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Abstract

Image-based servo is a local control solution. Thanks to the feedback

loop closed in the image space, local convergence and stability in

the presence of modeling errors and noise perturbations are ensured

when the error is small. The principal deficiency of this approach is

that the induced (3D) trajectories are not optimal and sometimes, es-

pecially when the displacement to realize is large, these trajectories

are not physically valid leading to the failure of the servoing process.

In this paper we address the problem of finding realistic image-space

trajectories that correspond to optimal 3D trajectories. The camera

calibration and the model of the observed scene are assumed un-

known. First, a smooth closed-form collineation path between given

start and end points is obtained. This path is generated in order to

correspond to an optimal camera path. The trajectories of the im-

age features are then derived and efficiently tracked using a purely

image-based control. A second path planning scheme, based on the

potential field method is briefly presented. It allows us to introduce

constraints in the desired trajectory to be realized. Such constraints

are, for instance, to ensure that the object of interest remains in

the camera field of view and to avoid the robot joints limits. Ex-

perimental results obtained on a six-degrees-of-freedom eye-in-hand

robotic system are presented and confirm the validity of the proposed

approach.

KEY WORDS—visual servoing, path planning, path tracking

1. Introduction

Image-based servoing is now a well-known local control

framework (Hashimoto 1993; Hutchinson, Hager, and Corke

1996). In this approach, the reference image of the object

corresponding to a desired position of the robot is acquired
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first (during an off-line step) and some image features are ex-

tracted. Features extracted from the initial image are matched

with those obtained from the desired one. These features are

then tracked during the robot (and/or the object) motion, us-

ing for example a correlation-based method. An error is ob-

tained by comparing the image features in the current image

and in the reference one. The robot motion is then controlled

in order to minimize the error (using, for example, a gradi-

ent descent approach). Since the error is directly measured

in the image, image-based servo has some degrees of robust-

ness with respect to modeling errors and noise perturbations.

However, sometimes, and especially when the initial and de-

sired configurations are distant, the trajectories induced by

image-based servo are neither physically valid nor optimal

due to the nonlinearity and singularities in the relation from

the image space to the workspace (Chaumette 1998). Deal-

ing with this deficiency, path planning in the image space is a

promising approach. Indeed, if the initial error is too large, a

reference trajectory can be designed from a sequence of im-

ages. The initial error can thus be sampled so that, at each

iteration of the control loop, the error to regulate remains

small. In Hashimoto and Noritugu (2000), relay images that

interpolate initial and reference image features using an affine

approximation of the relationship between initial and desired

images, coupled to a potential switching control scheme, are

proposed to enlarge the stable region. In Hosoda, Sakamoto,

and Asada (1995), a trajectory generator using a stereo system

is proposed and applied to obstacle avoidance. An alignment

task for a four-degrees-of-freedom (4-DoF) robot using inter-

mediate views of the object synthesized by image morphing is

presented in Singh et al. (1998). A path planning for a straight-

line robot translation observed by a weakly calibrated stereo

system is performed in Ruf and Horaud (1997). In previous

work (Mezouar and Chaumette 2002), we have proposed a

potential field-based path planning generator that determines

the trajectories in the image of a set of points lying on an un-

known target. To increase the stability region, Cowan, Lopes,

and Koditschek (2000) describe a globally stabilizing method

using navigation function for eye-to-hand setup. However,
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none of these works has dealt with optimality issues. In Zhang

and Ostrowski (2000), a numerical framework for the design

of optimal trajectories in the image space is described and ap-

plied to the simple case of a one-dimensional (1D) camera in a

two-dimensional (2D) workspace. In Mezouar and Chaumette

(2001), our preliminary results have been presented. This pa-

per gives an analytical solution to optimal path planning in

the image space for a general setup. Additionally, the CAD

model of the observed target and the camera calibration are

not assumed known.

On the other hand, a new control scheme for a general

setup, called 2 1

2
D visual servoing, has been proposed in Malis,

Chaumette, and Boudet (1999) which globally stabilizes the

system. In this approach, the error function to be regulated to

zero is composed of the camera orientation parameters and

image features. However, 2 1

2
D visual servoing techniques are

not purely image-based, thus the robustness of image-based

techniques are not fully obtained. In particular, the sensitiv-

ity to measurement perturbation due to the computation of a

homography matrix at each iteration of the control loop to

extract the Cartesian part of the error function can be prob-

lematic close to the convergence.

In this paper, we address the problem of finding closed-

form image trajectories between the initial and desired images

corresponding to an optimal camera path with respect to min-

imum energy and acceleration criteria. The obtained image

trajectories can be efficiently tracked using a purely image-

based control scheme. Furthermore, classical visual servoing

techniques make assumptions about the link between the ini-

tial image and the desired one. When the camera displacement

between the acquisitions of the initial and desired images is

large and/or when the observed scene is complex, the steps

of finding and matching joint image features (SFMJF) can be

difficult and even sometimes impossible if no feature belongs

to both images. In such case, the servoing can not be real-

ized. A possible solution is to use a set of relay images (such

that between two successive SFMJF are feasible) extracted,

for example, from an image database obtained and indexed

off-line. To cope with this framework, we also show how our

strategy can be generalized to the case where N + 1 images

are available. Additionally, we briefly present a second path

planning scheme based on the potential field method. It al-

lows us to introduce constraints in the desired trajectory to

be realized. Such constraints are, for instance, to ensure that

the object of interest remains in the camera field of view and

to avoid the robot joints limits. In counterpart, the analyti-

cal forms of the trajectories in the image space are no longer

available, and the corresponding camera trajectory deviates

from the optimal one.

The paper is organized as follows. In Section 2, we recall

some fundamentals. In Section 3, we address the problem of

finding a closed-form smooth collineation path between given

start and end points and corresponding to optimal camera tra-

jectories. In this section, we first study the case where the

camera is displaced according to a general rigid motion and

then two interesting particular cases are addressed (namely

pure rotational and pure translational motions). In Section 4,

the optimal collineation path is used to determine the optimal

path in the image, and an example illustrating our approach is

presented. In Section 5, we show how to use an image-based

approach to track the trajectories in the image space. Experi-

mental results using a 6-DoF eye-in-hand robotic platform are

presented in Section 6. In Section 7, our strategy is general-

ized to the case where a set of images is available. Finally, in

Section 8, we briefly describe a second path planning scheme

able to take into account constraints on the image trajectories.

2. Fundamentals

2.1. The Collineation Matrix

Consider two views of a scene observed by a camera. A 3D

point X with homogeneous coordinates X = [X Y Z 1]T

is projected under perspective projection to a point x in the

first image (with homogeneous coordinates measured in pixel

x = [x y 1]T) and to a point xf in the second image (with ho-

mogeneous coordinates measured in pixel xf = [xf yf 1]T).

It is well known that there exists a projective homography

matrix G related to a virtual plane �, such that for all points

X belonging to �, x ∝ Gxf .1 When x and xf are expressed

in pixels, matrix G is called the collineation matrix. From

the knowledge of several matched points, lines or contours

(Faugeras 1993; Chesi, Malis, and Cipolla 2000), it is possi-

ble to estimate the collineation matrix. For example, if at least

four points belonging to� are matched, G can be estimated by

solving a linear system. Otherwise, at least eight points (three

points to define � and five outside of �) are necessary to es-

timate the collineation matrix by using, for example, the lin-

earized algorithm proposed in Malis and Chaumette (2000). If

the camera calibration is known, the Euclidean homography

can be computed up to a scalar factor2

H ∝ K+GK (1)

where K is a non-singular matrix containing the intrinsic pa-

rameters of the camera

K =



fpu −fpu cot(α) u0

0 fpv/ sin(α) v0

0 0 1


 =


 a

u0

v0

0 0 1


 .

Here, u0 and v0 are the pixel coordinates of the principal point,

f is the focal length, pu and pv are the magnifications respec-

tively in the u and v directions, and α is the angle between

these axes. The Euclidean homography can be decomposed

1. x ∝ Gxf ⇐⇒ αx = Gxf where α is a scaling factor.

2. K+ denotes the inverse of K.
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Fig. 1. Geometry of two views.

into a rotation matrix and a rank 1 matrix (Faugeras and Lust-

man 1988)

H = R +
b

df
nfT (2)

where R and b represent the rotation matrix and the translation

vector between the current and the desired camera frames

(denoted by F and Ff respectively), nf is the unitary normal

to the virtual plane expressed in Ff , and df is the distance

from � to the origin of Ff (see Figure 1).

From G and K, it is thus possible to determine the camera

motion parameters (i.e., the rotation R and the scaled transla-

tion bdf = b

df
) and the normal vector nf , by using for exam-

ple one of the algorithms proposed in Faugeras and Lustman

(1988) or Zhang and Hanson (1995). The ratio ρ between the

Z-coordinate and df , which we will use in the sequel, can

also be determined





ρ =
Z

df
=

r

nTm
if X ∈ �

ρ =
Z

df
= β

‖bdf ‖

‖βm − R‖
if X /∈ �

(3)

where m = K+x, n = Rnf , r = 1 + nfTRbdf , β =
‖[b]×Rmf ‖

‖[b]×m‖
.

If the camera is not perfectly calibrated (i.e., K̂ is used instead

of K), then the estimated homography matrix is

Ĥ = K̂GK̂+ = δK+GδK

where δK = K̂+K. Matrix Ĥ can be decomposed as the sum

of a matrix similar to a rotation matrix and of a rank 1 matrix

Ĥ = Ĥ∞ + b̂df n̂fT

with

Ĥ∞ = R̂ = δKRδK+. (4)

The matrix Ĥ∞ = R̂ is called homography at infinity since

it maps projected points lying in the plane at infinity. Fur-

thermore, if the collineation at infinity G∞ is available, we

have

n̂fT =
nfTδK+

‖nfTδK+‖
(5)

b̂df = ‖nfTδK+‖δKbdf . (6)

This matrix G∞ can be determined using, for example, the

methods described in Robert et al. (1995) or Viéville, Zeller,

and Robert (1996). These methods can be used even if the

camera parameters are unknown if some knowledge about

the scene is available (for example, if the camera observes

three points at infinity or a reference plane parallel to the

image plane). In practice, the algorithm proposed in Malis

and Chaumette (2000) has been used to obtain the initial

collineation matrix, from which the collineation matrix at in-

finity between the initial and desired images is extracted using

the algorithm proposed in Faugeras and Lustman (1988). This

algorithm is based on the fundamental relation (2). It was thus

designed for the case where the camera calibration is known.

This means that the relations (5) and (6) are not exactly ver-

ified when the calibration is unknown. However, we will see

in the experiments that, even if this algorithm is used in an

uncalibrated framework, the results are very satisfactory. Let

us finally note that, when the camera motion is a pure transla-

tion, the homography matrix at infinity is the identity matrix.

Furthermore, when the camera motion is a pure rotation, Ĥ∞

corresponds to the homography matrix Ĥ.

2.2. Brief Review of SO(3)

The group SO(3) is the set of all 3 × 3 real orthogonal ma-

trices with unit determinant and it has the structure of a Lie

group. On a Lie group, the space tangent to the identity has

the structure of a Lie algebra. The Lie algebra of SO(3) is

denoted by so(3). It consists of the 3 × 3 skew-symmetric

matrices, so that the elements of so(3) are matrices of the

form

[θθθ ] =




0 −r3 r2

r3 0 −r1

−r2 r1 0


 .

One of the main connections between a Lie group and its Lie

algebra is the exponential mapping. For every R ∈ SO(3),

there exists at least one [θθθ ] ∈ so(3) such that e[θθθ ] = R with

(Rodriguez formula)

R = e[θθθ ] = I +
sin ‖θθθ‖

‖θθθ‖
[θθθ ] +

1 − cos ‖θθθ‖

‖θθθ‖2
[θθθ ]2 (7)
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where ‖θθθ‖ is the standard Euclidean norm. Conversely, if R ∈
SO(3) such that Trace(R) �= −1 then

[θθθ ] = log(R) =
θ

2 sin θ
(R − RT) (8)

where θ satisfies

θ = ‖θθθ‖ = arccos

(
1

2
(Trace(R) − 1)

)
. (9)

If Trace(R) = −1, log(R) can be obtained noticing that θθθ =
±πu where u is a unit length eigenvector of R associated with

the eigenvalue 1.

Another important connection between so(3) and SO(3)

involves angular velocities. If R(t) is a curve in SO(3), then

ṘRT and RTṘ are skew-symmetric, and hence the element of

so(3). The element ωωω of so(3) such that

[ωωω] = RTṘ (10)

corresponds to the angular velocity of the rigid body.

In the following, we consider that some image features

(points, lines, contours) can be extracted and matched from the

initial image and a desired image of the scene. This framework

is the classical one in visual servoing. From the extracted im-

age features, the collineation matrix at time t = 0, G0, can be

computed (Faugeras 1993; Chesi, Malis, and Cipolla 2000).

Note also that, when the desired configuration is reached (at

time t = 1), the collineation matrix is proportional to the iden-

tity matrix: Gf ∝ I. In the following sections, we consider

the problem of finding a smooth path of the collineation ma-

trix between G0 and Gf corresponding to an optimal camera

path with respect to the criterion which will be specified in the

following. The image trajectories are then derived from the

collineation path and tracked using an image-based strategy.

3. Optimal Collineation Trajectories

The case where the camera is displaced according to a gen-

eral rigid motion is first studied and then two particular cases

are addressed (namely, pure rotational and pure translational

motions). In the first case, we will see that the obtained tra-

jectories in the image space are independent of the camera

internal parameters if the collineation matrix at infinity be-

tween the initial and final images is known. If the motion is a

pure rotation or a pure translation, then this assumption is not

necessary to ensure the independence with respect to camera

calibration.

3.1. General Camera Motions

The current position of the camera with respect to its desired

position is defined by the rotation matrix R(t) and the trans-

lation vector b(t). The collineation matrix is then given by

G(t) ∝ K+
(
R + bdf nfT

)
K. We denote by U the 6 × 1 vec-

tor [vTωωωT]T, where v denotes the time derivative of b and ωωω

is defined by eq. (10). We consider the problems, denoted by

PC1 and PC2, of finding a path of the collineation matrix cor-

responding to the minimum energy and minimum acceleration

problem, respectively. These problems can be formulated as

follows.

(PC1) Find G(t) minimizing

J1 =

1∫

0

UTU dt

subject to eq. (10), v = ḃ and with boundary conditions:

G(0) ∝ G0

G(1) ∝ I3×3.

Note that the camera velocity cannot be constrained in the

problem (PC1). This means that velocity discontinuities can

be observed at the beginning and the end of the task where

the camera is motionless.

(PC2) Find G(t) minimizing

J2 =

1∫

0

U̇TU̇ dt

subject to eq. (10), v = ḃ and with boundary conditions:

G(0) ∝ G0

G(1) ∝ I3×3

U(0) = 06×1

U(1) = 06×1.

In this case, the camera velocity is constrained to be 0 at the

beginning and the end of the task. The boundary conditions

are verified if R(0) = R0, b(0) = b0, R(1) = I3×3 and

b(1) = 0 (rigid motion problem). These boundary conditions

are particularly important since they are the desired ones in

the context of visual servoing.

The solutions of PC1 and PC2, and a result about their

dependence on camera calibration are given by the following

proposition.

PROPOSITION 1. The optimal path of the collineation matrix

in the sense of PC1 and PC2 is given by

G(t) ∝ (1 − q(t))!0 + (G0 − !0)ŴŴŴ(θθθ 0, t) (11)

where

ŴŴŴ(θθθ 0, q(t)) = Ke[θθθ0]q(t)K+ and !!!0 = Kb0df nfTK+

(12)
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with [θθθ 0] = log(RT
0 ), b0df = b0

df
and

{
q(t) = t if PC1

q(t) = −2t3 + 3t 2 if PC2
.

The path given by eq. (11) is not affected by the error on in-

trinsic camera parameters if the collineation matrix at infinity

at time 0 is known.

REMARK 1. The path given by Proposition 1 corre-

sponds to a shortest distance path of the rotation ma-

trix(minimal geodesic) with respect to an adequately cho-

sen Riemannian metric on SO(3) and to a straight line

translation.

REMARK 2. As previously emphazised, the algorithm we

used in practice to compute the collineation matrix at infinity

at time 0 was designed for the case where the camera calibra-

tion is known. The independence of the computed trajectories

with respect to the camera parameters can thus not be demon-

strated in our experiments. However, we will see in Section 6

that there is no significant difference in the computed trajec-

tories using a correct or a bad camera calibration. This means

that the hypothesis of knowing the collineation matrix at in-

finity at time 0 has not a strong practical effect, and is more a

technical point to demonstrate theoretically the independence

property.

Proof. The solution of the rigid motion problem can be ob-

tained by using standard optimal control results (or by fol-

lowing Park and Ravani 1997):

b(t) = (1 − q(t))b0 and R(t) = R0e[θθθ0]q(t) . (13)

According to eqs. (1) and (2), the corresponding collineation

path is given by

G(t) ∝ K(R0e[θθθ0]q(t) + (1 − q(t))b0df nfT)K+.

This path is equivalent to the path given by

G(t) ∝ K
(
R0e[θθθ0]q(t) + (1 − q(t))b0df nfT

+b0df nfTe[θθθ0]q(t) − b0df nfTe[θθθ0]q(t)
)

K+

and can be rewritten as eq. (11) by denoting

ŴŴŴ(θθθ 0, q(t)) = Ke[θθθ0]q(t)K+ and !!!0 = Kb0df nf T

K+ .

We note that the matrix K of camera internal parameters ap-

pears explicitly in the path given by eq. (11). However, the

initial collineation matrix G0 is not affected by the error on

intrinsic parameters since it is directly computed from image

data. Furthermore, if K̂ is used instead of K, we have

!̂!!0 = K̂b̂0df n̂fTK̂+ and Ŵ̂ŴŴ(θθθ 0, q(t)) = K̂e[̂θθθ0]q(t)K̂+ .

By introducing eqs. (5) and (6) in !̂0, we obtain

!̂!!0 = K̂‖nfTδK+‖δKbdf

nfTδK+

‖nfTδK+‖
K+

= Kb0df nfTK+ = !!!0. (14)

Furthermore (refer to eq. (8))

[̂θθθ 0] = log(RT

0 ) =
θ̂0

2 sin(θ̂0)
(R̂T

0 − R̂0) = κ̂(R̂T

0 − R̂0) (15)

where κ̂ = θ̂0

2 sin θ̂0
and θ̂0 satisfies 1 + 2 cos θ̂0 = Trace(R̂0).

Since R̂0 is similar to R0 (see eq. (4)), Trace(R̂0) = Trace(R0)

that implies θ̂0 = θ0 and thus κ̂ = κ . By inserting eq. (15)

into eq. (7), we obtain

Ŵ̂ŴŴ(θθθ 0, q(t)) = K̂

(
I + κ

sin(‖θθθ 0‖q(t))

‖θθθ 0‖
(R̂T

0 − R̂0)

+ κ2
1 − cos(‖θθθ 0‖q(t))

‖θθθ 0‖
2

(R̂T

0 − R̂0)
2

)
K̂+.

Noticing that

K̂R̂0K̂+ = KR0K+

we finally obtain

Ŵ̂(̂θθθ 0, q(t)) = ŴŴŴ(θθθ 0, q(t)). (16)

Thus, according to eqs. (14) and (16), the collineation trajec-

tory given by eq. (11) is independent of the choice of the non-

singular matrix K̂. Note that, in this proof, the collineation

matrix at infinity at time 0 has been assumed known to derive

eq. (14).

3.2. Two Interesting Particular Cases

In this section, we study the cases where the camera is dis-

placed according to a pure rotational and a pure translational

motion. We will see that in these cases the internal camera

parameters do not appear at all.

3.2.1. Pure Rotational Motion

The collineation matrix is now a matrix similar to a rotation

matrix (up to a scalar factor), that is

G ∝ KRK+. (17)

The solutions of PC1 and PC2 and a nice property of the

solutions are given by the following proposition.

PROPOSITION 2. The optimal path of the collineation matrix

is given by

G(t) ∝ G0ŴŴŴ(g0, q(t)) (18)
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where q(t) = t if PC1, q(t) = −2t 3 + 3t 2 if PC2 and

ŴŴŴ = I +
sin(‖g0‖q(t))

‖g0‖
{g0} +

1 − cos(‖g0‖q(t))

‖g0‖
2

{g0}
2 (19)

with

θ = ‖g0‖ = arccos

(
1

2
D

−1/3

0 T0 − 1

)
(20)

{g0} =
‖g0‖

2 sin ‖g0‖

(
D

1/3

0 G+
0 − D

−1/3

0 G0

)
(21)

where D0 = det(G0), T0 = Trace(G0).

The collineation path given by eq. (18) is independent of

the internal camera parameters.

Proof. For a pure rotational motion !!!0 = Kb0df nfTK+ = 0,

thus according to eq. (11):

G(t) ∝ G0ŴŴŴ(θθθ 0, t).

Referring to eq. (7), ŴŴŴ can be rewritten as follows:

ŴŴŴ = I+
sin (‖θθθ0‖q(t))

‖θθθ0‖
K[θθθ0]K++

1 − cos (‖θθθ0‖q(t))

‖θθθ0‖2
K[θθθ0]2K+.

Using ‖g0‖ = ‖θθθ 0‖ and {g0} = K[θθθ 0]K
+, the previous equa-

tion can be rewritten as eq. (19), and (see eq. (8))

{g0} = Klog(RT

0 )K
+ =

‖g0‖

2 sin ‖g0‖
(KRT

0 K+ − KR0K+).

(22)

Furthermore, from eq. (17), it is easy to show that

KR0K+ = D
−1/3

0 G0 and Trace(R0) = D
−1/3

0 T (23)

where D0 = det(G0) and T = Trace(G0). By introducing

eq. (23) into eq. (22), we obtain eq. (21). Finally, using eqs. (9)

and (23), we deduce eq. (20).

The initial value of the collineation G0 is not affected by er-

rors on intrinsic parameters since it is extracted directly from

image data. According to eqs. (18), (19), (20), and (21) and

noticing that {g0} and ‖g0‖ depend only on G0, the collineation

path given by eq. (18) is independent of the camera parame-

ters.

REMARK 2. As expected, the path given by Proposition 2

corresponds to a geodesic on SO(3).

In the next subsection, the case of a pure translational cam-

era motion is studied.

3.2.2. Pure Translational Motion

If the camera motion is a pure translation, the collineation

matrix has the following particular form:

G ∝ I + Kbdf nfTK+. (24)

PROPOSITION 3. The optimal path of the collineation matrix

in the sense of PC1 and PC2 is given by

G(t) ∝ q(t)I +
(1 − q(t))

α0

G0 (25)

where q(t) = t if PC1, q(t) = −2t3 + 3t 2 if PC2 and α0 is a

real solution of the equation

2α3 − T0α
2 + D0 = 0. (26)

The optimal smooth trajectories given by eq. (25) are not

affected by error on intrinsic parameters.

Proof. For a pure translational motion, we have ŴŴŴ = I, thus

according to eqs. (11) and (24)

G(t) ∝ q(t)I + (1 − q(t))(I + !0)

and noticing that G0 = α0(I +!0), we deduce eq. (25). From

eq. (24), we easily obtain





Trace(G0) = T0 = α0(3 + bT

df 0
n)

Det(G0) = D0 = α3
0(1 + bT

df 0
n)

and by combining the previous equations, we deduce that α0

is a solution of eq. (26).

The path of the collineation matrix given by eq. (25) is

independent of the K-matrix since the initial value of the

collineation matrix G0 and thus α0 (refer to eq. (26)) are in-

dependent of the camera intrinsic parameters.

REMARK 3. As expected also, the path given by eq. (25)

corresponds to a straight line between the initial and desired

camera positions.

4. Feature Trajectories in the Image

In this section, we first show how trajectories in the image

space can be obtained from the collineation matrix path. Our

approach is then illustrated by examples of image synthesis.

4.1. Image-Space Trajectories

In order to control efficiently a robot using visual data, we

have to determine the trajectories of some image features

in the image space. More precisely, we want to perform

smooth trajectories s∗(t) =
[
x∗

1 (t) y
∗
1 (t) · · · x∗

n
(t) y∗

n
(t)

]T
of

n projected points in the image between a given start point

s∗(0) = [x∗
1 (0) y

∗
1 (0) · · · x∗

n
(0) y∗

n
(0)]T and a given desired

point s∗(1) = [x∗
1 (1) y

∗
1 (1) · · · x∗

n
(1) y∗

n
(1)]T. We denote by

x∗
i
(t) = [x∗

i
(t) y∗

i
(t) 1]T the vector of homogeneous coor-

dinates expressed in pixels of the projection of a 3D point
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Xi in the current desired image (at time t). We define vector

hi = αi(t)x
∗
i
(t). It is well known that for all 3D points

hi(t) = αi(t)x
∗
i
(t) = G(t)x∗

i
(1) + τiγγγ (t) (27)

where αi(t) is a positive scaling factor depending on time, τi
is a constant scaling factor null if the target point belongs to

�, and γγγ (t) = Kb(t) represents the epipole in the current

image (i.e., the projection in the image at time t of the optical

center when the camera is in its desired position). After the

initial collineation has been estimated, the optimal path of the

collineation matrix can be computed as described previously.

The initial value of the epipole, γγγ (0) = γγγ 0, can also be com-

puted directly from image data (i.e., γγγ 0 is independent of the

K-matrix) (Faugeras 1993). Furthermore, it is easy to show

(from eq. (13)) that the optimal trajectories of the epipole,

with respect to the previously cited criteria, are of the form:

γγγ (t) = (1 − q(t))γγγ 0. (28)

Such trajectories of the epipole are not affected by the error

on intrinsic parameters since γγγ 0 is directly computed from

image data. Note also that the scaling factor τi is not time-

dependent and can be computed directly from the initial and

desired image data since (refer to eq. (27)):

αi(t)x
∗
i
(0)∧x∗

i
(0) = 0 = G(t)x∗

i
(1)∧x∗

i
(0)+τiγγγ (t)∧x∗

i
(0).

We thus obtain

τi = −

(
G0x∗

i
(1) ∧ x∗

i
(0)

)
1

(γγγ 0 ∧ x∗
i (0))1

.

where (v)j denotes the j th components of v. To conclude, the

vector hi is not affected by the error on intrinsic parameters

since G(t), γγγ (t) and τi (∀i ∈ {1 · · · n}) can be computed

without error even if K is unknown. The trajectories of the

considered points in the image corresponding to an optimal

camera path can thus also be computed without error, using

x∗
i
(t) =

(hi(t))1

(hi(t))3

y∗
i
(t) =

(hi(t))2

(hi(t))3

. (29)

4.2. Example: Synthesis of Intermediate Views

In this section, our approach is illustrated by two experiments.

Experiments were performed with images acquired using a

CCD camera mounted on the effector of a 6-DoF manipulator.

Intermediate views between the initial and the desired images

and corresponding to the minimum energy (Figure 2) and

acceleration problems (Figure 3) are constructed. The camera

displacement between initial and desired images (boxed in

Figures 2 and 3) is very large. The initial collineation matrix

is:

G0 =




0.4603 0.4145 −597.3284

−0.2476 0.6107 −376.0835

−0.0001 0.0006 −1.5281


 .

Intermediate images synthesized using eq. (29) and the so-

lution of the problems PC1 and PC2 are given in Figures 2

and 3, respectively. The corresponding camera trajectories are

plotted in Figures 4(a) and (b). Note that only the temporal

behavior is different for the two experiments.

5. Application to Visual Servoing

To track the trajectories using an image-based control scheme,

we use the task function approach introduced in Samson, Es-

piau, and Le Borgne (1991). A vision-based task function e to

be regulated to 0 is defined by (Espiau, Chaumette, and Rives

1992)

e = L̂+(s(t) − s∗(t)). (30)

The time-varying vector s∗(t) is the desired trajectory of s

computed as previously explained (more generally, we use

the notation x∗(t) to represent the planned parameter x). The

matrix L denotes the interaction matrix related to s (also called

image Jacobian). It links the variation of the visual features

with respect to the camera velocity Tc with ṡ = LTc. The

matrix L̂+ is the pseudo-inverse of a chosen model of L. An

exponential decay of e toward 0 can be obtained by imposing

ė = −λe (λ being a proportional gain). The corresponding

control law is

Tc = −λe −
∂̂e

∂t
(31)

where ∂̂e

∂t
is an approximation of ∂e

∂t
involved to minimize the

tracking error. Using such a control law, a well-known suf-

ficient condition to ensure global asymptotic stability of the

system is (Samson, Espiau, and Le Borgne 1991)

L̂+L > 0. (32)

For a point X with coordinates [XY Z]T in the current cam-

era frame and image coordinates x = [x y 1]T in pixels, the

interaction matrix L(x, Z) related to x is given by

a




− 1

Z
0 mx

Z
mxmy −(1 + mx

2) my

0 − 1

Z

my

Z
(1 + my

2) −mxmy −mx




where m = [mx my 1]T = K+x. When s is composed of the

image coordinates xi of n points, the corresponding interac-

tion matrix is

L(s,Z) =
[
LT(x1, Z1) · · · LT(xn, Zn)

]T
. (33)

A classical choice for L̂ is L(s(1), Ẑ(1)) (i.e., the value of

L at the final desired position). In this case, condition (32)

is ensured only in a neighborhood of the desired position

(Chaumette 1998). We will use the value of L at the cur-

rent desired position for L̂ (i.e., L̂ = L(s∗(t), Ẑ∗(t)) rather
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t = 0 t = 0.17 t = 0.3

t = 0.4 t = 0.5 t = 0.6

t = 0.7 t = 0.8 t = 1

Fig. 2. Image trajectories: minimum energy.

than L(s(1), Ẑ(1)). With this choice, condition (32) is ensured

along the planned trajectories and not only in a neighborhood

of the final desired position.

The interaction matrix depends on the Ẑ∗-vector. Accord-

ing to eq. (3), this vector can be rewritten as Ẑ∗(t) = d̂f222∗(t)

where d̂f is an estimated value of df (i.e., the only pa-

rameter that has to be introduced “by hand”) and 222∗(t) =
[ρ∗

1 (t) · · · ρ
∗
n
(t)]. The ratio ρ∗

i
(t) can be estimated (when K̂ is

used instead of K) using relations (3):





ρ̂∗
i
(t) =

r̂∗(t)

n̂∗T (t)m̂i(t)
if Xi ∈ �

ρ̂∗
i
(t) = β̂

‖̂bdf ‖

‖β̂m̂i − R̂‖
if Xi /∈ �

. (34)

The previous relations can be estimated using only the analyt-

ical form of the parameters obtained during the path planning

step, with (Mezouar 2001)





ρ̂∗
i
(t) = det(G∗(t)) det(G0−!!!0)

−2/3

(K̂+(G0−!!!0)ŴŴŴK̂n̂f )
T

K̂+x∗
i
(t)

if Xi ∈ �

ρ̂∗
i
(t) = (1−q(t))β̂(t)‖K̂+!!!0K̂n̂f ‖

‖β̂(t)K̂+p
f
i

−K̂+(G0−!!!0)ŴŴŴ
∗(t)p∗

i
(t)‖

if Xi /∈ �

where

β̂(t) =
‖[K̂+!!!0K̂n̂f ]×(G0 −!!!0)ŴŴŴ

∗(t)x∗
i
(1)‖

‖[K̂+!!!0K̂n̂f ]×K̂+x∗
i (t)‖

.

In practice, we use these last relations to compute ρ∗
i
(t) since

the analytical forms of all these components are known.

If the target is known to be motionless, we get from eq. (30):

∂̂e

∂t
= −L̂+ ∂s∗

∂t

and the control law (31) can be rewritten as follows

Tc = −λe + L̂+ ∂s∗

∂t
(35)

where the term L̂+ ∂s∗

∂t
= L̂+[

∂x∗
1

∂t

∂y∗
1

∂t
· · · ∂x∗

n

∂t

∂y∗
n

∂t
]T allows us to

compensate the tracking error. More precisely, we have from

eq. (27)

∂x∗
i

∂t
=

1

αi(t)

[
∂G

∂t
x∗
i
(1) + βi

∂γγγ

∂t
−

∂αi

∂t
x∗
i
(t)

]
. (36)

If we rewrite the collineation and the epipole as follows

G(t) =




G1(t)

G2(t)

G3(t)


 γγγ (t) =




γ1(t)

γ2(t)

γ3(t)
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Fig. 3. Image trajectories: minimum acceleration.

(a) (b)

Fig. 4. Camera trajectory: (a) minimum energy and (b) minimum acceleration.
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we obtain from eqs. (11), (27), and (28):





∂G

∂t
= q̇(t) [−!!!0 + (G0 +!!!0)ŴŴŴ(t)] =




∂G1

∂t

∂G2

∂t

∂G3

∂t




∂γγγ

∂t
= −q̇(t)γγγ 0 =




∂γ1

∂t

∂γ2

∂t

∂γ3

∂t




αi(t) = G3(t)x
∗
i
(1) + τiγ3(t)

∂αi

∂t
= ∂G3

∂t
x∗
i
(1) + τi

∂γ3

∂t

.

The term ∂s∗

∂t
is finally obtained by introducing the previous

relations in eq. (36).

6. Experimental Results

The proposed method has been tested in a positioning task

with respect to an unknown scene. We used a CCD camera

mounted on a 6-DoF manipulator. We have used for the ex-

periments two targets. The first target is composed of nine

white marks. The extracted visual features are the image co-

ordinates of the center of gravity of each mark. The second

target is a complex image. The extracted features are the im-

age coordinates of interesting points. The desired images have

been acquired during an off-line step. The algorithm proposed

in Malis and Chaumette (2000) has been used to obtain the

initial collineation matrix from which the initial collineation

matrix at infinity is extracted using the algorithm proposed in

Faugeras and Lustman (1988).

6.1. First Target

The target is composed of nine white marks lying on three

different planes (see Figure 8). The images corresponding

to the desired and initial camera positions are given in Fig-

ures 5(a) and (b), respectively. As can be seen in Table 1, the

corresponding camera displacement is very large. In order to

check the robustness of the proposed approach with respect

to modeling errors, two different sets of parameters have been

used:

1. correct calibration—the correct intrinsic parameters

and the correct value of df (i.e., 50 cm) have been used

(see Figures 6 and 8);

2. bad calibration—an error of 50% has been added on

the intrinsic parameters, whiledf has been set to 100 cm

(see Figures 7 and 9).

Figures 6 and 7 present the results using the minimal energy

criterion and Figures 8 and 9 give the results using the minimal

acceleration criterion. In the following, only the results related

to the minimal energy criterion are commented on, since the

comments are also valid for the minimal acceleration problem.

However, let us note that the temporal behavior depends on

the chosen cost function, as can been seen for example in the

figures representing the camera velocity.

1. Correct calibration. Planned and tracked trajectories

are plotted in Figures 6(a) and (b), respectively. We first

note that the tracked trajectories and the planned tra-

jectories are almost similar. This shows the efficiency

of the proposed control scheme. The tracking error

(s(t)−s∗(t)) is plotted in Figure 6(e). It confirms the pre-

vious comment since the maximal error remains small

(always less than five pixels). The error on the coor-

dinates of each target point between its current and its

desired location in the image (s(t) − s∗(1)) is given

in Figure 6(d). The convergence of the coordinates to

their desired value demonstrates the correct realization

of the task. The computed camera velocity is given in

Figure 6(f). Note finally that the camera optical center

moves along a straight line as can be seen in Figure 6(c).

2. Bad calibration. First, we note that the planned tra-

jectories obtained with or without modeling errors are

similar (refer to Figures 6(a) and 7(a)). This confirms

the robustness of the path planning process with re-

spect to camera calibration errors. Secondly, as can be

seen in Figures 7(a) and (b), the planned and followed

trajectories in the bad calibration case are also similar.

The image-based control scheme is indeed particularly

robust with respect to modeling errors when the error

function to regulate is small (the tracking errors, given

in Figure 7(e), remain small during the servoing, i.e.,

less than eight pixels). The camera velocity is plotted in

Figure 7(f). Once again, the task is correctly realized.

This is shown by the convergence of the image point

coordinates to their desired value (refer to Figure 7(d)).

6.2. Second Target

The extracted visual features are now the image coordinates

of interesting points obtained using the Harris detector (Har-

ris and Stephens 1988). These points are matched using the

algorithm described in Zhang et al. (1995). These points are

represented by crosses in the initial and desired images (refer

to Figure 10). The presented results have been obtained using

the minimum energy cost function. In order to check the ro-

bustness with respect to modeling errors, we carried out two

experiments. In the first experiment, the camera parameters

given by the camera manufacturer and a correct approxima-

tion of the depth df (i.e., df = 0.9 m) have been used (see

Figure 11 and Extension 1). In the second experiment, an error

of 30% has been added to the camera parameters, while df

has been set to 0.5 m (Figure 12 and Extension 2). As can be

seen in Figures 11(a), 11(b), 12(a) and 12(b), the planned and

the tracked trajectories are similar. The trajectories obtained
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Table 1. Camera Displacement

Translation (mm) tx = −195 ty = −610 tz = −1455

Rotation (deg) (uθ)x = −68 (uθ)y = −41 (uθ)z = −144

(a) (b)

Fig. 5. First target: (a) initial image and (b) desired image.

(a) (b) (c)

(d) (e) (f)

Fig. 6. First target, minimum energy criterion and correct calibration: (a) planned trajectories; (b) followed trajectories; (c)

camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).
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(a) (b) (c)

(d) (e) (f)

Fig. 7. First target, minimum energy criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)

camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

(a) (b) (c)

(d) (e) (f)

Fig. 8. First target, minimum acceleration criterion and correct calibration: (a) planned trajectories; (b) followed trajectories;

(c) camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and

deg s−1).
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(a) (b) (c)

(d) (e) (f)

Fig. 9. First target, minimum acceleration criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)

camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).
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(a) (b)

Fig. 10. Second target: (a) initial image and (b) desired image.
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Fig. 11. Second target using correct calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d)

error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

with correct parameters are close to those obtained with bad

parameters (compare Figure 11(a) with Figure 12(a) and Fig-

ure 11(b) with Figure 12(b)). This confirms, once again, the

robustness of the path planning and of the control scheme

with respect to calibration errors and errors on df . The track-

ing error (defined as 1

2n

∑n

1
(xi(t) − x∗

i
(t)) + (yi(t) − y∗

i
(t))

and plotted in Figures 11(e) and 12(e)) remains small in both

cases (less than four pixels). The convergence to 0 of the er-

ror on the coordinates between the current and the desired

images (defined as 1

2n

∑n

1
(xi(t) − x∗

i
(1)) + (yi(t) − y∗

i
(1))

and plotted in Figures 11(d) and 12(d)) demonstrates the cor-

rect realization of the positioning task in both cases. As can

be seen in Figures 11(c) and 12(c), the camera optical center

moves along a straight line.

7. (N + 1) Images Framework

Classical visual servoing techniques make assumptions on the

link between the initial and desired images, limiting the appli-

cability of these techniques to relatively small displacement

when the scene is complex. Indeed, if a sufficient number of

image features cannot be matched in these images, the visual

servoing cannot be realized (see, for example, the initial and

desired images given in Figures 13(a) and (b)). A possible

solution to cope with this deficiency is to use relay images ac-

quired off-line. In the next section, we show how our scheme

can be extended to this framework.

7.1. Images Trajectories

Assume now that a set of N + 1 relay images I = {I0 · · · IN}
is available and that some image features can be extracted

and matched between two successive images. Assume also

that from the extracted image features, the collineation matri-

ces Gi,i+1 between images Ii and Ii+1 can be computed. The

collineation matrix Gi,N α K(Ri + bdf i)K
+ (refer to eqs. (1)

and (2)) between images Ii and IN can easily be obtained

noticing that

Gi,N = Gi = Gi,i+1Gi+1,i+2 · · · GN−1,N . (37)

Given a set of N + 1 collineation matrices G =
{G0,N · · · GN−1,N ,GN,N} associated with a set of N + 1 time

parameters {t0 · · · tN−1, tN}, we want to determine a continu-

ous and piecewise differentiable matrix function G(t) such

that G(ti) = Gi for i ∈ {0 · · ·N} and such that G(t) corre-

sponds to a minimal length camera trajectory. This problem
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Fig. 12. Second target using bad calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d) error

in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

can be formulated as follows (problem PM)

Find G(t) minimizing Ji =
∫ ti+1

ti
UTUdt

for i = 0 · · ·N and with U = [vT ωωωT]T whereωωω is defined by

eq. (10), v = ḃ, and with boundary conditions: G(ti) ∝ Gi ,

G(ti+1) ∝ Gi+1. The solution of problem PM can be obtained

in the same way as the solution of PC1 (Mezouar 2001)

G(τ ) ∝ (1 − τ)!!!i−1 + τ!!!i + (Gi−1 −!!!i−1)ŴŴŴ (38)

where τ = t−ti−1

ti−ti−1
and

ŴŴŴ(θθθ i, τ ) = Ke[θθθ i ]×τK+, !!!i = Kbdf in
f T

K+ (39)

with [θθθ i]× = log(RT
i−1Ri). By introducing eqs. (4), (5), and

(6) in eq. (38), it can be shown that the path given by eq. (38)

is not affected by the error on camera intrinsic parameters (the

proof is similar to the case of two images). The features are

interpolated as for the case of two images (Section 4) and the

displacement is then carried out using the control scheme de-

scribed in Section 5. Note that recent work in image database

analysis to solve the problem of retrieving and delivering im-

ages from large database using query (De Marsico, Cinque,

and Levialdi 1997) can be exploited to extract the set of relay

images from an image database. Our scheme to obtain the

relay images can be summarized as follows (Mezouar et al.

2002).

1. In a first off-line step, the camera acquires a large set

of images of its workspace. Ideally, these images must

provide a representative sample of all the points of view

which could be reached during the operational phase.

2. Points of interest of all these images are extracted us-

ing the Harris detector (Harris and Stephens 1988),

and some invariants are computed (Schmid and Mohr

1997). This allows us, on the one hand, to index these

images in a database which will be used to quickly re-

trieve images acquired during the operational phase,

and on the other hand to match images by pair.

3. A graph is then derived from this matching. The nodes

of the graph are the images. An edge between two im-

ages indicates that the images can be matched. The

edges are valuated in a way inversely proportional to

the number of matched image features; the matching is

realized using the algorithm proposed in Zhang et al.

(1995).

4. In the on-line step, the robot acquires an initial image

at an unspecified place of its workspace. A task is spec-

ified in the form of an image to reach. The system then

seeks in the image database the closest images to the

initial and desired images. The shortest path between

these images in the graph is then obtained by using the

Dijkstra algorithm. We thus obtain an ordered set of
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Fig. 13. (a) Initial image and (b) desired image.

relay images such that, between two successive images

of this set, a sufficient number of image features can be

matched.

7.2. Experimental Results

In this section, our approach is validated by realizing a po-

sitioning task. The images corresponding to the desired and

initial camera positions are given in Figures 13(a) and (b). In

this case, the SFMJF is impossible to realize. However, from

the graph built with the image database, eight relay images are

obtained (see Figure 14). The trajectories of interesting points

are then planned. The planned and followed trajectories are

given in Figures 14 and 15. We note that these trajectories are

similar. The camera trajectory is given in Figure 16(a). The

tracking error (defined as 1

2n

∑n

1
(xi(t)−x∗

i
(t))+(yi(t)−y∗

i
(t))

and plotted in Figure 16(b)) remains sufficiently small (always

less than five pixels) to ensure a good behavior of the control

scheme. Extension 3 (refer to the Appendix for details) gives

an internal view (i.e., a view by the controlled camera) of the

positioning task.

8. Potential-Based Path Planning

The path planning approach described in the previous sec-

tions, coupled to a purely image-based control, enables us

to realize large robot displacements with a strong robustness

with respect to modeling errors. Additionally, closed-form im-

age trajectories have been obtained, hence only low computa-

tional cost is required for on-line implementation. However,

the limitations of the stable region of image-based control

and the non-optimality or non-validity of the induced camera

trajectory were not the only reasons for image-based control

failures. For example, the features of interest may leave the

camera field of view and the robot may reach its mechanical

limits. To ensure the success of the task whatever the displace-

ment to realize, we have tried to embed in a constrained global

optimization process the previously described path planning

scheme (Mezouar 2001). However, the global optimization

process requires a high computational time and an initializa-

tion step. It is thus not suitable for on-line implementation. To

cope with this problem, a second path planning scheme based

on a local optimization of potential function (Khatib 1986;

Latombe 1991) is now briefly presented. In this scheme, con-

straints (visibility and joint limits avoidance) can easily be

introduced at the path planning level.

8.1. Principle

In this approach, the robot motions are under the influence

of an artificial potential field (V ) defined as the sum of an

attractive potential (Va) pulling the robot towards the goal

configuration (ϒ∗) and a repulsive potential (Vr) pushing the

robot away from the obstacles. Motion planning is performed

in an iterative fashion. At each iteration, an artificial force

F(ϒ), where the 6 × 1 vector ϒ represents a parametrization

of the robot workspace W ⊂ Rp, is induced by the potential

function. This force is defined as F(ϒ) = −�∇T
ϒ
V where �∇T

ϒ
V

denotes the transpose of the gradient vector of V at ϒ . Using

these conventions, F(ϒ) can be decomposed as the sum of

two vectors, Fa(ϒ) = −�∇T
ϒ
Va and Fr(ϒ) = −�∇T

ϒ
Vr , which

are respectively called the attractive and repulsive forces. Path

generation proceeds along the direction of F(ϒ) regarded as

the most promising direction of motion. Thus, each segment

is oriented along the negated gradient of the potential function

computed at the configuration attained by the previous seg-

ment. The discrete-time trajectory is given by the transition

equation

ϒk+1 = ϒk + εk
F(ϒk)

‖F(ϒk)||
(40)
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Fig. 14. Planned trajectories.
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Fig. 15. Followed trajectories.
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Fig. 16. (a) Camera trajectory and (b) tracking error (pixels).

where k is the increment index and εk is a positive scaling

factor denoting the length of the kth increment. In our case,

the control objective can be formulated as follows. To transfer

the system to a desired point in the sensor space satisfying the

following constraints:

1. the image trajectories correspond to a valid robot tra-

jectory;

2. all the considered image features remain in the camera

field of view;

3. the robot joints remain between their limits.

To deal with the first constraint, the motion is first (partially)

planned in the 3D Cartesian space using the transition equa-

tion (40) and then projected in the image space. Only the

rotation matrix and scaled translation vector trajectories are

necessary to obtain the corresponding features trajectories in

the image space. This property allows us to compute the im-

age trajectories without knowing the CAD model of the object

(model-free method), using eqs. (1), (2), and (27).

The attractive potential (Vϒ ) pulling the robot toward the

goal configuration (ϒ∗) is defined in the 3D Cartesian space as

a parabolic function reaching its minimum at ϒ∗. The second

and the third constraints are introduced through a repulsive

potential Vs defined in the image and a repulsive potential

Vq defined in the joint space. One way to create a potential

barrier around the camera field of view is to define Vs as an

increasing function of the distance between the object projec-

tion and the image limits (see Figure 17(a)). In the same way,

a potential barrier can be created around the robot joint limits

(see Figure 17(b)). A general description of such functions

and the derivation of the associated artificial forces are given

in Mezouar and Chaumette (2002). The total force is given by

F = Fϒ + γFs + χFq (41)

where the scaling factors γ and χ allow us to adjust the rela-

tive influence of the different forces. Discretized trajectories

in the image space are then computed. In order to design

continuous and differentiable curves and to improve the dy-

namic behavior of the system, the discretized trajectories are

interpolated using cubic B-spline functions. The continuous

trajectories are then integrated in an image-based control loop

in a similar way than for the first planning scheme.

As for the previous path planning scheme, it can be shown

that the potential-based scheme is particularly robust with re-

spect to calibration errors (Mezouar and Chaumette 2002).

Contrarily to the previous method, constraints can be inte-

grated in an easy way. In counterpart, the analytical form of

the trajectories in the image space are not known and the

camera trajectory is deviated from the optimal one when re-

pulsive forces are involved. Finally, let us note that the total

force given by (41) may potentially lead to local minima. This

is intrinsically due to the local and incremental strategy of the

potential field approach. In practice, we have never encoun-

tered configurations leading to local minima and the param-

eters γ and χ have been fixed to 1. A basic strategy to take

out of potential local minima would be to execute a motion

favoring the repulsive force (i.e., by increasing parameters γ

and χ ). Obviously such strategy makes no formal guarantee

to reach the global minimum, and in some cases, there is no

solution to satisfy all the constraints. From an intuitive point

of view and following the reasoning proposed in Chesi et al.

(2002), the repulsive force related to the visibility constraint

will induce a backward motion if no other motion is possible

(which is the case when at least two image points leave the

field of view on opposite image limits simultaneously). As

soon as the joints limits are taken into account, it may be im-

possible to realize such backward motion, leading thus to the

failure of the path planning. In Cowan and Koditschek (1999),

potential functions free of stable local minima (called naviga-

tion functions (Rimon and Koditschek 1992)) are constructed

to guarantee the global stability of the system. However, con-

structing such a navigation function requires the complete

knowledge of the space topology and imposes to set limits on
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Fig. 17. (a) Repulsive potential for visibility. (b) Repulsive potential for joint limits avoidance.
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Fig. 18. (a) Initial and (b) desired images.

the considered workspace. Setting these limits is difficult in

practice. Finally, many advantages of the approach proposed

in this paper would be lost: robustness with respect to mod-

eling errors, and application to object with unknown CAD

model.

8.2. Experimental Results

The proposed method has been tested using the same simple

object as before. The images corresponding to the desired

and initial camera positions are given in Figures 18(a) and

(b), respectively. The corresponding camera displacement is

very large (tx = 82 cm, ty = 80 cm, tz = 45 cm, (uθ)x = 37◦,

(uθ)y = 45◦, (uθ)z = 125◦). In this case, classical image-

based and position-based visual servoing fail.

On all the following plots, joint positions are normalized

between [−1; 1], where −1 and 1 represent the joint limits.

In order to emphasize the importance of the introduced

constraints in the trajectories, we first perform the path plan-

ning without repulsive potential. The results are given in Fig-

ure 19. We can see that the visual features get out largely from

the camera field of view (Figure 19(a)) and axis q5 attains its

joint limit (Figure 19(b)). Then, only the repulsive potential

associated to the visibility constraint has been activated (see

Figure 20). In that case, even if the visibility constraint is en-

sured (Figure 20(a)), the servoing cannot be realized because

axis q5 reaches its joint limit (Figure 20(b)). In Figure 21,

the two repulsive potentials are activated. The target remains

in the camera field of view (see Figures 21(a) and (c)) and

all axes avoid their joint limit (see Figures 21(b) and (d)).

We can notice that the planned trajectories and the realized

trajectories in the image are almost similar, which shows the

efficiency of our control scheme. The error on the image co-

ordinates of each target point between its current and desired

location is given in Figure 21(f). We can note the convergence

of the coordinates to their desired value, which demonstrates

the correct realization of the positioning task.
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Fig. 19. Planned trajectories without any repulsive potential: (a) in the image; (b) in the joint space.
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Fig. 20. Planned trajectories without repulsive potential associated to the joint limits avoidance: (a) in the image; (b) in the

joint space.
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Fig. 21. Planned trajectories with both repulsive potentials: (a) in the image; (b) in the joint space, realized trajectories; (c) in

the image; (d) in the joint space; (e) camera translational (cm s−1) and rotational (deg s−1) velocities versus iteration number;

(f) errors in the image versus iteration number.
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A second experiment is presented in the extensions to this

paper and confirms the previous comments (refer to the Ap-

pendix for details). The initial and desired images are given

by Extensions 4 and 5, respectively. The corresponding robot

positions are given by Extensions 6 and 7. The planned tra-

jectory is included in the initial image (Extension 4). As can

be seen, the motion to realize is very large and in this case

classical approaches fail. Extension 8 is a video acquired by

the controlled camera during the positioning task (refer to the

Appendix). Extension 9 is a video acquired by an external

camera observing the robot motions.

9. Conclusion

In this paper, we have addressed the problem of finding the

trajectories in the image space of visual features so that the

camera trajectory is optimal. The obtained camera trajectory

corresponds to a minimum geodesic in SE(3). The method

is model-free and the uncalibrated case has been studied. By

coupling the path planning step with an image-based servo-

ing, the proposed method improves significantly the behavior

of image-based servoing when the displacement to realize is

large. We have validated our approach in a 6-DoF robotic

platform by realizing positioning tasks with respect to an un-

known target. The experimental results confirm the robustness

of our approach with respect to modeling errors. The interpo-

lation of multi-relay images has also been studied in order to

cope with the difficult matching problem for a complex scene

when the initial image is very different from the desired one.

A potential-based path planning has also been described. It

allows us to integrate easily constraints in the desired trajec-

tories. A natural perspective for this work is the incorporation

of obstacle avoidance in the path planning process as well as

the incorporation of non-holonomic constraints.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.

ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video Positioning task described in

Section 6.2 (correctly cali-

brated system) seen by the con-

trolled camera. The red and

blue crosses represent respec-

tively the current and desired

features. The green crosses

represent the current desired

position of the features (that is

their planned trajectories).

2 Video Same example with badly cal-

ibrated camera.

3 Video Positioning task described in

Section 7.2 seen by the con-

trolled camera.

4 Image Initial image with planned tra-

jectories (Section 8.2).

5 Image Desired image (Section 8.2).

6 Image Initial robot configuration

(Section 8.2).

7 Image Final robot configuration (Sec-

tion 8.2).

8 Video Motion during the positioning

task (Section 8.2) seen by a

camera observing the robot.

9 Video Same example seen by the con-

trolled camera (Section 8.2).

The blue and green crosses

represent respectively the cur-

rent and desired features. The

red crosses represent the cur-

rent desired position of the fea-

tures (i.e., their planned trajec-

tories).
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