Optimal Broadcast and Summation in the LogP Model

Richard M. Karp; Abhijit Sahay, Eunice E. Santos, Klaus Erik Schauser

Computer Science Division,
University of California, Berkeley

Abstract

In many distributed-memory parallel computers the only built-in
communication primitive is point-to-point message transmission,
and more powerful operations such as broadcast and synchronization
must be realized using this primitive. Within the LogP model
of parallel computation we present algorithms that yield optimal
communication schedules for several broadcastand synchronization
operations. Most of our algorithms are the absolutely best possible
in that not even the constant factors can be improved upon. For
one particular broadcast problem, called continuous broadcast, the
optimality of our algorithm is not yet completely proven, although
proofs have been achieved for a certain range of parameters. We
also devise an optimal algorithm for summing or, more generally,
applying a non-commutative associative binary operator to a set of
operands.

1 Introduction

Most models of parallel computation reflect the communication
bottlenecks of real parallel machines inadequately. The PRAM
[11], forexample, allows interprocessor communication at zero cost.
Researchers have proposed several variations on the PRAM that
address particular aspects of interprocessor communication such
as latency, memory contention and synchronization [16, 15, 17,
1, 2], but no single model properly accounts for all these aspects.
Valiant’s BSP model [18] is more realistic, but imposes a rigid
programming style in which a parallel algorithm is expressed as a
series of supersteps, where each superstep terminates with a barrier
synchronization involving all the processors. There have also been
a number of studies of paralle]l communication on specific networks
such as the hypercube or mesh.

Recently, Culler et al [9] proposed a general purpose model,
the LogP model for distributed-memory machines. In this model,
processors work asynchronously and communicate by point-to-
point messages that travel through a network. The model describes
2 parallel computer by four parameters:

P, the number of processor-memory pairs;

* Also affiliated with International Computer Science Institute, Berkeley.

Psrmission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ACM-SPAA’93-6/93/Velen,Germany.

® 1993 ACM 0-89791-599-2/93/0006/0142...$1.50

L. the latency, or maximum delay, associated with delivering a
message;

g. the gap, a lower bound on the time between the transmission
of successive messages, or the reception of successive
messages, at the same processor;

0. the overhead, representing the length of time for which a
processor is busy during the transmission or reception of
amessage.

The parameters L, ¢ and g are measured in units of processor
cycles. The model also specifies that the network has a finite
capacity, such that at most [L/g] messages can be in transit from
any processor or to any processor at any time. All algorithms
presented in this paper satisfy the capacity constraint of the LogP
model, and we do not mention it henceforth. Although the model is
asynchronous, in estimating the running time of the algorithms, we
assume that that all processors work synchronously and that each
message incurs the full latency of L.

Since point-to-point message transmission is the only primitive
communication operation provided on some distributed-memory
machines, more powerful broadcast and synchronization primitives
must be realized in terms of this single operation. We present
optimal implementations of several variants of broadcast and syn-
chronization within the LogP model. We also present an optimal
algorithm for summing » operands on P processors; this algorithm
is derived by viewing the communication pattern of an optimal
summation algorithm as the time reversal of an optimal broadcast
pattern.

Specifically, we study six fundamental communication problems
in the framework of the LogP model:

e The single-item broadcast problem in which a data item
residing in a source processoris to reach all P processorsin
minimum time.

¢ The keitem broadcast problem in which k data items residing
in a source processor are to reach all P processors in
minimum time.

e The continuous broadcast problem, in which a source pro-
cessor generates a new item every ¢ units of time, and all of
these items are required to reach all P processors. Associated
with any schedule for this problem is its delay, defined as the
maximum time that can elapse between the creation of a item
and its arrival at the last processor to receive it. The problem
is to construct a schedule with minimum delay.

142

¢ The all-to-all broadcast problem, in which each prooessor
is the source of a data item, and all P items are required to
reach all processors in minimum time.

The combining-broadcast problem in which each processor
has a value, and all processors must leamn in minimum time a
single reduced value which is computed using an associative
and commutative operation on the list of P values.

The summing problem, in which n numbers are to be added
on P processors in minimum time, assuming that the initial
distribution of the numbers among the processor/memory
pairs may be stipulated by the algorithm. (Here, “addition"
means the application of any binary associative operator.)

Given the considerable importance of broadcasting problems in
paraliel and distibuted computation, several variations of it have
been well studied in the literature{7, 12]. Much of this work has
focused on the design of efficient algorithms for broadcasting on
specific networks such as hypercubes [13, 14]. For fully connected
systems (such as those modeled by LogP) broadcast problems
have been studied in several communication models, but without
latency. Cockayne and Thomason [8] and Farley [10] gave optimal
algorithms for a model where each processor can either send or
receive a message in one time step. Alon, Barak and Manber [3]
studied reliable broadcast in a model that allows simultaneous send
and receive.

Bar-Noy and Kipnis [S] recently introduced the postal model
which incorporates a latency parameter in addition to stipulating that
at most one message be sent or received by a processorper time step.
This tums out to be a special case of the LogP model (with g = 1 and
o = 0) and is indeed, quite suitable for studying “communication-
only” problems. Note that if message events are the only events of
interest, the overhead charged in LogP for sends and receives can
be incorporated into the latency parameter, eliminating 0. We can
then normalize so that ¢ = 1, yielding the postal model. For this
model, Bar-Noy and Kipnis have given an optimal algorithm for the
single-item broadcast problem as well as a sub-optimal algorithm
for the multiple-item broadcast problem [S5, 4].

The remainder of the paper is organized as follows. Section 2
defines the single-item broadcast problem and develops an optimal
algorithm for it. It also provides an illustration of the roles of
the various parameters of the LogP model. Section 3 focuses
on the much harder problems of k-item broadcast and continuous
broadcast, which are analyzed in the postal medel. For continuous
broadcast, we derive a lower bound on the delay of any schedule.
We define block-cyclic schedules which admit of a succinct repre-
sentation and give a general construction of a block-cyclic schedule
which is conjectured to satisfy the lower bound for large enough
P whenever L # 2. Thus far the conjecture has been proven for
L < 10 and for infinitely many but not all P. We also prove
that when L = 2 the lower bound cannot in general be achieved,
but we give a construction that comes within one time step of the
bound, and thus is optimal. For k-item broadcast, we characterize
the structure of optimal schedules and derive lower bounds on their
completion time. We also derive lower bounds on the completion
time of single-sending schedules, in which the source processor
cendc each item only once. We precent a single_cending schedule
that is within L — 1 steps of the single-sending lower bound (and
hence, within 2L — 1 steps of the general lower bound.) We also
show that if the communication model is modified to provide each
processor with an input buffer of size 2, then the single-sending

143

lower bound can be achieved. Section 4 discusses the all-to-all
broadcast and the combining-broadcast problem and presents their
optimal solutions. Finally, Section 5 solves the summing problem.

2 The Single-Item Broadcast Prob-
lem

The single-item broadcast problem is that of finding a schedule of
communication among P processors (numbered 1 P) so that
a datum initially availabje at processor 1 is made available to all P
processors in the shortest possible time.

Definition 2.1 Ler A be an algorithm for single-item broadcast.
The delay of processor i in A, denoted t 4(i), is defined as the time
atwhich the datum is first available at processor1in A. The running
time of A, denoted t 4, is

t4 = max {TA(i)}
1< <P
The complexity of single-item broadcast in the LogP model is defined
as
B(P;L.o.g)= r[}iian

A is optimal for single-item broadcastift4 = B(P; L.o,g).
Definition 2.2 Givent > 0, the number of time steps available, let
P(t;L.o.g) =max{r: B(1; L,0,g9) < t}

denote the maximum number of processors that can be reached by
a broadcast algorithm in t steps.

When there is no danger of confusion, we will omit explicit
mentionof L, 0 and g and write B(P) instead of B(P; L.0.g) and
P(t)instead of P(1; L. 0, g). Note that for any broadcast algorithm
A ta(l) =0

Our algorithm for single-item broadcast generalizes that of [5]
for the postal model. It is based on the simple and intuitive idea
that all informed processors should send the datum to uninformed
processors as early and as frequently as possible.

Since no processor need receive more than one message in an
optimal algorithm, the communication pattern of interest is a tree.
A broadcast algorithm .4 induces a broadcast tree of processors,
T4. T4 1s arooted, ordered tree with a node for each processor
that participates in the broadcast. The root of T4 is processor 1
(the source of the broadcast) and if processor p sends messages to
Processors fio P& (in that order) in A, then in T4 node p has
..... pi- as its (ordered) children. If, in addition, we label nodes
by the delay of the corresponding processors, the model implies that
a parent’s label is L + 20 smaller than its oldest child’s, while the
labels of successive siblings differ by at least g.

Definition 2.3 The universal optimal broadcast tree, denoted B3,
is defined to be the infinite labeled ordered tree in which the
root has label 0 and a node with label t has children labeled
t+ig+L+20, 120

Definition 2.4 Let B(P) be the rooted subtree of B consisting of
the P nodes with smallest labels (ties being broken arbitrarily.)

Theorem 2.1 B{P) is optimal for single-item broadcast.

PO
Pl
P2
P3
P4
PS5
P6
P7 P6 P4 P7

oM O 1O Tor] L
. L i
\\~“L .~~‘ o
L I
, e
n, O TTeeel | L
N T ~l
“_o_l_,s__l_.,
CIRAOSLE LRSI L
\‘. ~~~~~~ o
L ol
~.\.--‘.)—q
| | I ! b
5 10 15 20 Time

Figure 1: Optimal broadcast tree for P = 8. L = 6.g = 4.0 = 2 (left) and the activity of each processor over time (right). The number shown for each node

is the time at which it has received the data and can begin sending it on.

As an illustration, the optimal broadcast tree for 8 processors for
L =6.g =4.and 0 = 2, is given in Figure 1.

The universal tree can also be used to determine the maximum
number of processorsthat can be reached by a single-item broadcast
in t steps. This quantity, P(t), can be be computed using a
generalized Fibonacci recurrence.

Definition 2.5 Ler L > O be a fixed integer. Define the sequence
{f:} by:

1. fi=1for0<i< L.
2. fi= fis1 + fi-L otherwise.

Fact2.1 Foreacht, 1 + 250, = firL.

The following can be easily proved. (See [5] for a proof and for
bounds on f:.)

Theorem 2.2 Fort >0and L > 0, P(t; L.0.1) = f;

3 The r-item Broadcast Problem

In this section, we consider the k-item broadcast problem in which
k > 1 data items initially residing at a source processor are to be
broadcast to all of the other P — 1 processors in minimum time.
We will study this problem in the postal model. The algorithm of
Bar-Noy and Kipnis [6] for k-item broadcast is sub-optimal except
for the case L = 1 [4]. Its running time of 2B{P) + k + O(L) is
considerably larger than the lower bound derived below.

Our lower bound will be given in terms of the {f,} sequence
defined in Section 2. Let n be the index such that f, <
P —1 < fayy, so that by Theorem 2.2 B(P - 1) = n + L
Letk™ = [y 1 f:/(P = 1)}.

Theorem 3.1 If g = 1 and o = O any aigorithm for broadcasting
k items from a single source requiresatleast B{(P — 1)+ L + (k—
1) — k™ steps.

Proof: Since P — 1 messages must be received per item and at
most min(fx, P — 1) messages can be received at time step L + k,
the total number of items that can be broadcastin time L + t is no
more than [} _ min(f;, P = 1)/(P = 1)] = k" +t —n.0

Theorem 3.2 Ifanalgorithmbroadcastsk > k* itemsin time t+ L
witht = B(P — 1)+ (k — 1) — k7, then it must have the source
send distinct items in the first (k — k™) steps.

Proof: Ifnot, there are atleast k™ +1 items that have to be broadcast
by the source inthe n + 1 time steps k — k" =t —n..... t. Buta
message sent by the source at time t — ¢ can propagate to at most f,
processors by time ¢ + L.O

Thus, an algorithm that meets the lower bound must consist of two
phases: a continuous phase during which the source sends only one
copy of the first & — k" items (each of which is broadcast optimally
among P — 1 processors by the recipient of the source’s copy) and
an endgame lasting B(P — 1) steps during which the last £” items
are broadcast by having the source send multiple copies of each.

3.1 Continuous Broadcast

‘We define a variation of the the multiple-item broadcast problem
called continuous broadcast. Consider a situation in which items
are continuously generated at a source processor at intervals of y
and each item is to be communicated to each of the other P — 1
processors. Given any algorithm for this problem, define the delay
of item 1 to be the difference between the time it is generated and
the earliest time when it has been received by every processor. Our
goal is to minimize the maximum delay of an item. The continuous
broadcast problem is of interest in itself, and its analysis sheds light
on the continuous phase of the k-item broadcast problem.

In this scenario, it is clear that the source cannot afford to send
multiple copies of a message and hence a lower bound on the delay
of anitem is L + B(P —1). This lower bound can only be achieved
if for each ¢, processor P, the recipient of item : from the source,
initiates an optimal (P — 1)-way broadcast at time L + :. Sucha
solution to the continuous broadcast problem implies a solution to
the k-item broadcastproblem in time L + B(P —~1)+k — 1. Since
it can be shown that k* < L, this comes within L steps of the lower
bound for k-item broadcast.

We tum now to the problem of constructing a continuous
broadcast schedule with delay L + B(F — 1). The difficulty of
the problem lies in ensuring that the staggered broadcasts do not
interfere with one another by requiring some processor to send or
receive multiple items in a time step. As a simple example of a
pitfall to be avoided, suppose the root of the optimal (P — 1)-way
broadcasttree has r children. (In this section, we shall only consider
values of P — 1 for which the tree is unique, i.c. those for which
P —1 = P(t) for some time t.) Then, for any 1, the processors
Py, ..., Piyr-1 musteach be distinet from P, since P, is required
to send item 7 for r consecutive steps starting at L + : and hence
cannot be used as a senderin the broadcast of the next r — 1 items.

144

More generally, let Tp_; denote the tree for optimal single-item
broadcast among (P — 1) processors and let each node of the tree be
labeled with the delay of the corresponding processor as in Section
2. A node with delay d in tree 1 denotes a reception of value : at
time 7 + d and will be said to be a node with zime d + :. Given a
copy of Tr_, for each data item 7, our task is to assign processors
to nodes of the trees satisfying :

Correctness: No processor is assigned to two nodes of the same
tree.

Non-interference in receives: No processor is assigned to two
nodes with the same time.

Non-interference in sends: If a processoris assigned to an internal
node with 7 > 1 children and time 1, it is not assigned to any
internal node with time t + 1..... t+{r—1).

It is obvious that any processor assignment that satisfies these
criteria will achieve minimum possible delay but it is not clear @
priori that interference can be avoided altogether. Indeed, we will
show later that for L = 2, the lowerboundof L + B(P —1)onan
item's delay cannot be achieved.

3.2 Bilock-cyclic Processor Assignments

For L > 3, the constraints imposed by the non-interference
requirements are not as stringent as for L = 2 and we can
continue to use optimal broadcast trees for each item. Moreover,
our processor assignment schemes, which we call block-cyclic are
highly-structured and have compact descriptions.

We shall use the case [= 3, P — 1 = 9 as a running example
to explain our construction. The optimal broadcast tree T for
this case js shown in Figure 2. From the tree we can infer that,
since there are three leaves with delay 7, three processors will
receive the first data item (i.e., the item which is generated by
the source at time 0, and whose broadcast tree is initiated at time L)
at time L + 7. Similaily, by examining the broadcast tree for the
second data item, we see that two processors will receive it at time
L + 17, corresponding to the two nodes with delay 6 in the optimal
broadcast tree. Letting .S, denote the multiset of items received
at time L + i, and denoting the first data item by a, the second,
by b etc., we can infer that 57 = {¢.a.a.b.b.c.d.e.h}. We can
elaborate this notation by indicating, for each item received at time
L + 7, whether it corresponds to an internal node of the item’s
broadcast tree; such an item is denoted by an upper-case letter,
subscripted by the number of children of the corresponding internal
node, while a leaf continues to be represented by a lower-case letter.
Thus, £ represents a copy of item ¢ which must be transmitted to
two other processors; it corresponds to the node of delay 3 in the
broadcast tree for ¢, the fifth item. In this expanded representation
Sy = {a.a.a,b. b, c. Dy. B3, Hs} Moreover, the multiset 574, is
isomorphic to S7 except that the identity of the items is translated
by i. For example, Sz = {b.b.b.c.c.d, Ey. F2. Is}.

To better exhibit the similarities among these multisets we adopt
the relative addressing convention that, at every step 1, a denotes
the item whose broadcast terminates at time ¢, b, the item whose
broadcast terminates at # L 1 ete_ In thic notation, an item 7 can be
an Hs(attime L +1),an Ey (at L+-i+3),a D; (at L+:1+4),ac(at
L + 74 5), etc. With this convention, the multiset of items received
atany time ¢ > L + 7is {«¢.«. a.b.b.c. Dy, Ez. Hs}. The relative
addressing convention is used throughout the following discussion
of continuous broadcast.

145

We now specify the reception schedules for the upper case letters.
Certain constraints arise because a processor cannot send two items
in the same time step. For example, a processor receiving Hs
in a time step will be busy sending that item to other processors
for that time step and the four subsequent ones; thus, it cannot
receive another item comresponding to an upper case letter until 5
steps later. To ensure that this condition is met we assign a block
of 5 processors to receive Hs’s in a cyclic fashion, a block of 2
processorsto receive £5's and a single processorto receive the D;s.
This leaves one receive-only processor which will receive the same
lower-case letter at every time step. By construction, this schedule
has no interference between sends.

Let us now consider the reception of lower case letters. Within a
block of n processors, each processor’s reception schedule will be
periodic with period r, and the schedule of the ;*” processorin the
biock will be the same as that of the first processor, but offset from
itby) — 1 time steps. For the block of Hs recipients the period will
be 5, and the receptions between successive occurrences of Hs will
correspond to a word of length 4 over the alphabet {a.4.¢}. The
choice of words is, however, restricted by two considerations. The
first is that since our schedules are cyclic within blocks, the multiset
of items that any processor receives in 5 consecutive steps is the same
as that received by the entire block of processors in a single step, and
thus must be contained in the multiset {«. a.a.b.b.¢. Dy. F5. Hs}
of items received at a single time step. Thus, for example, the word
ccecis disallowed.

The second restriction derives from the comrectness requirement,
which states that no processor may receive the same item twice. By
our translation rules, an A at time :is the same asa cat (1 +5),a b
at (1+6)oran e at (1+7), so each of these receptions is disallowed.
Since the pattems are cyclic, this disallows receptions of bat ¢ 4+ 1
or ¢ at 7 + 2, ruling out any word that starts with b or has « in the
second position. If we were to choose ¢ as the first letter, b would
be disallowed in the second position as well, since a b at 1 + 2 is the
sameasacat?+ 1.

We observe that the constraints on the word that may occur in
a block headed by H; are identical to those that would arise if we
were choosing a 5-letter word and had chosen ¢ as the first letter.
Moreover, the injtial constraints tam out to be independent of block
size. This allows us to describe the set of legal words compactly by
the automaton shown in Figure 2. It can be shown that the following
recipe gives precisely those words of length » — 1 (comresponding
to a block of size r) that satisfy the second restriction.

¢ Start at one of the start states of the automaton (marked with
double circles in the figure).

¢ Follow a directed path with r edges that ends in the same
state. This yields a word of length r + 2, including the two
letters of the start state.

o Delete the first letter and the last two letters of this word to
obtain a word of length r — 1.

Forthe Hs block, this procedure yields the set { cccc. acab. abea, abbb}.
Of these four words, the first restriction excludes cccc and « bbb, so
the word for the Hs block must be either Hscecab or Hsabea,

To complete our example, we can choose the word acab for the
Hs block, a for the E; block, the empty word for the Dy block and
the lower-case letter b for the receive-only processor. This gives
a correct schedule, since the multiset {¢.«.a,b. b, ¢c. Dy. E;, Hs}
of items received at a time step is the union of the multisets

(0)

OBNONONONO
© @ @

Optimal Broadcast Tree L=3,P =9

a
c
,ai

bl e D b

Receiving Pattern

PO P1 P2 P3 P4 P5 P6 P7 P8 P9

0fl4

1 [B

2/|C

3 /D [A]

4| [E| Bl

SF a_

6/ G Dl [A]
7Er—J E__B[_X
8/ 1| |F a C FE
97| |G la bl |D[C] a
10/[K| ¢ |a|[H |b|!a|[El|a| D b
11 [LI|p|\d]!b|[I]]lc| b|[F|E| ¢
121 M |d|(cile| c|iJ| G|lic |Fl d
13| [N| K| |e|!d |f||d| d| H |G e
14/(0||e| L |f |e|ig [T]|el [H F
15?thxif JI 1| g
16QgigJNqKLLh
17/ R i]lnlljl nlTOl & [L][K] i
timey

Continuous Broadcast Schedule

AutomatonL =3

legal receive patterns:
caf{ca)*(bb*ca)*)*

— b ek b ok b
NHEON-2O0OOCONOBTHEWN—LO

time

cc*

FREIE E SIS EI E

P1 P2 P3 P4 P5 P6 P7 P8 P9

A———
B.—__
o
s
. El| |[B][4]
Fl a C B
Glla b D\ (C] a
cl|a|[H |b||a|[E||a| b [D]
bdecbﬂ@c
dllclle]lc]|G)|Gllc| d |FI
h e d f d d g g e
e h f e h h e f g
e f & h F Ff Ak kK

Broadcast Schedule for 8 Values

Figure 2: Example of k-broadcast and continuous broadcast P = 10,L = 3.g = 1.0 =0.k = 8.

146

{Hs.a.c.a.b}, {Es.a}, {D1} and {b}. The resulting continuous
broadcast schedule is shown in Figure 2, where we revert to the
“absolute addressing”notation in which, for example, « in time
step t means the first data item and no! the item whose broadcast
terminates at time .

In general, a block-cyclic assignment stipulates a block of r
processors for each internal node of I'p_; that has r children.
These blocks use up all processors but one, which is designated
the receive-only processor. The scheme is completely specified by
assigning words of length r — 1 to blocks of size r, the words being
chosen from an alphabet of L lower-case letters correspondingto the
L distinct delays on the leaves of Trp_;, and assigning an arbitrary
word of length 1 to the receive-only processor. The assigned
words must exactly use up all the letters occurring in the multiset
of items received at a general time step. In addition, each word
must respect the comrectness criterion as illustrated by the second
restriction in the preceding example. In our solution we choose
words of the following forms, all of which are easily verified to
satisfy comrectness.

Lemma 3.1 Let a.b.c.... denote the L letters available for con-
structing words, with the letter ¢ at time 1 denoting the item whose
broadcast terminates at time 1; b, the item whose broadcast termi-
nates at time 1 + 1; etc.. Then the following words are legal:

o at%(ca) p*

o bE7Bex ol=dgr gh et

3.3 Minimum Delay Algorithm

‘We now have all the machinery required to sketch our algorithm. For
any fixed value of L, we consider problem instances parametrized
by ¢, the maximum delay of a single-item broadcast. The t'"
problem instance I (t) consists of a multiset of block sizes and letters
determined by the broadcast tree Tp_1, where P —1 = P(t). It
tums out that /(1) is the disjoint union of J(t — 1) and I(t ~ L),
with the exception that in taking the union, the largest block size
of I(t — 1) is augmented by one. This decomposition suggests the
following inductive algorithm.

Suppose that we have solved problem instances /(1 — L) through
I{t — 1} in such a way that the receive-only processor receives a
b in each of the solutions and that the largest block of I(f — 1) is
assigned a word of the form a L-2(ca)"b". To construct a solution
for I(t), we simply string together the solutions for I(t — 1) and
I{t = L). Of the two b’s from the receive-only processors, we
append one to the end of the largest word in I(t — 1) and use the
other for the receive-only processor in J (1), so that the induction
can be continued. Thus, for each value of L, we need only solve
L consecutive “ base cases” in order to guarantee solutions for all
larger values of t. Using a computer program, we have been able to
obtain such solutions for all L < 10. The algorithm for solving the
base cases is outlined below.

We use up one letter at a time, starting with the highest (¢ being
the lowest) and stopping when all except «, b, ¢ have been used up.
In using up a letter, we only use the (unique) word from Lemma 3.1
that contains it and we use it on the smallest unused block. Finally,
we use a combination of 6”">¢~ and a”"*(ca)”b" to consume the
Temaining letters.

Theorem 3.3 For3 < L < 10there exists (L) such that whenever
P—1= P(t)forsomet > (L), continuous broadcastwith a delay
of L + B(P — 1) can be achieved.

Corollary 3.1 For 3 < L < 10 there exists t(L) such that, for all
kand all P such that P — 1 = P(t)for some1 > t(L), the k-item
broadcast problem can be solvedin time L + B(P — 1)+ k- 1.

‘We remark that although the values (L) in the preceding theorem
are small, block-cyclic schedules cannot always achieve minimum
delay. For example, when L = 4 and ¢t = 8 no block-cyclic
schedule can achieve a delay of L 4 ¢ for P — 1 = P(t).

Recall that optimal algorithms for the k-item broadcast problem
have an endgame in addition to a continuous phase. Our optimal
solutions for continuous broadcast might not be amenable to optimal
endgame solutions, resulting in sub-optimal solutions to k-item
broadcast. This is illustrated in Figure 2 which shows the complete
broadcast schedule for ¥ = 8§, L = 3, P -1 = 9 (using
absolute addressing). From time step 10 onwards, every non-source
processor (P1 — P9) receives an item at evety time step. For an
optimal solution, every processor must have received k* = 2 items
by time step 9. This can be achieved only by having the last two
processors altemately receive the item that correspondsto Dy under
relative addressing. If only one processor were to receive it all the
time, then after time step 9 that processor would have received 3
items, while the “receive-only" processor would have received only
1item, forcing the complete schedule to take one step more than the
lower bound of Theorem 3.1.

As mentioned earlier, the lower bound of Theorem 3.1 is not tight
forthe case L = 2.

Theorem 3.4 For L = 2, there are infinitely many values of P

for which the delay of an item in continuous broadcast is at least
L+B(P-1)+1

Proof: (Sketch) A delay of L + B(P — 1) is achievable only by
using an optimal broadcast tree for each item. Using the relative
addressing notation, the only two lower-case letters when L = 2 are
« and b, and the optimal broadcast tree determines the number of
copies of a and of b to be received at each time step. The correctness
requirement implies the following: if a processoris sending an item
X at a given time step, then it may receive an a at that time step
only if, at the step just prior to receiving .\, it did not send any item.
On the other hand, at any given time step, at most one processor
is not sending an item. When t > 7 these requirements lead to a
contradiction, as it is not possible to receive the required number of
«’s at each time step.0

Corollary 3.2 For L = 2, there exist values of P and k such that
the time required for k-item broadcast exceeds the lower bound of
Theorem3.1.

Proof: (Sketch) Decompose any algorithm into a continuous phase
and an endgame as indicated by Theorem 3.2 and apply Theorem
3.4 to the continuous phase.0

However, if a single extra time step is allowed, we can find
(non-optimal) broadcast trees for which non-interfering schedules
can be constructed.

Theorem 3.5 For continuous broadcast with L = 2, a delay of
L 4+ B(P — 1) 4 1 can be achieved whenever P — 1 = P(t) for

some t.

147

Proof: (Sketch) Prune the optimal tree for P(? 4 1) processors by
removing both leaves from a fraction f of the nodes with 3 children,
both leaves from all nodes which have 4 or more children, and the
leaf with larger delay from a fraction g of the nodes with a single
child as well as from nodes which have 2 children. For suitably
chosen f and y, the resulting trees result in block sizes and letters
that yield block-cyclic solutions.(]

3.4 Broadcasting a Finite Number of Items

In this section we retum to the problem of broadcasting % items
from the source processor to all other processors. Our goal is to
minimize the total time required for the entire broadcast, whereas in
Section 3.1 we tried to minimize the delay of each individual item.
Theorem 3.1 givesalowerboundof B(P —1)+ L+ (k—1)— k"
steps, where k" < L. Corollary 3.1 shows that, for 3 < L < 10
and P — 1 = P(t) for a sufficiently large ¢, the time to broadcast
k items is bounded above by B(P — 1) + L + (k — 1). The main
result of this section is the following.

Theorem 3.6 For all k, L and P, the k-item broadcast problem
can be solvedin time B(P — 1) +2L + k — 2.

Define a single-sending schedule as one where the source pro-
cessor transmits each item exactly once. Clearly, the execution time
of any single-sending schedule is at least B{P — 1)+ L + k — 1,
since some item must leave the source processor at time & — 1
or later, experience a delay of L while being transmitted to its first
destination, and then experience a further delay of atleast B(P —1)
before reaching all processors. Theorem 3.6 follows directly from
the following theorem.

Theorem 3.7 For all k, L and P, there is a single-sending
schedule for the k-item broadcast problem with execution time
B(P-1)+2L+ k-2

Let the items to be broadcast be denoted 1.2, - - -, k. The pro-
cessing of item 7 is divided into three parts: the initial transmission,
the optimal broadcast phase, and the end game.

Initial transmission: Attime z — 1 item 1 is transmitted from the
source processor to another processor called the the root
processor for item 1.

Optimal broadcast phase: Starting from the root processor at time
1 — 1+ L, item 1 is transmitted according to an optimal
B(P — 1) — L-step broadcast tree.

End game: Foritems : < k, the remaining processors receive 1 in
atmost 2 L further steps; for item £, the remaining processors
veceive I in at most D] — 1 further steps.

The complete proof of Theorem 3.7 will be given in the final
paper. Here we content ourselves with exhibiting the promised
single-sending schedule in the case where Lisoddand P~1= P(t)
for some 1.

A processor that receives item : during the optimal broadcast
phase is called a sender for item 1. X it receives item ¢ at time
14t — r (comresponding to an intemal node with r children in the
optimal broadcast tree for item 1) then it is called an r-sender for
item i. An r-sender for item : sends that itern to r — L processors
during the optimal broadcast phase, in a manner dictated by the

148

optimal 1 — L-step broadcast tree; it sends item : to L additional
processors during the end game. A processor which receives item ¢
during the end game is called a receiver for item 1. Callitem ! active
for processor p if p is a sender for item :, and inactive for pif pisa
recejver for item ¢. If a processoris an r-sender for item 1 then it 1s
also an r-sender for all items) = 1 (mod r); it is a receiver for all
other items.

An r-block consists of r processors which are, respectively, r-
senders for items congruent to 1.2.---.r (mod r). Thus a block
contains exactly one sender for each item. Note that a block of size
7 must receive 7 — 1 inactive copies of 2. Processor p. med r in a
block of size r can transmit r copies of 7 in consecutive time steps.
Thus each block of size r sends min(L, r) inactive transmissions of
2. The receive-only processor is placed in a block by itself.

The reception of the inactive items during the endgame requires
that certain blocks of size 1 < L send items to other blocks, while a
processorin a block of size r > L will spend the endgame sending
the item to processors within its own block.

In order to betier understand the reception pattem of item ¢,
we define a digraph called a block transmission digraph which
represents the transmission pattern of item ¢ between the blocks.
For each block of size r, there is a vertex labeled r. The block
containing the receive-only processor has a vertex labeled 0. A
thick edge from vertex r; to r, denotes an active transmission of
item 1 between the corresponding blocks. A normal edge with
weight w denotes w inactive transmissions of item @ between the
corresponding blocks. Active transmissions have an implicit edge
weight of 1. Also, the largest block receives an active transmission
from the source processor. Thus, the weights of all edges into a
vertex with label v > O must sum to r as must those of all edges
out of it. For » = 0, i.e. the block containing just the receive-only
processor, there is only one edge into r and it has weight one; there
are no edges out of r. Each item has the same block transmission
digraph. Figure 3 shows a block transmission digraph for L = 3
and P — 1 = P(11) = 41.

Let the processors in an r-block be designated p1.pz.-- - . pr,
where,for: = 1.2.---.r, p. is an r-sender for item 1, and the other
r — 1 processors are receivers for item .. Then p, receives item ¢
during the optimal broadcast phase for that item. We now describe
the schedule according to which of the remaining r — 1 processors
in the block receive item ¢. There are several cases.

1. ¥ r > 2L then, during the first L time steps after t + 1 — 1,
L processors in the block receive 1 from processor p: moa r
in the block. Another r — 2L processors receive i from
processorsin r — 2L blocks of size 1. The remaining L — 1
processorsreceive 1 from processor p; moq (7 —1) in a block of
size L — 1(which we denote by p, moa (£ —-1).2—1)- The items
are received by the processors in the block as follows :

() the L transmissions of item 1 from processor p; in the
block is received by processor pr-..+1 in the block at
timestept+1forl <: < L.

(b) the r—2 L processors which receive item 1 from blocks
oflare pry1.pr+2, - - - pr—r and they receive 1 attime
stept + L.

{c) the L —1 processorsthat receive item 1 from processor
P1.L—1 are py. - - - pr where p, receives 1 at time step
t+2L —14+2.

(d) if processor p. received item) at time 7 then processor
P(41) mod » TECEIvVes item J + 1 attime 7 + 1.

Figure 3: The block transmission digraphfor L = 3and P — 1 = P(11) = 41.

As we can see, this scheme insures that all processors in the
block receive all k items with only an extra delay of L time
steps. We see that only one processor, call it p, is receiving
an item in time step B(P — 1} + 2L + k — 1 and that the
item is k. Since Pk moa r in the block is available to send at
time B(P — 1)+ L + k — 2 and p is available to receive at
B(P —1)+2L + k — 2, thus p will receive item k one step
earlier. Thus the extra delay is atmost L — 1.

. I L+ 1< r < 2L then again L processors receive item ¢
from processor p: mod » in the block. The remaining r — L — 1
receive the item from processor p, mod (r—z) in a block of
size r — L(which we denote as P, pog (r~1).r—1). For the
receiving scheme, we have processor p. mea » in the block
sending 7 at time steps f + 110 t + 1 + L — 1. Processor
Prmod (r—L).r—L Sendstattime steps t+14+Lto f+147-2.
The items are received as follows :

(a) Consider item 2. If : mod r = 1 then processor p,
receives tattime t + 14+) —2for2 < j <r.

() 1 < t1mod r < r — 2 then 1 is received by the
processors in the block from time step t4-7to t+2+r—2
in the following order: p,, p1, P2, P3, ** * P(1=1) mod 7
P41y med 75 """ Pr—1-

(¢) If :mod r = r — 1 then consider r.

i. If r is odd then the first 4 processors to receive 1
are the following (listed in order of reception) :
PLZ)> P[§1 Prs P1. The order of the rest of the
receptions is as follows :

A. p, receivesrattime t +14+542(7 - 2)if
) <13]
B. p, receives:attime t+1+44+2()—[5]-1)
if) >[Z]landj#r—1
il. If r is even then the first 3 processors to receive
1 are the following (listed in order of reception) :
£.P1, P The order of the rest of the receptions
is as follows :
A. p, receivestattime t + 14+ 4 -+ 2(y ~2) if
1<z

149

B. p, receivesiattime t+i+3+2(j— % ~1)

ify>gandy#r—1
(d) X :mod r = O then consider .
i. If r is odd then

A. pjreceivest attime t + ¢

B. p|z receivesrattime t + 1+ L

C. przq receives 1 one time step after it receives
1—1

D. pr—ireceivesrattime t +1+ L — 1

E. the rest of the processors p, receive 7 one
time step before they receive 1 — 1

ii. If r is even then

A, preceivesiattime t + 142

B. pz receives 1 one time step after it received
t—1

C. pr-iTeceivesrattime t + 14 L

D. p, receives 1 the time step before it receives
i-lif s <j<r-1

E. p, receives ¢ the time step after it receives
1= 1lifl <) <3

From the construction, we see that no processor has two items
which amive in the same time step. Since we are delaying
sending by at most r — L — 1 steps thus we are adding at
most L — 1 steps beyond the lower bound given. Figure 4
shows the reception table for a block of size 7 with L = 5
and k = 16.

. L < r < L+ 1 then either L — 1 or L processors

receiving ¢ will recejve it from processor p, moa » in the
block. The receiving scheme is the same as the one for

L +1 < r < 2L Obviously we are not delaying any
sending. Thus blocks of size L and L + 1 receive all the
items bytime B(P - 1)+ L +k -1

. If2 < r < L then the r — 1 processors receiving ¢ receive it

from processor P; meq (r—1) in ablock of size r — 1. K r > 3
then we delay sending until item 1 can first be received in the

i
|
e | 8 (2 3[4 517]15 6 01 11127 14 RO
% EXRE i e 51 4.5 8 |16 7 & 10|11 2 B, 1wl | :
J i |34j] o 110 2| 614 5] 8 S |7 [18 111215 1614 !
v] 4l] ptlmjz2fsls]7]5 8 o 1018 14 12015 16 |
g | } 5 L 1121 2 JEEEE Je o1 1al8 15 KR
gf | | I®s L Tisfzpa a5 78 R 16 |
T INEBEEE 5] 1|14 6] THo[11 128 |13716 ERE ?
time
Figure 4: The reception table for L = 5, 7 = 7 and k = 16. The items received as active items are denotes by bold numbers.
same time step as some active item ¢ is being received by a More than one item may enter a processor’s buffer at a given time
processor in the block where 1 mod r = 1. We then use the step, but only one item can be received at each time step. !
same scheme as the one for L +1 < r < 2L. Obviously, we
are delaying sending by atmost r — 1 < L. Forr = 3 we Theorem 3.8 Forallk, L and P, thereis a single-sending schedule
have a slightly different reception scheme : we delay sending for k-item broadcast which is optimal on the modified model.
item 1 untl it can be first received at the same time as some
active item 7 is received by a processor in the block where 1 In the optimal broadcast scheme under the modified assumptions,
mod r = 2. We have p; receiving item 1 before pp. For the item 7 is transmitted from the source processorat time : — 1, reaching
rest of the items j, j is received by processor pr. at time T iff its root processorat time 2 — 1+ L. It is then transmitted to the other
7 — 1 was received by processor pm—; at time { — 1. Again, processors according to an optimal t-step broadcast tree /,, except
we are delaying sending by at most r — 1 =2 steps. that the reception of the item at some leaves of the broadcast tree
will be delayed, as described below. The one-to-one assignment
5. X r = 2, we sce that we have used up all but one of the of non-source processors to the nodes of I, is the same as the
blocks of size 1, but the blocks of size L +2 < r < 2L assignment used in the algorithm given in the previous section.
and 7 = L all use blocks which are one size larger than Thus, if a processor is an r-sender for item 1, then it corresponds to
needed. Thus one of the transmissions of 7 is not needed a node of out-degree 7 in T;; if a processor is a receiver for item 1
per each block. So, these transmissions are instead sent then it corresponds to a leaf of 7.
to processors in eac::\ blo‘ik of 2 v.vhi‘ch needs to receive ir. We now describe the behavior of a processor at a typical time
Since each of ‘the.sc extra mm‘snussmfxs comej from blocks step. Just prior to each time step, processor p’s buffer will consist
whose transmissions are first being received a't time t+ L +,1 entirely of inactive items (for p). At the beginning of the time step,
(excepF fo.r the case L, =3 Wh?m bl'ock's of size 3 have their at most one active item and one inactive item will arrive at p’s buffer.
transmissions first bem.g Arccewed in time step 7 + ,2? thus If an active item ¢ has arrived, then p will receive it and commence
v've have all the ransmissions to the b1°9ks of 2 a.mvmg at sending it to other processors. If p is assigned to a node u of T,
time ? + L (o'r for L =3andr=3, _at time 1 + _1)' Sm?e then p sends the item to those processors that are assigned to the
we a.re assmg L is odd, t'he reception (?f rl?ese items will children of 7. An inactive item that reaches p at the same time as
not interfere with the receptions of the active items for these some active item is said to be delayed. It will remain in the buffer
blocks. until it is received at some later time step in which no active item
6. If r = 1 then there is only one processor in the block and it arrives. We omit tlfe further details of the processor assignment and
would have received all k items as active jtems. schedule of receptions and transmissions. It can be shown that the
entire process will be completed by time L + B(P —1)+k — 1.
7. The receive-only processor receives all its items from the Figure 5 gives an optimal schedule where L =3, P —1 =13

processor in the remaining free block of 1.

3.5 Optimal Broadcasting of ¥ Items

‘We have given an algorithm for broadcasting & items that needs only
I —1 time steps more than the lowerboundof B(P—1)+L+k—1.
In this section we show that this lower bound is achievable if we
modify the model slightly by assuming that, at any time step,

o each processor p has a buffer containing all items sent to p at
least L time steps earlier which have not yet been received
by p, and

¢ each processor p can examine the items in its buffer and
determine which one to receive during the time step.

and ¥ = 14. The processors are grouped into blocks exactly as
in the previous section. In the figure, a table entry of : associated
with processor p; at time ¢ indicates that, at time ¢, p, receives the
' item. X item 7 is circled then 7 is an active item that causes an
inactive item to be delayed. If an item z is enclosed in a square then
11s an inactive item that was delayed by some active item.

4 Other Broadcast Problems

In this section, we present two other generalizations of the broadcast
problem and give optimal algorithms for these problems.

IThere is a scheme which achieves the lower bound and needs a buffer
size of only 2.

150

b 7 273 433 8 8 9 10 11 12 15|14
| 2 8 1 3 4 538 7 9 10 11 12 13 6
} 3 (@ 2 4 5 6 7 871]10 11 12 13 14
‘ 4 110 3 5 6 7 8 9.2 11 12 13 14
5 1 201D 4 638 7 8 9 10 12 13 14
1 6rnndn2. 3802 7.8 910 11 7513 14
5 1 4 2 (7)) 5403 8 (43 6 11 12 914
8 2 &) 3{E_§_®W‘ 9 147, 12 13 10
=3 3. 1.6 402 702510 1. 81314
- 1 3 2 5 4 7 6 9 8 11 10 13 12 14
.................................... 2.1.4.3.6.5.8.7.10 9 12 11 14 13 ...
12 3 4 5 6 7 8 910 11 12 13 14
.. 1.2 8. 4.5 6 7.8 91011 1213 14
time
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 5: L =3, P -1=13,k = 14.

4.1 All-to-All Broadcast

In the P-way all-to-all broadcast problem, each of P processors
has a data item that is to be made available to every processor. Of
course, one could solve this problem using P one-to-all broadcasts
but a more efficient (and simpler) solution is possible.

Observe that since each processor must receive P — 1 items and
the first one cannot be received until time L + 20, a lower bound on
the time for P-way all-to-all broadcastis L +2¢ + (P — 2)g. On
the other hand, if processor ¢ sends out its data item to processors
1+ 1 {mod P)..... 1+ (P — 1) (mod P) (in that order) at time
O.9..... (P —2)g, each processor would receive messages at time
L+20.L4+204+9¢.....0L +20+ (P —2)9. We thus have
a simple optimal algorithm for all-to-all broadcast. The same
communication schedule is optimal for the problem of all-to-all
personalized communication in which each processorhas a distinct
item to send to every other processor.

The lower bound argument and our algorithm extend easily
to the situation where each of the P processors has k items to
broadcast: since a processor must receive k(P — 1) items and the
first one cannot be received until L + 20, we have a lower bound of
L +20+ g(k(P — 1) — 1). This bound is matched by repetitions
of the previous algorithm.

‘We remark that the order of transmission for processor ¢ does not
have to be the one indicated above. Any collection of permutations
oftheset S = {1,.... P}, one for each processor, such that no
processoris the target of two messages at the same time, will yield an
optimal algorithm. (For k-item broadcast, analogous permutations
of the multiset consisting of k copies of S will lead to optimality.)

4.2 The Combining-Broadcast Problem

In parallel computation, one frequently encounters situations where
each processor holds a value and the P values are to be combined
into one (or reduced) using some operation (such as max or +).
Reduction can be viewed as “all-to-one" broadcast (with a slight
change in model parameters) and is thus solved optimally by simply
reversing the directions of messages in optimal broadcast.

If the reduced value is to be made available to all processors,
we get a problem which we may think of as an all-to-all broadcast
with combining. Clearly, this problem can be solved by a reduction

151

followed by broadcast, which is optimal to within a factor of 2.
However, we show below that all-to-all broadcast with combining
takes no longer than all-to-one reduction.

Let r, be a value initially available at processorz, 1 =0.. ... P-
1. The problem is to make ro + ... + rp_; available to each
processorin the shortest possible time. The ‘+” operationis assumed
to be commutative and associative. In the sequel, all arithmetic on
processorindices will be modulo P and for indices 1. j. r[7 : j]will
denote the quantity r, 4 r,.1 + ... + r,. Thus, for example, if
P=521[1:3=z5+r2+riwhiler[3:1] =21+ 210+ s+ 13

For simplicity, we shall work with the postal model and assume
that the combining operation takes zero time. With these assump-
tions, it is clear that if a message is sent to processor 1 at time 1, it can
be received attime ¢+ L, combined with r, and the result transmitted
to another processor at time ¢ + L (arriving at its destination at time
t+2L)

Our algorithm will be described in terms of the sequence {f.}
defined in Section 2. Let T, the amount of time for the algorithm,
be fixed, and let P = p(7T;L.0.1). Our algorithm has the
following simple description: attime) = 0.1.. ... T'— L, processor
1.1 =0,..., P~1sendsits current value to processor + f, 4 1 .1.
(As indicated earlier, the values sent at time ; arrive at their
destinations at time ; + L and are instantaneously combined into
the current value at the destination processor before transmission at
time) + L.)

Theorem 4.1 The algorithm presented above leaves the value
r[0: P —1)ateach ofthe P = p(T; L.0.1) processorsat time T.

Proof: We inductively prove that at time j processor ¢ has the
value z[i — f; + 1: 1]. Observe that this corresponds to a maximal
set of processors whose values can be combined by time j. O

5 Optimal Summation

In this section, we consider the problem of computing the sum of »
operands in the LogP model. The input to the problem is a set of
operands 7, X, and we assume that an algorithm can choose
how these are initially distributed among the P processors. We

assume that the addition operation is commutative * and that each
addition operation takes unit time. Our proof of optimality is based
on the following inversion of the problem: instead of finding an
algorithm to add » operands in minimum time, find an algorithm
that adds the maximum number of operands in t units of time.

5.1 Summation Trees

Without loss of generality, a summing algorithm .4 can be viewed as
arooted binary tree T 4 with a leaf for each operand and an intemal
node for each addition operation. Each operation is carried out
on one of the P processors and hence, operands are of two types:
those available in the processor’s local memory and intermediate
results received from other processors. A summation algorithm
can be represented by the computation schedules for the various
processors, together with a tree giving the pattemn of communication
among them.

An example is shown in Figure 6. The initial work for each
processor is represented by a linear chain of input-samming nodes.
Unless the processor is a leaf of the communication tree, it then
repeatedly receives a value, adds it to its partial sum and performs
a chain of g — ¢ ~— 1 input-summing nodes. Observe that local
computations overlap the delivery of incoming messages and the
processor reception overhead begins as soon as the message arrives.

We will establish that the communication pattemn induced by
optimal summation is the time-reversal of an optimal single-item
broadcasttree: a processorthat receives the item at time d in optimal
broadcast sends a (single) message at time t — d. Suppose that
some processor sends messages Mp.....] My attime Th..... Tx.
Identifying messages with the corresponding nodes in the binary
tree, it is clear that A/, and }/, represent sums of disjoint sets of
input operands. Thus, the processor could add 3/, to some leaf of
M) at time T, without changing the total number of leaves in the
tree. This gives an algorithm in which each processor (except one)
sends exactly one message. For uniformity of discussion, we will
assume that the processor responsible for the final addition (at time
t) also sends a message at time 1.

Suppose that in 2 summation algorithm a processor initiates
message receptions at times R; < ... < Rj; and a message
transmission at time S. Then R, = S — (o + 1} — (k — 3)g
for otherwise one of the receptions could be delayed allowing its
sender to add more input operands into its partial sum. We will
call such an algorithm lazy. If we reverse the direction and timing
of all messagesin a lazy algorithm, i.e. a message sent at time .S
from processor ¢ to 3 is replaced by one that is received by 7 from
J at time t — 5, we get a broadcast algorithm in which sending
processors “wait" for one time step before transmissions. (This
corresponds in A to the steps that receiving processors spend just
after receptions in adding the received partial sums.) Thus, lazy
surnmation algorithms for a machine with parameters L.o.y. P
are in one-to-one correspondence with broadcast algorithms for a
machine with parameters L + 1.0.g, P.

Lemma 5.1 Let A be a lazy summation algorithm that adds n
operands in t steps and in which the processors initiate their
message transmissions at times 51 < 5; < ... < Sp = t. Then
n=3,5 —op+1

20ur optimal algorithm for commutative summation can be used for non-
commutative summation with an appropriate renumbering of the operands.

Proof: Let k, be the number of messages received by processor
t. Then, the number of input operands that are directly summed
by processor ¢ is exactly 5, — {0 + 1)k, + 1. Summing over the
processors yields the result.C

‘We see that the broadcast pattern corresponding to optimal lazy
summation must be that which minimizes X(¢ — S,), which is
precisely an optimal broadcast pattern.

6 Conclusion

In this paper, we have considered different broadcast problems
including single-item, X-item, all-to-all, and combining broadcast.
We also considered the problem of summation, which, as we
have shown, can be considered as a “reverse" broadcast. We
have presented optimal algorithms for single-item, all-to-all and
combining broadcasting as well as for summation.

For the k-item broadcast problem, we considered the case where
the root was single-sending, and presented an algorithm which
required only L — 1 additional steps above the lower bound for
single-sending and hence, at most 2L — 1 steps above the general
lower bound. In fact, by relaxing certain restrictions on the Log P
model, we were able to present an algorithm which achieved
the single-sending lower bound. We introduced the continuous
broadcast problem to further examine whether the lower bound is
achjevable. We have shown thatfor3 < L < 10and P ~1 = P(t)
for large enough ¢, we can broadcasteach item in optimal time using
a block-cyclic processorassignment scheme. We conjecture that the
same is true for all L > 2. We also showed that optimal continuous
broadcast used for k items yields a schedule that is within L steps
of optimal.

Acknowledgements

We thank Amotz Bar-Noy, Shlomo Kipnis and Ramesh Subramo-
nian for valuable discussions.

Computational support was provided by the NSF Infrastructure
Grant number CDA-8722788. Richard Karp and Abhijit Sahay are
supported by NSE/DARPA Grant CCR-9005448. Eunice Santos
is supported by a DOD-NDSEG Graduate Fellowship. Klaus Erik
Schauser is supported by an IBM Graduate Fellowship.

References

[1] A.Aggarwal, A. K. Chandra, and M. Snir. On Communication
Latency in PRAM Computation. In Proceedings of the ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 11-21. ACM,
June 1989.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication
Complexity of PRAMs. Theoretical Computer Science, pages 3-28,
March 1990.

[3] N. Alon, A. Barak, and U. Manber. On disscminating
infomation reliably without broadcasting. In Proceedings of the
International Conference on Distributed Computing Systems, 1987,

[4] A. Bar-Noy and S. Kipnis. Broadcasting Multiple Messages
in Simultaneous Send/Receive Systems. Technical Report NO. RC
18352, IBM Research Division, September 1992. Also to appear in
Discrete Applied Mathematics.

[5] A.Bar-Noy and S.Kipnis. Designing Broadcasting Algorithms
in the Postal Model for Message-Passing Systems. In Proceedings of
the ACM Symposium on Parallel Algorithms and Architectures, pages
1122, June 1992.

152

PO ++++++++++T.T—JT%,*}B-%1#%4}'O_+
P1 |+ + + + 4 + e e R
POl + 4+ + 4+ + +
P3 +++++++++_-!-_v—+—" ’," L
P4 |+ + + + m——""" o
P5l+++++++ +_-£-_-g_v—+’v—+—'
P6 |+ + + -+ mmm—-" Pt
P7 |4+ + + + + + 4w’
I | 1 | T
0 5 10 15 20 o5 TC

Figure 6: Computation schedule (left) and communication tree (right) for optimal summation with t = 28. P = 8, L=5g=4.0=2.

[6] A.Bar-Noy and S. Kipnis. Multiple Message Broadcasting in
the Postal Model. In Proceedings of the Seventh International Parallel
Processing Symposium, April 1993.

[71 D.P. Bertsekas and J. N. Tsitsiklis. Paraliel and Distributed
Computation: Numerical Methods. Prentice-Hall, 1989.

[8] E. Cockayne and A. Thomason. Optimal multi-message
broadcasting in complete graphs. In Proceedings of the 11th SE
Conference on Combinatorics, Graph Theory. and Computing, pages
181-199, 1980.

[9] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken. LogP:
Towards a Realistic Model of Parallel Computation. In Fourth
ACM SIGPLAN Symposium on Principles and Practice of Farallel
Programming, May 1993. Also appears as TR No. UCB/CS/92 713.

[10] A. M. Farley. Broadcast time in communication networks.
SIAM Journalon Applied Mathematics, 39(2):385-390, October 1980.

[11] S. Fortune and J. Wyllie. Parallelism in Random Access
Machines. In Proceedings of the 10th Annual Symposium on Theory
of Computing, pages 114-118, 1978.

[12] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A
Survey of Gossiping and Broadcasting in Communication Networks.
Networks, 18(4):319-349, 1988.

[13] C-T. Ho. Optimal Comunication Primitives and Graph Em-
beddings on Hypercubes. Ph.D. Thesis, Yale University 1990,

{14] C-T. Ho and S.L. Johnsson. Distributed routing algorithms
for broadcasting and personalized communication in hypercubes.
In Proceedings of the 1986 International Conference on Parallel
Processing, pages 640—648. IEEE Computer Society, 1986.

[15] R. M. Karp, M. Luby, and E Meyer auf der Heide. Efficient
PRAM Simulation on a Distributed Memory Machine. In Proceedings
of the Twenty-Fourth Annual ACM Symposium of the Theory of
Computing, pages 318-326. ACM, ACM, May 1992,

[16] K. Mehlhorn and U. Vishkin. Randomized and deterministic

simulations of PRAMs by parallel machines with restricted granularity
of paralle]l memories. Acta Informatica, 21:339-374, 1984.

[17] C. H. Papadimitriou and M. Yannakakis. Towards an
Architecture-Independent Analysis of Parallel Algorithms. In Pro-
ceedings of the Twenitieth Annual ACM Symposium of the Theory of
Computing, pages 510-513. ACM, 1988.

{i8] L. G. Valiant. A Bridging Model for Parallel Computa-
tion. Communications of the Association for Computing Machinery,
33(8):103-11, August 1990.

153

