
Optimal Broadcast and Summation in the LogP Model

Richard M. Karp: Abhijit Sahay, Eunice E. Santos, Klaus Erik Schauser

Computer Science Division,

Universi~ of Cal~ornia, Berkeley

Abstract

In many distributed-memory parallel computers the only built-in

communication primitive is point-to-point message transmission,

and more powerful operations such as broa&ast and synchronization

must be realized using this primitive. Whhin the LogP model

of parallel computation we present algorithms that yield optimal

communication schedules for several broadcast and synchronization

operations. Most of our algorithms arc the absolutely best possible

in that not even the constant factors can be improved upon. For

one particular broadcast problem, called continuous broadcast, the

optimality of our algorithm is not yet completely proven, although

proofs have been achieved for a certain range of pararnetem. We

also devise an optimal algorithm for summin g or, more generally,

applying a non~ommumtive associative binary operator to a set of

operands.

1 Introduction

Most models of parallel computation reflect the communication

bottlenecks of teal parallel machines inadequately. The PRAM

[11], for example, allows interprocessorcommunication at zero cost.

Researchers have proposed several variations on the PR4M that

address particular aspects of interpmcessor communication such

as latency, memory contention and synchronization [16, 15, 17,

1, 2], but no single model properly accounts for all fiese aspects.

Valiant’s BSP model [18] is more realistic, but imposes a rigid

prog ramming style in which a parallel algorithm is expressed as a

series of supersteps, where each superstep ten-ninates with a barrier

synchronization involving all the processors. ‘Iltere have also been

a number of studies of parallel communication on spedc networks

such as the hypcrcubc or mesh.

Recently, CuHer et al [9] proposed a general puqose model,

the LogP rrrodel for disttibuted-memory machines. In this model,

processors work asynchronously and communicate by point-to-

point messages that travel through a network. The mo&l describes

a p~el computer by four parameters:

P, the number of processor-memory pairs;

*Also affiliated with International Computer science Institute, Berkeley.

Permission to copy without fee all or part of ttis material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and the

title of the publication and its date appear, and notioe is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-SPAA’93-6/93 iVelen,Germany.

Q 1993 ACM 0-89791 -599-2 /93/0006 /0142 . ..$1 .50

L. the Zatency, or maximum &lay, associated with &livering a

message,

g. the gap, a lower bound on the time between the transmission

of successive messages, or the reception of successive

messages, at the same pmcessoq

o. the overhead, representing the length of time for which a

processor is busy during the transmission or reception of

a message.

The parameters L, o and g are measured in units of processor

cycles. The model also specifies that the network has a finite

capacity, such that at most (L /gl messages can be irs transit from

any processor or to any processor at any time. All algorithms

presented in this paper satisfy the capacity constraint of the LogP

model, and we do not mention it henceforth. Although the model is

asynchronous, in estimating the running time of the algorithms, we

assume that that all processors wotJK synchmrsously and that each

message incurs the full latency of L.

Since point-to-point message transmission is the only primitive

communication operation previ&d on some distributed-memory

machines, more powerful broadcast and synchronization primitives

must be realized in ten-m of this single operation. We present

optimal implementations of several variants of broadcast and syn-

chronization within the LogP model. We also present an optimal

algorithm fors -g n operands on P pmcessom; this algorithm

is derived by viewing the communication pattern of an optimal

summation algorithm as the time reversal of an optimal broadcast

pattern.

SpecilicaUy, we study six fundamental communication problems

in the framework of the LogP modeL

* The single-item broadcast problem in which a data item

residing in a source processor is to reach all P processors in

minimum time.

s The k.ifem broadca~tprobk?m in which L data items rtxiding

in a source processor am to reach all P processors in

minimum time.

e The continuous broadcast problem, in which a source pro-

cessor generates a new item every g units of time, and all of

these items rue required to reach all Ppmcessora. Associated

with any schedule for this problem is its delay, defined as the

maximum time that can elapse between the creation of a item

and its arrival at the last processor to teceive it. The problem

is to construct a schedule with minimum delay.

142

● The all-to-all broadcast problem, in which each prooessor

is the source of a data item, and all P items arc required to

reach all processors in minimum time.

● The combining-broadcast problem in which each processor

has a value, and all prcxessorsmust learn in minimum time a

single reduced value which is computed using an associative

and commutative operation on the list of P values.

● The summing problem, in which n numbers are to be added

on P processors in minimum time, assuming that the initial

distribution of the numbers among the processor/memory

pairs may be stipulated by the algorithm. (Here, “addition”

means the application of any binary associative operator.)

Given the considerable importance of broadcasting problems in

pamllel and distributed computation, several variations of it have

been well studied in the literaturc~, 12]. Much of this wotk has

focused on the design of efficient algorithms for broadcasting on

speci.tic networks such as hypercubes [13, 14]. For fully comected

systems (such as those modeled by L.ogP) broadcast problems

have been studied in several communication models, but without

latency. Cockayne and Thomason [8] and Farley [10] gave optimal

algorithms for a model where each processor can either send or

receive a message in one time step. Alon, Barak and Manber [3]

studied reliable broadcast in a model that allows simultaneous send

and receive.

Bss-Noy and Kipnis [5] recently introduced the postal model

which incorporates a latency parasneter in addition to stipulating that

at most one messagebc sent or received by aprocessorper time step.

This turns out to be a specialcase of theLogPmodel(with g = 1 and

o = O) and is indeed, quite suitable for studying “communication-

ordy” problems. Note that if message events are the only events of

interest, the overhead charged in .LogP for sends and receives can

be incorporated into the latency parameter, elit-n,hating o. We can

then normalize so that g = 1, yielding the postal model. For this

mode~ Bar-Noy and Kipnis have given an optimal algorithm for the

single-item broadcast problem as well as a sub-optimal algorithm

for the multiple-item broadcast problem [5, 4].

The remainder of the paper is organized as follows. Section 2

defines the single-item broadcast problem and develops an opdrnal

algorithm for it. It rdso provi&s an illustration of the roles of

the various parameters of the LogP model. Section 3 focuses

on the much harder problems of k-item broadcast and continuous

broadcast, which arc analyzed in the postal model. For continuous

broadcast, we derive a lower bound on the delay of any schedule.

We &tie block-cyclic schedules which admit of a succinct repre-

sentation and give a general construction of a block-cyclic schedule

which is conjectured to satisfy the lower bound for large enough

P whenever L # 2. Thus far the conjecture has been proven for

L < 10 and for infinitely many but not all P. We also prove

that when L = 2 the lower bound cannot in general be achieved,

but we give a constmction that comes within one time step of the

bound, and thus is optimal. For k-item broadcast, we characterize

the structure of optimal schedules and derive lower bounds on their

completion time. We also derive lower bounds on the completion

time of single-sending schedules, ist which the source processor

sends each item only once. We present Q drigle.mmding whedule

that is within L – 1 steps of the single-sending lower bound (and

hence, within 2L – 1 steps of the general lower bound.) We also

show that if the communication model is modified to provide each

processor with an input btier of size 2, then the single-sending

lower bound can be achieved. Section 4 discusses the all-to-all

broadcast and the combining-broadcast problem and presents their

optimal solutions. Finally, Section 5 solves the summin g problem.

2 The Single-Item Broadcast Prob-

lem

The single-item broadcast problem is that of finding a schedule of

communication among P processors (numbered 1 F’) so that

a datum initially available at processor 1 is made available to all P

processors its the shortest possible time.

Definition 2.1 LetA be an algorithm for single-item broadcast.

The delay of processor i in A, deno~ed t~ (i), is defsnedas tie time

at which the chum is$rstavaikrble atprocessor I in A. The running

time of A, denoted t A, is

The complex% of single-item broadcast in theLogP model isdej’ined

as

B(P; L.o. g)=m$fA

A is optimal for single-item broadcast ift~ = B(P; L, o, y).

Definition 2.2 Given t ~ O, the number of time steps available, let

P(f; L.o. g) =max{? : B(t; L,o, g) < t}

denote the maximum number of processors that can be reached by

a broadcast algorithm in t steps.

When there is no danger of confusion, we will omit explicit

mention of L, oandg arsdwrite B(P) irssteadof B(P; L. o.g) and

P(t) instead of P{ t; L. o, g). Note that for any broadcast algorithm

A, td(l)=~

Our algorithm for single-item broadcast generalizes that of [5]

for the postal model. It is based on the simple and intuitive idea

that all infotrned processors should send the datum to uninformed

processors as early and as fie.quently as possible.

Since no processor need receive more than one message in an

optimal algorithm, the communication pattern of interest is a We.

A broadcast algorithm A induces a broadcast tree of processors,

TA. TA is a rooted, ordered tree with a node for each processor

that participates in the broadcast. The root of TA is processor 1

(the source of the broadcast) and if processor p sends messages to

processors PO... . . pk (in that order) in A, then ist T~ node p has

lb. PA.as its (ordered) children. If, in addition, we label nodes

by the delay of the corrcspondingpmcessors, the model implies that

a p~nt’s label is L + 20 sm~er ~an its oldest c~d’s) w~e tie

labels of successive siblings differ by at least g.

DefMtion 2.3 The universal optimal broadcast tree, denoted K,

is defined to be the infinite labeled ordered tree in which the

root has label O and a node with label t has children Lrbeled

t+ig+L+20, i~0.

Deibition 2.4 LetB(P) be the rooted subtree of.6 consisting of

the P nodes with smallest labels (ties being broken arbitrarily.)

Theorem 2.1 6(P) is optimal for single-item broadcast.

143

Po 9 t 9 1 9 !

o l’. I o .. 1 0 I . . . i ~ ---- L-.. ...‘.
.,‘. L. -----Q

‘. ‘.. ~
.. ..

“’~,.L
... ‘.’.-

‘. “%-.-J.‘.
‘.
‘. ---
‘.

P5
0 I 9 I

0 I-. + I o ‘----- L
. . . “-----

P6 .-=.4. “-

P7 P6 P4 P7 w

o

Fimme 1: ORtiraal broadcast tree for P = 8. L = 6. LJ= 4.0 = 2 (left) and tbe activity of each processor overtime (right). The mrmbershown for each node

is the time at which it has received the data aad can begin sending it on.

As an illustration, the optimal broadcast tree for 8 processors for

L=6. q=4. ando=2, isgivenin Figure 1.

The universal tree can also be used to detetrnine the maximum

number of processors that can be reached by a single-item broadcast

in t steps. This quantity, P(t), can be be computed using a

generalized Fibonacci recurnmce.

Definition 2.5 L.JZL >0 be a fixed integer. Dejine the sequence

{f,} by:

I. f, = lfor O~ i< L.

~. f, = fI–I + f,-L otherwise.

Fact 2.1 For each t. 1 + ZIE~f, = jt+~.

The following can be easily proved. (See [5] for a proof and for

bounds on it.)

Theorem 2.2 Fort ~Oand L >0, P(fi L.01) = f,

a The ~-item Broadcast Problem

In this section, we consider the k-item broadcast problem in which

k > 1 data items initially residing at a source processor arc to be

broadcast to all of the other F’ – 1 processors in minimum time.

We will study this problem in the postal model. The algorithm of

Bm-Noy and Kipnis [6] for k-item broadcast is sub-optimal except

for the case L = 1 [4]. Its nrnningtime of2B(F’)+k+O(L)is

considerably lager than the lower bound derived below.

Our lower bound will be given in tetrns of the {-f, } sequence

defined in Section 2. Let n be the index such that ~n <

P – 1 ~ ~m+l, so that by Theorem 2.2 B(P – 1) = n + 1.

Letk* = [~:=o.ft/(P – l)j.

Theorem 3.1 If g = 1 and o = O any atgorzrlun for broactcasrtng

k itemsfiom a single source requiresat least B(P – 1)+ L + (k –

1) – k“ steps.

Proofi Since P – 1 messages must be received per item and at

most rnin(fh, P – 1)messages can be received at time step L + L-,

the total number of items that can be broadcast in time L + t is no

mote than [~ J=ornin(fj, P-l)/ (P-l)j =k*+f–rr.13

Theorem 3.2 van algorithm broadcasts k ~ k“ items in time t+ L

with t = B(P — 1) + (k — 1) — k*, then itnrust have the source

send distinct items in the$rst (k – k“) steps.

Proofi If not, there are at least ~-”+ 1 items that have to be broadcast

bythesonrce inthen+l time steps /i-li*=t-n.....f.Buta

message sent by the source at time t — i can propagate to at most -f,

processom by time t + L. ❑

Thus, an algorithm that meets the lowerbound must consist of two

phases: a continuousphase during which the source sends only one

copy of the first k – k* items (each of which is broadcast optimally

among P – 1 processors by the recipient of the source’s copy) and

an endgame lasting B (P — 1) steps during which the last K” items

are broadcast by having the soutce send multiple copies of each.

3.1 Continuous Broadcast

We define a variation of the the multiple-item broadcast problem

called continuous broadcast. Consider a situation in which items

are continuously generated at a soruce processor at intervals of g

and each item is to be communicated to each of the other P – 1

processors. Given any algorithm for this problem, define the deZay

of item z to be the difference between the time it is generated and

the earliest time when it has been received by every processor. Our

goal is to minimize the maxinmm delay of an item. The continuous

broadcast problem is of interest in itself, and its analysis sheds light

on the continuous phase of the k-item broadeast problem.

III this scenario, it is clear that the source cannot afford to send

multiple copies of a message and hence a lower bound on the delay

of an item is L + B (P – 1). This lower bound can only be achieved

if for each z, processor P,, the recipient of item z tim the source,

initiates an optimal (P - 1)-way broadcast at time L + Z. Such a

solution to the continuous broadcast problem implies a solution to

the l--item broadcast problem in time L + B (P – 1) + k – 1. Since

it can be shown that k ● ~ L, this comes within I steps of the lower

bound for k-item broadcast.

We tnm now to the problem of constructing a continuous

broadcast schedule with delay L + B (P – 1). The difficdtY of

the problem lies in ensuring that the staggered broadcasts do not

interfere with one another by requiring some processor to send or

receive multiple items in a time step. As a simple example of a

pitfall to be avoided, suppose the root of the optimal (P – 1)-way

broadcasttrce has T children. (In this section, we shall only consider

values of P – 1 for which the tree is unique, i.e. those for which

P – 1 = P(t) for some time t.)Then, for any 2, the processors

P,+l. . . ., P,+,-I must each be distinct fmm P, since P, is required

to send item i for T-consecutive steps starting at L + z and hence

cannot be used as a sender in the broadcast of the next r — 1 items.

144

More generally, let TF-I denote the tree for optimrd single-item

broadcast smong [P – 1) processors and let each node of the tree be

labeled with the delay of the corresponding processor as in Section

2. A node with delay d in me t denotes a tvception of value I at

time ~ + d and will be said to be a node with rime d + Z. Given a

copy of TF_I for each data item i, our task is to assign processors

to nodes of the trees satisfying:

Correctness: No processor is assigned to two nodes of the same

ttee.

Non-interference in receives: No processor is assigned to two

nodes with the sametime.

Non-interference in sends: Ifaprocessoris assigned to aninternal

node with r > 1children and time t, it is not assigned to any

intemslnode withtime t+ltl)r -l).

It is obvious that any processor assignment that satisfies these

criteria will achieve minimum possible delay but it is not clear a

priori that interference can be avoided altogether. Indeed, we will

show later that for L = 2, the lower bound of L + B (P – 1) on an

item’s delay cannot be achieved.

3.2 Block-cyclic Processor Assignments

For L ~ 3, the constraints imposed by the non-interference

requirements are not as stringent as for L = 2 and we can

continue to use optimal broadcast trees for each item. Moteover,

our processor assignment schemes, which we call block-cyclic are

highly-structured and have compact descriptions.

Weshalluse thecase L=3, P-l= 9asa running example

to explain our constmction. The optimal broadcast tree T9 for

this case is shown in Figure 2. From the ttee we can infer that,

since there are three leaves with delay 7, three processors will

receive the first data item (i.e., the item which is generated by

the source at time O, and whose broadcast tree is initiated at time -L)

at time L + 7. Similarly, by exarninin g the broadcast tree for the

second &ta item, we see that two processors will receive it at time

L +7. corresponding to the two nodes with delay 6 in the optimal

broadcast tree. Letting S, denote the multiset of items received

at time L + i, and denoting the first data item by a, the second,

by betc., wecan infer that S7 = {a. a.a. b. b.c. d.e,l~}. We can

elabotate this notation by indicating, for each item received at time

L + 7, whether it comesponds to an internal node of the item’s

broadcast tree; such an item is denoted by an upper-case letter,

subscripted by the number of children of the corresponding internal

node, while a leaf continues to be represented by a lower-case letter.

Thus, Ez represents a copy of item e which must be transmitted to

two other processors; it corresponds to the node of delay 3 in the

broadcast tree for e, the fifth item. In this expanded representation

S7 = {(I. a. c, b. b, c. D1. ~. H5} Moreover, the multiset S7+, is

isomorphic to ST except that the identity of the items is tmnslatedl

by i. Forexample, SS = {b. b. b.c. c.d, El. Fz.15}.

To better exhibit the similarities among these multisets we adopt

the relative addressing convention that, at every step t, a denotes

the item whose broadcast terminates at time t, b, the item whose

bro.d.=a.t f. -=tas at f 4 1 etc.. In this notation. an item ! can be

an Hs(attime L+l), at Ez(at L+i+3), a Dl(at L+t+4), ae(at

L + i + 5), etc. With this convention, the multiset of items received

at anytime z z L +7is {c~, {l. c~,b. b.c. Dl, E2. H5}. Therelativs

addressing convention is used throughout the following discussion

of continuous broadcast.

We now specify the reception schedules for the uppercase letters.

Certain constraints arise because a processor cannot send two items

in the same time step. For example, a processor receiving H5

in a time step will be busy sending that item to other processors

for that time step and the four subsequent ones; thus, it carmot

teceive another item corresponding to an upper case letter until 5

steps later. To ensure that this condition is met we assign a block

of 5 processors to receive H5’s in a cyclic fashion, a block of 2

processors to xeceive E2’s and a single processor to teceive the DIs.

This leaves one receive-ordyprocessor which will teceive the same

lower-case letter at every time step. By constmction, this schedule

has no interference between sends.

Let us now consider the reception of lower case letters. Wkhin a

block of n processors, each processor’s reception schedule will be

periodic with period n, and the schedule of the J ‘h processor in the

block will be the same as that of the first processor, but offset from

it by J – 1 time steps. For the block of H5 recipients the period will

be 5, and the receptions between successive occunences of H5 will

correspond to a word of length 4 over the alphabet {a. b, c}. The

choice of words is. however, restricted by two considerations. The

first is that since our schedules are cyclic within blocks, the multiset

of items that any processor receives in 5 consecutive steps is the sa2ne

as that received by the entire block of processors in a single step, and

thus must becontainedin the multiset {a. n. a. b. b. c. DI. Ez. Hs}

of items teceived at a single time step. Thus. for example, the word

cccc is disallowed.

The second restriction &rives from the correcmess requirement,

which states that no processor may receive the same item twice. By

our~slation rules, an Hattimet isthesameas acat(t+5), ab

at (7 +6) or an a at (t +7), so each of these receptions is disallowed.

Since the patterns are cyclic, this disallows receptions of b at i + 1

or a at ~ + 2, rnkg out any word that stats with b or has a in the

second position. If we were to choose c as the first letter, b would

be disallowed in the second position as well, since a b at x + 2 is the

sameasacat?+l.

We obsexve that the constraints on the word that may occur in

a block headed by H5 are identical to those that would arise if we

were choosing a 5-letter word and had chosen c as the first letter.

Moreover, the initird constraints turn out to be independent of block

size. This allows us to describe the set of legal words compactly by

the automaton shown in Figure 2. It can be shown that the following

recipe gives precisely those words of length r – 1 (corresponding

to a block of size T-)that satis~ the second restriction.

● Start at one of the stan states of the automaton (marked with

double circles in the figure).

● Follow a &ted path with r edges that ends in the same

state. This yields a word of length r i- 2, including the two

letters of the start state.

Q Delete the first letter and the last two letters of this word to

obtain a word of length r – 1.

Forthe H5 block,this procedure yields the set {CCCC.aca b. ubcw, abbb}.

Of these four words, the first restriction excludes cccc and II bbb, so

the word for the H5 block must be either H5a ca b or H5 abca.

To complete our example, we can choose the word (1M b for the

H~ block, a for the Ez block, the empty word for the DI block and

the lower=ase letter b for the receive-only processor. This gives

a correct schedule, since the muhiset {a. a. a, b, b, c. DI. E2, Hs }

of items received at a time step is the union of the multisets

145

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

time

Optimal Broadcast Tree L=3, P = 9

Receiving Pattern

PO P1 P2 P3 P4 P5 P6 P7 P8 P9

Continuous Broadcast Schedule

&’

h

i

b b

~

n, b
ca —————+ab

U-J
~ bb

c

c
la a

bc
ac

!C

/’--’”

c
7

@

cc

c

Automaton L = 3

legal receive patterns:

ca((ca)*(bb*ca)*)*

CC*

PO PI P2 P3 P4 P5 P6 P7 P8 P9

1
B

]

G

a

d

c

e

h f“ehhefg

time

Broadcast Schedule for 8 Values

Figum2Examp1e ofk-broa&astandcontinzmusbmadcaatP= 10, L=3. g= l.o=O. k=8.

146

{Hs. o,c. a. b}, {Ez.({}, {D, } and {b}. l%eresukingco ntimtous

broadcast schedulers shown in Figure2, where werevert to the

“absolute addressing’’notation in which, for example, a in time

step t means the iirst data item and no~ the item whose broadcast

tetrnirsates at time t.

Jn geneml, a block-cyclic assignment stipulates a block of r

processors for each internal node of TP.I that has ~ children.

These blocks use up all processors but one, which is designated

the teceive-only processor. The scheme is completely specified by

assigning words of length r -1 to blocks of sizer, the words being

chosenfmm an alphabet of L lower-ase letters corresponding to the

L distinct delays on the leaves of Tp.l, and assigning an arbitrary

word of length 1 to the receive-only processor. The assigned

words must exactly use up all the letters occurring in the muhiset

of items received at a geneml time step. In addition, each word

must respect the correctness criterion as illustrated by the second

resrnction in the pteceding example. Jn our solution we choose

words of the following forms, all of which are easily verhied to

satisfy correctness.

Lemma 3.1 Let (I. b. c.... denote the L letters available for con-

structing words, with the letter a at time i denoting the item whose

broadcast germinates at time z; b, the item whose broadcast termi-

mtes at time i + 1; etc.. Then the following words are legal:

● aL-2(cu)*b*

L-3 C*, ~L-4{1*, ~[L-5E*
● b

3.3 Minimum Delay Algorithm

We now have all the machinety required to sketch Our algorithm. For

any fixed value of L, we consider problem instances parametrized

by t, the maximum delay of a single-item broadcast. ‘Ihe t‘h

problem instance 1(t) consists of a mukiset of block sizes and letters

determined by the broadcast tree TP.I, where P – 1 = P(t). It

turns out that I(f) is the disjoint union of I(t – 1) and I(t - L),

with the exception that in taking the union, the largest block size

of I (t – 1) is augmented by one. This decomposition suggests the

following inductive algorithm.

Suppose that we have solved problem instances 1(t – L) through

1(f – 1) in such a way that the receive-only processor receives a

b in each of the solutions and that the largest block of J (t – 1) is

assigned a word of the form a ‘-2(cu)” b“. To construct a solution

for I(t), we simply ming together the solutions for 1(t – 1) and

1(t– L). Of the two 6’s from the receive-only processors, we

append one to the end of the largest word in I (t- 1)and use the

other for the teceive-only processor in I(t), so that the induction

can be continued. Thus, for each value of L, we need only solve

L consecutive” base cases” in order to guarantee solutions for all

larger values oft. Using a computer program, we have been able to

obtain such solutions for all L ~ 10. The algorithm for solving the

base cases is outlined below.

We use up one letter at a time, starting with the highest (a bciig

the lowest) smd stopping when all except a, b, c have been used up.

In using up a letter, we only use the (unique) word from Lemma 3.1

that contains it and we use it on the smallest unused block. Finally,

we use a combination of O‘–*c”ando L-2 (cc)“ ~- to consume rhc

remaining letters.

Corollary 3.1 For 3 ~ L <10 there a“sts i(L) such that, for all

k and all P such that P – 1 = P(t)for some i > t(L), the k-item

broadcastproblem can be solved in time L + B (P - 1)+ k – 1.

We remark that although the values t(L) in the preceding theorem

ate small, block-cyclic schedules cannot always achieve minimum

delay. For example, when L = 4 and i = 8 no block-cyclic

schedule can achieve a delay of L + t for P – 1 = P(t).

Recall that optimal algorithms for the k-item broa&ast problem

have an endgame in addition to a continuous phase. Our optimal

solutions for continuous broadcast might not be amenable to optimal

endgame solutions, tesulting in sub-optimal solutions to k-item

broadcast. This is illustrated in Figure 2 which shows the complete

broa&ast schedule for k = 8, L = 3, P – 1 = 9 (using

absolute addressing). From time step 10 onwards, every non-source

processor (P1 – P9) receives an item at evei-y time step. For an

optimsd solution, every processor must have received k* = 2 items

by time step 9. This can be achieved only by having the last two

processors alternately receive the item that corresponds to D1 under

relative addressing. If only one processor were to receive it all the

time, then after time step 9 that processor would have received 3

items, while the “receive-only” prccessor would have received only

1 item, foming the complete schedule to take one step more than the

lower bound of Theorem 3.1.

As mentioned earlier, the lower bound of Theorem 3.1 is not tight

for the case L =2.

Theorem 3.4 For L = 2, there are infinitely many values of P

for which the delay of an item in continuous broadcast is at least

L+ B(P- 1)+1.

Proofi (Sketch) A delay of L + B(P – 1) is achievable only by

using an optimal broadcast ttee for each item. Using the relative

addressing notation, the only two lower-case letters when L = 2 are

u and b, and the optimal broadcast tree determines the number of

copies of a and of b to be received at each time step. The correctness

requirement implies the following: if a processors sending art item

.Y at a given time step, then it may receive an a at that time step

only if, at the step just prior to receiving -1”, it did not send any item.

On the other hand, at any given time step, at most one processor

is not sending art item. When t z 7 these requirements lead to a

contradiction, as it is not possible to ttxeive the requited number of

u‘s at each time step. Q

Corollary 3.2 For L = 2, there must values of P and k such thut

the time required for k-item broadcast exceeds the lower bound of

Theorem 3.1.

Froofi (Sketch) Decompose any algorithm into a continuous phase

and an endgame as indicated by Theorem 3.2 and apply Theorem

3.4 to the continuous phase. O

However, if a single extra time step is allowed, we CSII tid

(non-optimal) broa&ast trees for which non-interfering schedules

can be constructed.

Theorem 3.5 For continuous broadcast with L = 2, a delay of

L + B(P – 1) + 1 can beachiev.d wlzenever P – 1 = P(~) for

some t.

Theorem 3.3 For 3 ~ L s 10 there exists t (L) such that whenever

P– 1= P(t)for some t > i(L), continuousbroadcastwith a dekry

of L + B (P – 1) can be achieved.

147

Proofi (Sketch) Prune the optimal tree for P (t + 1) processors by

removing both leaves from a fiction j of the nodes with 3 children,

both leaves from all nodes which have 4 or more children, and the

leaf with larger delay km a fmction g of the nodes with a single

child as well as iium nodes which have 2 children. For suitably

chosen ~ and g, the resulting trees tvsuh in block sizes and letters

that yield block-cyclic solutions. ❑

3.4 Broadcasting a Finite Number of Items

In this section we return to the problem of broadcasting k items

tium the somce processor to all other processors. Our goal is to

minimize the total time required for the entite broadcast, whereas in

Section 3.1 we tried to minimize the delay of each individual item.

Theorem 3.1givesalowerboundof B(F’– I)+.L+(k-l) -k*

steps, where k“ ~ L. Corollary 3.1 shows tha~ for 3< L < 10

and P – 1 = P(t) for a sufficiently large t, the time to broadcast

k items is bounded above by B(P – 1) + L + (k – 1). ‘I’he main

result of this section is the following.

Theorem 3.6 For all k, L and P, the k-irem broadcast problem

can besolvedintime B(P– 1) +2L+ k–2.

Define a single-sending schedule as one where the source pro-

cessor transmits each item exactly once. Clearly, the execution time

of any single-sending schedule is at least B(P – 1) + L + k – 1,

since some item must leave the soume processor at time k - 1

or later, experience a delay of L while being transmitted to its first

destination, and then experience a further &lay of at least B(P – 1)

before reaching all processors. Theorem 3.6 follows directly fmm

the following theorem.

Theorem 3.7 For all k, L and P, there is a single-sending

schedule for the k-item broadcast problem with execution time

B(P–l)+2L+k–2.

Let the items to be broadcast be denoted 1.2,. ... k. The pro-

cessing of item i is divided into three parts: the initial transmission,

the optimal broadcast phase, and the end game.

Initial transmission: At time z – 1 item z is transmitted fimm the

somce processor to another processor called the the root

processor for item i.

Optimal broadcast phase: Starting horn the rootprocessorat time

z – 1 + L, item z is transmitted according to an optimal

B(F’ – 1)– L-step broadcast tree.

End game: For items i < k, the remaining processors receive i in

at most 2 L further steps for item k, the remaining processors

reaeive k in at mast 2L — 1 futthr step.

The complete proof of Theorem 3.7 will be given in the final

paper. Here we content ourselves with exhibiting the promised

single-sending schedule in the case where L is odd and P– 1= P(t)

for some t.

A processor that receives item z during the optimal broadcast

phase is called a sender for item i. Jf it receives item t at time

z -I- t— r (corresponding to an internal node with r children in the

optimal broadcast tree for item z) then it is called an r-sender for

item i. An r-sender for item z sends that item to T — ~ processors

during the optimal broadcast phase, in a mauner dictated by the

optimal t – L-step broadcast we; it sends item I to L additional

processors during the end game. A processor which teceives item ?

during the end game is called a receiver for i~em z. Call item i ac~ive

for processor if 1>is a sender for item 1, and inactive for p if II is a

receiver for item i. If a processor is an r-sender for item t then it IS

also an r-sender for all items j - z (mod r); itis a receiver for all

other items.

An r-block consists of r processors which are, respectively, r-

senders for items congruent to 1.2. . . . r (mod r). Thus a block

contains exactly one sender for each item. Note that a block of size

r must receive r — 1 inactive copies of 2. Processor p, ~ , in a

block of size r can transmit r copies of ?in consecutive time steps.

Thus each block of sizer sends rnin(L, T) inactive transmissions of

Z. The receive-only processor is placed in a block by itself.

The reception of the inactive items during the endgame requires

that certain blocks of sizer < L send items to other blocks. while a

processor in a block of size T ~ L will spend the endgame sending

the item to processors within its own block.

In order to better understand the reception pattern of item I,

we define a digraph called a block transmission digraph which

represents the transmission pattern of item ? between the blocks.

For each block of size r, there is a vertex labeled r. The block

containing the receive-only processor has a vertex labeled O. A

thick edge from vertex rl to rz denotes an active transmission of

item i between the corresponding blocks. A normal edge with

weight u, denotes u, inactive transmissions of item ? between the

corresponding blocks. Active transmissions have an implicit edge

weight of 1. Also, the largest block receives an active transmission

tkom the source processoL Thus, the weights of all edges into a

vertex with label r > 0 must sum to r as must those of all edges

out of it. For T = O, i.e. the block containing just the teceive-only

processor, there is only one edge into r and it has weight on~ there

are no edges out of T. Each item has the same block transmission

digraph. Figure 3 shows a block transmission digraph for L = 3

and P-l= P(n) =41.

Let the processors in an r-block be designated pt. PZ. . ~. p,,

where, for i = 1.2. . ., r, p, is an r-sender for item Z,and the other

r — 1 processors are receivers for item t. Then 1), receives item i

duting the optimal broadcast phase for that item. We now describe

the schedule according to which of the remaining T – 1 processors

in the block receive item t. There are several cases.

1. If T ~ 2L then, durirtgthefirst L time steps aftert + i – 1,

L processom in the block receive Tborn processor pt - ~

in the block. Another r — 2 L processors receive i from

processors in r – 2L blocks of size 1. The remaining L – 1

processors nsceive z fi-om processor, ~ ~~.l ~in a block of

size L — l(which we denote by p, ~ (L–l),L –I). The items

are received by the processors in the block as follows :

(a) the L transmissions of item 1 from processor pl in the

block is received by processor P,-,+l in the block at

timestep t+tforl<i~L.

(b) the r –2L processors which receive item 1 from blocks

of l~pl+],~l+z, . . .~v_L andtheyreceive lattime

step f + -L.

(c) the L – 1processors that receive item 1 horn processor

l~I,l_I are 7)2, . . ~L where p, receives 1 at time step

t+2L–z +2.

(d) ifprocessorp, received item J at time fthen processor

P(7+IJ -. ~eives item J + 1 at time ~+ 1.

148

Figsm 3: The Mock transmission digraphfor.L = 3 and P -1 = P(n) = 41.

2.

As we can see, this scheme insnres that all processors in the

block receive all k items with only an extra delay of L time

steps. We see that only one processor, call it p, is receiving

anitemirt timestep B(P -1)+ 2L+/i-landthat the

item is k. Since PA. d , in the block is available to send at

time B(F’ – 1) +L + k –2andpis available to receive at

B(P – 1) +2L + k –2, thus pwillteceiveitem k one step

earlier. Thus the extra delay is at most L – 1.

If L + 1 < r < 2.L then again L processors receive item ?

from processor, ~ ~ in the block The remaining ~ – L – 1

receive the item from processor p, ~ (.-L) in a block of

size r — L(which we denote as p, ~ ~,_L1,r_L). For the

receiving scheme, we have processor P, ~ , in the block

sending ? at time steps t + t to t + i + L — 1. Processor

zIt~ (,-~).r-~ sends ?attime steps f+?+ Ltot+?+r-2-

The items are received as follows :

(a) Consider item Z. If I mod r = 1 then processor PJ

receives iattimet+i+ ~-2 for2~j~r.

(b) Ifl<?mod r<r-2thert zisxeceived by the

processors inthebloekfrom time step t+ito ~+~+r–2

in the following order: pr, PI, pz, I%, . . P(, _l) ~ ~,

P(, +l)mcd, >’. .pl-l.

(c) If z mod r ~ T – 1 then consider r.

i. If r is odd then the first 4 processors to receive ?

arc the following (listed in or&r of reception) :

Ply], P[fl> 77, PI. The order of the rest of the

receptions is as follows :

A. pJreceives ?attime t+z+5+2(~-2)if

1< l;J

B. ~Ij receives tattimet+?+4+2(~– [~] –1)

ifJ>(~ladj#r-1

ii. If r is even then the first 3 processors to receive

z arc the following (listed irt order of reception) :

P:, PI, P,. me order of tie rest of tie ~eptions

is as follows :

A. p,receives iattimet +t+4+2(j-2)if

.]<:

3.

4.

B. pjreceives zattime f+i+3+2(.~- ~-1)

ifj>~and~ #r-1

(d) If z mod r = O then consider r.

i. If r is odd then

A. PI receives ~at time f + 7

B. PL:J receives? at time t + ?+ L

C. p r; 1 receives? onetime step after it receives

?—1

D. p,._lreceives ~attimet+?+ L-l

E. the rest of the processors p, receive z one

time step befote they receive 1 – 1

ii. If r is even then

A. pl receives t at time t + i + 2

B. p; receives z one time step after it received

i-1

C. p.-I receives i at time t + i + L

D. p] receives ?the time step before it reeeives

i–lif; <j <r-1

E. P3 receives i the time step after it receives

?—lif l<]<;

From tbe constriction, we see that no processor has two items

which arrive in the same time step. Since we are delaying

sending by at most r – L – 1 steps thus we are adding at

most L — 1 steps beyond the lower bonnd given. Figwe 4

shows the reception table for a block of size 7 with L = 5

and k = 16.

JfL~r~L +ltheneither L– lor Lprooessors

receiving i will receive it tiom processor p, A , in the

blcck. The receiving scheme is the same as the one for

L + 1 < r < 2L. Obviously we are not delaying any

sending. Thus blocks of size L and L + 1 receive all the

items bytime B(P-l)+L+k– 1.

If 2< r < L then the r – 1 processors receiving t receive it

fiomprocessorp, ~(,-l) inablockofsizer – 1. Ifr >3

then we delay sending until item 1 can tirst be received in the

149

time

13gure 4: The reception table for L = 5, T = 7 and k = 16. l%e items received as active items are denotes by bold numbers.

5.

6.

7.

3.5

same time step as some active item ~ is being received by a

processor in the block where ?mod r s 1.We then use the

same scheme as the one for L + 1 < r < 2L. Obviously, we

are delaying sending by at most r — 1 < L. For T = 3 we

have a slightly clifferent reception scheme: we delay sending

item 1 until it can be first received at the same time as some

active item Tis meeived by a processor in the block where z

mod r = 2. We have ~~ receiving item 1 before pa. For the

rest of the items j, ~ is received by processorp~ at time Tiff

.I – 1 was ~eived by p~essor P.? –1 at tie 7 – 1. Agti,

we ate delayirtg sending by at most r - 1 = 2 steps.

E r = 2, we see that we have used up alJ but one of the

blocks of size 1, but the blocks of size L + 2 ~ r < 2L

and r = L all use blocks which are one size kuger than

needed. Thus one of the transmissions of z is not needed

per eaeh block. So, these transmissions are instead sent

to processors in each blcck of 2 which needs to receive it.

Since each of these “extm” transmissions come fim blocks

whose transmissions are tit being received at time t + L + 1

(except for the case L = 3 where blocks of size 3 have their

transmissions iirst being received in time step t + 2) thus

we have all the transmissions to the blocks of 2 arriving at

timet+.L (or for L=3audr= 3,attirnet+ l). Since

we are assuming L is odd, the reception of these items will

not interfere with the receptions of the active items for these

blocks.

Jf r = 1 then there is only one processor in the block and it

would have received all k items as active items.

The receive-only processor receives all its items from the

processor in the remaining hee block of 1.

Optimal Broadcasting of k Items

We have given an algorithm for broadcasting k items that needs only

L-ltirnestepsmotethanthelowerboundofB(P-l)+Li-k-l.

In this section we show that this lower bound is achievable if we

modify the model slightly by assuming that, at any time step,

e

●

each processor p has a buffer containing all items sent to P at

least L time steps earlier which have not yet been reeeived

by p, and

each processor p can examine the items in its buffer and

determine which one to receive during the time step.

More than one item may enter a processor’s buffer at a given time

step, but only one item can be reeeived at each time step. 1

Theorem 3.8 For ail k, L and P, there is a single-sending schedule

for k-item broadcast which is optimal on the mod.$ed model.

Jrt the optimal broadcast scheme under the modified assumptions,

item i is transmitted from the soutceprccessor at time t – 1, reaching

its root proeessorat time ! — 1 + L. It is then transmitted to the other

processors according to an optimal t-step broadcast tree T,, except

that the reception of the item at some leaves of the broadcast tree

wdl be delayed, as described below. The one-to-one assignment

of non-source processors to the nodes of T, is the same as the

assignment used irt the algorithm given in the previous section.

Thus, if a processor is an r-sender for item 1, then it corresponds to

a node of out-degree Y in T,; if a processor is a receiver for item ~

then it corresponds to a leaf of T,.

We now describe the behavior of a processor at a typical time

step. Just prior to each time step, processor p’s buffer will consist

entirely of inactive items (for])). At the beginning of the time step,

at most one active item and one inactive item will arrive at p’s buffer.

If an active item z has arrived, then p will reeeive it and commence

sending it to other processors. If p is assigned to a node u of T,

then P sends the item to those processors that are assigned to the

children of T,. An inactive item that reaches p at the same time as

some active item is said to be delayed. It will remain in the buffer

until it is received at some later time step in which no active item

arrives. We ornit the further details of the processor assignment and

schedule of receptions and tmnsrnissions. It cart be shown that the

entire proeesswill becompletedbytirne -L+ B(P– 1) + k – 1.

Figure 5 gives an optimal schedule where L = 3, P – 1 = 13

and k = 14. The processors are grouped into blocks exactly as

in the ptevious section. Jn the figure, a table entry of z associated

with processor pj at time f indicates that, at time t, pj receives the

z‘h item. If item z is circled then i is an active item that causes an

inactive item to be delayed. If an item z is enclosed in a square then

t is an inactive item that was &layed by some active item.

4 Other Broadcast Problems

In this section, we present two other generalizations of the broadcast

problem and give optimal algorithms for these problems.

1There is a scheme which achieves the lower bound and needs a buffer

size of only 2.

150

...
Al

.=.
7 234~6 8 910111215~14

I 2 345@7 gIoll 1213&

3 862 45678 ~10111213 14

4 l@3 56789 ~11121314
!

5 1 zmd 6~7891012 13 14
1

6 1 2 3 4 @:.. ..=—01 . .. ~891011~ 1314.
5! 1 4 2 ‘@
:!

o

,# @ 3 j 8 @ ~ “~;.”~-%.y~---.--””

81 b3@\m&11~ 9’@~1213~
01
-~ I ..2.?@!a.3...?...G.E. !.9...?.! .m 13 14
L,

1 325476981110 131214

21 4365871091211 1413.

1 234567891011 121314

1 234567891011 121314.

3456789101112 13141516171819202122 2324
time

Figurc5: L=3, P--l= 13, k=l4.

4.1 All-to-All Broadcast

In the P-way all-to-all broadcast problem, each of P processors

has a &ta item that is to be made available to every processor. Of

course, one could solve this problem using P one-to-all broadcasts

but a more efficient (and simpler) solution is possible.

Observe that since each processor must receive P – 1 items and

the first one cmnot be received until time L + 20, a lower bound on

the time for P-way all-to-all broadcast is L +20+ (P – 2)g. On

the other hand, if processor i sends out its &ta item to processors

7+l(mod P)?+(P —l)(mod P)(in that order) attirne

0. g. (P – 2)g, each processor would receive messages at time

L+20. L+20+g,.. ., L+2o+(P –2)g. We thus have

a simple optimal algorithm for all-to-all broadcast. The same

communication schedule is optimal for the problem of all-to-all

personalized communication in which each processor has a distinct

item to send to every other processor.

The lower bound argument and our algorithm extend easily

to the situation where each of the P processors has k items to

broadcast: since a processor must receive k(P -1) items and the

first one cannot be =ceived until L + 20, we have a lower bound of

L +20+ g(k(p – 1) – 1). This boundis matched by k repetitions

of the previous algorithm.

We mmatk that the order of transmission for processor i does not

have to be the one indicated above. Any collection of permutations

of theset S= {l.... . P}, one for each processor, such that no

processors the target of two messages at the same time, will yield an

optimal algorithm. (For k-item broadcast, analogous permutations

of the multiset consisting of k copies of S will lead to optimality.)

4.2 The Combining-Broadcast Problem

In parallel computation, one frequently encounters situations where

each processor holds a value and the P values are to & combined

into one (or reduced) using some operation (such as max or +).

Reduction can be viewed as “all-to-one” broadcast (with a slight

change in model parameters) and is thus solved optimally by simply

reversing the directions of messages in optimal broadcast.

If the reduced value is to be made available to all processors,

we get a problem which we may think of as an all-to-all broadcast

with combining. Clearly, this problem can be solved by a reduction

followed by broadcast, which is optimal to within a factor of 2.

However, we show below that all-to-all broadcast with combining

takes no longer than all-to-one teduction.

Let r, beavalueinitially available atprocessori. i =0,. . . . P–

1. The problem is to make .ro + . . . + r P-I available to each

processorin the shortest possible time. The ‘+’ operation is assumed

to be commutative and associative. Jn the sequel, all arithmetic on

processorindices will be modulo P and for indices ~.J. r[~ : J] will

denote the quantity r~ + .rj _l + . . . + r,. Thus, for example, if

P=5, r[l:3]= rs+rZ+Jlwhiler[3 :l]=r1+rO+z4+r3.

For simplicity, we shall work with the postal model and assume

that the combining operation takes zero time. Whh these assump-

tions, it is clear that if a message is sent to processor t at time t, it can

be received at time t+L,combined with ~, and the result transmitted

to another processor at time t + L (arriving at its destination at time

t+ 2L.)

Our algorithm will be described in tetxns of the sequence {~, }

defined in Section 2. Let T, the amount of time for the algorithm,

be fixed, and let P = P(‘T; L. 0,1). Our algorithm has the

following simple &scription: at time J = 0.1 T– L, processor

i, t = O, . ,P - 1 sends itscurrent value coprocessor ?+ij+~-l.

(As indicated earlier, the values sent at time j arrive at their

destinations at time J + ~ and are instantaneously combined into

the cmxent value at the destination processor before transmission at

timej + L.)

Theorem 4.1 The algorithm presented above leaves the value

.r[O: P – 1] at each of the P = P(F, L. O. 1)procemorsat time 1’.

Proof We inductively prove that at time J processor i has the

value z [i – j, + 1: z]. Observe that this corresponds to a maximal

set of processor whose values csn be combined by time J. ❑

5 Optimal Summation

In this section, we consider the problem of computing the sum of n

operands in the LogP model. The input to the problem is a set of

operands .\-I,1-., and we assumethat an algorithm C= choose

how these are initially distributed among the P processors. We

151.

assume that the addition opetation is commutative 2 and that each

addition operation takes unit time. Our proof of optimality is based

on the following inversion of the problem: instead of finding an

algorithm to add n operands in minimum time, find an algorithm

that adds the maximum number of operands in t units of time.

5.1 Summation Trees

Without loss of generality, as urnming algorithm A can be viewed as

a rooted binary tree TA with a leaf for each operand and an internal

node for each addition operation. Each operation is carried out

on one of the P processors and hence, operands are of two types:

those available in the processor’s local memory and intermediate

results received from other processors. A summation algorithm

can be represented by the computation schedules for the various

processors, together with a We giving the pattern of communication

among them.

An example is shown in Figure 6. The initial work for each

processor is represented by a linear chain of input-smmnin g nodes.

Unless the processor is a leaf of the communication me, it then

repeatedly receives a value, adds it to its partial sum St2d~Yoms

a chain of g — o — 1 input-s umming nodes. Observe that local

computations overlap the delivery of incoming messages and the

processortweption overhead begins as soon as the message amives.

We will establish that the communication pattern induced by

optimal summation is the time-revetxal of an optimal single-item

broadcast tree: a processor that receives the item at time din optimal

broadcast sends a (single) message at time t – d. Suppose that

some processor sends messages Ml.VL. at time TI, T~.

Identifying messages with the corresponding nodes in the binary

tree, it is clear that M, and Mj represent sums of disjoint sets of

input operands. Thus, the processor could add .V, to some leaf of

;lf~ at time T, without changing the total number of leaves in the

tree. This gives an algorithm in which each processor (except one)

sends exactly one message. For uniformity of discussion, we will

assume that the processor responsible for the tird addition (at time

f) also sends a message at time f.

Suppose that in a summation algorithm a processor initiates

message receptions at times RI < . . . < R~ and a message

transmission at time S. ‘l%en R,= S-(o+l)-(k-j)g

for otherwise one of the receptions could be delayed allowing its

sender to add more input operands into its partial sum. We will

call such an algorithm .&y. E we reverse the direction and timing

of all messages in a lazy algorithm, i.e. a message sent at time S

from processor i to J is replaced by one that is received by i from

~ at time t – S, we get a broadcast algorithm in which sending

processors “wait” for one time step befote transmissions. (This

corresponds in A to the steps that receiving processors spend just

after receptions in adding the received psutial sums.) Thus, lazy

summation algorithms for a machine with parameters L, 0. g, P

are in one-to-one correspondence with broadcast algorithms for a

machine with parameters L + 1, 0, g, P.

Lemma S.1 LetA be a lazy summation algorithm that adds n,

operands in t steps and in which the processors initiate their

message transmissions at times 51 ~ S2 s ~ SP = t. Then

n =x:=,.$’, —O])+1

2 ~r op~al ~Igoriti for commutative summation can be used for non-

cornmutative summation with an appropriate renumbering of the operands.

Proofi Let k, be the number of messages teceived by processor

Z. Then, the number of input operands that arc directly summed

by processor i is exactly S, – (o + 1)k, + 1. Stsmrnin g over the

processors yields the result. ❑

We see that the broadcast pattern corresponding to optimal lazy

summation must be that which minimizes Z(t — S,), which is

precisely an optimal broadcast pattern.

6 Conclusion

In this paper, we have considered different broadcast problems

including single-item, k-item, all-to-all, and combining broadcast.

We also considered the problem of summation, which, as we

have shown, can be considered as a “reverse” broa&ast. We

have presented optimal algorithms for single-item, all-to-all and

combtig broadcasting as well as for summation.

For the k-item broa&ast problem, we considered the case where

the root was single-sending, and presented an algorithm which

required only L — 1 additional steps above the lower bound for

single-sending and hence, at most 2L – 1 steps above the gene~

lower bound. In fact, by relaxing certain restrictions on the LogP

model, we were able to present an algorithm which achieved

the single-sending lower bound. We introduced the continuous

broadcast problem to further examine whether the lower bound is

achievable. We have shown that for 3 ~ L <10 and P – 1 = P(t)

for large enough t, we can broadcast each item in optimal time using

a block-cyclic processor assignment scheme. We conjecture that the

same is true for all L >2. We also showed that optimal continuous

broadcast used for k items yields a schedule that is within L steps

of optimal.

Acknowledgements

We thank Amotz Bar-Noy, Shlomo Kipnis and Ramesh Subramo-

nian for valuable discussions.

Computational support was provided by the NSF Infrastructure

Grant number CDA-S722788. Richard Karp and Abhijit Sahay are

supported by NSF/DARPA Grant CCR-9005448. Eunice Santos

is supported by a DOD-NDSEG Graduate Fellowship. KIaus Erik

Schauseris suppotted by an IBM Graduate Fellowship.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. On Communication

Latency in PRAM Computation. In Proceedings of the ACM Sympo-

sium on ParaUel Algorithms and Architectures, pages 11–21. ACM,

June 1989.

[2] A. Aggarwal, A. K. Chandr% and M. Snir. Communication

Complexity of PRAMs. Theoretical Computer Science, pages 3-28,

March 1990.

[3] N. Alon, A. Bsrak, and U. Manber. On disseminating

information reliably without broadcasting. In Proceedings of the

International Conference on Distributed Computing Systems, 1987.

[4] A. Bar-Noy and S. Kipnis. Broadcasting Multiple Messages

in Simultaneous Send/Receive Systems. Technical Report NO. RC

18352, IBM Research Division, September 1992. Atso to appear in

Di.rcre~e Applied Mathematics.

[5] A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms

in the Postal Model for Message-Passing Systems. In Proceedings of

the ACM Symposium on Parallel Algorithms and Architectures, pages

11-22, June 1992.

152

po +++

pl +++

pz +++

p3 +++

P4 +++

p5 +++

P6 +++

P7 +++

+++++ +++d’+++:~~+k+---- .-+++~-- ,“..”
~. ,’ /0

.
+++++ ++ —-”

,’
,’

.’
,/’L

+ + + + + +-+.p+~”
..- ,’

+ ~“-

+++++ +*-p+ .?+=’8----+~-- -“
..” P4

..-
+++++—

P6 P7

I I I
b

Time
o 5 10 15 20 25

Figure 6: Computation schedule (left) and communication tree (right) for optimal summation with t= 28. P = 8. L = 5. g =4. o = 2.

[61 A. Bar-Noy and S. Kipnis. Multiple Message Broadcasting in

the Postal Model. &Proceed& of the S-&enth Int&zationalParalkI

Processing Symposium, April 1993.

[71 D. R Bertsskss and J. N. Tsitsiklis. Parallel and Distributed

Computathn: Numerica[Methods. Prcnticc-1-hll, 1989.

[8] E. Cockayne and A. Thomaaon. Optimal multi-message

broadcasting in complete graphs. In Proceedings of the llth SE

Conference on Combinatorics, Graph Theory. and Computing, pages

181-199,1980.

[9] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.

Sehauaer, E. Santos, R Subramonian, and T. von Eickcn. LogP

Towards a Realistic Model of Parallel Computation. Jn Fourth

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, May 1993. Also appearsaaTR No. UCBICW92 713.

[10] A. M. Farley. Broadcast sirne irr communication networks.

SIAMJournalonAppliedMathematus, 39(2b385-390, October 1980.

[11] S. Fortune and J. Wyllie. Parallelism in Random Access

Machines. Jn Proceedings of the 10th Annual Symposium on Theory

of Computing, pages 114-118, 1978.

[12] S. M. Hcdetniemi, S. T. Hcdetniemi, and A. L. Liestman. A

Survey of Gossiping and Broadessting in Communication Networks.

Networks, 18(4):3 19-349,1988.

[13] C-T. Ho. Optimal Communicationprimitives and Graph Ern-

bcddings on Hypcrcubcs. Ph.D. Thesis, Yale University 1990.

[14] C-T. Ho and S.L. Jolmsson. Distributed routing algorithms

for broadcasting and personalised communication in hypercubes.

Jn Proceedings of the 1986 International Conference on Parallel

Processing, pages 640-648. IEEE Computer Society, 1986.

[15] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient

PRMvf Simulation on a Diatributsd Memory Machine. In Proceedings

of fie Twen&Fourti Annual ACM Symposium of the Theory of

Computing, pages 318-326. ACM, ACM, May 1992.

[16] K. Mchlhom and U. VkJ-Mn. Randomizd and detcnninktic

simulations of PRAMs by parallel machines with restricted granularity

of parallel memories. Acts Informatica, 21:339-374, 1984.

[17] C. H. Papadimitriou and M. Yannakakis. Towards an

Arch&cture-Jndepcndent Analysis of Parallel Algorithms. In Pro-

ceedings of the Twentieth Annual ACM Symposium of the Theory of

Computing, pages 510-513. ACM, 1988.

[18] L. G. Valiant A Bridging Model for Parallel Computa-

tion. Communicatwns of the Association for Computing Mochineiy,

33(8} 103-1 I, August 1990.

:153

