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Abstract

Breast cancer is the most common non-skin cancer affecting women in the United States, where
every year more than 20 million mammograms are performed. Breast biopsy is commonly
performed on the suspicious findings on mammograms to confirm the presence of cancer.
Currently, 700,000 biopsies are performed annually in the U.S.; 55%–85% of these biopsies
ultimately are found to be benign breast lesions, resulting in unnecessary treatments, patient
anxiety, and expenditures. This paper addresses the decision problem faced by radiologists: When
should a woman be sent for biopsy based on her mammographic features and demographic
factors? This problem is formulated as a finite-horizon discrete-time Markov decision process.
The optimal policy of our model shows that the decision to biopsy should take the age of patient
into account; particularly, an older patient's risk threshold for biopsy should be higher than that of
a younger patient. When applied to the clinical data, our model outperforms radiologists in the
biopsy decision-making problem. This study also derives structural properties of the model,
including sufficiency conditions that ensure the existence of a control-limit type policy and
nondecreasing control-limits with age.
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1. Introduction

Breast cancer is the most common non-skin cancer affecting women in the United States.
According to the American Cancer Society (ACS), in 2010, an estimated 207,090 women
would be diagnosed with invasive breast cancer, and more than 40,000 die from this disease
(American Cancer Society 2010). In recent years, various breast cancer treatment options
(combination of surgery, radiation therapy, chemotherapy, and hormone therapy) have
become available; nonetheless, successful treatment depends highly on early diagnosis
(Fryback et al. 2006).

Screening mammography is the current standard practice for identifying cancer early in
asymptomatic women. Randomized clinical trials have shown that the use of screening
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mammography in the general population reduces breast cancer mortality by at least 24
percent (Smith et al. 2003, Nyström et al. 2002). Although the cost-effectiveness of
screening mammography is well established for women between 50–69 years of age, there
has been a debate for younger age groups (Kerlikowske et al. 1995, Fracheboud et al. 2005).
Despite the controversy, the ACS recommends an annual mammogram for all women over
40 years of age (Smith et al. 2006). It is estimated that more than 20 million mammograms
are performed annually in the United States, and approximately 70% of women over the age
of 40 have had a mammogram in the last two years (Freid et al. 2003).

Mammogram reading involves two component—perception and interpretation. Radiologists
look for abnormalities (such as microcalcifications or masses), which sometimes can be hard
to detect. After identifying abnormalities, they determine the risk of cancer to decide on
appropriate management. Mammogram interpretation requires radiologists to evaluate
mammographic findings based on their previously acquired knowledge from training or
experience.

Based on the mammographic findings, critical decisions must be made to detect cancer early
while sparing healthy women unnecessary procedures. If a mammogram looks suspicious,
then a biopsy (examination of the breast tissue removed using a needle or surgical excision)
is required to decide whether an abnormality is in fact a breast cancer. In their seminal work,
Tversky and Kahneman (2004) show that physicians often misestimate disease risk before
and after diagnostic tests such as mammograms. All humans use heuristics that can severely
bias decisions; however, in health care these systematic errors lead to incorrect judgments
that are highly consequential.

There are two ways in which a mammogram interpretation can be wrong. First, a
mammogram can be interpreted as normal when, in fact, a cancer is present. As a result,
there is a delay in the diagnosis of cancer and threat to the patient's life. The false-negative
rate of mammography lies in the range of 10%–25% (Destounis et al. 2004). While
mammographically occult cancers represent a portion of the false-negative rate, cancers that
are apparent in retrospect represent the larger portion (Baines and Dayan 1999, Bird et al.
1992). Second, a mammogram can be labeled positive when a finding, in fact, is
noncancerous. This results in over-treatment and unnecessary anxiety to the patients. The
false-positive rate of mammography lies in the range of 55%–85% (Elvecrog 1993, Meyer et
al. 1990, Opie et al. 1993, Parker 1991). Both the false-negative and the false-positive rates
reflect the complexity of mammogram interpretation.

The accuracy of mammogram interpretation varies with the radiologists' skills and training
(Barlow et al. 2004, Beam et al. 1996). Subspecialty radiologists, who often have fellowship
training in mammography and read these studies exclusively, perform generally better than
the community radiologists, who read the majority of all mammograms in the context of a
diverse general practice (Sickles et al. 2002). Furthermore, the United States as a whole
appears to have different performance rates than other countries. Smith-Bindman et al.
(2003) report that although cancer detection rates are identical in the U.S. and in the United
Kingdom, radiologists in the United States declared many more mammogram results
uncertain or suspicious compared with their British counterparts; as a result, American
women with and without cancer underwent at least twice as many follow-up tests, such as
biopsies.

To standardize mammography practice, the American College of Radiology (ACR) has
developed a lexicon—the Breast Imaging Reporting and Data System (BI-RADS) (BI-
RADS 1998, Liberman and Menell 2002). The BI-RADS lexicon, which includes
descriptors that are the best predictors for a benign or malignant diagnosis, is intended to
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guide radiologists and referring physicians in the breast cancer decision-making process and
facilitate the management of patients. Each mammogram is described using standardized
descriptors and then classified into one of the six final assessment categories (BI-RADS
assessment codes), depending upon the interpretation of the observations made on the
mammogram. Table 1 shows the relationship between the assessment codes and the
recommended actions. BI-RADS 0 is associated with acquiring further imaging; BI-RADS 1
and 2 are recommended if there is either no or benign observation on the mammogram,
suggesting no action and continue routine yearly screening; BI-RADS 3 is assigned to a
mammogram if a radiologist observes something probably benign that does not warrant
immediate biopsy but needs surveillance for a short interval (usually six months to two
years); and BI-RADS 4 and 5are assigned to suspicious and high-risk findings,
recommending immediate biopsy to the patient.

In spite of the standardization of mammography reporting, several issues have not been
addressed by the current usage of the BI-RADS lexicon. BI-RADS categories do not take
age into consideration when making biopsy decisions, despite the fact that older age groups
have unique characteristics that deserve particular attention. For instance, breast cancers
tend to be less aggressive in older women, which might suggest that a higher probability
threshold for action could be more appropriate (Fowble et al. 1994, Jayasinghe et al. 2005).
The false-positive interpretation of mammography resulting in unnecessary invasive
procedures might be more difficult or risky for older individuals with comorbidities. In
general, these distinctive features of breast cancer in older women indicate that the
probability thresholds for biopsy in older women might be different than those in younger
women.

Computer-aided diagnostic (CADx) models have a potential to reduce inter-observer
variability and improve decision-making for early diagnosis of breast cancer (Jiang et al.
2001). The output of these models is usually the probability of cancer, which is more
informative than the six discrete BI-RADS categories. Several CADx models have been
developed using various statistical and artificial intelligence techniques. Burnside et al.
(2006, 2009) constructed a Bayesian network to predict risk of malignancy using
mammographic features and demographic factors. Baker et al. (1995) and Ayer et al. (2010)
used artificial neural networks, Jesneck et al. (2006) used decision fusion, and Chhatwal et
al. (2009) used logistic regression for breast cancer risk prediction using mammographic
features. These studies suggest that more accurate decisions could be made using the
probability of cancer as an outcome measure. However, CADx models only partly address
the problem because they do not provide an optimal threshold for the decision to biopsy.

No methods exist that enable radiologists to determine an optimal threshold over which to
recommend biopsy for a given patient. Around 700,000 breast biopsies are performed
annually in the United States. Due to the inherent limitations of mammography, 55%–85%
of women who undergo biopsy turn out to have benign breast lesions. As a result, an
estimated $250 million is spent every year on the false-positive biopsies. In addition, a false-
positive mammogram exposes the patient to unnecessary anxiety, pain, and possible
complications (Steggles et al. 1998). A study by Maxwell et al. (2000) indicated that the
stress level during the period of breast biopsy is substantial. Furthermore, biopsy can also
introduce changes (such as distortion) on future mammograms, which could make later
diagnosis more difficult.

This paper addresses the optimal breast biopsy decision for an individual patient. The
decision of whether to perform a biopsy is a function of the patient's probability of cancer,
which is estimated based on her mammographic findings and demographic factors. We also
investigate how the optimal decision of whether to biopsy changes with the patient's age.
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Past studies have considered the optimal interval of screening mammography (Maillart et al.
2008, Michaelson et al. 1999) and an optimal model for breast cancer screening and
treatment (Ivy 2006). To the best of our knowledge, our study is the first one to consider the
optimal decision-making for breast biopsy. In addition, we provide clinically intuitive
conditions for the existence of structured optimal policies in mathematical models that have
a similar structure to our problem (such as any diagnostic decision-making problem, e.g.,
lung biopsy, prostate biopsy, etc.). We solve an important diagnostic decision problem using
clinical data and find policies that were not recognized by the decision-makers before.

Our model provides patient-specific recommendations for breast biopsy, in contrast to
population-based guidelines observed in the current clinical practice. A biopsy decision
based on individual characteristics can also help promote the concept of personalized care in
the diagnosis of breast cancer, which is considered the future of health care (Williams et al.
2003). The biopsy decision in our model is based on the probability of cancer instead of the
six BI-RADS codes. This probability gives the patient an opportunity to better understand
her risk of cancer and engage in shared decision-making with the radiologist, which is of
increasing interest in the radiology community with regard to screening tests (Chan 2005,
Hillman 2005).

The rest of the paper is organized as follows. In §2, we describe the model formulation of
the optimal biopsy decision problem, followed by its structural properties in §3. In §4, we
present patient-specific optimal policies and perform sensitivity analysis on various model
parameters. We conclude in §5 with the discussion of our results and future directions. An
electronic companion to this paper is available as part of the online version that can be found
at http://or.journal.informs.org/.

2. Model Formulation

The optimal biopsy decision problem is formulated as a finite-horizon discrete-time Markov
decision process (MDP) (Puterman 1994), which is referred to as the optimal biopsy
decision model (OBDM). We first describe various assumptions made throughout the
model. At every decision-epoch, a woman undergoes a mammogram that is examined by a
radiologist (the decision-maker), who has only two decision options: biopsy, or wait until
the next annual mammogram. The decision to biopsy also includes follow-up procedures.
This decision is made based on the woman's current risk of breast cancer, which could be
estimated by a radiologist or a computerized risk prediction model such as the one described
in §4.1. Once the biopsy is performed, the patient is assumed to leave the system, i.e., the
decision process ends. We assume that patients adhere to the decisions made by the
radiologists, i.e., they will get the next annual mammogram (or biopsy) with certainty if the
action taken in the current decision epoch is to wait until the next annual mammogram (or
biopsy). We assume a finite set of states that completely describe the state space. We also
assume that both the patient and the radiologist are risk neutral. Throughout the OBDM, we
refer to the woman as the “patient,” irrespective of her health condition, for the sake of
consistency. Next, we describe the notation used to build our model.

• Decision epochs, t = 0, 1, 2, …, T, T < ∞. We define t as the number of years
above the age of 40. The decision epochs start at age 40 because the ACS
recommends regular mammography screening annually for all women over 40
years of age (Smith et al. 2006). We end our decision horizon at age 100 (i.e., t =
60), which is consistent with the U.S. life tables from the National Center for
Health Statistics (NCHS) of Center for Disease Control and Prevention (CDC).

• st: State of the system at time t such that st ∈ {0,1, …, S, S + 1, S + 2}, where st ∈
{0,1, …, S} represents the risk score, {S + 1} represents the post-biopsy state, and
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{S + 2} represents death. The risk score (the current probability of cancer) can be
estimated by either a CADx model (Ayer et al. 2010, Burnside et al. 2009,
Chhatwal et al. 2009) or asking a radiologist. We use a mammography Bayesian
network (MBN) described in §4.1 to estimate the current probability of breast
cancer based on mammographic features and demographic factors. The risk score is
obtained by discretizing the probability of breast cancer (outcome of the MBN) to a
number between 0 and 100. For example, if the probability of breast cancer given
by the MBN is 0.1538, then the corresponding risk score is 15.

•  State space, = {0, 1, 2, …, S, S + 1, S + 2}.

• wt(st): Probability of cancer at time t when the current state is st. In our model, we
assume wt(st) = st/100.

• t): Action space at time t when the patient is in state s; t) = {Biopsy (Bx), annual
mammogram (Am)}.

•
: Probability that the patient will be in state s′ ∈ at time t + 1, given that

she is in state st ∈ at time t, and the action is “annual mammogram.”

For t = 1, 2,…, T, we define , i.e., post-biopsy state is an absorbing state;

 for st ∈ S + 1}, i.e., the patient cannot move to post-biopsy state in the next

decision epoch when annual mammogram is recommended; , i.e., “death”
is an absorbing state.

• : Probability of death during the decision epoch t when the patient is
cancer-free.

• : Probability of death during the decision epoch t when the patient is
diagnosed with breast cancer and has started receiving treatment.

• : Probability of death during the decision epoch t when the patient has
breast cancer but has not started receiving any treatment. This is usually the case

when the patient is unaware of her disease. We use  to estimate the
transition probability of moving to the death state given that the patient's current

risk of cancer is st, i.e., . However,  cannot be observed in

practice, hence, we use  to estimate  as defined in §4.1.

• : Probability of death before the decision epoch t + 1, given that the
patient's current risk score is st at time t, and the action is “annual mammogram.”

(1)

•
 = Probability that the patient will be in state s′ ∈ at time t + 1, given that

she is in state st ∈ at time t, and the action is “biopsy.”

We define  for all t, st ∈  s′ ∈ {S + 1};  for all t and st ∈ {S +

1, S + 2}, , and  for all t.

• : Transition probability matrix at time t when the action taken is “annual

mammogram,” i.e., .
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• : Transition probability matrix at time t when the action taken is “biopsy” i.e.,

.

• at{st): Action taken at time t in state st ∈ {S + 1, S + 2}, where at{st) ∈ {Am, Bx}.
If the action taken is Bx, then the patient quits the process; otherwise, she waits for
one more decision epoch until the next mammogram.

• rt(st, Am): Total expected intermediate reward accrued at time t, when the patient's
state is st, and “annual mammogram” is chosen. Examples of reward include
expected life in years, or expected quality-adjusted life years (QALYs). QALYs
measure both the quality and the quantity of life years by incorporating risk-neutral
utilities of health states in the expected life years (Pliskin et al. 1980), and are
commonly used in medical decision making (Drummond 2005). In our model, we
define reward as QALYs, which are assigned the intermediate reward of one year if
the patient is alive in the current decision epoch, and one-half year if the patient
dies in the current decision-epoch to account for the half-cycle correction
(Sonnenberg and Beck 1993), i.e., to account for the fact that the patient could die
in the first half or the second half of the decision epoch. Thus, the expected life in
that decision epoch is given by

(2)

We define rt(st, Am) = 0 for st ∈ {S + 1, S + 2}.

• rt(st, Bx, −): Total expected discounted post-biopsy reward at time t when the
patient's state is st and the biopsy outcome is negative (benign). In other words,
rt(st, Bx, −) represents the life expectancy of a cancer-free woman.

• rt(st, Bx, +): Total expected discounted post-biopsy reward at time t when the
patient's state is st and the biopsy outcome is positive (malignant).

• qt(− | st): Probability that the outcome of the biopsy is negative (benign) when the
patient was in state st at time t.

• (qt(+ | st): Probability that the outcome of biopsy is positive (malignant) when the
patient was in state st at time t.

• dBx(t): Disutility of biopsy at time t. The disutility of biopsy exists because (i)
patients associate biopsy decision with high chance of breast cancer, resulting in
emotional distress; and (ii) potential surgical complications.

• : Total expected discounted post-biopsy reward when the patient's state is
st at time t. We assume that the patient receives a one-time lump-sum reward when
she undergoes biopsy at time t and quits the process (i.e., she receives zero reward
in the future decision epochs).

(3)
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• rt(st, Bx): Total expected net quality-adjusted post-biopsy life when the patient's
state is st at time t.

(4)

We define rt(st, Bx) = 0 for st ∈ {S + 1, S + 2}.

• λ: Annual discount factor (0 ≤ λ ≤ 1).

• ϑt(st): Maximum total expected quality-adjusted life that the patient can attain
when her state is st at time t.

The optimal solution can be obtained by solving the following set of equations:

(5)

For t = T, we add a boundary condition as follows:

(6)

Note that at decision epoch T (age 100 in our model), patients are not assumed to die but
instead are assigned a terminal reward, representing the conditional life expectancy of a
woman at the end of decision horizon.

• ψt{st, Am): Maximum quality-adjusted expected life when the patient's state is st at
time t and the action is “annual mammogram.”

Figure 1 shows the state-transition diagram of the OBDM. A patient gets a mammogram
every year. Based on her mammographic features and demographic factors, she is assigned a
risk score (probability of cancer), which is estimated by a CADx model (such as the one in
§4.1) or a radiologist. At each decision epoch, the radiologist has two options for each risk
score: immediate biopsy (represented by Bx), or ask the patient to wait until the next annual
mammogram (represented by Am). When the radiologist recommends the patient get a
biopsy, she moves to the post-biopsy state, which is an absorbing state (i.e., the patient never
leaves once she enters it). As a result, the patient receives a one-time lump-sum reward of
rt(st, Bx) that represents the expected quality-adjusted post-biopsy life years if her current
risk score is st at the time of biopsy. If the radiologist recommends the patient wait until the
next decision epoch, then the patient's risk score next year changes according to the state

transition probability matrix . As a result, she receives a reward of rt(st, Am) that
corresponds to her intermediate expected QALYs before the next decision epoch. All
transitions occur randomly once the radiologist makes a decision. We assume that biopsy is
perfect. Medical literature shows that the false-negative rate of biopsy is less than 3% (Lee
et al. 1999,Liberman 2000). Most of the computer-aided diagnosis models in the medical
literature also assume that biopsy is perfect and treat biopsy outcome as a gold standard
(Baker et al. 1995,Jiang et al. 1999).
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We formulate the biopsy decision problem as a finite-horizon MDP for the following two
reasons. First, our rewards and state transition probabilities should depend on patient age to
reflect clinical observations; i.e., as a woman gets older, her probability of death increases,
her expected life reduces, and her natural history of breast cancer might change. Second, our
policies should take age into consideration to answer the fundamental question in our
problem: should the decision to biopsy depend on the patient's age? An alternate modeling
approach would be to formulate this problem as an infinite-horizon MDP. To capture
patient's age in the model, we would need to incorporate age into the state space, which
would make the model numerically intractable and could be solved using approximate
dynamic programming.

We also formulate this biopsy decision problem as a partially observable MDP (POMDP),
where the decisionmaker has only partial information about the patient's true health state
from a mammography observation. Appendix B in the electronic companion provides the
model formulation of our POMDP model, compares it to our MDP model (OBDM), and
describes why an MDP model is more suitable than a POMDP model for the biopsy
decision-making problem.

3. Structural Properties

In this section, we investigate the structural properties of the OBDM with their clinical
relevance. These properties provide insights to the decision-maker (radiologist, referring
physician, and/or patient) on how various optimal decisions are made. We first make some
assumptions that are used throughout this section.

ASSUMPTION 1. (As1) The function rt(st, Am) is non-increasing in st for all t, and in t. This
implies that the patient's one year QALY does not increase with her risk of cancer or age.

ASSUMPTION 2. (As2) The function rt(st, Bx, −) is non-increasing in st for all t, and in t. This
implies that the patient's expected post-biopsy QALYs, when the outcome of biopsy is
benign, do not increase with her risk of cancer or age.

ASSUMPTION 3. (As3) The function rt(st, Bx, +) is non-increasing in st for all t, and in t. This
implies that the patient's expected post-biopsy QALYs, when the outcome of biopsy is
malignant, do not increase with her risk of cancer or age.

ASSUMPTION 4. (As4) The expected post-biopsy QALYs after a benign biopsy are never lower
than that after a malignant biopsy, i.e., rt(st, Bx, −) ≥ rt(st, Bx, +).

ASSUMPTION 5. (As5)  satisfies the following:

for i,j ∈ {S + 1}. It can be viewed as: the older the patient, the more probable that she will
move to high-risk states, including death.

The above condition includes probability of death from cancer as well as other causes.
Although the risk of cancer can decrease with a patient's age, this decrease might be
outweighed by the increase in her probability of death from co-morbidities as she gets older
(Schairer et al. 2004).
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Definition 1 (Barlow and Proschan 1965). A Markov chain is said to be IFR (increasing
failure rate) if its rows are in the increasing stochastic order; i.e.,

is nondecreasing in i for all k = 0,1,…, S + 2.

The IFR definition implies that as the patient's risk of cancer increases, her risk of further
deterioration also increases. This definition is equivalent to the well-known notion of first-
order stochastic dominance.

We first show the monotonicity of ϑt(st) in st and t. Proposition 1 provides a sufficiency
condition under which ϑtt(st) is nonincreasing in st, i.e., the patient's total expected quality-
adjusted life years never increase with her risk score (probability of cancer). The proof of
Proposition 1 as well as the proofs of all other results in this section are presented in
Appendix C in the electronic companion.

PROPOSITION 1. If  is IFR for all t = 1,2,… ,T, then ϑt(s) is nonincreasing in s, for s = 1,…,S,
and t = 0,1,2…, T − 1.

In Proposition 2, we show that ϑt(st) is nonincreasing in t, i.e., the patient's total expected
QALYs never increase with her age. We first present Lemma 1, which is used to prove
Proposition 2.

LEMMA 1. If (As5) holds for t = 1,2,…, T − 1, then for any f(i) that is nonincreasing in i, the
following holds:

PROPOSITION 2. The optimal value function, ϑt(st), is non-increasing in t for all st ∈ § i.e.,

In Theorem 1, we provide sufficiency conditions under which there exists an optimal
control-limit type policy such that it is always optimal to biopsy if the patient's risk exceeds
a risk score threshold, and wait until the next annual mammogram otherwise. We use the
following lemma to prove Theorem 1.

LEMMA 2. Let ℙ = [pt(j | i)] for i,j = 1,2,…, N be an IFR transition probability matrix such that

 for i < k* ≤ N and t = 1,2,…, T − 1. If f(i) is a
nonincreasing function in i, then the following holds:

Theorem 1 shows the existence of an optimal control-limit policy under Conditions (7) and
(8). Inequality (7) implies that as the risk score increases, the percentage reduction in the
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post-biopsy reward is less than the increase in the risk of waiting until the next decision
epoch. Inequality (8) implies that the higher the risk score of the patient, the more likely she
will move to a higher score in the future. Note that this condition is similar to the IFR
condition. Figure 2 shows an example of the optimal policy in which there exists a control-
limit type policy for all decision epochs.

THEOREM 1. If  is IFR, and  and rt(st, Bx) satisfy the following conditions:

(7)

(8)

for all st ∈ {S + 1} and t = 1, 2,…, T − 1, then there exists an optimal control-limit policy
i.e., there exists st* ∈ {S + 1} for t = 0, 1,…, T − 1 such that

DEFINITION 2 (FAN 1967). A function f(x, y) is said to be superadditive if for x1 ≤ x2 and y1 ≤ y2,

and if the reverse inequality holds, then f(x, y) is called subadditive.

Theorem 2 provides conditions under which the optimal value function is superadditive, i.e.,
the reduction in the QALYs of a patient as her current risk of cancer increases, reduces with
her age. The clinical significance of this theorem is that it shows that the patient's expected
life reduction with increase in her risk of cancer reduces with her age. We use Lemma 3 to
prove Theorem 2. Inequality (10) in the following lemma implies that the expected benefit
of biopsy in any state over waiting and then biopsy in the same state is nondecreasing with
the patient's age. This means that as the patient gets older, her benefit of biopsy decreases.
The intuitive explanation of Condition 4 in Theorem 2 is that the difference in the
probability of moving to a higher risk score between two consecutive years decreases with
the risk score.

LEMMA 3. Let  is IFR for all t, , and  and rt(st, Bx)
satisfy the following:

(9)

and

(10)

Chhatwal et al. Page 10

Oper Res. Author manuscript; available in PMC 2011 March 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



then ϑt(s) − ϑt+1(s) ≥ rt(s, Bx) − rt+1(s, Bx) for all t, and s ∈ {S + 1}.

THEOREM 2. If the following conditions are satisfied:

1. The conditions of Theorem 1 hold such that there exists a control-limit type optimal
policy for all t,

2. rt(s, Am) is superadditive in s and t,

3. rt(s, Bx) is superadditive in s and t,

4.
 is subadditive in s and t,

5. Condition (10) holds then φt(s) is superadditive in s and t, i.e.,

(11)

for all s ∈ {S + 1} and t ∈ 0,1,…, T — 1.

Theorem 3 provides a set of sufficiency conditions that ensure that the optimal control limit

does not decrease with time. We first present Lemma 4 that provides an upper bound, 

on vt(0, Am), where  is defined as the total expected life of a patient if her risk of cancer
remains zero for the rest of her life and she never undergoes a biopsy. Inequality (12)
implies that the expected post-biopsy reward in any state is greater than the upper bound on
the total reward obtained by waiting for one more year and using the same risk score as the
biopsy threshold. The clinical explanation of this condition is that the benefit of delaying
biopsy decreases with time due to limited potential benefits obtained by biopsying. Figure 2
shows an example of an optimal control-limit policy in which the control limit does not
decrease with time.

LEMMA 4. Let  satisfies IFR assumption,

 and 

then  for all t = 1,2,…, T – 1.

THEOREM 3. A patient with a transition probability matrix,  satisfying IFR assumption, and

having an optimal control-limit threshold for all ages, , has a non-decreasing  in t if

(12)

for all s ∈ 

COROLLARY 1. If the patient's risk of breast cancer is non-decreasing in time (this is the case

when the cancerous tumor is not detected or treated), i.e.,  for all s′ < st, then

the optimal control-limit threshold  is nondecreasing in t if

(13)

for all s ∈ 
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DEFINITION 3 (ALAGOZ ET AL. 2004). Let ℙ1 = [p1(j)|i)], i, j = 1,2,…, n and ℙ2 = [p2(j|i)], i, k = 1, 2,
…, n be any two transition probability matrices. We say that ℙ1 dominates ℙ2 i.e., ℙ1 ≥ ℙ2,
if Σj≤k p1(j|i) ≥ Σj≤k p2(j|i), for al i, k = 1, 2, … n.

The clinical significance of Definition 3 is that if two patients 1 and 2 satisfy transition
probability matrices ℙ1 and ℙ2, respectively, as defined above, then patient 2 has a more
aggressive growth of cancer, i.e., her risk of cancer increases faster than that of 1.

Proposition 3 shows that a patient having more aggressive growth of cancer has a lower total
expected QALYs and is more likely to get biopsy, compared to the patient having less
aggressive cancer.

PROPOSITION 3. Let 1 and 2 be two patients for whom the optimal policy is of control-limit

type with control limits  and  at decision epoch t, respectively, and transition probability

matrices associated with “annual mammogram”  and , respectively. If 1 and 2 have

the same reward functions, rt(s, Am) and rt(s, Bx), and  for all t = 1,2, …, T, then

(14)

(15)

Proposition 4 shows that the decision to biopsy will be preferred more often if a biopsy
technique having lower disutility (but equally effective) becomes available. Figures 4 and 5
provide examples for Proposition 4. That is, as the disutility of biopsy procedure decreases,
the control limits become smaller.

PROPOSITION 4. Let 1 and 2 be the two biopsy procedures with disutilities of biopsy dB1 and

dB2, respectively, such that dB1 ≤ dB2. If a patient satisfying the control-limit theorem has

control limits  and  for 1 and 2, respectively, then  for all t = 1,2,…, T.

We next define the maximum and average violations of the assumptions and conditions
described above. Maximum violation of (As5):

Maximum violation of (As5):

for i, j ∈ and t = 1, 2, … T − 1.

Maximum violation of the IFR assumption:

for i, j ∈ and t = 1, 2, … T.

Maximum violation of Condition (7):
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for s = 0, 1, 2, … S − 1, t = 1, 2, … T − 1.

Maximum violation of Condition (8):

for s = 0, 1, 2, … S S + 2, t = 1, 2, … T − 1.

Maximum violation of Condition (10):

for s = 0, 1, 2, … S S + 2, t = 1, 2, … T − 1.

Maximum violation of supperaddivity of rt(s, Am):

for s = 0, 1, 2, … S S + 2, t = 1, 2, … T − 1.

Maximum violation of supperaddivity of rt(s, Bx):

for s = 0, 1, 2, … S S + 2, t = 1, 2, … T − 1.

Maximum violation of supperaddivity of :

for i, j = 0, 1, 2, … S, t = 1, 2, … T − 1.

Maximum violation of Condition (12):

for all i ∈ and t = 1, 2, … T − 1.
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The average violations are defined as follows:

Average violation of (As5):

Similarly, we define .

4. Computational Experiments

The clinical data used for computational experiments came from 65,892 mammographic
findings from 18,270 patients at Medical College of Wisconsin (MCW), Milwaukee,
between April 5, 1999 and February 9, 2004. Reference standard outcomes for these data
were obtained from breast biopsy as well as cancer registry match data, which provided a
benign or malignant class labels for all findings.

In the rest of this section, we first summarize OBDM's parameter estimation including
states, state transition probabilities, and rewards. Details of parameter estimation are
presented in Appendix A in the electronic companion. Second, we estimate the violations of
the assumptions and the conditions described in §3 using the available clinical data. Third,
we perform extensive sensitivity analyses to check the robustness of our model. Last, we
evaluate the performance of the OBDM's policies on mammography exams and compare it
to radiologists' performance in practice.

4.1. Parameter Estimation

The states of the OBDM—defined as the risk score (probability of breast cancer)—are
estimated using a mammography Bayesian network (MBN). Our MBN (Figure EC.2)
estimates the current probability of breast cancer using patient demographic factors and
mammographic features recorded in a National Mammography Database (NMD) format.
We rounded the probabilities to map to the risk score of our OBDM. For example, the
probability of cancer equal to 0.0382 will correspond to the risk score of 4%. Our MBN also
incorporates features such as mass density and mass size (which may have changed from the
previous mammogram) that incorporate information from previous mammograms to
estimate the risk of cancer. The state transition probabilities are estimated by tracking
changes in the risk score of consecutive mammographic examinations of each patient with
time from the MCW data.

The expected intermediate reward (rt(st, Am)), accrued in the current time period when the
patient's state is st and annual mammogram action is taken, is assumed to be one year if the
patient is alive in that decision-epoch, and one-half year otherwise. We assume quality-of-
life (QOL) factor equals to 1 for all states when the action is Am, i.e., we use expected life as
the reward function because we could not find appropriate studies in the literature that
estimate QOL factor associated with the risk of cancer. The age-dependent lump-sum post-

biopsy rewards of breast cancer associated with each risk score are estimated using age-
specific probabilities of death from breast cancer (Jemal et al. 2007), and no-cancer from the
2003 U.S. life tables reported by the NCHS of CDC (Arias 2006). We differentiate between

the probability of death from cancer within one year if the patient is not treated, ,

versus treated, . We use probability of death from untreated cancer to estimate
intermediate expected rewards (as in this case a cancer would not be diagnosed, hence no
treatment would be given to the patient). We use a parametric model (Haybittle 1998) to
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estimate . We estimate  from the Surveillance, Epidemiology, and End
Results (SEER) program of the National Cancer Institute (Jemal et al. 2007).

4.2. Numerical Results

To obtain the optimal policies of the OBDM, we first assign values to OBDM's parameters
from literature when available, and we assume otherwise. Next, we perform sensitivity
analysis in §4.3 to check the model's robustness. The following values are assumed as base
case values:

• Disutility of biopsy at age 40 (dBx@40) is two weeks (Velanovich 1995) and
increases linearly with age. The disutility is assumed to increase because of
increasing co-morbidities and biopsy complications associated with older ages.

• Disutility of biopsy factor at age 100 (dBxFac-tor@100), defined as the
multiplication factor for the disutility of biopsy at age 100. For example,
dBxFactor@100 of 4 implies that the disutility of biopsy at age 100, dBx@100 =
4dBx@40.

• The ratio of invasive cancer to all cancers (invasive and in-situ) = 0.75 (Jemal et al.
2007).

• “Treatment effectiveness factor,” defined as the ratio of the probability of death
from cancer when the patient is not treated to the probability of death when the

patient is treated  (Haybittle 1998).

Figure 2 shows the optimal probability thresholds for biopsy decisions in different age
groups when λ = 1. The optimal policy can be interpreted as follows: the radiologist should
send a patient between the ages 40 and 42 for biopsy if her probability of cancer is 1% or
higher. This probability threshold rises to 2% for a patient between the ages of 43 and 63,
3% for a patient between the ages of 64 and 82, and 7% for a 90-year-old patient. Note that
the optimal policy is of control-limit type, and the optimal probability threshold for biopsy is
nondecreasing with age. We prove the optimality of such a structured policy in Theorems 1
and 3. The optimal policy implies that as a patient gets older, she is less likely to be
recommended for biopsy if QALYs are maximized. This could be because the aggressive
biopsy in older ages might not significantly increase the total expected QALYs. For
example, aggressive diagnosis of low grade or pre-invasive lesions in older women (women
65 years or older) might represent overdiagnosis that does not contribute to reduced
morbidity or mortality because of limited life expectancy (Ernster et al. 1996,2002).

We also compare the optimal policies of two women of different age groups having identical
disutility of biopsy. We observe that the higher the disutility of biopsy, the higher the
optimal biopsy threshold. Also, the optimal biopsy threshold of an 80-year-old patient is
never lower than that of a 50-year-old woman for the same disutility of biopsy (Figure 3).
This trend again suggests age-dependent biopsy thresholds.

Next, we estimate the violations defined in §3 using clinical data available from MCW and
other sources. Table 2 shows the maximum and average violations. Note that all violations
are very small. Although the maximum violation of Condition (10) (denoted by ∊5) and
Condition (12) (denoted by ∊9) are relatively high, their small average violations suggest
that the maximum violations could have occurred at the boundary conditions.

4.3. Sensitivity Analysis

We check the robustness of the model by performing sensitivity analysis on the variables
defined in §4.2. First, we change the disutility of biopsy at age 40. The higher the disutility
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of biopsy, the less likely that the optimal action would be biopsy (Figure 4), which is proved
by Proposition 4. If the disutility of biopsy is 0 for all ages, biopsy is the optimal decision
for all states, which is expected because we do not consider any costs in this model. Note
that the dotted line is not at 0 because of the rounding of the states (risk scores) in our
model. At risk score 0, the expected life of choosing a biopsy or annual mammogram are
equal when the disutility of biopsy is zero. We choose the optimal decision rule as annual
mammogram when two decision rules yield the same rewards.

Next, we vary the disutility of biopsy at age 100 (Figure 5). As proved by Proposition 4, the
higher the disutility of biopsy, the less likely that the optimal action would be biopsy. Note
that even when the disutility of biopsy stays constant (multiplication factor is 1) with age or
decreases (multiplication factor is 0.5) with age, the control limit is still increasing, which
supports the clinical intuition that potential savings with biopsy are less for older women.
Similarly, as the fraction of invasive cancer increases, the patient is more likely to opt for
biopsy (Figure 6). This is because the life expectancy of a patient with invasive cancer is
much lower than that of a patient with in-situ cancer. Next, as the treatment effectiveness
factor increases, the total benefit of biopsy increases and as a result, the probability-
threshold to biopsy decreases (Figure 7). Last, the optimal policy was insensitive to the
change in discount rate values; particularly, no trend in the optimal policy was observed
with the change in the discount rates to 0.97 and 0.95.

4.4. Comparison with Radiologists

We compare the decisions made by radiologists in real life to the optimal policies given by
the OBDM using MCW data. We assume BI-RADS 1, 2, and 3 as negative, and BI-RADS
0, 4, and 5 as positive for a direct comparison between our model and radiologists. We use
different data sets for estimating OBDM's parameters and testing OBDM's performance, and
perform two-fold cross-validation (Stone 1974). Specifically, we divide our data set in two
folds. We first use fold 1 to estimate the parameters of the OBDM, including the risk scores
and transition probabilities, and compute an optimal policy. Then we assign the outcomes of
the computed policy to the data in fold 2. Similarly, we use fold 2 to estimate the parameters
of the OBDM, and evaluate the policies on fold 1. We used the Wisconsin Cancer Reporting
System (cancer registry) to match findings recorded in our database to the actual outcomes.
All newly diagnosed cancer cases are reported to the Wisconsin Cancer Reporting System.
This registry collaborates with 17 other state agencies to collect a range of data including
demographic information, tumor characteristics, treatment, and mortality. If a radiologist
missed a cancer on the mammogram (assigned BI-RADS 1, 2, or 3), which was found later
during the registry match, we label that case as “false negative.” On the other hand, if a
radiologist recommended a lesion for biopsy (assigned BI-RADS 0, 4, or 5) that turned out
to be cancerous, we labeled that finding as “true positive.”

Because the subjective disutilities of biopsies of individual patients in the MCW database
are not available, we assume an equal disutility of biopsy for the whole population in the
study and perform sensitivity analysis. We run nine scenarios by varying the subjective
disutility of biopsy and compare the performance of the OBDM's policies to the radiologists'
actions (Table 3). The number of false-positive cases of the OBDM is always lower than
that of the radiologists. For six out of nine biopsy-disutility values, the OBDM's true-
positive cases are comparable or greater than that of the radiologists.

5. Conclusions and Future Work

Mammography interpretation varies significantly with radiologists' experience and skills. No
methods exist that enable radiologists to determine an optimal threshold over which to
recommend biopsy for a given patient. Medical literature shows that 55%–85% of the breast
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biopsies turn out as benign findings, resulting in over-treatment, unnecessary anxiety, and
expenditures. In this paper, we address the decision problem faced by radiologists: when
should a woman be sent for biopsy based on her mam-mographic features and demographic
factors? To the best of our knowledge, this is the first quantitative study that addresses the
problem of optimal breast biopsy decision-making. We formulate the optimal biopsy
decision model as a finite-horizon discrete-time MDP, and we investigate the structural
properties of the model to gain insights on how decision are made.

Our results provide patient-specific optimal policies for breast biopsy. The optimal policy is
age-dependent, with older women having a higher biopsy threshold than younger women.
This might appear counterintuitive; however, note that breast cancer tends to be less
aggressive in older women, and an aggressive biopsy policy might not significantly increase
the total expected QALYs for older women. In addition, false-positive interpretation of
mam-mography leading to unnecessary invasive procedures can result in complications in
older patients with comorbidities. It is important to note that in the current clinical practice,
radiologists using BI-RADS assessment do not take age into consideration while making
biopsy decisions. For younger patients, the optimal biopsy thresholds estimated by the
OBDM are close to the current clinical practice of 2% threshold as recommended by the
American College of Radiology. However, for older patients the optimal biopsy thresholds
given by the OBDM are higher than those recommended by the current clinical practice.

The performance of our OBDM's optimal policies is better than the decisions made by
radiologists on real-life mammography data. We believe that the suboptimal performance
(higher false-positives and biopsies) of radiologists is probably attributable to their inability
to accurately estimate the risk of breast cancer without any CADx model and BI-RADS
guidelines not taking age into account. This is further exacerbated by the high penalty for
missing a breast cancer, causing radiologists to unwittingly lower their threshold below what
is recommended. While it is difficult to accurately calculate risk estimates to biopsy
recommendations, it is equally difficult to tailor these recommendations to individual
patients based on unique features like age. Our work addresses some of these challenges
faced by radiologists.

Our study can also be used to solve other similar medical decision-making problems. For
example, the framework of the OBDM can be applied to find the optimal timing of biopsy in
prostate cancer diagnosis. In addition, the structural properties of our OBDM can be used to
gain insights on the structure of the optimal policies (such as the existence of control-limit
type optimal policies or trends in the control limits with patient's demographic factors) of
similar medical problems.

Our model supports the idea of personalized care by providing patient-specific policies for
breast biopsy in contrast to the current practice of overarching, non-tailored guidelines. In
addition, the OBDM facilitates shared decision-making by providing optimal patient-
specific biopsy policies as a function of the probability of cancer. Patients have a better
understanding of their health condition from probabilities, which are intuitive to understand,
as opposed to six discrete BI-RADS codes.

Next, we discuss our study's results with a recent controversy on optimal policy for
mammography screening (Nelson et al. 2009, Partridge and Winer 2009, Murphy 2010).
The U.S. Preventive Services Task Force (USPSTF) issued a new guideline suggesting
starting routine mammog-raphy screening for low-risk women at age 50 as opposed to 40,
whereas several influential medical organizations such as the American Cancer Society,
American Medical Association, and American College of Radiology suggested continuing
with the existing policy of annual screening starting from age 40. Our recommendations do

Chhatwal et al. Page 17

Oper Res. Author manuscript; available in PMC 2011 March 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



not contradict or support any screening guidelines. The USPSTF recommends less
aggressive management of mammography screening in younger women, whereas our study
recommends aggressive management of biopsy decisions in the same group. Our study does
not imply that we will biopsy more young women than older ones, because the prevalence of
breast cancer is higher in older women.

Our MDP model formulation assumes that we have complete information of our states.
Alternatively, we could relax this assumption and formulate our problem using a POMDP
model. However, there are several limitations with this approach in the context of biopsy
decision-making problem. First, we cannot reliably estimate the observation probabilities.
Second, the POMDP approach would use cancer incidence rates and the Bayesian update
formula for estimating transitions between belief states, whereas an MDP approach could
use clinical data and MBN for estimating these transitions. In conventional POMDPs,
observation probabilities depend on current (or previous) core state and the action, not on
the previous belief state. Therefore, such information (i.e., transition probability from a
belief point to another one) cannot be incorporated into the POMDP framework directly.

One of the limitations of our study is that we assume that the decision ends if a biopsy is
performed because the decision process for a patient who had already undergone biopsy
might be different compared to women who have never undergone a biopsy. Patients who
have a history of biopsy will have a higher risk profile and might experience scarring due to
a biopsy, making future interpretation of mammograms more difficult. Such differences
require the specific estimation of cancer risk, transition probabilities, and post-biopsy
QALYs. Because we do not have any available data for this subset of women, we decided to
end the decision process for women at the time of biopsy, which implies that our decision
model applies only to women who never had a biopsy. Our modeling approach does not
imply that a woman may not have multiple biopsies; it simply does not consider two or more
biopsies explicitly. We plan this modification for future work. Note that incorporating the
possibility of multiple biopsies is straightforward in our modeling framework; we only need
to include a transition from post-biopsy benign state to the risk scores. Such a modeling
change would impact most of our structural results; however, we do not expect our
numerical results to change significantly.

We assume that the disutilities of both benign and malignant biopsy are equal. However, in
practice, the disutility of biopsy might depend on the outcome of the biopsy. In one scenario,
a woman could have a lower disutility of benign biopsy than that of malignant biopsy
because she is relieved from the thought of having a cancer. On the other hand, a woman
might have a higher disutility of benign biopsy than that of malignant biopsy if she thinks
she had to go through unnecessary anxiety considering the possibility of a cancer. Therefore,
we do not differentiate between the disutility of positive and negative biopsies but instead
perform sensitivity analysis on a combined disutility of biopsy.

In our OBDM, we only use mammography features to estimate the risk of breast cancer.
However, our model can easily be updated to incorporate additional imaging features such
as ultrasound and MRI. This would be achieved by updating the risk of breast cancer based
on information from these other imaging modalities. We assume that our probability
estimates (risk of breast cancer) from our MBN are perfect. While we have a high
performance of MBN as measured by an ROC curve (AUC = 0.961), we acknowledge that
this is a limitation of our study.

There are several future research directions of this study. In our OBDM, we assume that
decisions are made annually, and there are only two possible actions: biopsy, or wait until
the next annual mammogram. In the future, we will add another action: short-interval
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imaging follow-up, which radiologists recommend for patients if their risk of cancer is
neither very high/imminent nor negligible. Adding follow-up as another action will change
the structure of the OBDM and make parameter estimation from the clinical data more
challenging; hence, it warrants the building of a different model. We also plan to extend the
OBDM to explicitly incorporate multiple biopsies, where the patient's state will also include
information of personal history of biopsy. In our present model, we do not consider the cost
of biopsy or mammograms in the reward function and leave it as a future work. Another
possible future direction is to include different biopsy procedures (core-needle, fine
aspiration, etc.) in the action space, but a limited availability of relevant clinical data makes
it challenging.

6. Electronic Companion

An electronic companion to this paper is available as part of the online version that can be
found at http://or.journal.informs.org/.
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Figure 1.

State transition diagram of the OBDM.
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Figure 2.

Optimal age-dependent policy to perform biopsy.
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Figure 3.

Optimal policy to perform biopsy for 50-and 80-year-old women based on their subjective
disutility of biopsy.
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Figure 4.

Optimal probability threshold for biopsy changing with biopsy disutility at age 40.
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Figure 5.

Optimal probability threshold for biopsy changing with the multiplication factor of biopsy
disutility at age 100.
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Figure 6.

Optimal probability threshold for biopsy changing with the ratio of invasive/in-situ cancer.
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Figure 7.

Optimal probability threshold for biopsy changing with the ratio of treatment effectiveness
factor.
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Table 1

BI-RADS final assessment codes with recommended actions.

Category Definition Recommended action

0 Need additional imaging evaluation and/or prior mammograms for comparison Additional imaging evaluation

1 Negative finding Wait (routine yearly screening)

2 Benign finding Wait (routine yearly screening)

3 Probably benign finding (less than a 2% risk of malignancy) Short-term follow-up (6 months)

4 Suspicious abnormality (risk of malignancy is between 2% and 95%) Biopsy

5 Highly suggestive of malignancy (95% risk of malignancy) Biopsy
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Table 2

Error estimation.

Violation Maximum Average

ε 1 0.0391 0.0001

ε 2 0.0000 0.0000

ε 3 0.0031 0.0015

ε 4 0.0000 0.0000

ε 5 0.1629 0.0914

ε 6 0.0851 0.0092

ε 7 0.0363 0.0001

ε 8 0.0283 0.0000

ε 9 0.1677 0.0055
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