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Abstract

Shrinking process geometries and the increasing use of
IP components in SoC designs give rise to new problems
in routing and buffer insertion. A particular concern is
that cross-chip routing will require multiple clock cycles.
Another is the integration of independently clocked compo-
nents. This paper explores simultaneous routing and buffer
insertion in the context of single and multiple clock do-
mains. We present optimal and efficient polynomial algo-
rithms that can be used to estimate communication over-
head for interconnect and resource planning in single and
multi-clock domain systems. Experimental results verify the
correctness and practicality of our approach.

1 Introduction

Three distinct trends will pose new routing challenges in
future SoC designs. First, SoCs will utilize several IP (Intel-
lectual Property) components, both soft and hard, like em-
bedded processors and memories. A shortest path for a sig-
nal between two chip components may thus be obstructed
by IP blocks. Second, the drive for higher performance will
continue to push the clocking frequencies. Third, shrink-
ing process geometries and improvement in process tech-
nologies allows building bigger dies. Multiple clock cy-
cles will be required to cross a chip. Furthermore, if the
IPs are clocked at different frequencies, as is the case with
hard IP that often has a fixed clock period, then the signal
route must cross from one time domain (of the sender) to
another (that of the receiver) latched through the proper cir-
cuitry. In contrast to a system with a single clock, or a single
clock domain system, a system with multiple clocks is often
referred to as a multiple clock domain system. The clock-
ing scheme is referred to as Globally Asynchronous Locally
Asynchronous, or GALS [3, 8].

This paper addresses two problems related to routing and
buffering in future SoC designs. The first problem seeks an
optimal buffered-routing path with synchronizer insertion,
and buffer insertion within a single clock domain system.
The objective is to minimize the cycle latency, or equiva-
lently, the total number of registers along the route.

The second problem seeks to optimize the routing within
a multi-clock domain system. The critical issue in latching a
signal from another clock domain is metastability: the clock
of the latching register and the data switch simultaneously.
The register output then settles into an undefined region –

neither a logical high nor a logical low. Several solutions
have been proposed to alleviate this problem[4, 12, 11, 9].
In this work we adopt the multi-domain communication cir-
cuitry proposed by Chelcea and Nowick [4] which buffers
the signal from one clock domain to another via a special
circuit structure, a Multi-Clock FIFO. If the MCFIFO is
placed more than one sender clock cycle away from the
sender, or more than one receiver clock cycle away from
the receiver, then synchronization of the routed net to the
appropriate clocks is needed. We use Relay Stations [2, 4]
along with the MCFIFO to construct an optimal routed path
between two signals in different clock domains. While our
algorithm specifically uses the Relay Stations and the MC-
FIFO, it can be easily adopted to utilize similar synchro-
nization elements. Thus, our second problem considers si-
multaneous routing, buffer insertion, relay stations inser-
tion, and MCFIFO insertion to achieve the minimum time
latency.

Our proposed algorithms to solve these two problems are
based on the the “Fast Path” framework proposed by Zhou,
Wong, Liu, and Aziz [13]. The actual “Fast Path” algorithm
finds a minimum delay path for a net while simultaneously
exploring all buffering and routing solutions. We extend
the algorithm to handle additional synchronization elements
such as registers, relay stations, and MCFIFOs while impos-
ing the timing constraints required by the physical distances
and the communication protocol.

The presented algorithms can be utilized within various
points of the design flow. For example, during the design
planning process, routing estimates can be achieved during
architectural explorations to assess communication over-
head once an initial floorplan is constructed. Early detection
of communication overheads would allow architects to ex-
plore microarchitecture tradeoffs that hide communication
latencies. The algorithms could also be used during back-
end physical design to realize actual synthesized, physically
realizable paths.

The remainder of the paper is as follows. Section 2
presents a detailed overview of the “Fast Path” algorithm.
Section 3 introduces the single-domain routing and syn-
chronized buffering problem and shows how to adapt the
“Fast Path” framework to solve it. Section 4 overviews MC-
FIFO and relay station communication schemes, thereby
leading into a discussion of the problem of optimal path
construction in designs realized using multiple clock do-
mains. Finally, Section 5 presents experimental results. We
conclude in Section 6.
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2 Background: The Fast Path Algorithm

In routing in single and multiple clock domains, we wish
to explore all routing and synchronizer insertion options
within a given routing area. Many aspects of the “Fast Path”
algorithm[13] can be exploited to achieve this goal.

The Fast Path algorithm finds the minimum delay
source-to-sink buffered routing path, while considering
both physical obstacles (e.g., due to IP, memories, and other
macro blocks) and wiring blockages (e.g., data path). To
model physical and wiring blockages, one may construct
a grid graph G

�
V � E � (as in [13, 1, 6]) over the potential

routing area, whereby each node corresponds to a poten-
tial insertion point for a buffer or synchronization element,
and each edge corresponds to part of a potential route.
Edges in the grid graph which overlap wiring blockages are
deleted, and nodes that overlap physical obstacles are la-
beled blocked. More precisely, we define a label function
p : V ��� 0 � 1 � where p

�
v ��� 0 if v 	 V overlaps a physical

obstacle and p
�
v ��� 1 otherwise.

For each edge
�
u � v �
	 E, let R

�
u � v � and C

�
u � v � denote

the capacitance and resistance of a wire connecting u to
v. Let R

�
g � , K(g), and C

�
g � respectively denote the re-

sistance, intrinsic delay, and input capacitance of a given
buffer or synchronization element g. We use the resistance-
capacitance π-model to represent the wires b, a switch-level
model to represent the gates, and the Elmore model to com-
pute path delays.

A path from node s to t in the grid graph G is a sequence
of nodes

�
s � v1 � v2 �������� vk � t � . An optimized path from s

to t is a path plus an additional labeling m of nodes in the
path. We have m

�
s ��� gs, m

�
t ��� gt , and m

�
vi �
	 I ��� 0 � ,

where I is the set of buffers or synchronization elements
which may be inserted on a node in the path between source
s and sink t. Here, gs is the driving gate located at s, gt
is the receiving gate located at t, and each internal node
v may be assigned a gate from the set I or not have a gate
(corresponding to m

�
v ��� 0). A path is feasible if and only if

p
�
v ��� 1 whenever m

�
v ��	 I. We assume that m is initialized

to m
�
s ��� gs, m

�
t ��� gt , and m

�
v ��� 0 for v 	 V ��� s � t � .

Let B be a buffer library consisting of non-inverting
buffers. The minimum-delay buffered path problem, or the
“Fast Path”, can be expressed as follows: Given a routing
graph G

�
V � E � , the set I � B, and two nodes s � t 	 V , find a

feasible optimized path from s to t such that the delay from
s to t is minimized.

This problem can be optimally solved by the Fast Path
algorithm [13] and also by the shortest path formulation
proposed by Lai and Wong [10]. The latter formulation
can also be extended to wire sizing. We choose to extend
the Fast Path algorithm to handle the next two formulations
since it does not require any lookup table computation and
is likely more efficient when there is no wire sizing.

The main idea behind the Fast Path algorithm is to extend
Dijkstra’s shortest path algorithm to do a general labeling
based on Elmore delays. Let the quadruple α � �

c � d � m � v �
represent a partial solution at node v where c is the cur-
rent input capacitance seen at v, d is the delay from v to
t, and m is a labeling for the buffered path from v to t.
The solution α1 � �

c1 � d1 � m1 � v � is said to be inferior to
α2 �

�
c2 � d2 � m2 � v � if c1 � c2 and d1 � d2. For any path

from s to t through v, a buffer assignment of m1 from v to
t is guaranteed to not be better than a buffer assignment of

Fast Path � G � B � s � t � m ���
Input: G � V � E ��� Routing grid graph

B � Buffer library
s � source node
t � sink node
m ��� initial labeling

Vars: Q � priority queue of candidates
α  !� c � d � m � v �"� Candidate at v

Output: m � Complete labeling of s-t path
1. Q #%$&� C � m �'� t �(��� 0 � m �)� t �+* .
2. while ( Q , /0 ) do
3. � c � m � b � u ��# extract min � Q �
4. if c  0 then

return labeling m.
5. if u  s then

d � # d - R � m � s �(�/. c - K � m � s �0�
push � 0 � d �'� m � u � onto Q and prune.
continue

6. for each � u � v �21 E do
c � # c - C � u � v �
d �3# d - R � u � v �� c - C � u � v �(�(4 2
push � c �)� d �'� m � v � onto Q and prune

7. if p � u �� 1 and m � u �� 0 then
8. for each b 1 B do

c �5# C � b �
d �3# d - R � b �6. c - K � b �
m � u �" b
push � c �)� d �)� m � v � onto Q and prune

Figure 1. The Fast Path algorithm.

m2 from v to t. Thus, α1 can be safely deleted (or pruned)
without sacrificing optimality. Pseudo-code of the Fast Path
algorithm [13] is given in Figure 1.

The core data structure used by Fast Path is a priority
queue of candidates that keys off of the candidate’s delay
value. The algorithm begins by initializing Q to the set con-
taining a single sink candidate. Then, candidates are iter-
atively deleted from the Q and expanded either to add an
edge (Step 6) or a buffer from the library (Steps 7 and 8). If
the source is reached, it is pushed onto the Q in Step 5, and
when it is eventually popped from the queue, it is returned
as the optimum solution (Step 4). With each addition to
the queue, candidates for the current node are checked for
inferiority and then pruned accordingly.

If we assume that G has n vertices, 7E 798 4n (which is
true for a grid graph), and 7B 7&� k, the complexity of Fast
Path is O

�
n2k2 lognk � .

3 Single Clock Domain Routing

We now explore the problem of finding a buffered rout-
ing path from s to t when multiple clock cycles are re-
quired. Routing over large distances in increasingly aggres-
sive technologies will require several clock cycles to cross
the die. Hence, one must periodically clock the signal by
inserting synchronization elements (such as registers) along



the signal path. In this case, one cannot simply treat a reg-
ister like a buffer and add the register delay to the existing
path delay in the Fast Path algorithm. The realizable de-
lay between consecutive registers on a path will always be
determined by the clock period, regardless of the actual sig-
nal propagation time. Register-to-register sub-paths with
delays larger than the permissible clock cycle are not per-
mitted.

Let r denote the register to be used for insertion, Tφ the
clock period, and Setup

�
r � to be the setup time for r. We

extend the definition of node labeling to permit register as-
signment, i.e., m

�
v � � r for any node v 	 V �!� s � t � . We

also assume that the source and sink are synchronization el-
ements, so that gs � gt � r. We define the clock period con-
straint as follows: a buffer-register path is feasible if and
only if p

�
v � � 1 whenever m

�
v � 	 I and the buffered path

delay between consecutive registers is less than or equal to
Tφ � Setup

�
r � .

Figure 2 shows an example of a buffered-register path
on a grid graph with both circuit and wire blockages. Be-
cause a register releases its signal with clock cycle, the s-t
path latency is given by Tφ

� � p � 1 � , where p is the number
of registers on the s-t path. The s-t path has three registers
between s and t. It thus takes four clock cycles to traverse
from s to t despite the different spacings between consecu-
tive registers.
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Figure 2. An example of routing within a single clock
domain

The problem of finding the minimum buffer-register path
from s to t can now be stated as:
Problem 1: Given a routing graph G

�
V � E � , the set I �

B � � r � , and two nodes s � t 	 V , find a feasible buffer-
register path from s to t such that the latency from s to t
is minimized.

The objective is also equivalent to minimizing
7 � v 7 m �

v ��� r � 7 .
To solve Problem 1, one might initially try applying the

Fast Path algorithm and treat the register like a member
of the buffer library with the following caveat: candidates
which violate the register to register delay constraint are im-
mediately pruned. However, the Fast Path pruning scheme
will not behave correctly.

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 3. An example of partial routing solutions that
cannot be compared for pruning.

Consider the two partial solutions from v to t in Figure 3.
Here d1 and d2 are the delays from v to the first registers in
the top and bottom paths, respectively. The top path has de-
lay 2Tφ � d1, while the bottom path has delay Tφ � d2. Since
feasibility requires both d1 and d2 must be no greater than
Tφ � Setup

�
r � , the bottom path delay is less than the top path

delay. In addition, since there is a buffer on the bottom path
close to v, v sees less downstream capacitance on the bottom
path than on the top path. Since the top path is inferior to the
bottom path in terms of capacitance and delay, the fast path
algorithm would prune the candidate corresponding to the
top path. However, consider continuing the route to node u
on the other side of the circuit blockage from v. It is cer-
tainly possible that the delay from u to v plus d2 exceeds the
delay feasibility constraint, while the top path delay from
u to v plus d1 does not. In this case, only the top path can
successfully be routed from v to u while still meeting fea-
sibility requirements. Consequently, the top path cannot be
pruned.

The key observation is that one should only prune sub-
paths by comparing to other sub-paths with the same num-
ber of registers. In the previous example, comparing a one-
register path to a two-register path leads to an unresolv-
able inconsistency. Had the bottom path had two registers,
then it could not have had smaller delay than the top path.
Thus, one can still use the Fast Path algorithmic framework
as long as candidate propagation proceeds in waves of par-
tial solutions wherein each wave corresponds to a different
number of registers. Figure 4 shows how one can adapt the
Fast Path framework to accomplish this in the Registered-
Buffered Path (RBP) algorithm. We describe some of the
RBP’s key features:
� RBP uses a second queue Q � to store candidate solu-

tions for the subsequent propagation wave. When a
register is added to a candidate that is popped from Q
it is added to Q � and processed only after the current
wave is completed. register is added. This pushing
onto Q � is accomplished in Step 8, whereby candidates
are added only if the insertion of the register satisfies
the clock feasibility constraint.

� RBP combines Steps 4 and 5 from Figure 1 into a sin-
gle Step 4. RBP has the luxury of knowing that as soon



RBP Algorithm � G � B � s � t � m �)� r� Tφ �
Input: G � V � E ��� Routing grid graph

B � Buffer library
s � source node
t � sink node
m �3� initial labeling with m �'� s �� m �'� t �� r
r � register for clocking signal
Tφ � required clock period.

Vars: Q � priority queue of candidates
Q ��� queue holding next candidate wave
α  �� c � d � m � v �"� Candidate at v
A � Marking of registered nodes

Output: m � Labeling of complete s-t path
1. Q #%$5� C � r ��� Setup � r � � m �)� t �+* .

Q �� /0, A � v �� 0,
�

v 1 V
2. while ( Q , /0 ) or ( Q � , /0 ) do

if ( Q  /0 ) then
Q  Q � , Q �� /0.

3. � c � d � m � u ��# extract min � Q �
4. if u  s then

d �5# d - R � m � s �(�6. c - K � m � s �(�
if d ��� Tφ then

return labeling m.
5. for each � u � v �21 E do

c �3# c - C � u � v �
d �5# d - R � u � v �� c - C � u � v �0�(4 2
if d � � Tφ � K � r � � min � R � B � r �(� c � then

push � c �)� d �'� m � v � onto Q and prune
6. if p � u �" 1 and m � u �" 0 then
7. for each b 1 B do

c � # C � b � , m � u �" b
d �3# d - R � b �6. c + K(b)
if d ��� Tφ � K � r � then

push � c � � d � � m � u � onto Q and prune
8. if A � u �� 0 and d - R � r �6. c - K � r ��� Tφ then

m � u �" r, A � u �� 1
push � C � r ��� Setup � r ��� m � u � onto Q �

Figure 4. The Registered Buffered Path algorithm.

as s is reached, a minimum latency solution is guaran-
teed, hence it can immediately return the solution, as
opposed to pushing it back onto the queue like Fast
Path.

� The clock feasibility constraint is checked before push-
ing new candidates onto Q in Steps 7 and 8. This pre-
vents solutions that can never lead to feasible solutions
from further exploring the grid graph.

RBP proceeds by expanding all buffered-path solutions,
just like Fast Path, until any further exploration violates
the clock period constraint. At this point Q � contains sev-
eral newly generated candidates all of which are ready for
wavefront expansion from a node with an inserted regis-
ter. Step 2 dumps these candidates into Q and re-initializes
Q � to the empty set. These single-register candidates are
then expanded, generating double-register candidates that
are stored in Q � , etc. When there are no blockages, the

wave-front expansion looks like Figure 5. Of course, with
blockages, the wave fronts are not as regular.

Let N be the number of nodes that can be reached from
a given node in one clock cycle. When the clock period is
sufficiently short, N � n, the complexity of the RBP algo-
rithm is O

�
nNk2lognk � – a lesser time complexity than the

Fast Path algorithm. The computational savings occurs be-
cause we do not have to waste resources exploring the many
paths that violate the clock period constraint. This speedup
can be seen in practice in the experimental results when ob-
serving the number of configurations that are examined as
well as the run times.
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Figure 5. Wave-front expansion (as in [5]).

4 Multiple Clock Domain Routing

4.1 Background

As mentioned in Section 1, we adopt the MCFIFOs pro-
posed by Chelcea and Nowick [4] to route a signal between
two different clock domains. The MCFIFO is the basic en-
tity that establishes data communication between two mod-
ules operating at different frequencies.

Like all FIFOs, the MCFIFO has a put interface to the
sender and a get interface to the receiver. Each interface is
clocked by the communicating domain’s clock.

Because it may take multiple sender clock cycles to route
a net from its source in the routing grid to the MCFIFO, and
multiple receiver clock cycle to route the net from the MC-
FIFO to the sink, signals must be synchronized to the clock
of each domain. Chelcea and Nowick utilize the concept of
a relay station [2] to do so. These stations essentially al-
low breaking long wires into segments that correspond to
clock cycles, and then a chain of relay stations act like a
distributed FIFO. Each relay stations has auxiliary storage
that allows buffering one additional data if needed.

An MCFIFO and two adjacent relay stations that could
potentially be used between a source and a sink is shown



in Figure 6. The data flow is from left to right. The Stop
signals flow in the opposite direction to indicate that the
relay stations cannot accept additional data.

Sender Clock domain

Receiver CLKSender Clk

FI
FO

M
ix
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C
lo

ck

StopIn

Get Data

Get is Valid

StopOut

Put Data

Put Request

Station
Relay

Station

Receiver Clock domain

packetIn packetOut

Relay

Figure 6. The Mixed Clock FIFO that interfaces two dif-
ferent clock domains[4].

4.2 The GALS Algorithm

Although for the Multi-Clock domain problem we are
using the MCFIFO and relay-stations that require bidirec-
tional signal flow, we abstract the communication as be-
ing single directional. We view relay station as a register
r because both have similar delay properties. Given any
buffered path between relay stations r1 and r2, if one as-
sumes a single buffer type with the same delay characteris-
tics as the register, then the Elmore delay from r1 to r2 is
actually identical to the Elmore delay from r2 to r1. Insert-
ing a buffer in our multi clock domain problem formulation
actually means the insertion of two buffers, one for each
direction of signal flow.

s

sstt

t s

t2T + 2T

TT T T

Figure 7. An example of an MCFIFO-register routing.
The MCFIFO in breaks the periods into two clock domains
where the period is Ts on the source side of the MCFIFO
and Tt on the sink side. The total latency is 2Ts - 2Tt .

Let f denote the MCFIFO element that must be inserted
on the routing path, Ts to be the clock period before f and
Tt to be the clock period after f . Figure 7 shows an ex-
ample where there are two clock periods between s and the
MCFIFO and two clock periods after the MCFIFO. Since
the clocks have different periods, the total latency is given
by 2Ts � 2Tt . This corresponds to the signal flow assuming
an empty MCFIFO and ignores the worst case synchroniza-
tion delay within the MCFIFO that is common to all routing
solutions.

Our set of insertable elements is now I � B � � r� f � . For a
multi-clock domain source-to-sink path (an MCFIFO path),
we use the following conditions for feasibility: an MCFIFO
path is feasible if and only if

GALS Algorithm � G � B � s � t � m �)� r� f � Ts � Tt �
Input: G � V � E ��� Routing grid graph

B � Buffer library
s � source node
t � sink node
m �5� initial labeling with m �'� s � , m �'� t �
r � register for clocking signal
f � MCFIFO element
Tt � required clock period from f to t
Ts � required clock period from s to f

Vars: Q � priority queue of candidates
α  !� c � d � m � v �"� Candidate at v

Output: m � Complete labeling of s-t path
1. Q # $&� C � r ��� Setup � r ��� m � � t � 0 � 0 �+* .

Q �  /0, A0 � v �" A1 � v �� 0,
�

v 1 V
2. while ( Q , /0 ) or ( Q � , /0 ) do

if ( Q  /0 ) then
Q  ExtractAllMin � Q ���

3. � c � m � b � u � z � l �"# extract min � Q �
4. if u  s then

d �5# d - R � m � s �(�6. c - K � m � s �(�
if z  1 and d ��� Ts then

return labeling m.
5. for each � u � v � 1 E do

c �3# c - C � u � v �
d �5# d - R � u � v �� c - C � u � v �0�(4 2
if d � � T � z � then

push � c �)� d �)� m � v� z � l � onto Q and prune
6. if p � u �" 1 and m � u �� 0 then
7. for each b 1 B do

c � # C � b � , m � u �" b
d �5# d - R � b �6. c + K(b)
if d ��� T � z � then

push � c � � d � � m � u � z � l � onto Q and prune
8. if Az � u �" 0 and d - R � r �/. c - K � r � � T � z � then

m � u �" r, Az � u �� 1
push � C � r ��� Setup � r ��� m � u � z � l - T � z �(� onto Q �

9. if z  0, F � u �" 0 and d - R � f �/. c - K � f � � T � z �
then m � u �" f , F � u �" 1

push � C � f ��� Setup � f ��� m � u � 1 � l - Tt � onto Q �

Figure 8. The GALS Algorithm.

� p
�
v � � 1 whenever m

�
v � 	 I,

� m
�
v ��� f for exactly one v 	 V ,

� the buffered path delay between consecutive registers
between s and f is less than or equal to Ts � Setup

�
r � ,

and

� the buffered path delay between consecutive registers
between f and t is less than or equal to Tt � Setup

�
r � .

Thus, the multiple clock domain, buffered routing prob-
lem becomes:
Problem 2: Given a routing graph G

�
V � E � , the set I � B �

� r� f � , and two nodes s � t 	 V , find a feasible MCFIFO path
from s to t such that the latency from s to t is minimized.

One can adopt a similar framework as in the RBP algo-
rithm potentially inserting an MCFIFO element for every



candidate, wherever a register is inserted. We call this new
algorithm GALS for Globally Asynchronous, Locally Syn-
chronous. There are several modifications to RBP that must
be considered to obtain the GALS algorithm:

� A GALS candidate must know if the MCFIFO has
been inserted, so now we use the six-tuple α ��
c � d � b � v � z � l � where z � 0 if α does not contain an MC-

FIFO and z � 1 otherwise. Let T
�
0 ��� Tt and T

�
1 � � Ts

be a function which returns the required clock period
for a given z value. The latency l is discussed below.

� GALS pruning only takes place with candidates with
the same value of z. Two candidates with opposing
values of z are not directly compared for pruning. In-
stead of storing a single list of candidates for each grid
node, now we store two lists: one for z � 0 and one
for z � 1. If we have not yet inserted an MCFIFO onto
the path, pruning is done with respect to the z � 0 list,
otherwise, it is done with respect to the z � 1 list.

� Because Ts
�� Tt , one cannot find identical elements for

wave front expansion as easily as in the single clock
domain case. In RBP, the number of registers obvi-
ously determined the latency. For GALS, one four-
register path may have latency 2Ts � 3Tt while another
four-register path has latency Ts � 4Tt . The path with
the smaller latency must be explored first. Thus, the
candidate value l stores the latency from the most re-
cently inserted register or MCFIFO back to the sink t.
Just like the RBP algorithm, d still stores the combina-
tional delay from the current node to the most recently
inserted register or MCFIFO.

� The elements in Q are still ordered by d, but the ele-
ments in Q � are ordered by l. We define the operation
Q � ExtractAllMin

�
Q � � to pull all elements off of Q �

with the same latency and load them into Q. This op-
eration extracts the next wave front of elements with
equal latency from Q � .

� In RBP, the first register inserted at a grid node v pre-
cludes the need to insert registers at v for any other
path. RBP uses A

�
v �
	�� 0 � 1 � to represent whether a

register had been seen in a path at v. In GALS, we need
to separate the cases of inserting a register before f and
after f . Let A0

�
v ��	 � 0 � 1 � represent whether a register

was inserted between f and t at v and A1
�
v �
	�� 0 � 1 �

represent whether a register was inserted between s and
f at v. Also, let F

�
v � 	 � 0 � 1 � denote whether an MC-

FIFO was inserted at v.

Figure 8 gives a template of the GALS algorithm. The
main differences between GALS and RBP is the addition
of Step 9 for inserting MCFIFO elements. Just like regis-
ters in RBP, GALS considers inserting an MCFIFO at each
possible internal node as the wavefront expansion proceeds.
Other differences include using T

�
z � to look up the current

clock period constraint, returning a solution in Step 4 only
if it has an MCFIFO, and the wave-front queue mechanism
of Step 2.

If N is the number of nodes that can be reached in
max

�
Ts � Tt � , the time complexity of GALS is O

�
nNk2lognk �

which is same as the RBP algorithm.

5 Experimental Results

We obtained code for the Fast-Path algorithm from the
authors of [13], then implemented RBP and GALS using
this framework. The code is written in C and was run on
a Sun Solaris Enterprise 250. To perform the experiments,
we use estimated parameters for a 0 � 07µ technology as re-
ported by Cong and Pan [7]. We use a single buffer size of
100 times minimum gate width, triple wide wires, and as-
sume delay characteristics for the register and MCFIFO to
be identical to that of the buffer. As in [5], we use a 25 by 25
mm chip and place the source and sink 40 mm apart. These
choices ensure that a significant number of clock cycles will
be required to propagate a signal from s to t.

Our first experiment investigates the behavior of the RBP
algorithm as a function of the clock period. Given a grid
separation of 0 � 125mm and a grid size of 200 x 200, we
varied the number of registers that can be placed along the
path that is separated by 159 grid edges.

Table 1. RBP performance as a function of clock period
and grid size. Max. (Min.) Separation refers to the maxi-
mum (minimum) buffer separation when the clock period is
∞, and to the corresponding register separation otherwise.

Tφ Latency Regs Buffers Configs time
(ps) (ps) (sec)

∞ 2739 0 16 1014896 28.95
1371 2742 1 14 918078 35.41
925 2775 2 14 881092 34.84
686 2744 3 12 805603 30.90
551 2755 4 10 755814 29.55
463 2778 5 11 694386 27.50
398 2786 6 7 638676 25.46
343 2744 7 8 571877 22.88
261 2871 10 10 468975 19.02
84 3360 39 0 78122 6.57
67 4288 63 0 78246 6.59
62 4960 79 0 78278 6.63
53 8480 159 0 78360 6.55
49 15680 319 0 78416 6.44

The results are summarized in Table 1. The first data
row in the table (with Tφ � ∞) presents the results of run-
ning the Fast Path algorithm, where the reported latency is
actually the minimum-buffered path delay. The other rows
are the results of running the RBP algorithm with the indi-
cated clock period. The seemingly odd choices for the clock
period are the fastest clock periods required to achieve the
given number of registers (rounded to the nearest picosec-
onds). For example, a Tφ of 686 is the fastest clock period
that achieves a three register solution. The clock period and
latencies are reported in picoseconds.

We make the following observations. First, as the clock
period decreases, the number of registers along the path
increase while the number of buffers decrease. Second,
The number of configurations investigated (i.e., candidates
popped off the queue Q in Figure 4) decreases with de-
creasing clock period. This empirically confirms that the
run time complexity of RBP becomes more efficient as the



Table 2. GALS statistics as a function of Ts and Tt with a
grid separation of 0.125 mm.

Ts 200 300 300 400 250 300
Tt 300 200 400 300 300 250

Buffers 2 2 8 8 7 6
Reg-t 1 10 3 3 6 2
Reg-s 10 1 3 3 2 6

latency 2800 2800 2800 2800 2850 2850

clock period decreases, because the space of feasible wave-
front expansion in a single cycle is reduced. Finally, Be-
cause RBP has additional overhead for register insertion,
only when the clock period drops below a certain threshold
do we see a run-time improvement over Fast Path, e.g., in
this case it is for T phi � 463.

Our second experiment explores the behavior of the
GALS algorithm for different periods of the clock domain.
We ran GALS using a grid separation of 0.125 mm. Table 2
reports the number of buffers inserted, the number of reg-
isters on the sink side of the MCFIFO (Reg-t), the number
of registers on the source side of the MCFIFO (Reg-s) and
the latency. The relative values of Reg-t and Reg-s indicate
whether the MCFIFO was placed close to the source or to
the sink. For example, when Ts � 200 and Tt � 300, the
algorithm places the MCFIFO close to the sink, but when
Ts � 300 and Tt � 200 it places it closer to the source. Thus,
we cannot generalize the behavior on the optimal location
of the MCFIFO, it depends on the blockage map, clock pe-
riods Ts and Tt and the technology parameters. For all cases,
we observe that the total latency is not significantly higher
than the minimum source-sink delay of 2739 ps from the
previous experiment.

6 Concluding Remarks

Automated buffered routing is a necessity in modern
VLSI design. The contributions of this paper are two new
problem formulations for buffered routing for single and
multiple clock domains. Both of these formulations ad-
dress problems that will become more prominent in future
designs. Any CAD tools currently performing buffer inser-
tion will eventually have to deal with synchronizer inser-
tion. Furthermore, any SoC routing CAD tools will have
to handle routing across multiple clock domains due to the
increasing use of IPs.

We solve both problems optimally in polynomial time
via the RBP and GALS algorithms that build upon the Fast
Path algorithm of [13]. Experimental results validate the
correctness and practicality of the two algorithms for an ag-
gressive technology.

This work touches upon two of the routing challenges in
single and multi-clock domain systems. Several more chal-
lenges remain, e.g., interconnect planning, removing reg-
isters and allowing for wave pipelining to alleviate clock
distribution problems, and buffered routing with transpar-
ent latches.
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