Our goal
is an optimal lower bound of the form

(<7^ ,£,) + ••• + (o% Zj) , (5.1)
where £,, ... , are an arbitrary family of J second-order symmetric tensors.

The analogue of (2.3) is (5.1) with

J \J
= + 02SUP - ((a2-ainj)} ~ Gxg{r]x, ■■■ , nj)

j= i [j=i
(5.2)

Here the supremum is over ... , rjj and g(tj x, ... , t]j) is defined by
j 1

g(h, ••• ,Vj)= SU_P <5-3)
lfcl=1 j=i 1

for any second-order symmetric tensors rjl, ... , rjj .
The proof of (5.2) follows that of Proposition 2.1. Indeed, (2.8) and (2.12) yield

{e'Zj, Zj) > (o^j, ij) + 2e2(r,j, £.) - d2((a2 - <7,)"^. , n.)

+ Y. \Uk)\2\na\"v(k)aX^j\2 (5'4)
kjiO

for each j = 1. Addition of these relations leads easily to (5.2).
The proof that (5.2) is optimal is much the same as for a single energy. The

optimality condition is

0 € 2<f — 2(ct2 - tfj)-1?/* - Oxdg{rf), (5.5)
where we view Z = ,•••>£/) as a vector whose components are symmetric tensors
(cf. (3.12)). The subdifferential of g is

dg{y) = ^Y^mi-2fa(vi)rf^, (5.6)

in which each vj is extremal for (5.3) at if = if , 0 < mi < 1 , and = 1
(cf. (3.13)). Arguing as in (3.15)—(3.17), one verifies that the sequentially laminated
composite associated to these {(mi, za)} achieves equality in (5.2).

In space dimension N, the vector space of symmetric second-order tensors has
dimension N(N + 1 )/2. As a result, there is never any reason to consider J >
N(N + l)/2 in (5.2). Indeed, we may write

j
(5.7)

7=1



662 GREGOIRE ALLAIRE and ROBERT V. KOHN

where M is the fourth-order tensor

j
m = (5-8)

7=1

Clearly M has the symmetries of a Hooke's law, and the associated quadratic form
on symmetric second-order tensors is nonnegative. The most general such M has a
decomposition of the form (5.8) with J — N(N + l)/2.

Our bound (5.2) is equivalent to the "trace bound" discussed in [28, 29]. To see
this, observe that (5.1)—(5.2) is equivalent to the assertion that

' r2«rE
7 = 1

(5.9)
-l

< -°"l) 1j> rlj) + dlS(rll . > 1j)
7=1

for every , ... , and ijx, ... , rjj . Optimizing over ^ , (5.9) is equivalent to

J j

~a\ 1j) < Yl^a2~a\ 1j) + e iS(h
7=1 7=1

for every r\j . Writing M = J2 rjj <g> t]j , this may be rewritten as

d2({a' - a,)"', M) < {(o2 - cr,)-1, M) + dxg(M) (5.10)

for every nonnegative Hooke's law M , with

g(M) = sup (/' (k), M). (5.11)
|fc|=i 1

This is precisely the "trace bound"; cf. [29, (6.62)] or [28, (6.11)].

6. Upper bounds and complementary energy. We have thus far focussed exclusively
on lower rather than upper bounds and on elastic rather than complementary energy.
Similar arguments work, however, for upper bounds and for complementary energy.
We present the resulting optimal bounds in this section.

Upper bounds on elastic energy. As is well known, to get an upper bound on
(o*£ , £) one should use a2 rather than cr, as the "reference material" in the Hashin-
Shtrikman variational principle. The resulting analogue of (2.3) is

{> < (ct2£, f) + 0, inf[2({ , rj) + {(a2 - cr,)"1^, rj) - 62h{ti)], (6.1)

where h(rj) is defined by

h[r]) = ihL \no\l7v(k)a2 'fl • (6.2)
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The proof is almost entirely parallel to that of (2.3). The main difference is that (2.6)
is replaced by

/.
(0t(30-<72)«+ <?(*)), f+ e(0)>

= [ r"2)K + fW))> i + eW))Jq
= inf [ -2% (ft, i; + e{<}>)) - [ *,((<7, -<72)~lfj, fj).

n(y)jQ Jq
The right-hand side of (6.1) involves a convex minimization, since

((a2 - 1], rj) - d2h(rj) (6.3)

is a convex function of rj. This is not immediately obvious. However, we can rewrite
(6.3) as

sup[((cr2 - a,)"'»/, rj) - 02\um2 k a''11]\2]. (6.4)
|Jt|=i 2 K '

We are assuming that < er,, so

((ff2 -ff, )"V >/) > (ff2~V »7) = |(T2~5f/|2 > l^>/2KWCT2"^|2.

Thus (6.4) expresses (6.3) as a supremum of nonnegative quadratic forms in t], from
which convexity follows.

The proof that (6.1) is optimal parallels the argument in Sec. 3. It uses the ana-
logue of Proposition 3.2 with the roles of a, and a2 reversed. In other words, the
sequentially laminated composites of interest satisfy

ex (o*-a2) ' = (<7,—er2) 1 + 02 mj^) (6.5)
/=!

instead of (3.9). The associated microstructures consist of plate-like inclusions of
material 1, arranged appropriately in a matrix of material 2.

It is natural to ask whether there is an alternative proof of (6.1) based on transla-
tion, analogous to the proof of (2.3) presented in Sec. 4. The answer seems to be no.
The difficulty is that as presented in Sec. 4, the translation method yields only lower
bounds (see, e.g., (4.10)). There is an indirect way to proceed, however. We shall
show that the optimal lower bound on complementary energy, formula (6.9), can be
proved using translation. We shall also show that (6.9) leads to (6.1) by algebraic
manipulation (see (6.18)—(6.21)). These two facts in combination yield a (somewhat
indirect) proof of (6.1) by translation.

There is of course an extension of (6.1) to sums of energies. Its formulation is left
to the reader.

Bounds on complementary energy. Our arguments have thus far been based on
(1.9), the variational characterization of the "elastic energy" quadratic form .
They have led us to optimal upper and lower bounds on (a*£, £). There is also a
well-known variational characterization of the "complementary energy" quadratic
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form:
((aV^, £> = inf [ Qdy. (6.6)

div {=0 Jq
fc=t

Here £ ranges over (2-periodic second-order symmetric tensor fields with divergence
zero and mean value £; see, e.g., [36]. By using (6.6) in place of (1.9), we shall get
optimal upper and lower bounds on the complementary energy ((o-*)-1^, £).

We must introduce some notation before proceeding. For k e R V, k ^ 0, we
define

fF(A:) = {£€ £:£•£ = ()}, (6.7)
where S is the space of all N x N symmetric second-order tensors. The subspace
W(k) will play a role below analogous to that of V(k) in Sec. 2-4. Notice that W(k)
is actually the orthogonal complement of V(k) in S. Moreover, for any Hooke's
law a and any k / 0, S has the orthogonal decomposition

S = o*V(k)®o~^W{k). (6.8)

We turn now to the lower bound on complementary energy, which is the analogue
of (2.3) based on (6.6) instead of (1.9). It asserts that

((ffV'f. £> > (<72_I£, <?) + 0, sup[2(£, t]) - <(cr~1 - cr2_1)_1 , t]) - 02g (?)], (6.9)
'/

gc(rj) = sup \xa-ii2jy(k)02l\ ■ (6-10)

with

|*|=i "^W(k)°

Our notation is designed to emphasize that gc is the analogue of g (defined by
(2.4)) for complementary energy.

The proof of (6.9) is parallel to that of (2.3), using cr, as the "reference material".
That is the appropriate choice because

The proof that (6.9) is optimal proceeds as in Sec. 3. The key ingredient is the
following complementary energy analogue of (3.9): there exists a composite o* made
from (Tj and a2 in volume fractions 8l and 6-, such that

^((^Y1 ~°2l)~X = (*r' -O"1 +°2 ^Zm,fa2 (^"). (6-1 1)
1=1

where fa° (v) is the Hooke's law associated with the quadratic form

(fa2 n) = \na-"lW(k)°U\2- (6-12)

The proof of (6.11) is parallel to that of Proposition 3.2, using a complementary
energy version of the layering formula in place of Proposition 3.1. The microstruc-
tures associated to (6.11) consist of platelike inclusions of material 1 in a matrix of
material 2.

The bound (6.9) can also be proved using the translation method. The discussion
of Sec. 4 carries over straightforwardly to complementary energy. The only difference
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is in the notion of quasiconvexity. Instead of (4.4), the appropriate condition is that
t be quasiconvex on stresses, i.e.,

L(tC,C)«y>0 (6.13)

for any Q periodic symmetric second-order tensor field £ with div£ = 0 and
JqC - 0. The analogue of Lemma 4.5 is the observation that z is quasiconvex on
stresses if and only if

(t£,£)>0 for { e W{k), for all k ± 0. (6.14)

The appropriate translations for recovering (6.9) are naturally

(i ̂ ,t) = (o;lZ,Z)-gc(r1)-l(r1,Z)2, (6.15)

the analogue of (4.16) for complementary energy. The details can safely be left to
the reader.

We turn finally to the upper bound on complementary energy, which is the analogue
of (6.1) for complementary energy:

((<t*)-1^, {) < f) + <92inf[2(^, rj) + ((a~l - <t2~ W rj) - 6xhc{r])], (6.16)

where hc(tj) is defined by

i/t
l*l=i

The proof is parallel to that of (6.1). Optimality is proved using the complementary
energy version of the layering formula (6.11), with the roles of ax and o2 reversed.

It was shown in [29] that the Hashin-Shtrikman upper bounds on a* are equivalent
to the lower bounds on (er*)-1 ar,d the lower bounds on a* are equivalent to the
upper bounds on (er*)-' - Thus, (2.3) and (6.16) are equivalent, as are (6.1) and
(6.9). Let us make the connection between (6.1) and (6.9) explicit, by what amounts
to a specialization of the argument in [29], (An alternative, more general but more
abstract, link is offered by Theorem 8.2.)

Notice that (6.1) makes use of h(r}), while (6.9) makes use of gc(rf). The key to
linking the bounds, of course, is to relate these two functions. For any k ± 0 and
any rj we have

hc(t]) = inf |V/Vw*! *1 •

*«rWwtnain I2 + K.'/Vr^r = \a~i^\2a. 2W(k) 2 rlI + \na''2V(k)°2

by (6.8). It follows easily that

gc(*l) + h(a2ri) = {a2t], rj). (6.18)

Next, observe that (6.1) is equivalent to

0,(((T2-vrV n) < ((<72_fTi rV ^)-e2h^) (6-19)

and (6.9) is equivalent to

^i(((^*)_1 rW i) ~ ((^r1 ^21)—1 'z' i)+q28c(i)- (6.20)
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The correspondence between (6.1) and (6.19) is like that between (2.3) and (4.19):
the Hashin-Shtrikman bound gives an inequality for every pair of tensors <j;, rj. Op-
timization over t] gives (6.1), and optimization over £ gives (6.19). The correspon-
dence between (6.9) and (6.20) is similar.

It remains to connect (6.19) and (6.20). Replacing t] by er7~'>? in (6.20) gives

ex{a2\{a*)~x — &2')~''>?' »/> (6 21.

< - a~X)~Xa~Xt], rj) + d2{a~l rj, r})-02h{r}).

After a bit of algebra, making use of the fact that
/ —K —l / \-l(cr, -o2 ) =a2{a2-ax) a{

and a similar relation with u, replaced by a*, one verifies that (6.21) is the same
as (6.19).

7. Explicit calculation of g(rj) and h(rj) for isotropic reference materials. Our
optimal bounds on (cr*^, £) depend on the functions g and h , defined by

g(tj) = sup \n^V{k^n\\ (7.1)
|A|=i 1 1 '

hir,) = (7.2)

If the bounds are to be evaluated either analytically or numerically, it is obviously
important to understand these functions.

Actually, g(rj) has been studied quite extensively in the metallurgical literature;
see [23] and the references given there. The goal of that work is to explain certain
microstructures which arise in coherent mixtures of distinct elastic phases. Accord-
ing to the theory of Khachaturyan and Roitburd [18, 34], if two phases have different
stress-free strains but identical elastic moduli then elastic energy is minimized by a
microstructure of plate-like inclusions. The orientation of the inclusions is deter-
mined by (7.1); they should be normal to a direction k which is extremal for (7.1).
A mathematical explanation of this theory is presented in [20],

The goal of this section is to give explicit formulas for g(rj) and h(rj) when cr1
and a2 are isotropic. These formulas will be used in [1] to evaluate some of the
optimal bounds explicitly.

Our upper and lower bounds on complementary energy make use of two additional
functions gc{r\) and hc{tj), defined by (6.10) and (6.17). They are determined by g
and h , however: (6.18) gives gc in terms of h , and the analogous relation

hc(tl) + giotf) = <<7,1/, r\) (7.3)

gives hc in terms of g. Therefore, it is not necessary to devote separate attention
to £c or hc.

For the remainder of this section, we let a denote the isotropic Hooke's law

(j£ = K{tr£)I+ 2juU-jj{tr£)A (7.4)
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with bulk modulus k and shear modulus /u . This law can also be expressed as

at; = 2fi£ + A(tr£)/ (7.5)

with X = k — 2n/N. We require k > 0, n > 0 so that a determines a positive
definite quadratic form on second-order tensors. Most elastic materials also satisfy
k > 0 (this is equivalent to Poisson's ratio being positive); however, we do not assume
A > 0, except as explicitly stated below.

Lemma 7.1. For any symmetric tensor ?/ and any unit vector k,

\na{v(k)G~"'^2 = ~ W' k^ + XT2/7^' /c)2" (7'6)

Proof. This is classical; it amounts to calculating the Fourier transform of the
Green's function for linear elasticity. See, for example, Lemma 4.2 of [20] for a
complete proof. □

To calculate g(rj) or h{rj), we must maximize or minimize the right-hand side of
(7.6) over all unit vectors k . We do h first, since it is easier.

Proposition 7.2. Let a be isotropic, and let t] have eigenvalues tjl, ... , rjN. Then

,{»/, (7J)

Proof. Our goal is to minimize

G(k) = i[|^|2 - (Vk, k)2] + -^-(rjk,^2 (7.8)

with r] held fixed, subject to \k\ = 1 . By the method of Lagrange multipliers, at any
critical point k we have

t]2k - 2(rjk, k)rjk] + -{fk, k)rjk = ck (7.9)

for some c e R. Since rfk is a linear combination of k and rjk, the subspace
spanned by {k, rjk} is invariant under multiplication by rj. Thus tj is diagonal-
izable on this subspace, and we may write k = ajuj + a. Uj , where vl and are

2 2eigenvectors of rj associated to eigenvalues rij and rjj , and a. +ctj = 1 . The relation
(7.9) becomes

1 2
-[^2ap - 2(fyaj + ^ a2)rjpap] + ^ a2)r,pap = cap (7.10)

for p = i, j .
If ai = 0 then k is an eigenvector of rj associated to eigenvalue rjj, and

m-Jz- (7'n)
Similarly, if a]. = 0, we get G{k) = rj2/{X + 2fi). If rjj = t]j then k is once again
an eigenvector of tj and (7.11) holds.
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Suppose now that a( ^ 0, a. ^ 0, and t]i / rj.. Then, subtracting one component
of (7.10) from the other gives

2 2 A+ 2/1 n n,'.■a'+'/°j = 2(rno<'' + 'j)- ( 1
2 2Bearing in mind that a( + a . — 1 , (7.12) yields

2 (A+ 2/i)rj.-Atj. 2 (A + 2fi)t}j -Atft
Ol, = ~zr~7~. ~r~,   , a , =  — (7.13)2(A + n)(rjl - tjj)' ' 2{A + H)(rij-tii)

This gives, after some calculation,

<W = " I,)2 + 45^5(1, + (7'141

One verifies easily that (7.14) is larger than both /{A + 2//) and ^/(A + 2/x), so
the minimum is never at a point of this type.

In conclusion, the minimum is achieved when k is an eigenvector of t] associated
with an eigenvalue of least absolute value. The value is given by (7.11), and this yields
(7.7). □

Now we turn to g(rj). Of course, most of the work has already been done, since
we have identified all the critical points of G(k).

Proposition 7.3. Let a be isotropic, and let rj have eigenvalues t]l, ..

1 -i 12 x/f )max,^2sup|^,/2 0- if]I = Max < -j—V7 , maxl*H - K(/c)

where Ctj is the condition

(fli ~ Vj)2 (rij + Vj)2

4/i + 4(A + n)

(7-16)
Proof. Our goal is to maximize the function G(k), defined by (7.8), over all unit

vectors k . The proof of Proposition 7.2 identified all the critical points of G. They
fall into two classes:

(i) eigenvectors of rj,
(ii) linear combinations of two eigenvectors z/ and 1/ . of the form k = ajia +

otjfj , with aj and a . satisfying (7.13).
The first class carries no implicit restriction: every eigenvector is a critical point.

2 2The second class, however, is restricted by the observation that a( and a. must be
nonnegative. Thus, from (7.13), only pairs satisfying

(A + 2fi)r/i - Xij (A + 2fi)r\j - At]  — ->0,      > 0 (7.17)
It ~ rjj Vj - V i

can arise. We may assume without loss of generality that t]t < r]j, and then (7.17)
is equivalent to (7.16). Since the maximum is achieved at some critical point, this
leads to (7.15). □

Proposition 7.3 reduces the calculation of g{rj) from a continuous maximization
(over the sphere \k\ = 1) to a discrete one. If the spatial dimension is N = 2 or if
Lame's modulus A is nonnegative, then we can simplify the formula further.
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Proposition 7.4. Assume that either TV = 2 or else A > 0. Label the eigenvalues of
rj so that

Then the right-hand side of (7.15) equals

(1,-1 „)' jf > A+ 2/1
4it 4(A + n) +

A + 2//
A + 2/i " 2(A + /0

^ ^ + 2/i

if > iTTZ-^^i + ^)> (7'19)

if "^< 2uqr7r,(". + "/v>-A + 2/z
Proof. Suppose first that N = 2. We observed in proving Proposition 7.2 that the

value of 6' at type (ii) critical point is greater than the value at every type (i)
critical point. Hence the maximum is certain to be

i("i-^)2 + 4(XTrt + ">)2
if condition Cn applies, i.e., if rj2 > [(A + 2//)/2(A + n)]{rjl + r]2) > t]x . This gives
the first regime of (7.19). If condition C12 fails then either

+ (7.20)A + 2fi

or

<7-2"

We claim that (7.20) implies rj2{ > rj2 and (7.21) implies r]2>r\\. Indeed (7.20)
yields

<7-22)

(we use here that A + /* = k > 0 when N = 2, regardless of the sign of A). If A > 0
then (7.22) forces //, < ?/-, < 0, whence t]* > rjIf A < 0 then (7.22) is consistent
with either rjl < rj2 < 0 or rj{ < 0 < rj^. But in the latter case we have rj2 < \rjx\,

2 2since A/(A + 2/i) > -1 . Thus (7.20) implies rji > t]2 , regardless of the sign of A.
2 2This gives the second regime of (7.19). The proof that (7.21) implies r}2 > rj{ is

similar, and it gives the third regime of (7.19).
Now we suppose that N > 2, but we assume A > 0. Two eigenvalues t]j > rjj

satisfy the condition Ctj exactly if

(A + 2n)rjj < Xrj], Xr\l < (A + 2n)r\.. (7.23)

Since A > 0, it is easy to see that if (^, t]t) satisfy (7.23) then so do (tjN, rjt),
(t]j,//[), and (rjN,//,). Moreover, (7.23) and the relation t]N >rjj yield

~i/ + itjr+T)^ + ,')2 £ T^' " ,")2 + 4UTTI)("'+ "»)2'
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Similarly, (7.23) and the relation t]t > t]l yield

*"»)2 + jotW". +1">2 s r/i< ~"»)2 + 4C7TTT)("'+ "»)2-
Thus the right-hand side of (7.15) equals

i(,'-,»)2 + 4iXT70("'+,<»)2 ifci»h°lds.
1 2 '

^—^-max, //. if Ciyv fails.

The case when CXN holds gives the first regime of (7.19). If ClN fails then either

A + 2 Li"< > WiT)1"'+ "n) ( '
or

'»< + "»>• (7'26)

The argument presented above for N = 2 shows (in any dimension, if A > 0) that
2 2 2 2(7.25) implies r]x > t]N and (7.26) implies r]N > . These yield the remaining

regimes of (7.19). □

8. Some general properties of optimal bounds. This section establishes two general
properties of optimal bounds. Well-ordering is not assumed, and the arguments
do not depend on having some type of "formula" for the bounds. The results are
presented for simplicity in the setting of two-component composites; however, the
proofs generalize easily to other situations.

Our first result asserts the continuity of an optimal bound with respect to all its
parameters. As a typical application, recall from Sees. 2 and 3 that it is technically
simpler to consider two "strictly well-ordered" materials er, < a2 rather than two
"weakly well-ordered ones" er, < a1. By Proposition 8.1, it is actually sufficient to
prove the bound for strictly well-ordered materials: the weakly well ordered case then
follows by continuity.

Proposition 8.1. Let o{ and a-, be two Hooke's laws, not necessarily well ordered.
Suppose that

, 0 > /_(<*,, er2> 0,, 02, f) (8.1)
is the optimal lower bound on (a*^, £), for composites a* made from <7, and cr,
in volume fractions 6l and 02 respectively. Then /_ is a continuous function of
all its variables. A similar assertion holds for upper bounds, complementary energy
bounds, and bounds on sums of energies or complementary energies.

Proof. First let us prove continuity with respect to ^. Given near £ and any
e > 0, consider a microstructure a{y) which almost achieves the bound:

<^,£)</_(a,,<72,02,£) + £. (8.2)

For any fixed microstructure we have

<(**£,£)+ C|£'-£|,
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where C depends only on |^| and on a pointwise upper bound for' a{y). So the
microstructure that achieves (8.2) also satisfies

(**{', £'} < /_>,, , ex, e2, e) + e + c\z - Z'\.
It follows as £ —♦ 0 that

/_(<7, ,a2,01,62, £') < , a2, dx, d2, £) + C|£ - £'|.

Reversing the roles of £ and , we conclude that /_ is locally Lipschitz continuous
in £.

Next we prove continuity with respect to ax and a2. For any e > 0, consider
a microstructure a(y) = cr^^y) + cr2x2{y) satisfying (8.2). For any a\ and a'2
close to <7j and a2, consider the microstructure a\y) = a[%x{y) + o'1X200 • By an
application of Meyers's theorem,

\a* ~ (ff')*l ^ C(|CTj — o'{\ + \o2 - a'2\)a (8.3)

for some constants C > 0, a > 0. (Meyers's theorem gives an Lp bound for the
strain associated to the solution of any "cell problem", with p > 2 depending only
on pointwise upper and lower ellipticity bounds. A proof for linear elastostatics can
be given by arguing as in [12, Chapter 5].) We deduce from (8.2) and (8.3) that

f_{a[ ,a'2,ei,62,Q< /_(tJ,, a2, 0,, d2, <*) + C(|<Tj - a\) + \a2 - a'2\f.

This gives Holder continuity in ax and a2.
Continuity in 6X is similar. (Note that d2 = 1 - 8 is not an independent vari-

able.) Given a(y) = <7^,00 + °2/200 satisfying (8.2), a comparison microstructure
a\y) = crxx'x(y) + o2x'2{y) can be chosen so that

x\(y) — X\(y) except on volume fraction \d[ - 0,|.

Meyers's theorem yields
\a* -{a')*\<C\Ox-e[\a,

leading to the Holder continuity of /_ with respect to 6 x .
The other bounds (upper bounds, complementary energy, etc.) can obviously be

treated in exactly the same way. □
Our second result links the two upper bounds (on energy and complementary

energy) and the corresponding lower bounds, in pairs. We already drew such a con-
nection in Sec. 6, using the explicit formulas established in the well-ordered case.
The following argument has the advantage of applying in general, even if ax and a2
are not well-ordered, and even if the optimal bounds are not known explicitly.

Proposition 8.2. Consider composites made from any two elastic materials ax and

/_(£) <<*'£, £></+(£) (8-4)

in volume fractions 0, and 6,. Let

and
/_c(«<((O_,<E.0</+c(0 (8-5)
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be the optimal bounds on elastic energy and complementary energy. Then \/+c and
jf_ are the Fenchel transforms of one another, as are j/_c and \ f+ . In particular,
all four functions are convex with respect to £.

Proof. Our starting point is the optimal lower bound on elastic energy

£>>/_(£). (8.6)
We shall show that

((tfV'C, 0 < sup[2((f, 0 -/_(£)] (8.7)
£

is the optimal upper bound on complementary energy. (It should be emphasized that
/_ is not assumed to be convex.)

As a first step, let us show that (8.7) is a valid upper bound. We have

((<7V'c, 0 = sup[2<£, >/)-<**£>£)] (8-8)
(

since a* is a positive quadratic form. Relation (8.7) follows immediately from (8.6)
and (8.8).

Now let us show that (8.7) is optimal. We know from Proposition 8.1 that /_ is
a continuous function of £ . Basic facts Of homogenization show that it satisfies

C\\£\2 < /_(£)< c2\Z\2, (8.9)

/_(«) = *7_(£). (8.10)
Therefore, the supremum in (8.7) is achieved, say at £*. (We do not assert that C is
unique, since /_ is not known at this stage to be convex.) Taking the first variation
in direction gives

d
dt [2(K\Q-t2fAO] = o,

t=i
whence (£*, () = /_(^*). Thus (8.7) actually asserts that

<(0-'c,o<«r,o. (8.ii)
Consider a microstructure that approaches equality in (8.6) with t, = C , i.e., such
that

<*T,0</_( O + e-
Its effective tensor satisfies

({°*)~XZ,Q>2(C ,Q-{o*C ,C)
>2 <r,0-/_(O-e
> , C) - e-

As 6->0, this shows that (8.11) is the optimal upper bound on ((cr*)-1^, Q ■ In
other words,

/+c(C) = sup[2<£,0-/_(£)]• (8.12)

We have shown that j/+c is the Fenchel transform of .
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Similar arguments show that

ft (0 = sup[2(£, C) - /+(£)] > (8.13)

/_(£) = sup[2(C ,£) - f+ (C)], (8.14)
C

/+(^) = sup[2(C^)-/_c(C)]. (8.15)
c

Hence all four functions are convex, and they are related in pairs by the Fenchel
transform. □
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