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Optimal Broadcast Scheduling in Packet Radio
Networks Using Mean Field Annealing

Gangsheng Wang and Nirwan Ansari,Senior Member, IEEE

Abstract—Packet radio (PR) is a technology that applies the
packet switching technique to the broadcast radio environment.
In a PR network, a single high-speed wideband channel is shared
by all PR stations. When a time-division multi-access protocol is
used, the access to the channel by stations’ transmissions must
be properly scheduled in both time and space domains in order
to avoid collisions or interferences. It is proven in this paper
that such a scheduling problem is NP-complete. Therefore, an
efficient polynomial algorithm rarely exists, and a mean field
annealing-based algorithm is proposed to schedule the stations’
transmissions in a frame consisting of certain number of time
slots. Numerical examples and comparisons with some existing
scheduling algorithms have shown that the proposed scheme
can find near-optimal solutions with reasonable computational
complexity. Both time delay and channel utilization are calculated
based on the found schedules.

I. INTRODUCTION

PACKET RADIO (PR) [1], which can handle bursty-type
traffic efficiently, is an option for high-speed wireless data

communications, especially over a broad geographic region.
In a PR network, each station is equipped with a transmit-
ter/receiver and a control unit. Stations communicate with each
other via a shared high-speed broadcast radio channel. The
control unit performs the packet switching functions. When a
station broadcasts through its antenna, each neighboring station
receives the transmission. The neighboring station will absorb
the packets to which the transmission designates. Otherwise,
the station will store the packets in its buffer and send them
out later. Therefore, for any two distant stations where direct
connectivity does not exist, the intermediate stations act as re-
peaters and perform store-and-forward functions. Fig. 1 shows
a packet radio network in the Internet. The communication
between geographically separated hosts is established through
the packet radio network.

In a multihop PR network, since a single channel (usually
wideband) is shared by all users, the transmission for each sta-
tion must be scheduled to avoid any collision or interference.
Based on the characteristics of a multihop network, the single
radio channel can be shared by all stations in both time and
space domains. A multiaccess protocol, namely spatial time-
division multiple-access (TDMA), can be used to schedule
conflict-free transmission [2]. In the spatial TDMA network,
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time is divided into frames which consists of fixed-length time
slots. When certain stations transmit simultaneously, collision
or interference will occur. Therefore, any two stations that may
result in collision or interference must be scheduled to transmit
at different time slots, while stations some distance away may
be arranged to transmit at the same time slot without causing
interference. Since the primary objective of the PR network is
to provide high throughput with low delay, a scheme must
provide a schedule which can achieve maximum channel
utilization as well as lower delay. For a fixed-topology PR
network in which locations of stations are fixed, the problem
is to schedule a frame in which each station transmits at
least once. Additional transmissions can be added into the
frame if the addition does not cause any collision. The optimal
schedule is the one that has the minimum length (the number
of time slots in a frame) and provides the maximum number
of interference-free transmissions. Such a scheduling problem
is proved NP-complete in the Appendix, implying that a good
algorithm rarely exists in finding the global optima among a
large number of local optima. In this paper, an approximation
algorithm based on mean field annealing (MFA) is presented
to solve the scheduling problem. In Section II, the scheduling
problem is stated. The MFA theory is reviewed in Section
III. In Section IV, MFA is applied to solving the optimal
scheduling problem. Numerical examples are given, and the
resulting performance is evaluated in Section V. Conclusions
are made in the last section.

II. PROBLEM FORMULATION

A PR network can be represented by a graph
where the vertices in are network stations, and is a set
of edges. The total traffic passing through stationconsists
of packets received from other stations which will be routed
through station and the packets from the terminals attached to
it. Time is divided into unit-length slots. Each frame consists
of a fixed number of time slots. Packets can be transmitted in
successive frames. The transmission time of stations in a frame
is scheduled to avoid any collision. We are concerned with
the fixed assignment of transmission for stations in a frame.
Thus, once the optimal transmission patterns (the arrangement
of transmissions) are determined, the frame is repeated in the
time axis. Without loss of generality, we assume that a time
slot equals in length to the amount of time for a station to
transmit one packet over the channel. We also assume that
all stations have the same transmission rangeand they
are synchronized. Zero-capture is assumed, i.e., when some
stations receive two or more overlapping packets, regardless
of the difference of received signal power between the stations,
collision occurs and all of the packets are destroyed. For any
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Fig. 1. A PRNET in the Internet.

two stations , , if the distance between them is less than
, they can receive the packets transmitted from each other.

Therefore, there exists an undirected edge
incident to station and , and the two stations areone-
hop apart. If , but there is such an intermediate
station as and , then station and

are two-hop apart. The topology of a PR network can be
described by an symmetric binary matrix , where

is the number of stations in the network. The matrix,
, also known as the connectivity

matrix, is defined by

if and
otherwise.

(1)

To ensure that a packet is correctly received in a station, the
following constraints must be satisfied.

1) A station cannot have transmission and reception status
simultaneously, i.e., if , station and must
be scheduled to transmit in different time slots.

2) A station is not allowed to receive two or more trans-
missions simultaneously, i.e., if , ,
but , station and must transmit in different
time slots in order to avoid collision in station.

If the first constraint is violated, theprimary interference
(collision-type) is said to have occurred. Thesecondary inter-
ferenceoccurs if the second constraint is violated. In short, a
station and its one-hop or two-hop neighboring stations must
be scheduled to transmit in different time slots.

We can form a new matrix called the compatibility
matrix from matrix , where

if stations and are one-hop
or two-hop apart
otherwise.

(2)

Note that , and is symmetric, i.e., .
Therefore, for any two stationsand , if , both stations
can transmit in the same slot with no interference. We assume

that each frame consists of time slots. In a frame, each
station must be scheduled to transmit at least once (one time
slot). Additional transmissions can be arranged provided that
the addition does not cause interference. We use an
binary matrix to express a transmission schedule,
where

if station transmits at
the th slot in a frame
otherwise.

(3)

Let be the channel utilization for station, then
number of transmission slots assigned to station

frame length

(4)

The channel utilization for the whole network, is given by

(5)

Denote as a set of interference-free schedules where
, and each feasible schedule is an

binary matrix defined by (3). Define as the channel
utilization achieved by schedule . Therefore, the optimal
scheduling problem is described as follows. Find the optimal
schedule so that it adheres to the following
constraints.

1) It has the shortest frame length .
2) It satisfies the constraints

(6)
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and

(7)

3) It yields the maximum channel utilization, i.e.,

(8)

Equation (6) reflects the constraint that each station must
be able to transmit at least once in a frame. Equation (7)
eliminates simultaneous interference transmissions between
one station and all of its one-hop or two-hop neighboring
stations.

For a given and , there are schedule config-
urations. An exhaustive search for the optimal schedules is
prohibitive when and get larger. For a given PR network,
the minimum frame length depends on the topology of the
network and is generally unknown. However, a tight lower
bound for a frame length can be found, thus allowing one to
estimate the minimum required frame length. By defining the
degree of a vertex as the number of edges incident to it and
denoting the degree as deg (), we have the following lemma.

Lemma 1: The frame length satisfies

(9)

where

(10)

Proof: It is obvious that deg () equals the number of
one-hop neighbors of station. Denote as the set of one-
hop neighbors of station. For any two stations ,
since and , station and are one-hop
neighbors if and two-hop neighbors if .
According to the constraints mentioned above, stationand all
its deg () one-hop neighbors must be arranged to transmit in
different distinct time slots in order to obtain interference-free
transmissions. Any two stations, cannot transmit
in the same slot. Therefore, the required number of time slots
for transmission for station and its one-hop neighbors is

, and the least required number of time slots of
a frame for the network, , is given by

(11)

Equation (11) only provides a lower bound for the frame
length. For a given network, the frame length for any of the
interference-free schedules is always greater than or equal to

, i.e., the inequality holds. The real frame
length for an optimal schedule depends on the topology of a
network. For certain networks, a feasible schedule with exact
frame length may not exist. Therefore, a longer frame
length is required. Equation (9) provides useful information
when interference-free transmissions are scheduled. We can
start to search for the optimal schedules with a frame length
equal to the lower bound . If no feasible schedules with
this length can be found, we will increase the frame length,
and then search further for the feasible solutions. In this way,
the scheduled frame length would be minimized. Once the
frame length is determined, the optimal scheduling procedure
will continue until a interference-free schedule with maximum
channel utilization, defined in (5), is found. It is shown that

such a scheduling problem is NP-complete, which means that
an efficient polynomial algorithm rarely exists. In Section IV,
we will discuss how to use neural networks to solve such an
optimal scheduling problem.

III. M EAN FIELD ANNEALING

A. Statistical Mechanics

In statistical mechanics, a physical process calledannealing
is often performed in order to relax the system to the state
with the minimum energy. In the annealing process, a solid in
a heat bathis heated up by increasing the temperature of the
bath until the solid is melted into liquid, then the temperature
is lowered down slowly. At each temperature, all particles
randomly arrange themselves until thermal equilibrium is
reached. If the cooling is slow enough to allow the solid
to reach thermal equilibrium at each temperature, the low
energy crystalline solid would be formed when the system
is frozen ( ). However, if the annealing is too fast, the
solid may become glass with noncrystalline structure or the
defected crystal with meta-stable amorphous structures. If a
state is defined by the set of particle positions, then, at thermal
equilibrium, the probability of the system being in stateis
represented by theGibbs distribution[3], [4]

(12)

where is called thepartition
function, is the Boltzmann constant, is the temperature,
and is the energy of state, is the state space, and

, where is the positive real space. It
is easy to find that [3]

if

otherwise
(13)

where and .
From this equation, we can see that as the temperature ap-
proaches zero, the system will converge to the states with the
minimum energy, i.e., the states with the minimum energy are
reached at lower temperatures.

B. Simulated Annealing

Based on the annealing process in statistical mechanics,
Kirkpatrick et al. [5] proposed an algorithm, namely,simu-
lated annealing(SA), for solving complicated combinatorial
optimization problems. In the SA algorithm, a simulation
of the annealing process is performed. The cost function
and configuration in optimization correspond to the energy
function and state in statistical physics, respectively. The
temperature is introduced as a control parameter.

A cost function , , to be minimized is
usually defined on some finite set. For each configuration
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, there is a neighboring set , which is
generated by a small perturbation of.

In [3], it shows that the SA algorithm asymptotically con-
verges to the configurations with the minimum cost, i.e., if
the temperature is slowly lowered and at each temperature
the system performs a sufficient number of transitions, the
configurations (solutions) with the global minimum cost can
be found with probability one.

C. Mean Field Annealing

Even though SA is proved to be able to reach the global
optima asymptotically, it is time consuming to reach thermal
equilibrium at each temperature. Finite number of transitions at
each temperature cannot guarantee convergence to the global
optima. In statistical physics,mean fieldapproximation is often
used. Mean field annealing (MFA) uses a set of deterministic
equations to replace the stochastic process in SA. It uses
saddle point approximation in the calculation of the stationary
probability distribution at equilibrium, and reaches equilibrium
at each temperature much faster than SA. Even though this
approximation method may not guarantee convergence to
global minima, it does provide a good approximation in finding
near-optimal solutions with much less computing effort.

The MFA theory and the related derivations can be found in
[7]. For a binary system, a configuration
is represented by a sequence of binary values, i.e.,

. We have the following MFA equations:

(14)

(15)

where is the average operator. in (15) is called the
mean field. In MFA, the iterative procedure to reach thermal
equilibrium at each temperature is calledrelaxation, in which
the mean field is updated by

(16)

IV. THE OPTIMAL SCHEDULING ALGORITHM BASED ON MFA

A. Energy Function

To solve the optimal scheduling problem by using MFA, we
first need to map the channel utilization to be maximized and
the constraints into an energy function. We assume that the
frame length is and there are stations in a PR network.

neurons are required to represent a schedule. Each
neuron is defined in (3).
The following energy function is derived:

(17)

where weights . The first term in (17) is the
negatively weighed channel utilization. The second term is a
penalty function for constraint violations. When the constraint
is satisfied, it becomes zero. The third term is used to force
neurons to converge to either 0 or 1 (if all or , the
third term equals zero). The mean field of neuronis

where (18)

B. The MFA Scheduling Algorithm

The updating of the neuron average is given by

(19)

The MFA iteration proceeds until freezing occurs. Since the
exact frame length is unknown, we can start to schedule the
frame with length , the lower bound of the frame length
shown in (11). The proposed scheduling algorithm includes
three steps.

Step 1) Presetting Neurons:Find the station which has
the maximum degree , then set the initial
frame length as defined in (11),
and assign station and its one-hop neighboring
stations to the different
distinct time slots. For example, set and

. For the
th slot, since , the th neuron with

must be set to to resolve interference [see
(7)]. The preassigned neurons no longer need to be
updated, and their values will be used to update
the other neurons.

Step 2) Performing the MFA Iterations Based on (19):The
iteration continues until freezing occurs and the
freezing state should provide the maximum channel
utilization within the frame length .

Step 3) Applying the Heuristic Algorithm for Unassigned
Stations: After completing the above two steps,
some stations might remain unassigned for trans-
mission due to the interference-free constraint. The
number of unassigned stations depends on the
topology of the network. Usually, after the first
two steps, only a few stations are unassigned.
Extra time slots are needed to arrange the remain-
ing transmissions. We use the following heuristic
algorithm to schedule the transmissions of the
unassigned stations. Denote the unassigned stations
as

a) Sort the stations in in a descending or-
der of station degree such that
deg .
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b) Add a time slot to the frame, and assign the
stations in to transmit in the slot. The
priority of assigning a station’s transmission
is based on the order of, i.e., the priority of

is greater than that of . The stations
arranged in the slot must be interference-free.
Repeat the above procedure untilis empty.

c) The actual frame length equals the
number of added time slots.

d) Check the stations which have been assigned
to transmit in the first time slots. If any
of the stations can transmit in the added time
slots without conflict, assign the transmissions
of the stations in the corresponding time slots.

After the three steps are completed, the optimal schedule
represented by is translated into the actual transmis-
sion assignment (i.e., means that stationcan transmit
in slot ).

C. Critical Temperature

Each neuron is updated according to

(20)

where , is the neuron matrix of dimension
, and stands for the th iteration.

From (20), it is seen that iterations starting at too high a
temperature result in trivial solutions. Starting at too low a
temperature, on the other hand, might force the system into a
poor or invalid solution. The critical temperature is defined as
the temperature at which fast state transitions begin.

For the scheduling problem

(21)

It is seen from (21) that the state of each neuron remains rela-
tively unchanged at high temperatures. The iteration procedure
in (21) should start at a temperature (the critical temperature)
at which fast transition begins as illustrated in Fig. 2 until
steady state is reached. Thus

where is chosen, at which state transition
becomes rapid. Since all neurons are initialized to
( is a small random number), we chose

Fig. 2. Illustration of state transition.

(22)

Thus

or

The lower bound for the temperature is taken as

(23)

The derived critical temperature is suitable only for the syn-
chronous mode, in which all are updated simultaneously
using the previous . For the asynchronous mode, each
neuron is sequentially updated. The critical temperature for
asynchronous iteration can be estimated by atrial-and-error
method, i.e., the iteration starts at a very high temperature and
the temperature is gradually lowered. At each temperature,
each neuron is sequentially updated once. At the end of each
iteration, the absolute average value

(24)

is checked. At high temperatures, for some small
constant . When , significant state transitions begin.
Therefore, when , the trial process ends, at which point
the corresponding temperature is critical.

D. Annealing Schedule

The annealing schedule reflects the way the temperature is
reduced, and the following empirical annealing schedule

(25)

is adopted in our simulations.

E. Stopping Criterion

At a very low temperature, all neurons converge to either
zero or one. Let

(26)
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Thus, the iterative process may stop either when the error
is approaching zero (in our case, ) or when the
temperature reaches zero. The final values of neurons represent
the schedule.

V. NUMERICAL EXAMPLES AND PERFORMANCE ANALYSIS

A. Channel Utilization and Average Time Delay

The performance of the resulting schedules can be evaluated
by two criteria: channel utilization and average time delay.
The channel utilization is defined in (5). Before we derive the
average time delay, the following assumptions are made.

1) Packets have a fixed length, and the length of a time slot
equals the time required to transmit a packet.

2) The interarrival time for each stationis statistically
independent from other stations, and packets arrive
according to aPoissonprocess with a rate of (pack-
ets/slot). The total traffic in stations consists of the
traffic incoming from other stations and the data from
terminals attached to it. Packets are stored in buffers in
each station and the buffer size is infinite.

3) The probability distribution of the service time of station
is deterministic and statically independent from other

stations. The average service rate is(packets/slot).
4) Packets can be transmitted only at the beginning of each

time slot.
Under the above assumptions, a network can be modeled

as M/D/1 queues, where is the number of stations.
According to thePollaczek–Khinchin formula[9], the average
delay for each queue is given by

(27)

where
average service time for station;
utilization factor for station ;
second moment of service time for station.

Since the service time is deterministic, the variance equals
zero, and thus

(28)

and

(packets/slot) (29)

The total time delay is given by

(30)

B. Numerical Results

Three PR networks shown in Fig. 3 with 15, 30, and 40
stations are scheduled. The resulting schedules are shown in
Fig. 4, where a black box represents a transmission time slot.
Note that , and the scheduled frame length

(a)

(b)

(c)

Fig. 3. The radio networks used in the simulation: (a) the 15-station network,
(b) the 30-station network, and (c) the 40-station network.

is 9, 11, 10, respectively, which are close to the lower bound
described by (9).

We compare the performance achieved by the MFA schedul-
ing algorithm with the other two scheduling algorithms [10],
[11] in which the objective of scheduling is to achieve the
maximum channel utilization. The time delay and channel
utilization are plotted in Fig. 5. From this figure, it is seen
that the time delay experienced by the MFA schedule is much
less than that of the other two scheduling algorithms which
have the same time delay, but the channel utilization achieved
by MFA is a little bit less than the other two.
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(a)

(b)

(c)

Fig. 4. The MFA schedules: (a) the 15-station network, (b) the 30-station network, and (c) the 40-station network.

VI. CONCLUSION

In this paper, we presented an efficient broadcast scheduling
algorithm based on MFA neural networks. As shown in the
Appendix, the TDMA broadcast scheduling in a PR network
is an NP-complete combinatorial optimization problem. We
first map the channel utilization to be maximized and the
interference-free constraints onto an energy function, and then
the MFA procedure is applied to searching for the optimal
solutions. To reduce the computational complexity, we divide
the algorithm into three steps. In the first step, the solution
space is reduced by presetting some neurons according to
the topology of the scheduling network. The preset neurons
need not be updated further, and their values can be used to

update other neurons. In the second step, the MFA procedure
is executed to maximize channel utilization. At the end of the
execution, a solution with near-maximal channel utilization
can be found. After the first two steps, some stations might
not be assigned to transmit in any slots. To arrange the
unassigned stations, additional time slots are needed. In the last
step, a heuristic method is used to arrange the transmissions
of the unassigned stations. This step guarantees that the
additional number of time slots is minimal. Since neural
networks provide a parallel computing strategy, the proposed
scheduling algorithm will obtain the optimal solution faster
than other heuristic algorithms. Numerical results have shown
that the proposed algorithm can find the shortest interference-
free frame schedule while providing the maximum channel
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(a) (b)

(c) (d)

Fig. 5. Time delay for different schemes: (a) 15-station, (b) 30-station, (c) 40-station, and (d) channel utilization.

(a) (b)

Fig. 6. The derivation of an augmented graph from a graph G: (a) graph G and (b) graphGa.

utilization. The average time delay is much smaller than that
of the other two algorithms.

APPENDIX

NP-COMPLETENESS OF THE

BROADCAST SCHEDULING PROBLEMS

We denote the broadcast scheduling problem described in
Section II as . It is defined as finding an interference-free
transmission schedule with the minimum frame length.
can be described as a decision problem.

Instance: The scheduling problem , where
represents a packet radio network, andis a

positive integer ( .

Question: Is there a schedule which has the frame length
or less and each station transmits at least once in such a frame?

Using graph theory to assist the proof of NP-completeness
of the scheduling problem, we form an augmented graph

in such a way that

Fig. 6 illustrates the augmented graph derived from a graph
. For problem , finding an interference-free transmission

schedule in any time slot within a frame is equivalent to finding
a set of vertices in such that, if any , then

. All stations (vertices) in the set can transmit
simultaneously with no interference.
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(a) (b)

Fig. 7. Illustration of the complement of a graph: (a) graph G and (b) graph
Gc.

In graph theory, a subset is called anindependent
set in a graph if, for all , the edge

. Vertices are said to beindependentfrom each other
in the subset . The problem to find a maximum independent
set in a graph is denoted as . Since we will use in the
NP-completeness proof of problem , we first need to prove
that is NP-complete.

Theorem A.1:
Proof: is NP-complete. To prove is NP-complete,

we first need to show , and then find a polynomial
transformation from a known NP-complete problem called
clique, denoted by .

In an undirected graph , a clique is a subset
of vertices, each pair of which is connected by an

edge in . Therefore, a clique is a complete subgraph of.
The size of a clique is the number of vertices it contains. It
has been proved that is an NP-complete problem [12].
Here, we simply use the result to prove the NP-completeness
of the problem.

1) NP: “NP” stands for nondeterministic polynomial
time. Class NPis defined as the class of languages that
can be verified by a polynomial-time algorithm. Notice
that polynomial time verifiability does not imply poly-
nomial time solvability.Class P consists of problems
that can be solved in polynomial time, whereas the class

consists of problems for which a solution can be
verified rather than solved in polynomial time.

For a given graph , it is easy to see that
the decision problem verifying whether a selected subset
of vertices is independent and less than a certain
constant can be completed in polynomial time.
Therefore, .

2) Polynomial Transformation : We will show
that there is a polynomial transformation from
to , denoted by . Here, a polynomial
transformation from one problem to another problem

is defined as: there is a polynomial-time computable
function such that all instances if and only
if . The transformation is based
on the notion of thecomplementof a graph. For an
undirected graph , the complement of is
defined as , where

. Fig. 7 shows a graph and its complement and the
transformation from to .

The transformation takes an instance of the clique
problem as input. It computes the complement

, which is easily derived in polynomial time .

The output of the transformation algorithm is the in-
stance of the problem . To show this trans-
formation is valid, we need to prove that the graph
has a clique of size if and only if the graph has
an independent set of size.

Suppose that has a clique with ,
we claim that is an independent set in . Based on
the formation of , if any and ,
we have , which implies that vertices
are independent in . Since is chosen arbitrarily
from and every edge is not in , all
vertices in a clique are independent in .
Hence, the set of size forms an independent set
in . Conversely, suppose that has an independent
set of size , then, for all ,
we have , and in , which forms
a complete subgraph of in . In other words,

is a clique with size in .

From the above statement, we conclude that a graphhas
a clique if and only if the graph has an independent
set . The derivation of from can be completed in
polynomial time, and therefore .

Since we have shown that and , we
have proved that is NP-complete.

Theorem A.2:
Proof: is NP-complete. We first form an augment

graph from graph described above. Thus,
scheduling an interference-free transmission in any time slot
within a frame is equivalent to finding such a set
of vertices that, if any , then . To prove

is NP-complete, we first need to show NP, and
then find a polynomial transformation from the NP-complete
problem .

The broadcast schedule can be represented by

if station transmits at time slot
otherwise.

1) NP: To prove NP, we first need to
guessa frame schedule with an arbitrary frame length

( is the number of stations in the packet radio
network), then form the augmented graph
from graph at each time slot. Denote

, where is defined by the above equation.
We need to check whether for any .
At the same time, we need to check if the guessed
schedule length . It is easy to verify that the
checking process can be completed in polynomial time

Therefore, NP.
2) : Finding an interference-free schedule with

the minimum frame length is equivalent to coloring
vertices in so that, for any pair of vertices ,
if ( ) , then and must be assigned to different
colors. The coloring problem is to find the minimum
number of colors that can cover all vertices in a graph.
Here, the color corresponds to a time slot and the frame
length to the total number of colors . In order to find
the minimum , we should assign a color to as many
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 8. The decomposition of the scheduling problem.

Fig. 9. The decoding of the coloring graph.

vertices as possible provided that the coloring does not
cause conflict. Therefore, solving the problem can
be performed as follows.
a) Form an augmented graph based on .

b) Find the maximum independent set for
and assign a color to the set .

c) ,
.

If is not empty, then and repeat Step b),
else the coloring procedure ends. The results are encoded
into a frame schedule by

if
otherwise.

Fig. 8 illustrates the formulation of the graph and the
coloring process. We have , ,

, , , . Fig. 9 is the
decoding of the graph coloring result.

We notice that the coloring problem is equivalent to
finding the maximum independent set in . There-
fore, the broadcast scheduling problem can be
transformed into the independent set problem by
finding an augmented graph from , which is easily
generated in polynomial time. Thus, we have

.
Having shown and , we can conclude

that is NP-complete.
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