
 Open access Proceedings Article DOI:10.1109/SAHCN.2008.40

Optimal Buffer Management Policies for Delay Tolerant Networks — Source link

Amir Krifa, C. Baraka, Thrasyvoulos Spyropoulos

Institutions: ETH Zurich

Published on: 16 Jun 2008 - Sensor, Mesh and Ad Hoc Communications and Networks

Topics: Mobility model, Node (networking), Delay-tolerant networking, Propagation delay and Wireless network

Related papers:

 Epidemic routing for partially-connected ad hoc networks

 DTN routing as a resource allocation problem

 MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks

 Efficient routing in intermittently connected mobile networks: the multiple-copy case

 Spray and wait: an efficient routing scheme for intermittently connected mobile networks

Share this paper:

View more about this paper here: https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-
57onhcu8uy

https://typeset.io/
https://www.doi.org/10.1109/SAHCN.2008.40
https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy
https://typeset.io/authors/amir-krifa-3j9qc02gs5
https://typeset.io/authors/c-baraka-8zb1qil32o
https://typeset.io/authors/thrasyvoulos-spyropoulos-2tpwgus78n
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/conferences/sensor-mesh-and-ad-hoc-communications-and-networks-1319vxok
https://typeset.io/topics/mobility-model-3ciifjwh
https://typeset.io/topics/node-networking-2dv26b4f
https://typeset.io/topics/delay-tolerant-networking-235h54k0
https://typeset.io/topics/propagation-delay-1yzhc1it
https://typeset.io/topics/wireless-network-36z1b9ct
https://typeset.io/papers/epidemic-routing-for-partially-connected-ad-hoc-networks-s5rslcaiip
https://typeset.io/papers/dtn-routing-as-a-resource-allocation-problem-22qq5k3jz5
https://typeset.io/papers/maxprop-routing-for-vehicle-based-disruption-tolerant-1qv0k3f197
https://typeset.io/papers/efficient-routing-in-intermittently-connected-mobile-2ui9up17w8
https://typeset.io/papers/spray-and-wait-an-efficient-routing-scheme-for-50seq3wqos
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy
https://twitter.com/intent/tweet?text=Optimal%20Buffer%20Management%20Policies%20for%20Delay%20Tolerant%20Networks&url=https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy
https://typeset.io/papers/optimal-buffer-management-policies-for-delay-tolerant-57onhcu8uy

Optimal Buffer Management Policies for Delay

Tolerant Networks

Amir Krifa∗†, Chadi Barakat†, Thrasyvoulos Spyropoulos†‡

†Project-Team Planète, INRIA Sophia-Antipolis, France
∗National School of Computer Sciences (ENSI), Tunisia

‡Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

Emails: {Amir.Krifa, Chadi.Barakat}@sophia.inria.fr, spyropoulos@tik.ee.ethz.ch

Abstract—Delay Tolerant Networks are wireless networks
where disconnections may occur frequently due to propagation
phenomena, node mobility, and power outages. Propagation
delays may also be long due to the operational environment (e.g.
deep space, underwater). In order to achieve data delivery in such
challenging networking environments, researchers have proposed
the use of store-carry-and-forward protocols: there, a node may
store a message in its buffer and carry it along for long periods
of time, until an appropriate forwarding opportunity arises.
Additionally, multiple message replicas are often propagated
to increase delivery probability. This combination of long-term
storage and replication imposes a high storage overhead on
untethered nodes (e.g. handhelds). Thus, efficient buffer manage-
ment policies are necessary to decide which messages should be
discarded, when node buffers are operated close to their capacity.

In this paper, we propose efficient buffer management policies
for delay tolerant networks. We show that traditional buffer
management policies like drop-tail or drop-front fail to consider
all relevant information in this context and are, thus, sub-optimal.
Using the theory of encounter-based message dissemination, we
propose an optimal buffer management policy based on global
knowledge about the network. Our policy can be tuned either to
minimize the average delivery delay or to maximize the average
delivery rate. Finally, we introduce a distributed algorithm that
uses statistical learning to approximate the global knowledge
required by the the optimal algorithm, in practice. Using sim-
ulations based on a synthetic mobility model and real mobility
traces, we show that our buffer management policy based on
statistical learning successfully approximates the performance of
the optimal policy in all considered scenarios. At the same time,
our policy outperforms existing ones in terms of both average
delivery rate and delivery delay.

I. INTRODUCTION

The traditional view of a network as a connected graph over

which end-to-end paths need to be established might not be

appropriate for modeling existing and emerging wireless net-

works. Due to wireless propagation phenomena, node mobility,

low power nodes periodically shutting down, etc., connectivity

in many wireless networks is, more often than not, intermittent.

Despite this limited or episodic connectivity, many emerging

wireless applications could still be supported. Some examples

are the low-cost Internet provision in remote or developing

communities [1], [2], vehicular networks (VANETs) for dis-

semination of location-dependent information (e.g. local ads,

traffic reports, parking information, etc) [3], pocket-switched

wireless networks to extend and sometimes bypass access

point connectivity to the Internet [4], [5], [6], underwater

networks [7], etc.

To enable some services to operate even under these chal-

lenging conditions, researchers have proposed a new network-

ing paradigm, often referred to as Delay Tolerant Networking

(DTN [8]). To route messages in DTNs, store-carry-and-

forward protocols are proposed, where a node may store a

message in its buffer and carry it along for long periods of

time, until it can forward it further. This routing may happen

randomly, be based on statistical information [9], or even other

relevant information about the destination (e.g. social links,

affiliation, etc.). Furthermore, due to the inherent uncertainty

caused by the lack of complete (or any) information about

other nodes in the network, many replicas of the same message

may be propagated to increase probability of delivery. For

example, one of the first and most popular routing protocols

in this context, namely Epidemic routing [10], disseminates a

message replica to every node in the network.

Although a large amount of effort has been invested in the

design of efficient routing algorithms for DTNs, there has not

been a similar focus on buffer management policies. Yet, the

combination of long-term storage and the, often extensive,

message replication performed by many DTN routing proto-

cols [10], [9] imposes a high storage overhead on wireless

nodes (e.g. small handhelds, sensors, etc.). Moreover, the

data units disseminated in this context, called bundles, are

self-contained, atomic application-level data units, which can

often be large [8]. It is evident that, in this context, node

buffers will very likely run out of capacity and, thus, efficient

buffer management policies are necessary to decide which

message(s) should be discarded when a node’s buffer is full.

It has been demonstrated that buffer constraints can severely

affect the relative and absolute performance of DTN routing

schemes and consequently applications. For example, a num-

ber of studies have clearly shown that Epidemic routing has

minimum delivery delay under no buffer constraints (and no

bandwidth constraints), but performs poorly when buffer sizes

are limited [11], [12]. However, it is less clear what the right

buffer management policy is, in this context. For example,

the simple drop-tail policy, used in many networks, has been

shown to perform poorly in the DTN context [12]. Although

some improvement can be achieved, for example, using other

2

policies like drop-front [12], existing policies fail to take into

account the intrinsic characteristics and requirements of delay

tolerant networking and store-carry-and-forward routing. For

example, one of our results in this paper is that the best choice

of the message to drop is strongly dependent on the number

of copies in the network of the different messages existing in

the DTN node’s buffer. None of the existing policies takes this

network-wide statistic into account.

In this paper, we try to solve this problem in its foundation.

We develop a theoretical framework based on Epidemic mes-

sage dissemination [13], [14], [15] that takes into account all

information that are relevant for encounter-based (or store-

carry-and-forward) message delivery. Based on this theory,

we first propose an optimal buffer management policy. This

policy uses global information about the network either to

maximize the average delivery rate or to minimize the av-

erage delivery delay. Then, we propose a distributed (local)

algorithm that uses statistical learning in order to estimate

information about the global state of the network, and uses this

estimation to approximate the optimal algorithm in practice.

Finally, to evaluate the performance of the optimal and our

statistical learning algorithm against other buffer management

policies, we have implemented a DTN framework including

all policies in the network simulator NS-2 [16]. We have

performed simulations for both the Random Waypoint model

and two real-world mobility traces, the ZebraNet trace [17]

and the San Francisco’s Yellow Cab taxi trace [18]. Simulation

results show that our statistical learning algorithm outperforms

other policies achieving close-to-optimal performance, in all

considered scenarios.

The rest of this paper is organized as follow. Section II

gives the framework and assumptions of our study. In Sec-

tion III, we establish theoretically an optimal, “reference”

buffer management policy that uses global knowledge about

the network. Then, we present in Section IV a learning

process that enables us to approximate the global network

state required by the reference policy. Section V describes

the experimental setup and the results of our performance

evaluation. Finally, we summarize our conclusions and discuss

future work in Section VI.

II. DELAY-TOLERANT ROUTING AND BUFFER

MANAGEMENT POLICIES

In this section, we briefly introduce the basic DTN routing

scheme that we will use throughout the paper, describe some

existing buffer management policies that we will compare our

policies to, and go over some related work.

A. DTN routing

In the DTN context, when nodes encounter each other they

perform pair-wise exchanges of messages with the goal that

each message will eventually be delivered to its destination.

An index of all messages carried by a node, called summary

vector, is kept by each node, and when two nodes meet,

they exchange summary vectors [10]. After this exchange,

each node can determine if the peer node has any messages

other than the ones stored locally, and based on this, it can

decide which messages among them to forward to (or to

request from) its peer. When no other node is currently within

communication range, messages are buffered.

One of the simplest routing protocols that one could imple-

ment based on the above mechanism is the Epidemic routing

protocol proposed in [10]. This protocol relies on the theory

of Epidemic dissemination, where two nodes always exchange

all messages they don’t have in common when they encounter

each other. Thus, if there is enough buffer space, messages

will spread like an “epidemic” through the network, with

every node eventually receiving (a copy of) the message1.

As a result, Epidemic routing uses the maximum amount of

resources and causes the highest amount of congestion.

More recently, a number of other routing protocols have

been proposed, e.g. Spray and Wait [19], Prophet [9], etc.,

that aim at reducing the overhead of Epidemic routing. We

have chosen to base our study on Epidemic routing due to

its simplicity, its optimal performance in terms of delay and

delivery rate when resources are unbounded, but also the

high load it causes on network buffers. However, our policies

described in Sections III and IV can apply to other multiple

copy schemes, as well. The only difference is a higher number

of drop decisions to be taken in the case of Epidemic routing.

B. Buffer management policies

A buffer management policy defines which message to drop

if the buffer of a DTN node is full when a new message

is to be accommodated. Each message i in the buffer (B

messages in total) has a set of information Si stored with

it; Si includes: the source id, the time since the message

was generated, the Time-To-Live (TTL), etc. In the DTN

architecture [20], the TTL value is a timeout value, which

specifies when a message is no longer useful and should

be deleted. Let a new message arrive at a buffer that is

full. Then, usually, a buffer management policy is a function

f(S1, S2, . . . , SB , Snew) = j ∈ {[1, B]∪{new}}. This policy,

decides on which message to drop among the ones already in

the buffer and the new one, based on the information on all

messages in the buffer.

To evaluate the performance of our proposed buffer man-

agement policies, we have chosen to compare them with a set

of existing policies that have been used in related work [21].

This set includes: (i) DL-Drop Last (or “Droptail”), the most

common among the set, simply removes the newly received

message, (ii) DF-Drop Front, handles the queue in a FIFO

order. The message that was first entered into the queue

is the first message to be dropped when the buffer is full,

(iii) DO-Drop Oldest, drops the message with the shortest

remaining life time (closest to TTL expiration), and (iv) DY-

Drop Youngest, drops the message with the longest remaining

life time first.

1Finite bandwidth and unexpected interruptions may not allow a node to
transmit all the messages it would like to forward. In such cases, the order
in which messages are transmitted is important. In this work, we will assume
that enough bandwidth is available for each contact, and thus buffer space is
the only constrain on performance.

3

As an additional optimization, we consider that a node

should not discard its own valid messages (called source mes-

sages) to create a place in its buffer for messages forwarded

by other nodes. This ensures that at least one copy of each

message stays in the network as long as its TTL does not

expire. If all buffered messages are source ones, and the

arriving message is also a source message, then we choose

to delete the oldest one. This intuitive idea of giving priority

to source messages has been proposed in [12] and was shown

to improve the average delivery rate.

C. Related work

Several solutions have been proposed to handle routing in

DTN. Yet, an important issue that has been largely disregarded

by the DTN community is the impact of buffer management

policies on the overall performance. In [12], Zhang et al.

present an analysis of buffer-constrained Epidemic routing, and

evaluate some of the simple buffer management policies previ-

ously described. The authors conclude that DF outperforms DL

in terms of both delivery delay and delivery rate. Additionally,

they notice that giving priority to source messages improves

the delivery rate further, but makes messages spread slower,

increasing hence their delay. In [21], Lindgren et al. evaluate

a somewhat more extensive set of combinations of existing

buffer management policies and routing protocols for DTNs.

They show that Probabilistic routing [9] together with the right

buffer management policy can result in better performance in

terms of message delivery, overhead, and end-to-end delay.

Specifically, in the context of Epidemic routing, the authors

find that DF (with priority to source messages) gives the

highest delivery rate, while DO gives the smallest end-to-end

delay. Our own results support these findings.

All the buffer management policies discussed so far fail

to consider network-wide information, such as the number

of replicas of each message, the number of nodes, etc. Yet,

optimality cannot be achieved without this information. To our

best knowledge, the only relevant work that takes encounter

information into account is RAPID [22]. However, RAPID’s

focus is on scheduling messages under limited bandwidth, and

also uses a suboptimal policy. We address the issue of optimal

scheduling and compare ourselves against RAPID in [23].

III. OPTIMAL BUFFER MANAGEMENT POLICY

In this section, we formalize the problem of choosing which

message to discard when a node’s buffer is full. We first make

some assumptions regarding the routing protocol in hand, the

service model and the mobility characteristics of the nodes.

Then, we embark on finding theoretically the optimal buffer

management policy, GBD (Global Knowledge based Drop),

based on global knowledge about the network state. As global

knowledge is required, GBD is difficult to be implemented,

thus, it will serve as a point of reference. In Section IV, we

will show how to design a local buffer management policy

that uses learning methods to estimate the global information

about the network assumed by GBD, and can approximate the

performance of the optimal policy in practice.

A. Problem description (assumptions)

We will assume there are L total nodes in the network. Each

of these nodes has a buffer, in which it can store up to B
messages in transit, either messages belonging to other nodes

or messages generated by itself. Each message is destined to

one of the nodes in the network, and has a Time-To-Live

(TTL) value. After this time is elapsed, the message is no

more useful to the application and should just be dropped by

its source and all intermediate nodes. The message can also

be dropped when a notification of delivery is received, if an

“anti-packet” mechanism is implemented [12]2.

In the context of DTNs, message transmissions occur only

when nodes encounter each other. The minimum time a node

has to wait until it can forward a message further, is the time

until it encounters another node which can act as a relay. Thus,

the time elapsed between node meetings is the basic delay

component.

This inter-encounter time between nodes depends on the

value of a particular property of the mobility model assumed,

namely the meeting time [24], [25]3. We further consider that

bandwidth is not an issue so when two nodes meet, there is

enough time to exchange their messages. Messages are not

fragmented and are transmitted in a FIFO order from one node

to another during a contact. We consider bandwidth impact

in [23].

Definition III.1. Meeting Time: Let nodes i and j move

according to some mobility process and let them start from

their stationary distribution at time 0. Let further Xi(t) and

Xj(t) describe the mobility process (position) of nodes i
and j, respectively, at time t. The meeting time (U) between

the two nodes is defined as the time it takes them to first

come within transmission range (β) of each other, that is

U = min
t

{t : ‖Xi(t) − Xj(t)‖ ≤ β}.

To formulate the optimal buffer management policy prob-

lem, we do not make any assumption about a specific mobility

model used. Our only requirement is that the meeting time of

the mobility model is exponentially distributed or has at least

an exponential tail, with parameter λ = 1
E[U] , where E[X]

denotes the expectation of a random variable X .

It has been shown that many popular mobility models like

Random Walk [24], Random Waypoint and Random Direc-

tion [15], [14], as well as other more sophisticated synthetic

models like the community model in [15] have such a property.

In practice, there exist some recent studies based on traces

collected from real-life mobility [6] that argue that inter-

encounter and contact duration times may follow a power-law

2Once a node delivers a packet to the destination, it should delete the packet
from its buffer to save storage space and prevent the node from infecting other
nodes. Moreover, to avoid being reinfected by the packet, a node can keep
track of packet delivery. We refer to this information stored at the node as
”anti-packet”; various algorithms have been proposed to also propagate anti-
packets to other infected and susceptible nodes [12].

3If some of the nodes in the network are static, then one needs to use the
hitting time between a mobile node and a static node, instead. For simplicity,
we assume here that all nodes are mobile and we refer only to meeting times
thereafter. Our theory can be easily modified to account for static nodes.

4

distribution, instead. Yet, the authors in [26] show that even

these traces in fact exhibit exponential tails after a cutoff point,

and argue that for most mobility models that can be seen as a

random walk on a graph, meeting times have an exponential

tail. For this reason, we choose to stick with the exponential

meeting time assumption, which makes our analysis tractable.

Our trace-based evaluation further supports this assumption.

TABLE I
NOTATION

Variable Description

L Number of nodes in the network

K(t) Number of distinct messages in the network at time t

TTLi Initial Time To Live for message i

Ri Remaining Time To Live for message i

Ti = TTLi -
Ri

Elapsed Time for message i. It measures the time since
this message was generated by its source

ni(Ti) Number of copies of message i in the network after
elapsed time Ti

mi(Ti) Number of nodes (excluding source) that have seen

message i since its creation until elapsed time Ti

λ Meeting rate between two nodes; λ = 1
E[U]

where

E[U] is the average meeting time

Given the above problem setting, a key question to answer

is the following: if a node is congested, which message should

it drop so as to optimize a specific routing metric? Our optimal

buffer management policy derives a per-message utility, and

then drops the message with the smallest utility value. This

utility captures the marginal value of a given message copy

for the overall routing process, and with respect to the chosen

optimization metric. We derive here such a utility for two

popular metrics: maximizing the average delivery rate, and

minimizing the average delivery delay.

In Table I, we summarize the various quantities and nota-

tions we will use throughout the paper.

B. Maximizing the average delivery rate

We will first look into the following scenario. We assume

that a number of messages are propagated in the network

using replication (e.g. Epidemic), each of which has a finite

TTL value. The source of the message keeps a copy of it

during the whole TTL duration, while intermediate nodes

are not obliged to do so. We consider a time instant where

the network is congested and a new message copy arrives

to a new node during an encounter, to find its buffer full.

Assuming now that we know all messages in the network

and the number of copies for each message at that time, the

problem we would like to solve is: what is the best message to

be dropped (locally), among the ones already in the buffer of

the given node and the newly arrived one, in order to maximize

the average delivery rate among all messages in the network

(globally)? The answer is given in the following theorem.

Theorem III.1. Delivery-Rate: Let us assume that there are K
messages in the network, with elapsed time Ti for the message

i at the moment when the drop decision by the node is to be

taken. For each message i ∈ [1,K], let mi(Ti) and ni(Ti) be

the number of nodes that have “seen” the message since it’s

creation4 (excluding the source) and those who have a copy

of it at this instant (ni(Ti) 6 mi(Ti) + 1). The local optimal

buffer management policy that maximizes the average delivery

rate is to drop the message imin satisfying:

imin = argmin
i

[

(1 −
mi(Ti)

L − 1
)λRi exp(−λni(Ti)Ri)

]

(1)

Proof: We know that the meeting time between nodes

is exponentially distributed with parameter λ. The probability

that a copy of a message i will not be delivered by a node is

then given by the probability that the next meeting time with

the destination is greater than Ri. This is equal to exp(−λRi).
Knowing that message i has ni(Ti) copies in the network,

and assuming that the message has not yet been delivered, we

can derive the probability that the message itself will not be

delivered (i.e. none of the ni copies gets delivered):

P{message i not delivered | not delivered yet} =
ni(Ti)
∏

i=1

exp(−λRi) = exp(−λni(Ti)Ri). (2)

Here, we have not taken into account that more copies

of a given message i may be created in the future through

new node encounters, also we have not taken into account

that a copy of message i could be dropped within Ri (and

thus this policy is to some extent greedy or locally optimal).

Predicting future encounters and the effect of further replicas

created complicates the problem significantly. Nevertheless,

the same assumptions are performed for all messages equally

and thus can justify the relative comparison between the

delivery probabilities for different messages.

We should also take into consideration what has happened

in the network since the message generation, in the absence

of an explicit delivery notification. Since all nodes including

the destination have the same chance to see the message, the

probability that a message i has been already delivered is equal

to:

P{message i already delivered} = mi(Ti)/(L − 1). (3)

Combining Eq.(2) and Eq.(3) the probability that a message i
will get delivered before its TTL expires:

Pi = P{message i not delivered yet} ∗ (1 − exp(−λni(Ti)Ri))

+ P{message i already delivered}

= (1 −
mi(Ti)

L − 1
) ∗ (1 − exp(−λni(Ti)Ri)) +

mi(Ti)

L − 1
.

So, if we take at instant t a snapshot of the network, the

global delivery rate for the whole network will be:

DR =

K(t)
∑

i=1

[

(1 −
mi(Ti)

L − 1
) ∗ (1 − exp(−λni(Ti)Ri)) +

mi(Ti)

L − 1

]

4We say that a node A has “seen” a message i, when A had received a
copy of message i sometime in the past, regardless of whether it still has the
copy or has already removed it from the buffer.

5

In case of congestion, a DTN node should take a drop

decision, that leads to the best gain in the global delivery rate

DR. To define this optimal decision, we differentiate DR with

respect to ni(Ti), then we discretize and replace the dn by

∆n to obtain:

∆(DR) =

K(t)
∑

i=1

∂Pi

∂ni(Ti)
∗ △ni(Ti)

=

K(t)
∑

i=1

[

(1 −
mi(Ti)

L − 1
)λRi exp(−λni(Ti)Ri) ∗ △ni(Ti)

]

The best drop decision is the one that maximizes ∆(DR).
We know that: ∆ni(Ti) = −1 if we drop an already existing

message i from the buffer, ∆ni(Ti) = 0 if we don’t drop an

already existing message i from the buffer and ∆ni(Ti) = +1
if we keep and store the newly-received message i. Hence,

the optimal buffer management policy that maximizes the

future delivery rate is the one that drops message i having

the smallest value of the following utility:

(1 −
mi(Ti)

L − 1
)λRi exp(−λni(Ti)Ri). (4)

This utility can be viewed as the marginal utility value for a

copy of a message i with respect to the total delivery rate.

The value of this utility is a function of the global state of the

message in the network.

C. Minimizing the average delivery delay

We now turn our attention to minimizing the average

delivery delay. We assume that all messages generated have

infinite TTL or at least a TTL value large enough to ensure

a delivery probability close to 1. In this context, we will look

for a buffer management policy that minimizes the expected

delivery delay over all messages in the network.

Theorem III.2. To minimize the average delivery delay of

all messages, a DTN node should drop the message imin

satisfying:

imin = argmin
i

[

1

ni(Ti)2λ
(1 −

mi(Ti)

L − 1
)

]

(5)

Proof: Let us denote the delivery delay for message i
with random variable Xi. This delay is set to 0 (or any other

constant value) if the message has been already delivered.

Then, the total expected delivery delay (D) for all messages

for which copies still exist in the network (or if we want in

the local buffer) is given by,

D =

K(t)
∑

i=1

[

mi(Ti)

L − 1
∗ 0 + (1 −

mi(Ti)

L − 1
) ∗ E[Xi|Xi > Ti]

]

. (6)

We know that the time until the first copy of the message

i reaches the destination follows an exponential distribution

with mean 1/(ni(Ti)λ). It follows that,

E[Xi|Xi > Ti] = Ti +
1

ni(Ti)λ
. (7)

Substituting Eq.(7) in Eq.(6), we get,

D =

K(t)
∑

i=1

(1 −
mi(Ti)

L − 1
)(Ti +

1

ni(Ti)λ
).

Now, we differentiate D with respect to ni(Ti) to find the

policy that maximizes the improvement in D,

∆(D) =

K(t)
∑

i=1

1

ni(Ti)2λ
(
mi(Ti)

L − 1
− 1) ∗ ∆ni(Ti).

The best drop decision will be the one that maximizes

|∆(D)| (or −∆(D)). This corresponds to dropping the mes-

sage i that minimizes the following utility metric,

1

ni(Ti)2λ
(1 −

mi(Ti)

L − 1
) (8)

This per-message utility is different than the one for the

delivery rate and can be seen as the marginal utility value

of a copy of a message i regarding the average delivery delay.

Again it is a function of the global state of this message across

the network.

IV. USING LEARNING TO APPROXIMATE GLOBAL

KNOWLEDGE IN PRACTICE

In order to optimize a specific routing metric using GBD, we

need global information about the network and the “spread” of

messages. In particular, for each message present in the node’s

buffer, we need to know the values of mi(Ti) and ni(Ti), the

number of nodes that have seen the message and those that

have a copy of it. Unfortunately, this is not feasible in practice

due to intermittent network connectivity and the long time it

takes to flood buffer status information across DTN nodes,

which could make such info obsolete. Our proposed solution

is to find appropriate estimators for these utilities.

We do this by designing and implementing a learning

process that permits to a DTN node to gather knowledge about

the global network state history by making in-band exchanges

with other nodes. Each node maintains a list of encountered

nodes and the state of each message carried by them as a

function of time, which could be 0 if the message was in the

node’s buffer at the specified time or 1 if the message was

seen but deleted due to congestion as described in Figure 1.

Note that each node maintains the time of the last list update

and only sends the list if it has been updated since the last

exchange. This way and after some time, all nodes will have

the same global and accurate view about the network history.

This history can be limited to some time duration if the

network size is large.

Since the global information thus gathered on a specific

message might take a long time to propagate (as mentioned

earlier) and hence might be obsolete when we calculate the

6

Fig. 1. List maintained by each DTN node.

utility of the message, we follow a different route. Rather than

looking for the current value of mi(T) and ni(T) for a specific

message i at an elapsed time T , we look at what happens, on

average, for all messages after an elapsed time T . In other

words, the mi(T) and ni(T) values for message i at elapsed

time T are estimated using measurements of m and n for the

same elapsed time T but measured for (and averaged over) all

other older messages. These estimations are then used in the

evaluation of the per-message utility.

Let’s assume that the quantities mi(T) and ni(T) at elapsed

time T are distributed according to random variables N(T)

and M(T), respectively. Further, let’s denote by
∧

n (T) and
∧

m (T) estimators for ni(T) and mi(T). By finding appropriate

estimators
∧

n (T) and
∧

m (T) and plugging them into the

GBD’s delivery rate and delay utility-metrics calculated in

Section III, we get two new utility-metrics, which could be

used by a DTN node without any need for global information

about messages. This results in a new buffer management

policy, called HBD (History Based Drop), a deployable variant

of GBD that uses the new utilities based on estimates of m and

n. The estimation algorithms are described in paragraphs IV-A

and IV-B.

As a final note, in order to justify our motivation for the

history-based learning process described above, we introduce

another buffer management policy, FBD (Flood Based Drop).

FBD accounts only for the global information collected using

simple message flooding, that is, without considering past

history or other messages. So, from the list (in Fig. 1), DTN

nodes extract ni(Ti) value for message i simply by looking

at the number of nodes that said they hold it and the mi(Ti)
value by looking at those nodes that said they saw it, even

if this information is obsolete. These values are then plugged

into the GBD’s delivery rate and delay utilities as in the case

of HBD. Our results from Section V indicate that, unlike

HBD, FBD approximates poorly GBD’s performance for both

routing metrics, and thus is not sufficient to infer the required

global information in practice.

A. Calculating estimators
∧

n (T) and
∧

m (T) for the average

delivery rate utility

When the global information is unavailable, one can calcu-

late the average delivery rate of a message, by averaging over

all possible values for random variables M(T) and N(T).
Then, one can try to minimize this average. In the framework

of the GDB, this is equivalent to choosing the estimators
∧

n (T)

and
∧

m (T) so that the calculation of the average delivery rate

is unbiased.

E[(1 −
M(T)

L − 1
) ∗ (1 − exp(−λN(T)Ri)) +

M(T)

L − 1
] =

(1 −

∧

m (T)

L − 1
) ∗ (1 − exp(−λ

∧

n (T)Ri)) +

∧

m (T)

L − 1

By plugging in the utility expression in Eq.(4) any values

of
∧

n (T) and
∧

m (T) that verify this equality, one can be

sure that the obtained policy minimizes the average delivery

rate. This is exactly our purpose. Suppose now that the best

estimator for
∧

m (T) is its average, i.e.,
∧

m (T) =
−

m (T) =
E[M(T)]. A justification for this assumption will be given in

paragraph IV-C. Then, we solve the equation for:

∧

n (T) = −
1

λRi

ln(
E[(1 − M(T)

L−1) exp(−λN(T)Ri)]

(1 −
−

m(T)
L−1)

) (9)

Substituting this expression into the GBD’s delivery rate utility

in Eq.(4), we get the following utility for HBD,

λRiE[(1 −
M(T)

L − 1
) exp(−λRiN(T))]

The expectation in this expression is calculated by summing

over all values of N(T) and M(T) for past messages at

elapsed time T . Note, that L, the number of nodes in the

network, could be calculated from the list maintained by each

node in the network. In this work, we assume it to be fixed

and known, but one could estimate it as well in the same

way we do for n and m, or using some additional estimation

algorithm. We defer this for future work. Thus, unlike GBD’s

delivery rate utility, this new utility is a function only of past

and accurate global network history and so can be calculated

locally since it does not depend on the flooding time.

B. Calculating estimators
∧

n (T) and
∧

m (T) for the average

delivery delay utility

Similar to the case of delivery rate, we calculate the esti-

mators
∧

n (T) and
∧

m (T) in such a way that the average delay

calculation is unbiased.

E[(1 −
M(T)

L − 1
)(Ti +

1

N(T)λ
)] = (1 −

∧

m (T)

L − 1
)(Ti +

1
∧

n (T)λ
)

Again, supposing that
∧

m (T) =
−

m (T) = E[M(T)] and

simplifying this last expression further, we obtain:

∧

n (T) =
L − 1−

−

m (T)

E[L−1−M(T)
N(T)]

(10)

By substituting this value in the GBD’s delivery delay utility

in Eq.(8), we can find the delay utility specific to HBD,

E[L−1−M(T)
N(T)]2

λ(L − 1)(L − 1−
−

m (T))

7

Also, unlike GBD’s delivery delay utility, this new utility is

function of the locally available history of other messages.

C. On the approximation of
∧

m (T) by E[M(T)]

In paragraphs IV-A and IV-B, we have supposed that
∧

m (T) = E[M(T)]. This approximation is driven by the

observation we made that the histogram of the random variable

M(T) can be approximated by a Gaussian distribution with

good accuracy. To confirm this, we have applied the Lillie

test [27], a robust version of the well known Kolmogorov-

Smirnov goodness-of-fit test, to M(T) for different elapsed

times (T = 25%,50% and 75% of the TTL). This test led

to acceptance for a 5% significance level. Consequently, the

average of M(T) is at the same time the unbiased estimator

and the most frequent value among the vector M(T).

V. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate our policies, we have implemented a DTN

framework into the Network Simulator NS-2. This imple-

mentation includes the Epidemic routing protocol, the buffer

management policies described in Section II, against which we

compare our policies, and the VACCINE anti-packet mech-

anism described in [12]5. Each node uses a wireless com-

munication channel 802.11b that has a range of 100 meters,

to obtain network scenarios that are neither fully connected

(e.g. MANET) nor extremely sparse. Our simulations are

based on three mobility patterns, a synthetic one, based on

the Random Waypoint model and two real-world mobility

traces: the first trace was collected as part of the ZebraNet

wildlife tracking experiment in Kenya described in [17]. The

second mobility trace tracks San Francisco’s Yellow Cab taxis.

Many cab companies outfit their cabs with GPS to aid in

rapidly dispatching cabs to their costumers. The Cabspotting

system [18] talks to the Yellow Cab server and stores the data

in a database. We have use an API provided by the Cabspotting

system in order to extract mobility traces. Note that this trace

describes taxi’s positions according to the GPS cylindrical

coordinates (Longitude, Latitude) and in order to uses these

traces as input for the NS-2 simulator, we have implemented

a tool based in the Mercator [28] cylindrical map projection

which permit us to convert traces to plane coordinates.

To each source node, we have associated a CBR (Constant

Bit Rate) application, which chooses randomly from [0, TTL]

the time to start generating messages of 1KB6 for a randomly

chosen destination. Unless otherwise stated, we associate to

each node a buffer with a capacity of 10 messages. Finally,

we assume that each time two nodes meet, they have enough

time (bandwidth) to exchange all data and control messages,

so we take into consideration only buffer constraints.

We compare the performance of the various buffer manage-

ment policies using the following two metrics: the message’s

5We have also performed simulations without any anti-packet mechanism,
from which similar conclusions can be drawn.

6In future work, we intend to evaluate the effect of message size with
realistic wireless communication environments.

average delivery rate and the delivery delay in the case of

infinite TTL. Concerning the evaluation of the HBD policy,

we suppose that different nodes are already in a converged

state, so we start accounting for HBD’s results 2∗TTL seconds

after simulation starts. The choice of this value will be justified

in paragraph V-D. Note that the results presented here are

averages from 20 simulation runs, which is enough to ensure

convergence.

B. Performance evaluation for delivery rate

First, we compare the delivery rate of all policies for the

three scenarios shown in Table II. Figures 2, 3 and 4 show

respectively the delivery rate based on the Random Waypoint

model, the ZebraNet trace, and the Taxi trace.

TABLE II
SIMULATION PARAMETERS

Mobility pattern: RWP Zebra’s
Traces

Taxi’s
Traces

Simulation’s Duration(s): 5000 5000 36000

Simulation’ Area (m2): 1000*1000 1500*1500 -

Number of Nodes: 30 40 40

Average Speed (Km/H): 6 - -

TTL(s): 650 650 7200

CBR Interval(s): 200 200 2100

From these plots, it can be seen that the GBD policy

gives the best performance for all numbers of sources. When

congestion-level decreases, so does the difference between

GBD and other policies, as expected. Moreover, the HBD

policy outperforms existing policies (DF, DO, DL, DY) and

performs very close to GBD. For example, for 30 sources

and Random Waypoint mobility, HBD’s delivery rate is 10%

higher than Drop Front and only 2% worse than GBD. Sim-

ilarly, for 40 sources and the ZebraNet traces, HBD delivers

12% more messages than Drop Front and 3% worse than GBD.

Finally for the Taxi traces and 40 sources HBD performs 17%

better than Drop Front and 3% worse than GBD.

Note that the fact that Drop Front gives a higher delivery

rate than Drop Oldest could be deduced from our delivery

rate utility in Eq.(4). Specifically, at an instant t, we have

Rfront − Roldest >> |nfront − noldest|, which implies that

our delivery rate utility gives a smaller value for the message

at the front of the queue than for the oldest message. Hence,

our utility predicts that dropping the message at the head of

the queue will increase the delivery rate more than dropping

the oldest.

In order to justify our motivation for the learning process

we also compare our HBD policy explicitly to FBD that uses

only collected information per message. Figure 5 shows that

when the congestion level increases the difference between

FBD and GBD becomes significant, unlike the case of HBD.

For example, for 30 CBR sources the difference is about 19%

while HBD differs from GBD only by 2%. These results

further underline the importance of the history-based learning

process in order to implement GBD in practice.

8

Fig. 2. Average delivery rate for
Random Waypoint mobility.

Fig. 3. Average delivery rate for the
ZebraNet trace.

Fig. 4. Average delivery rate for the
Taxi trace.

Fig. 5. Comparison of HBD and FBD
delivery rate for Random Waypoint
mobility.

So far we assumed the same TTL value for all generated

messages in different scenarios. In our last scenario, we fix

the number of sources to 30 and arrange them in three groups

of 10 nodes. Nodes in each group generate messages with

TTL values equal to 250, 450 and 650 seconds, respectively.

We range here the buffer size from 10 to 35 messages. (Note

that in this scenario we start accounting for HBD’s results 2 ∗
650 = 1300 seconds after simulations starts, for convergence.)

Figure 6 shows that even for this scenario, HBD outperforms

the four existing buffer management policies (DF, DO, DL

and DY) and performs close to GBD. For example, for buffer

size equal to 10 messages, HBD delivers 14% messages more

than Drop Front and 3% messages less than GBD.

Fig. 6. Average delivery rate for Random Waypoint mobility and different
TTL(s).

C. Performance evaluation for delivery delay

To evaluate the average delivery delay metric, we keep the

same simulations durations and messages generation rates as

those used for the delivery rate. Figures 7, 8 and 9 depict the

average delivery delay for the Random Waypoint model, the

ZebraNet trace, and the Taxi trace, respectively. As in the case

of delivery rate, GBD gives the best performance for all three

mobility patterns. Moreover, the HBD policy outperforms the

four buffer management policies (DF, DO, DL, DY) and

performs close to GBD. Specifically, for 30 sources and

Random Waypoint mobility, HBD’s average delivery delay is

24% better than Drop Oldest and 6% worse than GBD. For the

ZebraNet traces, HBD performs 15% better than Drop Oldest

and 5% worse than GBD. Finally the highest improvement

was observed for the Taxi trace, where HBD performs 29%

better than Drop Oldest and only 3% worse than GBD.

Fig. 7. average delivery delay for the
Random Waypoint mobility.

Fig. 8. average delivery delay for the
ZebraNet trace.

Fig. 9. average delivery delay for the
Taxi trace.

Fig. 10. Comparison of HBD and
FBD delivery delay for Random Way-
point mobility.

Once more, the fact that Drop Oldest has smaller delivery

delay than Drop Front can be justified based on our delay

utility in Eq.(8). Specifically, in most cases the oldest messages

have a greatest number of copies, on average, than the message

at the front of the queue. Thus, if we apply our delay utility

to the oldest message, we will get a smaller value than for the

messages in the front of the queue (1
n2

oldest
(t)

<< 1
n2

front
(t)

),

which explains why dropping the oldest message gives a

smaller average delivery delay than dropping the message in

the front of the queue.

Finally, in order to further emphasize on the importance

of the learning process we compare again the HBD policy to

GND and FBD, in terms of delivery delay also. Figure 10

shows that, when congestion level increases, the difference

between FBD and GBD becomes significant which is not the

case of HBD. For 30 CBR sources, the difference is 30% while

HBD differs from GBD is 6%.

D. HBD’s Convergence

In this last part, we look at the time taken by the learn-

ing process to converge. We consider the same simulations

parameters as in Table II fixing the number of sources to

15. For the HBD policy and for different randomly chosen

nodes, Figure 11 shows that as the number of measurements at

9

Fig. 11. HBD’s delivery rate util-
ity convergence for different randomly
chosen nodes.

Fig. 12. HBD’s delivery delay util-
ity convergence for different randomly
chosen nodes.

elapsed time T = 100 increases, the delivery rate utility’s value

increases and converges to the average value of the GBD’s

delivery rate utility, which is equal to 0.17. From Figure 11,

one can also extract the convergence times of the delivery rate

utility. These values are illustrated in Table III. In Figure 12,

we depict similar convergence results for delivery delay. The

average delivery delay utility converges to 271, the average

value of the HBD’s utility. The different convergence times

are described in Table IV. These results justify the choice

TABLE III
THE TIME OF CONVERGENCE OF

HBD’S DELIVERY RATE UTILITY

Node 2 1100 seconds

Node 4 1000 seconds

Node 10 600 seconds

Node 15 1150 seconds

TABLE IV
THE TIME OF CONVERGENCE OF

HBD’S DELIVERY DELAY UTILITY

Node 6 700 seconds

Node 11 600 seconds

Node 20 750 seconds

Node 23 700 seconds

of the time of convergence in V-A. Indeed, in the different

simulations scenarios described above, the HBD’s utilities take

less than 2 ∗ TTL seconds to converge to the GBD’s average

utilities values for a fixed elapsed time.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of buffer man-

agement in delay tolerant networks. First, we proposed an

optimal buffer management policy based on global knowledge

about the network state. Then, we have introduced a distributed

algorithm that uses statistical learning to approximate the

required global knowledge of the optimal algorithm. Using

simulations based on a synthetic mobility model (Random

Waypoint), and two real mobility traces (ZebraNet and San

Francisco taxi traces), we showed that our buffer management

policy based on statistical learning successfully approximates

the performance of the optimal algorithm in all considered sce-

narios. Finally, both policies outperform existing policies with

respect to delivery rate and delivery delay, in all considered

scenarios.

Note that in this work, we considered that all messages

have the same size. It would be interesting to define buffer

management policies that take into account different messages

sizes. For example, in case of congestion, the end-to-end

delay versus message delivery trade-off could be influenced

by the choice of dropping several small messages or one large

message that occupies the entire node’s buffer.

ACKNOWLEDGMENTS

We thank Michal Piorkowski and Wei-Jen Hsu for pointing

us out to the San Francisco’s taxi cab mobility traces.

REFERENCES

[1] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proceedings of ACM SIGCOMM, Aug. 2004.

[2] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connec-
tivity in developing nations,” IEEE Computer, 2004.

[3] P. Basu and T. Little, “Networked parking spaces: architecture and
applications,” in IEEE Vehicular Technology Conference (VTC), 2002.

[4] M. Papadopouli and H. Schulzrinne, “Seven degrees of separation in
mobile ad hoc networks,” in Proceedings of IEEE GLOBECOM, 2000.

[5] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peoplenet: engineering
a wireless virtual social network,” in Proceedings of ACM/IEEE Mobi-

Com, 2005.
[6] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,

“Impact of human mobility on the design of opportunistic forwarding
algorithms,” in Proceedings of IEEE INFOCOM, 2006.

[7] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges
and applications for underwater sensor networking,” in Proceedings of

the IEEE Wireless Communications and Networking Conference, 2006.
[8] “Delay tolerant networking research group,” http://www.dtnrg.org.
[9] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in in-

termittently connected networks,” SIGMOBILE Mobile Computing and

Communication Review, vol. 7, no. 3, 2003.
[10] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad

hoc networks,” Duke University, Tech. Rep. CS-200006, 2000.
[11] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing

in intermittently connected mobile networks: The multiple-copy case,”
to appear in Transactions on Networking, Feb. 2008.

[12] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling
of epidemic routing,” in Proceedings of IFIP Networking, 2006.

[13] Z. J. Haas and T. Small, “A new networking model for biological
applications of ad hoc sensor networks.” IEEE/ACM Transactions on

Networking, vol. 14, no. 1, pp. 27–40, 2006.
[14] R.Groenevelt, G. Koole, and P. Nain, “Message delay in manet (extended

abstract),” in Proc. ACM Sigmetrics, 2005.
[15] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Performance

analysis of mobility-assisted routing,” in Proceedings of ACM/IEEE

MOBIHOC, 2006.
[16] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[17] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi, “Movement data

traces from princeton zebranet deployments,” CRAWDAD Database.
[18] “Cabspotting project,” http://cabspotting.org/.
[19] K. P. Thrasyvoulos Spyropoulos and C. Raghavendra, “An efficient

routing scheme for intermittently connected mobile networks,” ACM

SIGCOMM workshop on Delay Tolerant Networking (WDTN-05), 2005.
[20] K. Scott and S. Burleigh, “Bundle protocol specification.” RFC 5050,

November 2007.
[21] A. Lindgren and K. S. Phanse, “Evaluation of queuing policies and

forwarding strategies for routing in intermittently connected networks,”
in Proc. of IEEE COMSWARE, January 2006.

[22] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Dtn routing
as a resource allocation problem,” in Proc. ACM SIGCOMM, August
2007.

[23] A. Krifa, C. Barakat, and T. Spyropoulos, “An optimal joint scheduling
and drop policy for delay tolerant networks,” in to appear in WoWMoM

workshop on Autonomic and Opportunistic Communication (AOC), June
2008.

[24] D. Aldous and J. Fill, “Reversible markov chains and ran-
dom walks on graphs. (monograph in preparation.),” http://stat-

www.berkeley.edu/users/aldous/RWG/book.html.
[25] R. Durrett, Probability: Theory and Examples, 2nd ed. Duxbury Press,

1995.
[26] M. V. Thomas Karagiannis, Jean-Yves Le Boudec, “Power law and

exponential decay of inter contact times between mobile devices,” in
Proc. of ACM/IEEE MobiCom, 2007.

[27] H. Lilliefors, “On the kolmogorov-smirnov test for normality with mean
and variance unknown,” Journal of the American Statistical Association,
Vol. 62. pp. 399-402, June 1967.

[28] “The mercator projection,” http://en.wikipedia.org/wiki/Mercator projection/.

