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1 Introduction

Discontinuous Galerkin (DG) finite-element methods for second- and fourth-order ellip-

tic problems were introduced about three decades ago. These methods stem from the

hybrid methods developed by Pian and his coworker [25]. At the time of their introduc-

tion, DG methods were generally called interior penalty methods, and were considered

by Baker [4], Douglas Jr. [14], and Douglas Jr. and Dupont [15] for fourth-order prob-

lems, where C1 continuity was imposed on C0 elements. For second-order equations,

Nitsche [21] appears to have introduced the ideas of imposing Dirichlet boundary con-

ditions weakly and of adding stabilization terms to obtain optimal convergence rates.

The same idea of penalizing jumps along interelement faces led to the interior penalty

methods of Percell and Wheeler [24] and Wheeler [30]. Methods for a second-order, non-

linear, parabolic equation appeared in [1].

According to [3], interest in DG methods for solving elliptic problems waned be-

cause they were never proven to be more advantageous than traditional conforming el-

ements. The difficulty in identifying optimal penalty parameters and efficient solvers

may also have contributed to the lack of interest [3]. Recently, however, interest has been

rekindled by developments in DG methods for convection-diffusion problems; see, for ex-

ample, Cockburn and Shu [12, 13], Oden, Babuška, and Baumann [22], Castillo, Cockburn,
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Perugia, and Schötzau [9], and Houston, Schwab, and Süli [18], where the scalar Poisson

equation is analyzed. Bassi and Rebay [5] applied a similar technique for the solution of

the Navier-Stokes equations. Brezzi, Manzini, Marini, Pietra, and Russo [7, 8] analyzed

the method of Bassi and Rebay for stability and accuracy, as it applies to the scalar Pois-

son equation. Arnold, Brezzi, Cockburn, and Marini [2, 3] provided a common framework

for all of these methods and showed the interconnections by casting them into the form

of the local discontinuous Galerkin (LDG) method of Cockburn and Shu.

We are interested in a DG method for studying the mechanical behavior of solids.

In this paper, we analyze the linear elasticity problem, with an eye toward a formula-

tion for nonlinear elastic-plastic problems and cohesive elements [23]. There are several

benefits of such an approach, including the potential for efficient hp-adaptivity, for ex-

ample, using adaptive mesh refinement on meshes with hanging nodes, and the prospect

of rigorously handling problems with discontinuous displacements as arise in the study

of fracture. Rivière and Wheeler [26] formulate and analyze a method for linear elasticity

based on a generalization of the nonsymmetric interior penalty Galerkin (NIPG) method

presented in [22] for the diffusion equation. The resulting bilinear form is nonsymmetric.

As an alternative, we follow the analysis of Brezzi, Manzini, Marini, Pietra, and Russo

[7, 8] quite closely in our generalization from the scalar Poisson equation to the linear

elasticity problem. In this case, the bilinear form is symmetric.

Error estimates for DG methods are usually obtained in terms of mesh-dependent

norms. It is, a priori, not clear how to compare norms corresponding to meshes of differ-

ent size. In this paper, we show that the traditional error estimates expressed in mesh-

dependent norms can be used to derive error estimates in the mesh-independent BD and

BV norms, eliminating the ambiguity.

Section 2 begins with a statement of the problem and its formulation using the

DG approach. A new derivation of the equations is based on a discrete variational prin-

ciple for elasticity which naturally extends to finite deformations. The variational ap-

proach leads to a formulation analogous to the one utilized in [5]. Stabilization terms

of the form considered in [7, 8] are added to obtain a well-posed discrete problem. In

Section 3, we show optimal convergence rates in a mesh-dependent norm similar to the

one used by Brezzi et al. This mesh-dependent estimate is immediately strengthened to

a mesh-independent BD estimate in Section 3.2.

The classical analysis of the equations of linear elasticity needs a global version

of Korn’s first inequality to insure coerciveness of the bilinear form. In contrast to the

standard approach, in Section 3.3, we prove a generalization of Korn’s second inequal-

ity on the element level, which allows us to obtain an improved mesh-dependent esti-

mate. Finally, in Section 3.5, we show uniform convergence in the BV norm, an optimal
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mesh-independent estimate. Since the discrete solutions are allowed to have jumps in

displacement but the classical solution is smooth, gradients can at most converge in

measure, and indeed they do.

2 Formulation

The linear elasticity problem is described by the following set of equations for a body

B ⊂ R
d, where d = 2, 3:

− ∇ · (C · ∇su
)

= f in B,

u = ū on ∂DB,(
C · ∇su

) · n = T̄ on ∂NB.

(2.1)

The body B is assumed to be a bounded, polyhedral domain. The function u : B → R
d

is the displacement, and C is the fourth-order elasticity tensor with major and minor

symmetries. In order to avoid technical difficulties that do not provide any additional

insight, we take C to be constant. We also assume that C is uniformly positive definite,

that is,

∃c > 0 : γ · C · γ ≥ cγ · γ (2.2)

for all γ in the space of d × d symmetric tensors, which implies that C is invertible on

this space. The notation ∇su denotes the symmetric gradient of the displacement,∇su =

(1/2)(∇u+(∇u)T). The boundary of the domain, ∂B, is decomposed into two disjoint sets,

∂DB and ∂NB. The body is acted upon by body forces, f : B → R
d, and surface tractions,

T̄ : ∂NB → R
d. The displacement, ū : ∂DB → R

d, is prescribed on the part of the boundary

indicated by ∂DB.

2.1 Stress-displacement formulation

The two-field, stress-displacement formulation of the linear elasticity problem is

σ − C · ∇su = 0 in B,

− ∇ · σ = f in B,

u = ū on ∂DB,

σ · n = T̄ on ∂NB.

(2.3)
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The first equation is the constitutive equation that relates the stress tensor σ to the

strain ε(∇u) = ∇su. The second equation expresses force equilibrium, and the final

two equations give the prescribed boundary conditions. The problem described by equa-

tion (2.3) has solutions (u, σ) with components in Hm+1(B) and Hm(B), respectively, for

m ≥ 1, depending on the smoothness of the data and the domain. Nominally, f ∈ (L2(B))d.

The equations (2.3) are the Euler-Lagrange equations that result from taking free

variations of the Hellinger-Reissner energy, I : (Hm+1(B))d × (Hm(B))d×d → R, where

I[u, σ] =

∫
B

(
1

2
σ · C−1 · σ − σ · ∇su + f · u

)
+

∫
∂DB

n · σ · (u − ū) +

∫
∂NB

T̄ · u.

(2.4)

The discrete equations in the next section are derived using a discretization of this vari-

ational principle.

2.2 The discrete scheme

A subdivision, Th of B, is a finite number of sets E, such that B̄ = ∪E∈Th
E. A subdivision,

Th, is called admissible in the sense of [10, page 38] if each E is closed and has nonempty

interior, the interiors of the sets E of Th are pairwise disjoint, and the boundary, ∂E, of

each E is Lipschitz continuous. We assume the family of admissible subdivisions (Th),

with h ↓ 0, is quasi-uniform [6, page 106] so that

max
{

diam E : E ∈ Th

}
= h; (2.5)

∃ρ > 0 : min
{

diam BE : E ∈ Th

} ≥ ρh, ∀h > 0, (2.6)

where BE is the largest ball contained in E. Therefore, it follows that there exist positive

constants c and C such that

chd ≤ |E| ≤ Chd (2.7)

for every element E ∈ Th and every h > 0, where |E| is the measure of E. In addition, we re-

quire all finite elements within the family of subdivisions to be affine equivalent [6, page

80] to a finite number of polyhedral reference finite elements, each with a finite num-

ber of faces. Hence the reference elements possess Lipschitz boundaries, the measure of

each face of an arbitrary element in (Th) is finite, and there exists an upper bound on the

Lipschitz constant of the boundary for all elements in the family (Th), independent of h.
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Moreover, with (2.5), we infer that there exists a constant C > 0 such that

|e|h ≤ C|E|, (2.8)

for all h > 0, and for any face e of any element E ∈ (Th). Even though DG methods can

potentially be used on meshes with hanging nodes, we consider, for simplicity, only con-

forming meshes, so that a face e of an element is either also a face of another element or

part of ∂B. We note, however, that most of the theoretical development does not rely on

this assumption.

Consider a given subdivision Th of B. Each element E ∈ Th has an orientable

boundary, ∂E, with unit, outward normal denoted by nE. Define the set of internal faces

EI
h =

{
e ⊂ ∂E \ ∂B : E ∈ Th

}
, (2.9)

the set of Dirichlet faces

ED
h =

{
e ⊂ ∂E ∩ ∂DB : E ∈ Th

}
, (2.10)

and the set of Neumann faces

EN
h =

{
e ⊂ ∂E ∩ ∂NB : E ∈ Th

}
. (2.11)

The set of all faces is denoted by Eh = EI
h ∪ ED

h ∪ EN
h . Corresponding to this set of faces,

define the combined internal and external boundary to be

Γ = ∪e∈Eh
e. (2.12)

Let Ṽ = ΠE∈Th
(H1(E))d be the space of functions on B whose restriction to each

element E belongs to the Sobolev space (H1(E))d. Therefore, the traces of functions in Ṽ

belong to T(Γ) = ΠE∈Th
(L2(∂E))d. Functions in T(Γ) are multivalued on Γ \ ∂B and single-

valued on ∂B. The space (L2(Γ))d can be identified with the subspace of T(Γ) consisting of

functions for which the possible multiple values agree on all internal faces. Similarly, let

W̃ = ΠE∈Th
(H1(E))d×d be the space of functions on B whose restriction to each element

E belongs to the Sobolev space (H1(E))d×d. A tensor τ ∈ W̃ has d2 components. The d2

traces, the components of τ|∂E, are defined, and each belongs to L2(∂E). In particular, the

linear combination of traces τ · nE is in T(Γ).1

1The space of stresses W̃ could be taken to be larger; however, this is unnecessary since we consider exact
solutions (u,σ) in (H2(B))d × (H1(B))d×d .
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Next, we introduce two finite-element spaces of scalar functions over an element

E, VE
h and WE

h , with VE
h ⊆ WE

h . These elemental spaces contain the polynomials and have

minimal smoothness over the element, Pk(E) ⊆ VE
h ,WE

h ⊂ H1(E), k ≥ 1, where Pk(E) de-

notes the space of polynomials of degree at most k on E. The finite-element spaces for the

displacements, Vh, and displacement gradients, Wh, are constructed so that each com-

ponent is in VE
h or WE

h on the element E, Vh = ΠE∈Th
(VE

h )d and Wh = ΠE∈Th
(WE

h)d×d.

Consequently, we have Vh ⊂ Ṽ . We also assume that gradients of the displacement are in

the space of displacement gradients, ∇[(VE
h )d] ⊆ (WE

h)d×d. Furthermore, we require the

elemental finite-element spaces to coincide over common faces. More precisely, let e ∈ EI
h

be the face common to two elements, E+ and E−, then {φ|e : φ ∈ VE+

h } = {φ|e : φ ∈ VE−

h }

and {φ|e : φ ∈ WE+

h } = {φ|e : φ ∈ WE−

h }. This requirement insures that the trace of a

function in VE+

h (WE+

h ) is also the trace of a function in VE−

h (WE−

h ), on e. Lastly, we denote

with Ws
h the space of symmetric tensors in Wh.

We assume that the discrete spaces, Vh and Wh, are finite dimensional. Observe

that the functions in both discrete spaces can be discontinuous across element bound-

aries. The conditions specified here are satisfied by many standard finite-element spaces,

such as those constructed from Lagrange simplices of various degrees and those con-

structed with bilinear quadrilaterals or trilinear bricks.

Remark 2.1. Most of the proofs in this article immediately generalize to the case of

isoparametric elements, though some adjustment of the assumptions on the finite-

element spaces might be required. In particular, the special treatment of Korn’s inequal-

ity also applies to isoparametric elements.

We wish to formulate a discretized version of (2.4) subordinate to the subdivi-

sion. To this end, we define the average operator, {·} : T(Γ) → (L2(Γ))d, and the jump op-

erator, [[·]] : T(Γ) → (L2(Γ))d. Each face, e ∈ EI
h, is shared by two elements, E+ and E−; let

v± = v|E± for v ∈ Ṽ . Define the average, for e ∈ EI
h, by

{v} =
1

2

(
v−|e + v+|e

)
(2.13)

and the jump by

[[v]] = v−|e − v+|e. (2.14)

For e ∈ ED
h , put

{v} = v, [[v]] = v; (2.15)
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and for e ∈ EN
h , assign

{v} = v, [[v]] = 0. (2.16)

In the sequel, we choose an orientation, n, for each face e ∈ EI
h, as the unit normal

pointing toward E+. For e ⊂ ∂B, n is the unit outward normal to ∂B. For σ ∈ W̃, let σ± =

σ|E± . On e ∈ EI
h, the average of the vector σ · n means

{σ · n} =
1

2

(
σ+|e + σ−|e

) · n, (2.17)

with n given uniquely on the face. The definition of {σ ·n} on boundary faces, e ∈ ED
h ∪EN

h ,

is clear.

Now, specialize (2.4) to each individual element as follows:

IE =

∫
E

(
1

2
σ · C−1 · σ − σ · ∇su + f · u

)
+

∫
∂E\∂B

1

2
nE · σ · (u − uext

)
+

∫
∂E∩∂DB

n · σ · (u − ū) +

∫
∂E∩∂NB

T̄ · u,

(2.18)

where uext is the trace of u on the elements adjacent to ∂E\∂B. The 1/2 factor in the second

term accounts for the fact that for a given face, two adjacent elements contribute to the

potential energy. A global discrete functional, Ih : Vh × Ws
h → R, is defined simply by

summing over all elemental contributions:

Ih =
∑

E∈Th

IE. (2.19)

The corresponding Euler-Lagrange equations that result from taking free variations of

Ih are

∑
E∈Th

∫
E

(
δσ · C−1 · σ − δσ · ∇su

)
+

∫
Γ

{n · δσ} · [[u]] −

∫
∂DB

n · δσ · ū = 0,

∑
E∈Th

∫
E

(
− σ · ∇sδu + f · δu

)
+

∫
Γ

{n · σ} · [[δu]] +

∫
∂NB

T̄ · δu = 0.

(2.20)



80 Adrian Lew et al.

Thus, we obtain the general problem which is to find uh ∈ Vh and σh ∈ Ws
h such that

∑
E∈Th

∫
E

(
γh · C−1 · σh − γh · ∇suh

)
+

∫
Γ

{
n · γh

} · [[uh

]]
=

∫
∂DB

n · γh · ū ∀γh ∈ Ws
h;

(2.21)

∑
E∈Th

∫
E

σh · ∇svh −

∫
Γ

{
n · σh

} · [[vh

]]
=

∫
B

f · vh +

∫
∂NB

T̄ · vh ∀vh ∈ Vh.

(2.22)

Equations (2.21) and (2.22) constitute the flux form of the discrete problem. Next,

we define the lifting operator Rū : (L2(Γ))d → Ws
h by

∫
B

Rū(v) · γ = −

∫
Γ

{n · γ} · v +

∫
∂DB

n · γ · ū ∀γ ∈ Ws
h. (2.23)

This operator will now be used to derive the primal form [3] of the discretization, where

a single equation is obtained by eliminating σh between (2.21) and (2.22). In terms of

(2.23), equation (2.21) is the same as

∑
E∈Th

∫
E

(
γh · C−1 · σh − γh · ∇suh − Rū

([[
uh

]]) · γh

)
= 0 ∀γh ∈ Ws

h. (2.24)

Since we require the elemental finite-element spaces to satisfy ∇[(VE
h )d] ⊆ (WE

h)d×d, this

equation allows us to identify

σh = σh

(
uh

)
= C · ∇suh + C · Rū

([[
uh

]])
in Ws

h. (2.25)

This constitutive equation for the discrete stress can be viewed as a stress-strain rela-

tion where the strain involves the usual dependence on the displacement gradient, plus

a linear contribution that arises from jumps in displacement.

Next, take γh = C · ∇svh in equation (2.21) to get

∑
E∈Th

∫
E

(∇svh · σh − ∇svh · C · ∇suh

)
+

∫
Γ

{
n · C · ∇svh

} · [[uh

]]
=

∫
∂DB

n · (C · ∇svh

) · ū.

(2.26)
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Finally, substitute equation (2.22) to obtain

∑
E∈Th

∫
E

∇svh · C · ∇suh −

∫
Γ

({
n · C · ∇svh

} · [[uh

]]
+

{
n · σh

} · [[vh

]])
=

∫
B

f · vh +

∫
∂NB

T̄ · vh −

∫
∂DB

n · (C · ∇svh

) · ū.

(2.27)

If (uh, σh) ∈ Vh × Ws
h solves (2.21) and (2.22), then uh solves (2.27), with σh = σh(uh)

given by (2.25). Equation (2.27) is called the primal formulation.

Recall the definition of Rū in (2.23) and introduce the notation R = R0. Using

(2.23) and (2.25), the primal form (2.27) can also be written as

∑
E∈Th

∫
E

(∇svh + R
([[

vh

]])) · C · (∇suh + R
([[

uh

]]))
=

∫
B

f · vh +

∫
∂NB

T̄ · vh −

∫
∂DB

n · (C · (∇svh + R
([[

vh

]]))) · ū.

(2.28)

We remark that our physically based derivation of this equation, obtained by discretiz-

ing the variational principle, produces an analogous discretization to that used by Bassi

and Rebay in [5, 8]. Brezzi, Manzini, Marini, Pietra, and Russo [7, 8] propose a stabilizing

term for the scalar case which naturally extends to linear elasticity. The stabilization is

given in terms of re,ū : (L2(Γ))d → Ws
h. Define re,ū for e ∈ EI

h,∫
B

re,ū(v) · γ = −

∫
e

{n · γ} · v ∀γ ∈ Ws
h, (2.29)

while for e ∈ ED
h ,∫

B

re,ū(v) · γ = −

∫
e

{n · γ} · v +

∫
e

n · γ · ū ∀γ ∈ Ws
h, (2.30)

and for e ∈ EN
h , re,ū = 0. As before, set re = re,0. Note that re,ū(v) vanishes outside the

union of elements containing e, and that for any element E ∈ Th,

Rū(v) =
∑

e⊂∂E

re,ū(v) (2.31)

on E. The stabilizing term is β
∑

e⊂∂E

∫
B

re,ū([[uh]])·C·re([[vh]]),with β > 0 the stabilization

parameter. The resulting primal form with the stabilizing term is

∑
E∈Th

∫
E

(∇svh+R
([[

vh

]]))· C · (∇suh+R
([[

uh

]]))
+β

∑
e∈Eh

∫
B

re

([[
uh

]])· C · re

([[
vh

]])
=

∫
B

f · vh +

∫
∂NB

T̄ · vh −

∫
∂DB

n · (C · (∇svh + R
([[

vh

]])
+ βre

([[
vh

]]))) · ū.

(2.32)
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The form (2.32), which derives directly from the variational principle, is stable

for any β > 0. In Section 3, we analyze in detail a modification proposed by Brezzi,

Manzini, Marini, Pietra, and Russo [7, 8] that omits the quadratic term in R, making the

method stable for β > Ne, where Ne is the maximum number of faces in an element of

the subdivision. The advantage of dropping this quadratic term is that the sparsity of

the stiffness matrix is increased.

The analysis of the proposed method relies on elliptic regularity, so we restrict

it to Dirichlet boundary conditions on the entire boundary, ∂B. Thus, ∂NB = ∅, EN
h = ∅,

and, without loss of generality, ū = 0 on ∂B. Accordingly, the complete discrete problem

statement, with these modifications, is to find uh ∈ Vh such that

ah

(
uh, vh

)
=

∫
B

f · vh ∀vh ∈ Vh, (2.33)

where the bilinear form ah is given by

ah

(
uh, vh

)
=

∑
E∈Th

∫
E

(∇svh · C · ∇suh + ∇svh · C · R([[uh

]])
+ R

([[
vh

]]) · C · ∇suh

)
+ β

∑
e∈Eh

∫
B

re

([[
uh

]]) · C · re

([[
vh

]])
.

(2.34)

Remark 2.2. The bilinear form (2.34) can be written alternatively using (2.23) as

ah

(
uh, vh

)
=

∑
E∈Th

∫
E

(∇svh · C · ∇suh

)
−

∫
Γ

({
n · C · ∇svh

} · [[uh

]]
+

{
n · C · ∇suh

} · [[vh

]])
+ β

∑
e∈Eh

∫
B

re

([[
uh

]]) · C · re

([[
vh

]])
.

(2.35)

These two forms are equivalent for uh, vh ∈ Vh.

2.3 Notation

In Section 3, a convergence proof will be given for d = 2 and 3, simultaneously. In the

proofs, the letter C indicates a generic constant whose value can change in each occur-

rence. We also employ the standard notation ‖ · ‖p,Ω to denote the usual norm on Hp(Ω),
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and | · |p,Ω to denote the Hp(Ω) seminorm, whereas ‖ · ‖ denotes the Euclidean norm for

vectors or tensors. When other standard norms are used, they will be indicated explicitly

with a subscript; for example, ‖ · ‖L1(Ω) indicates the L1(Ω)-norm.

2.4 Summary of the theoretical results

The convergence proof utilizes two relevant mesh-dependent norms on V̂ = (H1
0(B))d+Vh

given by

|||v|||2s =
∑

E∈Th

∥∥∇sv
∥∥2

0,E
+

∑
e∈Eh

∥∥re

(
[[v]]
)∥∥2

0,B
, v ∈ V̂, (2.36)

|||v|||2 =
∑

E∈Th

‖∇v‖2
0,E +

∑
e∈Eh

∥∥re

(
[[v]]
)∥∥2

0,B
, v ∈ V̂. (2.37)

Proposition 3.4 establishes that ||| · |||s is a norm on V̂ . Also note that

|||v|||2s ≤ |||v|||2, v ∈ V̂, (2.38)

which shows that ||| · ||| is also a norm on V̂. Although one might expect the second term

in the definitions of norms (2.36) and (2.37) to act as an L2-like contribution, we can

only assert that these are seminorms on Ṽ. In the case of the scalar Poisson equation

[2, 3, 7, 8, 9, 18, 22], there is no need to distinguish between the norms (2.36) and (2.37).

Following the ideas in [7, 8], it is straightforward to obtain boundedness and coercivity

of the bilinear form ah with respect to the mesh-dependent norm, ||| · |||s (Proposition 3.5),

which leads to convergence of the discrete solutions in the ||| · |||s-norm and in L2(B)

(Theorems 3.14 and 3.15). The convergence in the ||| · |||s-norm is sufficient for a mesh-

independent BD estimate (Theorem 3.19); however, the ||| · |||s norm does not provide con-

trol over the antisymmetric part of the displacement gradient. If the displacements are

in H1
0(B), the equivalence of the two norms, |||· |||s and |||· |||, relies on Korn’s first inequality;

for nonconforming elements, Korn’s inequality may not be valid [17].

order to obtain convergence in the norm, ||| · |||, Theorem 3.23, we prove a

generalized version of Korn’s second inequality for the subdivision, Corollary 3.22.

The proof of this inequality relies on observations about how Korn’s inequality for

an element behaves under distortion (Theorem 3.20) and scaling (Theorem 3.21).

Finally, Theorem 3.26 shows that the mesh-dependent norm, ||| · |||, estimates the BV

norm, and as a consequence, Corollary 3.27, we obtain convergence in BV, an optimal

mesh-independent result.
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3 Theoretical results

3.1 Convergence in the mesh-dependent symmetric norm

In this section, we obtain the convergence of the discretized solutions in the mesh-

dependent norm ||| · |||s. Our analysis follows the outline in [7, 8] for the two-dimensional

Poisson equation, but the details of most proofs differ. The first three lemmas

characterize properties of the jumps. In the subsequent proposition, our analysis starts

by establishing that ||| · |||s is in fact a norm on V̂.

Lemma 3.1 (extension of traces). Let e be a face of an element E ∈ (Th). For any φ in the

trace space, T(e) = {φ ∈ (L2(e))d×d : φ = γ|e, γ ∈ (WE
h)d×d}, there exists Pe(φ) ∈ (WE

h)d×d

such that Pe(φ)|e = φ. Moreover, for all φ ∈ T(e),

∃C > 0 :
∥∥Pe(φ)

∥∥
0,E

≤ Ch1/2‖φ‖0,e (3.1)

for all h > 0 and for all E ∈ Th. �

Proof. First examine a reference element. Let ê ⊂ ∂Ê be a face of one of the reference

elements, Ê, and let φ ∈ T(ê). There exists C > 0 such that

sup
φ∈T (ê), ‖φ‖0,ê=1

inf
γh∈(WÊ

h )d×d, γh|e=φ

∥∥γh

∥∥2

0,Ê
< C. (3.2)

Since γh ∈ (WÊ
h)d×d is a linear combination of basis functions on Ê, ‖γh‖0,Ê is a quadratic

form in a finite-dimensional space. Therefore, there is a minimizer, Pê(φ), of ‖γh‖2
0,Ê

sub-

ject to the linear constraint γh|e = φ ∈ T(ê), which depends continuously on φ. Thus,

Pê(φ) is bounded on the compact set ‖φ‖0,ê = 1, and (3.2) follows.

Next, note that Pê(λφ) = λPê(φ) for λ ∈ R, which implies

∥∥Pê(φ)
∥∥2

0,Ê
≤ C‖φ‖2

0,ê (3.3)

for all φ ∈ T(ê). Since the number of reference elements is finite, as is the number of faces

per element, we can choose C in (3.3) independent of the reference element and the face.

Now, let E be any element in the family of subdivisions (Th), and let e be any one

of its faces. Let F be the affine transformation such that E = F(Ê) for one of the reference

elements Ê, and let ê be the corresponding face in the reference element, e = F(ê). Given
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φ ∈ T(e), the definition of affine equivalence implies φ̂ = φ ◦ F ∈ T(ê). Define Pe(φ) =

Pê(φ̂) ◦ F−1 ∈ (WE
h)d×d, and note Pe(φ)|e = φ. Then, use (3.3) and ‖F‖ ≤ h/ρ̂ (see, e.g., [10,

page 120]), where ρ̂ is the diameter of the largest ball contained in Ê, to obtain

∫
E

∣∣Pe(φ)
∣∣2 = | det F|

∫
Ê

∣∣Pê

(
φ̂
)∣∣2

≤ C| det F|

∫
ê

∣∣φ̂∣∣2
≤ C| det F|

∫
e

|φ|2
∣∣det F−1

∣∣‖F‖
≤ C‖F‖

∫
e

|φ|2

≤ C
h

ρ̂

∫
e

|φ|2.

(3.4)

The lemma follows. �

Lemma 3.2 (trace inequality for re). There exists a constant C > 0, independent of the

face e ∈ Eh and of h, such that

∥∥re(v)
∥∥

0,e
≤ Ch−1/2

∥∥re(v)
∥∥

0,E
(3.5)

for all v ∈ (L2(e))d. �

Proof. The inequality (3.5) is actually a statement about tensors γ ∈ (WE
h)d×d, where γ =

re(v). The proof follows a scaling argument. Let ê ⊂ ∂Ê be a face of one of the reference

elements, Ê. Then, there exists a constant C > 0 such that

∥∥γ̂∥∥
0,ê

≤ C
∥∥γ̂∥∥

0,Ê
(3.6)

for all γ̂ ∈ (WÊ
h)d×d. Inequality (3.6) is a direct consequence of the continuity of the trace

in WÊ
h ⊂ H1(Ê) (see, e.g., [6, page 37]) and the fact that in a finite-dimensional space, all

norms are equivalent. Since there are a finite number of reference elements, each with a

finite number of faces, the constant C can be chosen independent of the reference element

and of its face.

Now, consider γ ∈ (WE
h)d×d, where E is an element affine equivalent to Ê. Then,

there exists an affine mapping F such that E = F(Ê), and γ̂ ∈ (WÊ
h)d×d such that γ = γ̂◦F−1.

Note that

‖γ‖2
0,E =

∫
E

γ · γ = | det F|

∫
Ê

γ̂ · γ̂ = | det F|
∥∥γ̂∥∥2

0,Ê
,

‖γ‖2
0,e =

∫
e

γ · γ =
∥∥F−1n̂

∥∥| det F|

∫
ê

γ̂ · γ̂ ≤ ∥∥F−1
∥∥| det F|

∥∥γ̂∥∥2

0,ê
,

(3.7)
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where n̂ is the unit outward normal to ê. Therefore, (3.6) and (3.7) combine to yield

‖γ‖0,e ≤ C
∥∥F−1

∥∥1/2‖γ‖0,E ≤ Cĥ1/2

ρ1/2
h−1/2‖γ‖0,E. (3.8)

The last part of the bound uses the fact that ‖F−1‖ ≤ ĥ/(diam BE) ≤ ĥ/(ρh) (see, e.g., [10,

page 120]). �

Lemma 3.3 (jump bound). There exist two positive constants C1 and C2, independent of

the face e ∈ Eh and of h, such that

∥∥[[vh

]]∥∥
0,e

≤ C1h1/2
∥∥re

([[
vh

]])∥∥
0,B

∀vh ∈ Vh; (3.9)∥∥re

([[
vh

]])∥∥
0,B

≤ C2h−1/2
∥∥[[vh

]]∥∥
0,e

∀vh ∈ Vh. (3.10)
�

Proof. Let e ⊂ E be a face of element E. Given [[vh]] ∈ (L2(e))d, let γe
h ∈ (L2(e))d×d be such

that γe
h · n = [[vh]]. Note that it is possible to choose γe

h so that ‖γe
h‖ ≤ C‖[[vh]]‖. For the

tensor γe
h defined only on e, construct an extension to the element, γh|E = Pe(γe

h), as in

Lemma 3.1. Take γh ∈ Ws
h to be γh|E = Pe(γe

h) on E, γh = 0 elsewhere, and v = [[vh]] in

equation (2.29) to get

1

2

∥∥[[vh

]]∥∥2

0,e
=

1

2

∫
e

[[
vh

]] · [[vh

]]
≤

∫
B

∣∣re

([[
vh

]]) · Pe

(
γe

h

)∣∣
≤ ∥∥re

([[
vh

]])∥∥
0,B

∥∥Pe

(
γe

h

)∥∥
0,E

≤ Ch1/2
∥∥re

([[
vh

]])∥∥
0,B

∥∥[[vh

]]∥∥
0,e

.

(3.11)

In the nontrivial case in which ‖[[vh]]‖0,e 
= 0, inequality (3.9) follows from (3.11) by di-

viding through by ‖[[vh]]‖0,e.

To prove (3.10), take γ = re([[vh]]) and v = [[vh]] in equation (2.29) to get

∥∥re

([[
vh

]])∥∥2

0,B
=

∣∣∣∣ ∫
e

{
n · re

([[
vh

]])} · [[vh

]]∣∣∣∣
≤ ∥∥[[v]]∥∥

0,e

∥∥{re

([[
vh

]])}∥∥
0,e

≤ C2h−1/2
∥∥[[vh

]]∥∥
0,e

∥∥re

([[
vh

]])∥∥
0,B

.

(3.12)

We have used the linearity of re and (3.5) in the last step. The result, (3.10), follows. �



Discontinuous Galerkin Method 87

Proposition 3.4 (symmetric norm). Let vh ∈ V̂ = (H1
0(B))d + Vh. Then ||| · |||s : V̂ → R as

defined in (2.36) is a norm on V̂ . �

Proof. It is immediate that |||λv|||s = |λ| |||v|||s for all λ ∈ R, and that the triangle inequality

holds since re is linear. We show that |||v|||s = 0 implies v = 0 in V̂. Notice that |||v|||s = 0

if and only if ‖∇sv‖0,E = 0 for all E ∈ Th and ‖re([[v]])‖0,B = 0 for all e ∈ Eh. Let v =

v1 + v2 ∈ V̂, with v1 ∈ (H1
0(B))d and v2 ∈ Vh. By Lemma 3.3, we have that ‖[[v2]]‖0,e ≤

Ch1/2‖re([[v2]])‖0,B. Therefore, ‖[[v2]]‖0,e = 0. Since also ‖[[v1]]‖0,e = 0, we have ‖[[v]]‖0,e = 0.

So v ∈ (H1
0(B))d by [27, Theorem 1.3]. Korn’s first inequality for homogeneous boundary

data applied to v ∈ (H1
0(B))d then shows that v = 0. �

Next, we show that the bilinear form (2.34) is continuous and coercive with re-

spect to the norm, ||| · |||s. The proofs follow [7, 8] almost exactly.

Proposition 3.5 (continuity and coercivity of the bilinear form). Let Ne be a bound on

the number of faces in an element. Then, there exists a constant M > 0, independent of

h, such that

(i) ah(uh, vh) ≤ M|||uh|||s|||vh|||s for all uh, vh ∈ V̂.

Moreover, for β > Ne, there exists a constant µ > 0, independent of h, such that

(ii) ah(uh, uh) ≥ µ|||uh|||2s for all uh ∈ V̂. �

Proof. We first prove the following inequality, a consequence of equation (2.31):

∥∥R([[vh

]])∥∥2

0,E
≤ Ne

∑
e⊂∂E

∥∥re

([[
vh

]])∥∥2

0,E
. (3.13)

We have

∥∥R([[vh

]])∥∥2

0,E
=

∫
E

( ∑
e⊂∂E

re

([[
vh

]]))( ∑
e ′⊂∂E

re ′
([[

vh

]]))

≤
∫
E

∑
e ′⊂∂E

∑
e⊂∂E

∥∥re

([[
vh

]])∥∥∥∥re ′
([[

vh

]])∥∥
≤

∑
e ′⊂∂E

∑
e⊂∂E

1

2

(∥∥re

([[
vh

]])∥∥2

0,E
+
∥∥re ′

([[
vh

]])∥∥2

0,E

)
≤ Ne

∑
e⊂∂E

∥∥re

([[
vh

]])∥∥2

0,E
.

(3.14)
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Next, the continuity of the bilinear form (2.34) follows from estimating each term.

∣∣∣∣ ∫
E

∇suh · C · ∇svh

∣∣∣∣ ≤ ‖C‖∥∥∇suh

∥∥
0,E

∥∥∇svh

∥∥
0,E

,∣∣∣∣ ∫
E

∇suh · C · R([[vh

]])∣∣∣∣ ≤ ‖C‖∥∥∇suh

∥∥
0,E

∥∥R([[vh

]])∥∥
0,E

≤ ‖C‖∥∥∇suh

∥∥
0,E

[
Ne

∑
e⊂∂E

∥∥re

([[
vh

]])∥∥2

0,E

]1/2

,

∣∣∣∣∣ ∑
e⊂∂E

∫
E

re

([[
uh

]]) · C · re

([[
vh

]])∣∣∣∣∣ ≤ ‖C‖
∑

e⊂∂E

∥∥re

([[
uh

]])∥∥
0,E

∥∥re

([[
vh

]])∥∥
0,E

.

(3.15)

Adding each term over all elements and using the Cauchy-Schwartz inequality yields (i).

The constant M depends on ‖C‖, Ne, and β, but is independent of h.

Now we show coercivity, (ii). To simplify the notation, define

‖γ‖2
0,E,C =

∫
E

γ · C · γ ∀γ ∈ Ws
h. (3.16)

Due to (3.13), we get

ah

(
uh, uh

)
=

∑
E∈Th

(∥∥∇suh

∥∥2

0,E,C
+

∫
E

2∇suh · C · R([[uh

]])
+ β

∑
e⊂∂E

∥∥re

([[
uh

]])∥∥2

0,E,C

)

≥
∑

E∈Th

(
(1 − ε)

∥∥∇suh

∥∥2

0,E,C
−

1

ε

∥∥R([[uh

]])∥∥2

0,E,C
+ β

∑
e⊂∂E

∥∥re

([[
uh

]])∥∥2

0,E,C

)

≥
∑

E∈Th

(
(1 − ε)

∥∥∇suh

∥∥2

0,E,C
+

(
β −

Ne

ε

) ∑
e⊂∂E

∥∥re

([[
uh

]])∥∥2

0,E,C

)
,

(3.17)

where we used the standard inequality, 2ab ≤ εa2 + b2/ε, for all ε > 0. Any β > Ne

guarantees that (β − Ne/ε) > 0 whenever Ne/β < ε < 1. Since each term is positive, we

can invoke (2.2) to deduce (ii) with µ = c(β − Ne/ε) > 0. �

Remark 3.6. As suggested in [7, 8], following the same steps as in the previous proof es-

tablishes the continuity and coercivity of the bilinear form given by the left-hand side of

equation (2.32), but for any β > 0.
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The following lemma is a preliminary to proving convergence of the discrete dis-

placement, first in ||| · |||s, and subsequently in L2(B).

Lemma 3.7. Let u ∈ (H1(B))d with ∇ · (C · ∇u) ∈ (L2(B))d, and let vh ∈ Vh, then

∑
E∈Th

∫
∂E

nE · (C · ∇u) · vh =
∑

e∈Eh

∫
e

{n · C · ∇u} · [[vh

]]
. (3.18)

�

Proof. The assumed regularity of u implies that n · C · ∇u is continuous across interele-

ment boundaries (e.g., [27, Theorem 1.3]); that is, 0 = n · (C · ∇u− − C · ∇u+) on any face

in EI
h. Therefore

∑
E∈Th

∫
∂E

nE · (C · ∇u) · vh

=
∑

e∈EI
h

∫
e

(
− n · (C · ∇u+

) · v+
h + n · (C · ∇u−

) · v−
h

)
+

∑
e∈ED

h

∫
e

n · (C · ∇u) · vh

=
∑

e∈EI
h

∫
e

−
1

2

(
n · (C · ∇u+

)
+ n · (C · ∇u−

)) · v+
h

+
1

2

(
n · (C · ∇u+

)
+ n · (C · ∇u−

)) · v−
h +

∑
e∈ED

h

∫
e

n · (C · ∇u) · vh

=
∑

e∈Eh

∫
e

{n · C · ∇u} · [[vh

]]
.

(3.19)
�

The next component of the convergence proof is a bound on the approximation

error |||u − uI|||s when uI is a suitable interpolant of the exact solution u. Arnold, Brezzi,

Cockburn, and Marini [3] note that discontinuous interpolants can be employed if they

satisfy a local approximation property summarized in the next theorem.

Theorem 3.8 (local interpolation-error estimate). For v ∈ (Hk+1(E))d, let vI be the Pk-

interpolant of v on E ∈ (Th). There exists C > 0, independent of E ∈ (Th) and therefore of

h, such that

∣∣v − vI

∣∣
q,E

≤ Chk+1−q|v|k+1,E, k + 1 ≥ q ≥ 0, (3.20)

provided Pk(E) ⊆ VE
h ⊂ Hq(E). �

Proof. The proof is given by Ciarlet [10, Theorem 3.1.5]. �
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Theorem 3.9 (interpolation-error estimate). Let u ∈ (Hm(B))d for some m such that 2 ≤
m ≤ k + 1, and let uI ∈ Vh be the Pk-interpolant of u over each element in Th. Then the

following interpolation inequality holds:

∣∣∣∣∣∣u − uI

∣∣∣∣∣∣
s
≤ Chm−1|u|m,B, (3.21)

where C > 0 is a constant depending only on d,m, and the upper bound on the Lipschitz

constant of the boundary for every element E ∈ Th, but not on h or the function u. �

Proof. From the previous theorem, we have

∑
E∈Th

∣∣u − uI

∣∣2
q,E

≤
∑

E∈Th

Ch2m−2q|u|2m,E, m ≥ q. (3.22)

In addition, the trace inequality [16, page 133] together with a scaling argument gives

‖u‖2
0,e ≤ C

(
h−1|u|20,E + h|u|21,E

) ∀u ∈ H1(E), (3.23)

where the constant C depends only on the Lipschitz constant of the boundary of the el-

ement, and can be chosen to be the same for all elements in the family of subdivisions

(Th) under consideration.

Following [3], the interpolation inequality (3.21) is established using the

inequality (3.23), the bound (3.22), and the inverse inequality (3.10). Starting from the

definition of ||| · |||s, the theorem is obtained as follows:

∣∣∣∣∣∣u − uI

∣∣∣∣∣∣2
s

=
∑

E∈Th

∥∥∇s

(
u − uI

)∥∥2

0,E
+

∑
e∈Eh

∥∥re

([[
u − uI

]])∥∥2

0,B

≤
∑

E∈Th

∥∥∇(u − uI

)∥∥2

0,E
+

∑
e∈Eh

∥∥re

([[
u − uI

]])∥∥2

0,B

≤
∑

E∈Th

∣∣u − uI

∣∣2
1,E

+
∑

e∈Eh

Ch−1
∥∥[[u − uI

]]∥∥2

0,e

≤ C
∑

E∈Th

h2m−2|u|2m,E

≤ Ch2m−2|u|2m,B.

(3.24)

Again, the constant C is positive and depends only on d, m, and the upper bound on the

Lipschitz constant of the boundary for every element E ∈ Th, but not on h or the func-

tion u. �
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The last ingredient for the convergence proof is an analysis of the consistency

error in the bilinear form (2.34) for functions in V̂h.

Remark 3.10. The bilinear form (2.35), which coincides with (2.34) on Vh, is consistent

but continuity does not hold with respect to the norm ||| · |||s for functions in V̂h. However,

it can be shown that (2.34) is continuous with respect to a different norm on a different

function space in which some additional regularity is requested [3].

Theorem 3.11 (bound on consistency error). Let u be the exact solution to (2.1),with u ∈
(Hm(B))d for some m such that 2 ≤ m ≤ k + 1. Then

∣∣∣∣ah

(
u, vh

)
−

∫
B

f · vh

∣∣∣∣ ≤ Chm−1|u|m,B

∣∣∣∣∣∣vh

∣∣∣∣∣∣
s

(3.25)

for all vh ∈ V̂h. In addition, if vh is continuous, then

ah

(
u, vh

)
=

∫
B

f · vh. (3.26)
�

Proof. Recall that [[u]] = 0, and use the definition of the bilinear form ah(·, ·), (2.34), inte-

gration by parts, and application of Lemma 3.7 to obtain

ah

(
u, vh

)
−

∫
B

f · vh

=
∑

E∈Th

( ∫
E

∇su · C · ∇svh +

∫
E

∇su · C · R([[vh

]]))
−

∫
B

f · vh

=
∑

E∈Th

( ∫
E

∇u · C · ∇vh +

∫
E

∇su · C · R([[vh

]])
−

∫
E

f · vh

)

=
∑

E∈Th

(
−

∫
E

(∇ · (C · ∇u) + f
) · vh +

∫
∂E

nE · C · ∇u · vh +

∫
E

∇su · C · R([[vh

]]))

=
∑

e∈Eh

∫
e

[[
vh

]] · {n · C · ∇su
}

+
∑

E∈Th

∫
E

∇su · C · R([[vh

]])
=

∑
e∈Eh

∫
e

[[
vh

]] · {n · C · ∇s

(
u − uI

)}
+

∑
E∈Th

∫
E

∇s

(
u − uI

) · C · R([[vh

]])
.

(3.27)

The last line comes from the definition, (2.23), of R(v) with γh = −C · ∇uI and v = [[vh]].

We have also used the symmetry of C to interchange gradients and symmetric gradients.

Note that if vh is continuous, then [[vh]] = 0, and the bilinear form is consistent.
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To complete the proof, we bound the consistency error as follows. Using the trace

inequality, (3.23), for u − uI ∈ H2(E), and (3.9), we have

∣∣∣∣∣ ∑
e∈Eh

∫
e

[[
vh

]] · {n · C · ∇(u − uI

)}∣∣∣∣∣
≤ C

∑
E∈Th

∑
e⊂∂E

h1/2
∥∥re

([[
vh

]])∥∥
0,B

∥∥∇(u − uI

)∥∥
0,B

≤ C
∑

E∈Th

∑
e⊂∂E

h1/2
∥∥re

([[
vh

]])∥∥
0,B

(
h−1

∣∣u − uI

∣∣2
1,E

+ h
∣∣u − uI

∣∣2
2,E

)1/2

≤ C
∑

E∈Th

∑
e⊂∂E

∥∥re

([[
vh

]])∥∥
0,B

(∣∣u − uI

∣∣
1,E

+ h
∣∣u − uI

∣∣
2,E

)
≤ Chm−1|u|m,B

∣∣∣∣∣∣vh

∣∣∣∣∣∣
s
.

(3.28)

Moreover,

∣∣∣∣∣ ∑
E∈Th

∫
E

∇s

(
u − uI

) · C · R(vh

)∣∣∣∣∣ ≤ C
∑

E∈Th

∥∥∇s

(
u − uI

)∥∥
0,E

∥∥R(vh

)∥∥
0,E

≤ C
∑

E∈Th

∣∣u − uI

∣∣
1,E

∑
e⊂∂E

∥∥re

(
vh

)∥∥
0,E

≤ Chm−1|u|m,B

∣∣∣∣∣∣vh

∣∣∣∣∣∣
s
.

(3.29)

�

Corollary 3.12. Let u be the exact solution to (2.1), with u ∈ (Hm(B))d for some m such

that 2 ≤ m ≤ k + 1, and let uh be the solution of (2.33). Then

∣∣ah

(
u − uh, vh

)∣∣ ≤ Chm−1|u|m,B

∣∣∣∣∣∣vh

∣∣∣∣∣∣
s

(3.30)

for all vh ∈ Vh. In addition, if vh is continuous, then

ah

(
u − uh, vh

)
= 0. (3.31)

�

Proof. Note that

a
(
u − uh, vh

)
= ah

(
u, vh

)
− ah

(
uh, vh

)
= ah

(
u, vh

)
−

∫
B

f · vh

(3.32)

for all vh ∈ Vh. The conclusion follows from the previous theorem. �
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Remark 3.13. Equation (3.31) expresses a Galerkin orthogonality which follows from

consistency.

At this point we have gathered all the necessary ingredients to prove convergence

of the discrete solutions in ||| · |||s and ‖ · ‖0,B, which is the content of the next two theo-

rems.

Theorem 3.14 (convergence in the mesh-dependent norm ||| · |||s). Let u be the exact solu-

tion to (2.1), with u ∈ (Hm(B))d for some m such that 2 ≤ m ≤ k + 1, and let uh be the

solution of (2.33), then the following estimate holds:

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s
≤ Chm−1|u|m,B, (3.33)

where C is a positive constant independent of h. �

Proof. From Proposition 3.5, we have

µ
∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣2
s
≤ ah

(
uI − uh, uI − uh

)
= ah

(
uI − u, uI − uh

)
+ ah

(
u − uh, uI − uh

)
≤ M

∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣
s

∣∣∣∣∣∣uI − u
∣∣∣∣∣∣

s
+
∣∣ah

(
u − uh, uI − uh

)∣∣.
(3.34)

The last term in the above equation is due to the general lack of Galerkin orthogonality,

but it is appropriately bounded using Corollary 3.12. Therefore,

µ
∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣2
s
≤ M

∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣
s

∣∣∣∣∣∣uI − u
∣∣∣∣∣∣

s
+ Chm−1|u|m,B

∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣
s
. (3.35)

The conclusion (3.33) follows using (3.21) above. �

Theorem 3.15 (convergence in L2(B)). Let u be the exact solution of (2.1), with u ∈
(Hm(B))d for some m such that 2 ≤ m ≤ k + 1, and let uh be the solution of (2.33), then

the following estimate holds:

∥∥u − uh

∥∥
0,B

≤ Chm|u|m,B. (3.36)
�

Proof. The proof follows a standard duality argument. Consider the adjoint problem.

Find w ∈ (H2(B))d such that

− ∇ · (C · ∇sw
)

= u − uh in B,

w = 0 on ∂B.
(3.37)
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Since u − uh ∈ (L2(B))d, the following standard elliptic regularity estimate holds (see,

e.g., [19]):

‖w‖2,B ≤ C
∥∥u − uh

∥∥
0,B

(3.38)

for some constant C > 0. For w ∈ H2(B), let wI ∈ Vh be the continuous, piecewise linear

interpolant of w over each element. Apply (3.25) to w, with vh = u − uh and m = 2,

∣∣∣∣ah

(
w,u − uh

)
−

∫
B

(
u − uh

)2∣∣∣∣ ≤ Ch|w|2,B

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s

(3.39)

or

∥∥u − uh

∥∥2

0,B
≤ ∣∣ah

(
w,u − uh

)∣∣+ Ch|w|2,B

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s
. (3.40)

Since wI is continuous, Corollary 3.12 shows ah(wI, u − uh) = 0. This fact and

continuity of the bilinear form, Proposition 3.5, allow us to conclude that

∥∥u − uh

∥∥2

0,B
≤ ∣∣ah

(
w − wI, u − uh

)∣∣+ Ch|w|2,B

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s

≤ M
∣∣∣∣∣∣w − wI

∣∣∣∣∣∣
s

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s

+ Ch|w|2,B

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s

≤ Ch|w|2,B

∣∣∣∣∣∣u − uh

∣∣∣∣∣∣
s
,

(3.41)

where we have used Theorem 3.9 for the interpolation error estimate |||w − wI|||s. The con-

clusion of the proof follows from (3.38) and Theorem 3.14. �

Corollary 3.16 (convergence of the stress in L2(B)). Let σ be the exact solution with com-

ponents in Hm−1(B) for some m such that 2 ≤ m ≤ k + 1, and let σh be given by (2.25),

then the following estimate holds:

∥∥σ − σh

∥∥
0,B

≤ Chm−1|u|m,B. (3.42)
�

Proof. For the exact solution, the displacement is continuous, [[u]] = 0, which implies

R([[u]]) = 0. So we can write σ = C · (∇su + R([[u]])). Therefore,

σ − σh = C · ∇s

(
u − uh

)
+ C · R([[u − uh

]])
. (3.43)
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It follows that

∥∥σ − σh

∥∥2

0,B
=

∑
E∈Th

∥∥σ − σh

∥∥2

0,E

=
∑

E∈Th

∥∥C · ∇s

(
u − uh

)
+ C · R([[u − uh

]])∥∥2

0,E

≤
∑

E∈Th

C

(∥∥∇s

(
u − uh

)∥∥2

0,E
+ Ne

∑
e⊂∂E

∥∥re

([[
u − uh

]])∥∥2

0,E

)

≤ C
∣∣∣∣∣∣u − uh

∣∣∣∣∣∣2
s
≤ Ch2m−2|u|2m,B.

(3.44)

�

Note that this corollary gives L2(B) convergence of the stress, even though no

such result holds for the strain. This discrepancy is possible because the discrete stress

is given by (2.25), and is not, in general, proportional to the strain.

Remark 3.17. Again, as suggested in [7, 8], it can also be proved that the same error es-

timates hold for the problem directly derived from the variational principle, equation

(2.32).

3.2 The natural (suboptimal but mesh-independent) BD-estimate

Possible discontinuities in the displacement across element boundaries naturally lead

to seeking error estimates in BD(B), the space of bounded deformations. This space is

defined as the set of functions u ∈ L1(B) whose symmetric part of the distributional

derivative Du, E(Du) = (1/2)(Du + DuT ), is a matrix-valued bounded Radon measure.

For a function u ∈ BD(B), let ‖E(Du)‖(B) denote the total symmetric variation

measure of Du. A general Poincaré-type estimate for BD-functions holds in the following

form.

Theorem 3.18 (Poincaré inequality for BD). Let B ⊂ R
d be a bounded domain with Lips-

chitz boundary. Then there exists C > 0 such that for all u ∈ BD(B), u|∂B
= 0,

‖u‖L1(B) ≤ C
∥∥E(Du)

∥∥(B), (3.45)

where u|∂B
denotes the generalized trace. �

Proof. The proof is given by Temam [29, Remark II.2.5, page 189]. �
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Theorem 3.19 (natural BD estimate). There exists C > 0 such that for all u ∈ V̂,

‖u‖BD(B) ≤ C|||u|||s, (3.46)

with C independent of h. �

Proof. Recall the definition of the BD norm

‖u‖BD(B) = ‖u‖L1(B) +
∥∥E(Du)

∥∥(B), (3.47)

where

∥∥E(Du)
∥∥(B) = sup

{ ∫
B

u · (∇ · (ΨT + Ψ
))

: Ψ ∈ C1
0

(
B, Rd×d

)
, ‖Ψ‖L∞ ≤ 1

}
. (3.48)

The proof continues mutatis mutandis as in Theorem 3.26. �

Using the estimate (3.46) for the difference u − uh together with Theorem 3.9

shows that convergence of the method is immediately strengthened from the ||| · |||s-norm

to a mesh-independent estimate in the space BD(B). It is clear that any “optimal” esti-

mate in the symmetric norm, derived under less smoothness assumptions on the under-

lying continuous problem [26], translates into a corresponding “optimal” mesh-indepen-

dent BD estimate. It is worth remarking that the derivation of the BD estimate does not

make use of Theorem 3.15 that additionally establishes convergence of the discrete solu-

tions in L2(B).

The occurrence of the space BD is, strictly speaking, an artifact of the linearized

treatment, where only the symmetrized infinitesimal strains ε(∇u) appear. Since this BD

estimate does not control the antisymmetric part of the displacement gradient, we are

interested in obtaining convergence in the space BV(B). However, since BV(B) is strictly

smaller than BD(B), there is no obvious way to proceed directly from the BD estimate to

a BV estimate. Instead, we will first strengthen Theorem 3.14 to the ||| · |||-norm. Note that

for a given mesh size h > 0, given the finite dimensionality of Vh and the fact that both

||| · ||| and ||| · |||s are norms in Vh, we have, for uh ∈ Vh,

∥∥uh

∥∥
BD

≤ ∥∥uh

∥∥
BV

≤ C
∣∣∣∣∣∣uh

∣∣∣∣∣∣ ≤ c(h)
∣∣∣∣∣∣uh

∣∣∣∣∣∣
s
, (3.49)
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where the estimate ‖uh‖BV ≤ C|||uh||| is obtained in Theorem 3.26. However, c(h) may

not be bounded from below away from zero for all h > 0. The failure to obtain a mesh-

independent estimate between |||uh|||s and |||uh||| is a manifestation of the possible lack of

a discrete Korn’s first inequality for nonconforming meshes [17]. In order to obtain con-

vergence in the ||| · |||-norm, followed by a BV-estimate, and then convergence in BV, we

first establish a generalized version of Korn’s second inequality at the element level.

3.3 Korn’s second inequality for the subdivision

In this section, we investigate an analog to Korn’s second inequality at the element level,

independent of the element shape and size. The derivation of this inequality relies heav-

ily on how Korn’s second inequality scales under uniform contractions. We set SL(d, R) =

{X ∈ R
d×d | det X = 1}.

Theorem 3.20 (Korn’s second inequality under distortion). Assume that Ω ⊂ R
d is a

bounded (reference) domain with Lipschitz boundary ∂Ω and let M = {X ∈ SL(d, R) :

‖X‖ ≤ K}, for some K > 0. For F ∈ M define Ωξ = F(Ω). Then there exists C > 0 such that

for all F ∈ M, u ∈ H1(Ωξ),

∥∥∇ξuT + ∇ξu
∥∥2

0,Ωξ
+ ‖u‖2

0,Ωξ
≥ C‖u‖2

1,Ωξ
. (3.50)

�

Proof. We first translate the statement to the fixed reference domain Ω. The affine trans-

formation ξ = F(x) together with the definition u(ξ) = u(F(x)) = ũ(x) and det F = 1 leads

to

∫
Ωξ

∥∥∇ξuT + ∇ξu
∥∥2

+ ‖u‖2 =

∫
Ω

∥∥F−T∇ũT + ∇ũF−1
∥∥2

+ ‖ũ‖2. (3.51)

We proceed by contradiction. Assume, without loss of generality, that there exists a se-

quence {ũn} ∈ H1(Ω) with ‖ũn‖1,Ω = 1 and a sequence Fn ∈ M such that

∥∥F−T
n ∇ũT

n + ∇ũnF−1
n

∥∥2

0,Ω
+
∥∥ũn

∥∥2

0,Ω
≤ 1

n

∥∥ũn

∥∥2

1,Ω
=

1

n
. (3.52)

Since Fn is bounded, we may extract a subsequence which converges strongly to F̂ ∈ M

by Bolzano-Weierstrass. It is readily seen by continuity and the boundedness of ũn that

∥∥F̂−T∇ũT
n + ∇ũnF̂−1

∥∥2

0,Ω
+
∥∥ũn

∥∥2

0,Ω
→ 0. (3.53)
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Thus ũn is a minimizing sequence. For fixed F̂, the quadratic expression is uniformly pos-

itive (generalized Korn’s second inequality, see [20]) such that

∥∥F̂−T∇ũT
n + ∇ũnF̂−1

∥∥2

0,Ω
+
∥∥ũn

∥∥2

0,Ω
≥ C(F̂)

∥∥ũn

∥∥2

1,Ω
(3.54)

for some C > 0, contradicting ‖ũn‖1,Ω = 1. �

Theorem 3.21 (Korn’s second inequality under scaling). Let Ω ⊂ R
d be a bounded do-

main with Lipschitz boundary ∂Ω and, without loss of generality, |Ω| = 1. Consider the

scaled domain Ωh = {hx : x ∈ Ω}, h > 0. Then there exists C(Ω) > 0 such that for all

u ∈ H1(Ωh),

∥∥∇uT + ∇u
∥∥2

0,Ωh
+

1∣∣Ωh

∣∣2/d
‖u‖2

0,Ωh
≥ C(Ω)

(
‖∇u‖2

0,Ωh
+

1∣∣Ωh

∣∣2/d
‖u‖2

0,Ωh

)
,

(3.55)

where the constant C(Ω) is independent of h > 0 and coincides with the constant in

Korn’s second inequality for Ω. �

Proof. Let ũ ∈ H1(Ω). From Korn’s second inequality (see, e.g., [20]), we get

∥∥∇ũT + ∇ũ
∥∥2

0,Ω
+ ‖ũ‖2

0,Ω ≥ C(Ω)
(‖∇ũ‖2

0,Ω + ‖ũ‖2
0,Ω

)
. (3.56)

Expressing every term with respect to the down-scaled Ωh, where ũ(x) = u(hx), and

noticing that |Ωh| = hd, we get

1

hd−2

∥∥∇uT + ∇u
∥∥2

0,Ωh
+

1

hd
‖u‖2

0,Ωh

≥ C(Ω)
(

1

hd−2
‖∇u‖2

0,Ωh
+

1

hd
‖u‖2

0,Ωh

)
,

(3.57)

from which we deduce the required result. Note that C(Ω) is just the constant in Korn’s

second inequality. �

Corollary 3.22 (uniformity in (Th)). Let Ê be the reference element for an element E ∈
(Th) as defined in Section 2. Without loss of generality, take |Ê| = 1. Then there exists

C > 0 such that for all E ∈ (Th), u ∈ H1(E),

∥∥∇uT + ∇u
∥∥2

0,E
+

1

|E|2/d
‖u‖2

0,E ≥ C

(
‖∇u‖2

0,E +
1

|E|2/d
‖u‖2

0,E

)
. (3.58)

�
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Proof. Let F be an affine transformation such that E = F(Ê). Decompose F = FV · F̃ into

its isochoric and volumetric part, where FV = (det F)1/dI, I is the second-order identity

tensor, and F̃ = F/(det F)1/d. Note that |E| = det F. Using [11, Theorem 3.1.3, page 120] and

the quasi-uniformity of the subdivision, we have that

∥∥F̃∥∥ =
‖F‖

(det F)1/d
≤ h

ρ̂

1

|E|1/d
≤ C

ρ̂
, (3.59)

where ρ̂ is the diameter of the largest ball contained in Ê and C is independent of E.

Therefore, by Theorem 3.20, we can state Korn’s second inequality for each domain

F̃(Ê) in the subdivision with the same constant C > 0. The corollary then follows from

Theorem 3.21. �

3.4 Convergence in ||| · |||

We can now obtain convergence of the sequence of discrete solutions in the mesh-

dependent norm ||| · ||| using our generalized Korn’s second inequality for the subdivision.

Theorem 3.23 (convergence in the mesh-dependent norm ||| · |||). Let (vh) ⊂ V̂ be a se-

quence such that |||vh|||s ≤ Chm−1 and ‖vh‖0,B ≤ Chm for h ↓ 0. Then

∣∣∣∣∣∣vh

∣∣∣∣∣∣ ≤ Chm−1 (3.60)

for some C > 0 independent of h. �

Proof. Use Corollary 3.22 and sum over the elements to obtain the estimate

∑
E∈Th

(∥∥∇vT
h + ∇vh

∥∥2

0,E
+

1

|E|2/d

∥∥vh

∥∥2

0,E

)
≥ C

∑
E∈Th

(∥∥∇vh

∥∥2

0,E
+

1

|E|2/d

∥∥vh

∥∥2

0,E

)
(3.61)

which, in light of equation (2.7), can be weakened to

∑
E∈Th

(∥∥∇vT
h + ∇vh

∥∥2

0,E
+

1

h2

∥∥vh

∥∥2

0,E

)
≥ C

∑
E∈Th

(∥∥∇vh

∥∥2

0,E
+

1

h2

∥∥vh

∥∥2

0,E

)
, (3.62)
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where C is independent of h > 0. Without loss of generality, assume 0 < C ≤ 1. Adding

the specific jump contribution over the faces of each element shows that

∑
E∈Th

∥∥∇vT
h + ∇vh

∥∥2

0,E
+

1

h2

∥∥vh

∥∥2

0,E
+

∑
e∈Eh

∥∥re

([[
vh

]])∥∥2

0,B

≥ C
∑

E∈Th

(∥∥∇vh

∥∥2

0,E
+

1

h2

∥∥vh

∥∥2

0,E
+

∑
e∈Eh

∥∥re

([[
vh

]])∥∥2

0,B

) (3.63)

or

∣∣∣∣∣∣vh

∣∣∣∣∣∣2
s

+
1

h2

∑
E∈Th

∥∥vh

∥∥2

0,E
≥ C

(∣∣∣∣∣∣vh

∣∣∣∣∣∣2 +
1

h2

∑
E∈Th

∥∥vh

∥∥2

0,E

)
, (3.64)

where, again, C > 0 is independent of h > 0. Thus

∣∣∣∣∣∣vh

∣∣∣∣∣∣2
s

+
1

h2

∥∥vh

∥∥2

0,B
≥ C

(∣∣∣∣∣∣vh

∣∣∣∣∣∣2 +
1

h2

∥∥vh

∥∥2

0,B

)
≥ C

∣∣∣∣∣∣vh

∣∣∣∣∣∣2. (3.65)

Using the convergence of (vh) and equation (3.65), we obtain

∣∣∣∣∣∣vh

∣∣∣∣∣∣2 ≤ C

(
h2m−2 +

1

h2
h2m

)
= Ch2m−2, (3.66)

which completes the theorem. �

Remark 3.24. As is evident from the statement of Theorem 3.23, the convergence in ||| · |||
can only be shown for sequences converging in both ||| · |||s and ‖·‖L2(B) with specific rates

in h,which we have established for vh = u−uh under appropriate hypotheses. In general,

for solutions of the continuous problem with less regularity, one might not have such

knowledge.

3.5 Convergence in BV

We prove that the mesh-dependent norm ||| · ||| estimates the BV norm on V̂ = Vh+(H1
0(B))d

and as a result, we obtain convergence in BV. Recall that BV(B) is the space of functions

u ∈ L1(B) such that the distributional derivative Du is a matrix-valued bounded Radon

measure.

For a function u ∈ BV(B), ‖Du‖(B) denotes the total variation measure of Du. A

general Poincaré-type estimate for BV-functions holds in the following form.
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Theorem 3.25 (Poincaré inequality for BV). There exists C > 0 such that for all u ∈
BV(Rd),

‖u‖Ld/(d−1)(Rd) ≤ C‖Du‖(Rd
)
. (3.67)

�

Proof. Evans and Gariepy [16, Theorem 1, page 189]. �

Theorem 3.26 (natural BV estimate). There exists C > 0 such that for all u ∈ V̂,

‖u‖BV ≤ C|||u|||, (3.68)

with C independent of h. �

Proof. Recall the definition of the BV norm

‖u‖BV(B) = ‖u‖L1(B) + ‖Du‖(B), (3.69)

where

‖Du‖(B) = sup

{∫
B

u · (∇ · Ψ) : Ψ ∈ C1
0

(
B, Rd×d

)
, ‖Ψ‖L∞ ≤ 1

}
. (3.70)

First observe that

∫
B

u · (∇ · Ψ) =
∑

E∈Th

∫
E

u · (∇ · Ψ)

=
∑

E∈Th

∫
E

∇ · (Ψ · u) −
∑

E∈Th

∫
E

Ψ · ∇u

=
∑

E∈Th

∫
∂E

nE · Ψ · u −
∑

E∈Th

∫
E

Ψ · ∇u

=
∑

e∈Eh

∫
e

n · Ψ · [[u]] −
∑

E∈Th

∫
E

Ψ · ∇u.

(3.71)

Each term in the two sums may be estimated individually by

sup
‖Ψ‖L∞ ≤1

[ ∫
e

n · Ψ · [[u]]
]
≤

∫
e

[[u]] · [[u]]∥∥[[u]]
∥∥ ≤ ∥∥[[u]]

∥∥
L1(e),

sup
‖Ψ‖L∞ ≤1

[
−

∫
E

Ψ · ∇u

]
≤

∫
E

∇u

‖∇u‖ · ∇u ≤ ‖∇u‖L1(E),

(3.72)
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which yields the preliminary estimate

‖Du‖(B) ≤
∑

e∈Eh

∥∥[[u]]
∥∥

L1(e) +
∑

E∈Th

‖∇u‖L1(E). (3.73)

Applying Hölder’s inequality to each term in the sum gives

‖Du‖(B) ≤
∑

e∈Eh

|e|1/2
∥∥[[u]]

∥∥
0,e

+
∑

E∈Th

|E|1/2‖∇u‖0,E. (3.74)

Taking the square of both sides and using Young’s inequality leads to

‖Du‖2(B) ≤ 2

[ ∑
e∈Eh

|e|1/2
∥∥[[u]]

∥∥
0,e

]2

+ 2

[ ∑
E∈Th

|E|1/2‖∇u‖0,E

]2

. (3.75)

Now we use the Cauchy-Schwartz inequality for the sums in the brackets to show

‖Du‖2(B) ≤ 2

( ∑
e∈Eh

(
|e|1/2

)2)1/2( ∑
e∈Eh

∥∥[[u]]
∥∥2

0,e

)1/2
2

+ 2

( ∑
E∈Th

(
|E|1/2

)2)1/2( ∑
E∈Th

‖∇u‖2
0,E

)1/2
2

≤ 2

( ∑
e∈Eh

|e|

)( ∑
e∈Eh

∥∥[[u]]
∥∥2

0,e

)
+ 2

( ∑
E∈Th

|E|

)( ∑
E∈Th

‖∇u‖2
0,E

)
(3.76)

which, by Lemma 3.3, implies

‖Du‖2(B) ≤ 2

( ∑
e∈Eh

|e|

)(
Ch

∑
e∈Eh

∥∥re

(
[[u]]
)∥∥2

0,B

)
+ 2|B|

∑
E∈Th

‖∇u‖2
0,E

≤ 2C

[( ∑
e∈Eh

|e|h

) ∑
e∈Eh

∥∥re

(
[[u]]
)∥∥2

0,B

]
+ 2|B|

∑
E∈Th

‖∇u‖2
0,E,

(3.77)
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with C independent of h. From (2.8),

‖Du‖2(B) ≤ 2C

[ ∑
e∈Eh

|E|
∑

e∈Eh

∥∥re

(
[[u]]
)∥∥2

0,B

]
+ 2|B|

∑
E∈Th

‖∇u‖2
0,E

≤ C|B|

[ ∑
e∈Eh

∥∥re

(
[[u]]
)∥∥2

0,B
+

∑
E∈Th

‖∇u‖2
0,E

]
≤ C|B| |||u|||

2
.

(3.78)

By hypothesis, u ∈ Vh + (H1
0(B))d; this implies u ∈ BV(B) since u ∈ L2(B) and

‖Du‖(B) is bounded by |||u|||. We may extend u to a function ũ on all of R
d by setting u to

zero outside of B. From [16, Theorem 1, page 183], we have the equivalence

‖Dũ‖(Rd
)

= ‖Du‖(B). (3.79)

Thus, by applying the Poincaré inequality for BV, Theorem 3.25, we obtain

‖u‖Ld/(d−1)(B) = ‖ũ‖Ld/(d−1)(Rd) ≤ C‖Dũ‖(Rd
)

= C‖Du‖(B) ≤ C|||u||| (3.80)

with C > 0 independent of h. This estimate is necessary since the mesh-dependent norm

||| · ||| does not contain a contribution of the form ‖u‖L2(B). �

Corollary 3.27 (optimal mesh-independent estimate). Let (vh) ⊂ V̂ be a sequence such

that |||vh|||s ≤ Chm−1 and ‖vh‖0,B ≤ Chm for h ↓ 0. Then

∥∥vh

∥∥
BV

≤ Chm−1. (3.81)
�

Proof. Apply Theorem 3.23 together with Theorem 3.26. �

4 Final remarks

Optimal convergence of a stabilized DG method for linear elasticity with Dirichlet

boundary conditions has been established in the mesh-independent BV norm. Unlike

interior penalty methods, the stabilization term contains a constant factor β > Ne that

is easy to determine for a given discretization. The finite-element spaces composed of

piecewise polynomial functions over the elements are also easy to implement. In future

work, we will explore the numerical properties of the method and its extensions to finite

elasticity, elastoplasticity, and fracture.
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