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ABSTRACT
Any word can be decomposed uniquely into lexicographically nonincreasing factors
each one of which is a Lyndon word. This paper addresses the relationship between the
Lyndon decomposition of a word x and a canonical rotation of x, i.e., a rotation w ofx
that is lexicographically smallest among all rotations ofx. The main combinatorial result
is a characterization of the Lyndon factor of x with which w must stan. As an
application, faster on-line algorithms for finding the canonical rotation(s) of x are
developed by nontrivial extension of known Lyndon factorization strategies. Unlike
their predecessors, the new algorithms lend themselves to incremental variants that
compute, in linear time, the canonical rotations of all prefixes of x. The fastest such
variant represents the main algorithmic contribution of the paper. It performs within the
same 3lxl character-comparisons bound as that of the fastest previous on-line algorithms
for the canonization of a single string. This leads to the canonization of all substrings of
a string in optimal quadratic time, within less than 31x12 character comparisons and
using linear auxiliary space.

Key words and phrases: combinatorics on words, Lyndon factorization, pattern
matching algorithms, failure functions, lexicographic order, canonization of circular
strings.
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1. INTRODUCTION.

An important factorization of free monoids [Lo] was introduced in [CFL] by Chen, Fox

and Lyndon for computing a basis of the free Lie algebras. According to this factorization (known

as the Lyndon factorization), any word can be written in a unique way as a concatenation of

lexicographically non increasing factors, with the additional propeny that each factor is

lexicographically least among its circular shifts. Two efficient methods for producing the

factorization of an input word x of n symbols were proposed in [Du]. (The reader is encouraged to

familiarize from the start with the first one of these methods, which is reported at the beginning of

Section 3.) Both methods work on-line, i.e., they parse the input string into its factors while

scanning it from left to right, but their respective bounds in tenns of numbers of character

comparisons depend on the amount of auxiliary storage needed. Specifically, word x is

decomposed in a number of character comparisons bounded by 2n with constant auxiliary space,

or, alternatively, in (3/2)n comparisons with nl2 auxiliary memory locations. This speed~up is

obtained by incorporating in the algorithm the computation of a table that locally resembles the

failure functions used in smng searching algorithms (see, e.g.• [AHU], ch. 9; [KMP]).

In different contexts, the problem was studied of computing, for a given string x, the

circular shift ofx that is lexicographically least among all such shifts. This problem and the related

one of checking the equivalence of two circular smngs find many applications, e.g., in computing

the single function coarsest partition [PTB], in checking polygon similarity [AK], in isomorphism

tests for special classes of graphs [BLJ, and in molecular sequence comparisons [KS]. An

algorithm requiring 3n comparisons and auxiliary space linear in n was presented in [Bo]. This

algorithm too represents an extension of the computation of the failure function for x, and the

auxiliary space needed is precisely that used to allocate the values of such function. The algorithm

is also on-line. so that it can start with the character comparisons while the input smng x is being

read. It is intriguing that Booth's canonization algorithm gains all the infonnation needed for the

Lyndon factorization of the input, but it does not need to use it. A canonization algorithm faster

than Booth's was subsequently developed by Shiloach [Sh]. This algorithm is remarkable in at

least two respects. First, it works within a number of character comparisons bounded by n + d12,

where d is the displacement of the smallest starting position of a least circular shift with respect to

the first position of x. Second, it requires only constant auxiliary space. Shiloach's algorithm is

more complex than the algorithm in [Bo], and it cannot operate on-line, since it can start with its

comparisons only after having learned the length of the input string and having acquired the middle

character ofx.



Optimal SUbstring Canonization 9/11/90 3

Some natural questions are prompted by the fact that, by definition, a Lyndon word is

the lexicographically least rotation of itself. Thus, it is natural to ask how much extra information is

needed in order to determine the lexicographically least rmation of a word given the Lyndon

faclOrization of that word. Answering this question is not easy. In fact, even the partial answers

that we give in Section 3 require some nontrivial combinatorial properties such as those derived in

Section 2. A related question is whether an on-line algorithm that acquires infonnation by

processing the input string from left to right could approach or even match the outstanding

performance of the algorithm in [Sh]. Questions like this are usually appropriate in the realm of

algorithmic design, since the efficiency of an algorithm depends sometimes critically on the global

information which is available to that algorithm.

As pointed out in [Du], any algorithm computing the Lyndon factorization of x can be

used lO fmd the least circular shift of x. This is done by running that algorithm on the string xx and

performing some constant-time extra checks. Thus, simple extensions of the on-line algorithms in

[Du] yield the least circular shift ofx in 4n or 3n character comparisons, depending on whether or

not linear auxiliary space is allowed. This is not better than the bound of [Bo], but it suggests that

with 3 n comparisons one can accumulate more information than that needed to find a

lexicographically least circular shift. In this paper, we study in depth the relation between the

Lyndon factorization of a word and the lexicographically least circular shift(s) of that word. As

mentioned, this study leads to establish several combinatorial propenies, which are presented in

Section 2. Based on the results of this section, we show in Section 3 that a simple extension of the

algorithms in [Du] enables to find the least lexicographic rotations of a string x with at most!

additional character comparisons, where f = minEd, nI2]. As a by-product, we also get on-line

algorithms that find the least lexicographic rotation ofx in a tmal number of character comparisons

bounded by 2n or 1.5n + f, depending on whether constant or nl2 auxiliary memory locations are

used, respectively. The first bound improves on the 3n comparisons of [Bo], but unlike the latter it

does not use linear auxiliary space. Each bound is the smallest known in its category.

The algorithms of Section 3 lend themselves to incremental variants, that are presented in

Section 4. We show there that, if linear auxiliary space is allowed, then the computation of the least

rotations of all prefixes of a string can be carried out in overall linear time. Such a performance

seems not achievable through any of the previously known canonization strategies. Moreover, we

show that the least rotations of all prefixes of a string can be cumulatively computed within the

same bounds (3n character comparisons and linear auxiliary space) that are required of the

previously fastest on-line canonization algorithm [Bo] in order to fmd the least rotation of just one
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string. Straightforward extensions of these developments lead then to an optimal O(n2) algorithm

for the canonization of all substrings of a string of n characters, while the adaptation of any of the

previous canonization algorithms requires time O(n3). Our fastest algorithm for this problem

performs less than 3lxl2 character comparisons, thus achieving an amortized complexity of 3

character comparisons per substring, and it uses linear auxiliary space.

2. LYNDON WORDS AND LEAST ROTATIONS

Let L be a finite alphabet totally ordered by the relation <, and let L+ (resp. L*) be the

free semigroup (resp. monoid) generated by :E. The total order < is extended in its corresponding

lexicographic order on :E+, as follows: for any pair of words x. y E :E+, x< y iff either y E X

:E+ or:

x = ras. y = rbt. with a<b; a,b E :E. r, s, t E :E*.

Fact 1. For v not in u :E*. and for any w. Z E :E*, u < v implies uw < VZ.

Given a word x = sJS2 ...sn in :E+. the i-th rotation of x (i=1.2•...•n) is the word w =

sisi+l ...snsIS2...si-1' A least lexicographic rotation LR(x) of x is a rotation of x that is

lexicographically smallest among all rotations of x. That is, for u E :E*, v E :E+ we have LR(x) =

vu if x = uv and for any pair u', v' E .:E*, x = uV implies vu ~ V'U'. Since all rotations of x have

equal length. then for any two such rotations wand w', w:;r w' implies that wand w' differ in at

least one symbol. An I.R uv ofx is completely identified by its position lui in x. We call lui a least

starting position (LSP). In the following. we shall be concerned with finding the LSP's of string

x. The following observation is easy to check (cf. also [Sh]).

Fact 2. String x has q LSP 's if and only if x can be written as x = vq for some word
v E .:E+.

A word x E I,+ is a Lyndon word iff x is smaller than any of its nonempty suffixes. For

instance, on the alphabet {a, b}, aaab, abbb. aabab and aababaabb are Lyndon words. By the

definition of lexicographic order, one gets then immediately that if x is a Lyndon word. then no

nonempty proper suffix of x can be also a prefix of x. A word with this property is called border-
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free. A word x is said to be primitive if setting x =""k implies k = 1. An immediate consequence of

the preceding statement is then that any Lyndon word is also a primitive word.

Lyndon Theorem. Any word x E L+ can be written in a unique way as nonincreasing product
of Lyndon words: x = IjI2 ... lk, Ij;:: 12 ;?: ... ;:: Ik Moreover, Ik is the
lexicographically smallest suffix ofx.

The sequence (1].12 •...•lk) of Lyndon words such tharx = 1]12 ...lk and I] ~ 12 ~ ... ~ Ik

is called the Lyndon decomposition ofx. The following properties motivate our interest in Lyndon

words.

Lemma 1. Let m be an LSP for x. Then m is also the position in x of some factor in the
Lyndon decomposition ofx.

Proof. Assume the contrary, i.e., that an LSP of x coincides with some position m of x that falls
within some Ii' Let v be the suffix of Ii starting at position m. By the definition of a Lyndon word

and since v is a nonempty proper suffix of x, one has Ii < v. Moreover, v cannot be a prefix of Ii,

since Ii is border-free. Thus, Fact 1 shows that v cannot be a prefix of LR(x) and this leads to a

contradiction.•••

A consequence of Lemma 1 is that, if I is a Lyndon word, then LR(l) = l. In fact, Lyndon

words can be defined alternatively as primitive words that coincide with their respective least

lexicographic rotations (see, e.g., [Lc]).

Lemma 2. If x = Ie, with e ;:: 1 and I a Lyndon word, then LR(x) = x, and there are
preciselye LSP's for x. namely: O. III. 2111 •...• (e-I)III.

Proof. A sttaightfonvard consequence of Fact 2 and Lemma l....

From now on, we concentrate on the cases where the conditions of Lemma 2 are not met,
i.e., we assume x = Ij ..lk with k;:: 2 and I] ¢ Ik.

We introduce the notions of prey and rest of a factor in the Lyndon decomposition of the

word x. These notions are used in the next lemmas to characterize the least rotation(s) ofx. Let I be

a factor of the Lyndon decomposition of x. Let i andj be respectively [he smallest and the largest
integers such that Ii ~ li+t ~ ... = Ij_l = Ij = I. Then prev(1) = I] ...Ii-I and rest!l) = Ij+ I .. .Ik' One
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gets then that, for any factor I of the Lyndon decomposition of x, x = prev(l)lerest(l) where e C~I)

is the number of occurrences of I in the decomposition.

Lemma 3. Let I be a factor occurring e (~1) times in the Lyndon decomposition of x. If I =
rest(l)prev(l) then LR(x) = le+ 1, and there are precisely e+1 LSP's for x , namely:
Iprev(I)I,lprev(I)I+ Ill, Iprev(I)I+ 2111, ... , ~rev(I)I+ eili.

Proof. Since 1= resr(l)prev(I), then LR(x), which is also LR(leresr(l)prev(I)) , is equal to

LR(le+l). Thus, Lemma 2 gives the conclusion.···

As an example, letx = babaabbabaabbabaab = (babaab)3 We have 11 = b, 12 = ab, 13 = 14

= aabbab, 15 = aab, resl(13) = aab, prev(13) = bab andLR(x) = (aabbab;3.

Lemma 4. Let I be a factor occurring e (~1) times in the Lyndon decomposition of x. If 1,*
resl(l)prev(l) then LR(x) < LCresl(l)prev(I)1 e-c for O<c<e.

Proof. First note that rest(l)prev(l) '* Ig for g ~ 1. This follows from the assumption I '*
rest(l)prev(l) in case g = 1. When g > I, setting rest(l)prev(l) = 19 implies that either I is a prefix of

rest(l) or I is a suffix of prev(l). But this contradicts the definitions of rest(l) and prev(l).

Let g (~O) be [he largest integer such that resl(l)prev(l) = 19w. So, the word w is nonempry

and I is not a prefix of it. We will now consider two cases according to whether w is prefix of I or

not.

Assume that w is a prefix of 1. Then I = ww' for some nonempty word w'. Since w is

nonempty and I is a Lyndon word, we get I < w'. Then resl(l)prev(l)l = Igwl < 19ww' = Ig+l. Fact

1 applies and gives rest(l)prev(l)le < Ig+llc-l wle-c = ICrest(l)prev(l)1 e-c for O<c<e. This achieves

the proof of the first case.

Consider now the second case, when w is not a prefix of 1. We then have w < I or I < w

where in both cases no word is a prefix of the other so that Fact 1 applies. First, if w < I, we get

resl(I)prev(l) = Igw < Ig+! which gives, by Fact 1, resl(l)prev(I)I' < [g+!I'-!wIN = ICresl(l)prev(I)1

e-c for O<c<e. Secondly, if 1< W, we get 18+1 < 19w = resr(l)prev(l) which gives, by Fact 1,

Iresl(l)prev(l) = Ig+!w < resl(l)prev(I). Thus leresl(l)prev(l) < 1'-lresl(l)prev(l) ... < l'resl(l)prev(l)

for O<c<e. Applying again Fact 1 gives leresl(l)prev(l) < lCresr(l)prev(l)1 e-c. This achieves the

proof of the second case.

In both cases we gerLR(x) < 1Cresl(l)prev(l)l e-c for O<c<e as claimed.···
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The next lemma gives a necessary condition in order for a Lyndon factor ofx to be also a

prefix of LR(x).

Lemma 5. Ifx =prev(/)le and prev(l) is non-empry, then LR(x) is of the form vleu with u, v in
1;* andprev(l) = uv.

Proof. By definition, prey(/) cannot be equal to I. The claim is then an immediate consequence of

Lemma 4. ...

Lemma 6. Let I be a factor occurring e (~l) times in the Lyndon decomposition of x. IfLR(x)
= lerest(l)prev(I), then rest(l) is a prefix of I.

Proof. Assume rest(l) is not a prefix of l. Since I cannot be a prefix of rest(l), then we can find u,

v, W E r,* and a, bEL, such that I = ubv and rest(/) = uaw. By the Lyndon theorem we have a

< b. Thus LR(x) ~ resr(l)prev(I)le < lerest(l)prev(I), a contradiction with the hypothesis.···

Lemma 7. Let I be a factor occurring e (~l) times in the Lyndon decomposition of x. If rest(/)
is a prefix of I and I is a proper prefix of rest(l)prev(l), then LR(x) is of the form
vlerest(l)u with u, v in L* andprev(l) = uv.

Proof. We know from Lemma 4 that the rotations ofx of the form ICrest(l)prev(l)1 e-c with O<c<e

are greater than LR(x). Thus, we only have to prove that no LSP falls at the beginning of resr(l) or

within rest(I).

We also know from the proof of Lemma 4 that resr(l)prev(l) y!: i& for g ~ 1. So, if g (~ 1) is

the largest integer such that rest(l)prev(/) = Igu, the word u is nonempty and none of its prefix is I.

Let I] ... Ii" .Ii" .lk be the Lyndon decomposition of x, with I = Ii =...= Ij' prev(l) ~ I] ... Ii_]

and resr(l) = Ij+l" .lk' Note that, since I is a proper prefix: of resr(l)prev(l) and I is strictly longer

than rest(l), then prev(l) cannot be empty. Therefore, we have i >1. Let w' E r,*, WE r,+ and p

be such that [g = resr(l)lj .. .lp_jW' and lp =w'w. We have 1 ::;; p < i and then 1< lp ::;; w.

Moreover, by our choice of g,l is not a prefix of w. From l < W, we get Ig+l < 19w, which, by

using Fact 1 and arguments in the proof of Lemma 4, leads to /eresr(l)prev(l) < rest(/)prev(l)le.

Thus LR(x) < resr(l)prev(I)le.

Finally, we show that LR(x) cannot be of the form vprev(I)leu with rest(l) = uv and u

nonempty. In fact, in [his situation, vprev(l)leu starts by a nonempry proper suffix of l. Applying
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again Fact 1 to 1 and its suffix leads to lerest(l)prev(l) < vprev(l)leu and thus to LR(x) <

vprev(I)leu...•

For example, let x = babaabbaabbaab. Then I] = b, 12 = ab, 13 = /4 = aabb, 15 = aab. With

1=/4 we haveprev(l) = bab, rest(l) = aab andLR(x) = aabb aabb aab b abo

Lemma 8. Let 1be a factor occurring e (:2:1) times in the Lyndon decomposition of x. If resc(l)
is non-empty and rest(l)prev(/) is a proper prefIx of I, then LR(x) < /erest(l)prev(/).

Proof. Let w be such that 1= rest(l)prev(l)w. The word w is non-empty and 1< w with 1 not a

prefIx of W. Then rest(l)prev(I)1 < rest(l)prev(/)w and, hy Fact I, rest(l)prev(l)le <

rest(l)prev(l)w/e.lrest(l)prev(l) = /erest(l)prev(/), whence lhe claim follows.···

As an example,letx = babaabbabbaab. Then I] = b,12 = ab,13 = aabbabb and 14 = aab.

We see thatLR(x) = aab b ab aabbabb.

Lemma 9. Let 1be a factor occurring e (:2:1) times in the Lyndon decomposition of x. Assume
that ub is a prefix ofprev(l) and resc(l)ua is a prefix of 1with u in L*, a,b in L, and

a :;rb. Then, if a < b,LR(x) is of the form vleresc(l)u with It, v in L* andprev(l) =

uv.1f a> b, LR(x) < /erest(l)prev(I).

Proof. When b < a, we have resr(l)prev(l) < 1 which, by Fact 1, gives resr(l)prev(l)le <

lerest(l)prev(I). ThusLR(x) < lerest(l)prev(I).

Assume now [hat a < b. Let r be any proper suffix of rest(l). Let r' be such that resc(l) =

r'r. For some word c, ruac is a proper suffIx of I and, then, 1< ruat < rub. Thus, leresc(l)prev(l) <

rprev(l)ler'. This inequality, together with Lemmas 1 and 4, yields the conclusion.···

As an example, letx = babaababaababaab. Then I] = b, 12 = ab, 13 = 14 = aabab, 15 = aab,

andLR(x) = 132rest(13)prev(13) = aabab aabab aab b ab . Fory = babaabbbaabbbaab we getl] = b,

12 = ab, 13 = 14 = aabbb, 15 = aab. Then LR(y) = rest(13)prev(13)132 = aab b ab aabbb aabbb.

Let 1 be one of the factors in the Lyndon decomposition of x. We say that 1is a special

facror ofx if and only if rest(l) is a prefix of I and, in addition, one of the following conditions is

satisfied:
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rest(l) is empty;

[is a prefix of res'([)prev([); or

[< res'([)prev(l) but [is not a prefix ofresr(l)prev([).

Observe that, for any word x, the Lyndon decomposition Il/Z ... Ik of x has at least one special

factor, namely, Ik . The preceding lemmas support the following Theorem.

Theorem 1. Let II/Z ... lk be the Lyndon factorization of a non-empty word x. Let t be the
smallest index such that It is a special factor ofx. Then !.R(x) is le...lk/1 ... It-l' and
Iprev(l,)1 is an LSP for x.

Proof. We know from Lemma 1 and Fact Z thatLR.(x) = ir...Ik/l ...ir_1 for one or more values of

r in {I, 2, ... , k}. Thus, we only need to show that r can be t.

The minimality of t implies that prev(lt) = 11.' .It-1' Since It is a special factor, then resI(lt)

is a prefIx of it. If both resI(lrJ andprev(lt) are empty, the conclusion follows from Lemma 2. If It =

resI(lt)prev(lt) , the conclusion follows from Lemma 3. If It satisfIes one of the other conditions in

the definition of a special factor, then Lemmas 5, 7 or 9 assert that LR(x) = vit ... lku with uv =

prevOt). Thus, it remains to prove that, in this case, v is empty.

Applying again Lemma 1, v is of the form lr... lI-1 with r in 0, Z, ... , t) (if r=t, v is

assumed to be empty). Suppose r < I. By definition, Ir is not special. This means that either rest(lr)

is not a prefix of Ir or none of the three conditions above is met. If rest(lr) is not a prefix of ITo

Lemma 6 shows that LR(x) < lr...lk/1 ... lr-i. In the other siruations, Lemma 8 or Lemma 9 yield

the same conclusion. Thus, v is empty and LR(x) = It...lkiI ...It-I. This also proves that Iprev(it)l is

a minimal ISP for x.···
As an example, let x = caabaabbaabaacaabaabbaabaa. The Lyndon decomposition ofx is

[1 ~ c, [2 ~ aabaabbaabaac, 13 ~ aabaabb, [4 ~ aab and [5 ~ 16 ~ a. The factors [2, 13, 14 and [5 are

special. We haveLR(x) = aabaabbaabaac aabaabb aab a a c. In this example x is a square and has 2

LSP's.

3. ALGORITHMS THAT USE CONSTANT AUXILIARY SPACE

In this Section, we restrict ourselves [0 a model of computation where only constant

auxiliary space is available, and we use the combinatorics of the preceding Section to retrieve an

LSP ofx from its Lyndon decomposition, through a small number of extra character comparisons.

As mentioned, the use of Lyndon decompositions in the search for LSP's was first introduced in

[DuJ, where the LSP's are computed with constant auxiliary space in at most 4n character
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comparisons. The approach of this section leads to an algorithm that produces the LSF's of.x from

scratch in 2n comparisons, i.e., within the same number of character comparisons needed to carry

out the Lyndon decomposition. In the realm of on-line algorithms, this is faster than the previously

known ones. We start by reporting below, for convenience of the reader, the first one of the two

algorithms presented in [Du] for decomposing a string .x in its Lyndon factors. Note that, in this

original formulation of the algorithm, cases I and 2 implicitly assume "and j ~ nil as part of the

condition.

Procedure L [Du]
Input: A string x = sl s2 ... sn of symbols over an alphabet L.
Output: The sequence FACT = (m{l], m{2], .... , m{kJ) such that

11 = sl s2 ... Sm{l]; 12 = Sm{l]+1 ... Sm{2] ; ... ; lk = Sm{k-l]+1 ... sn
begin FACT := the empty sequence; m := 0

while m< n do begin
i:= m+l; j:= m+2;
99: case "compare si:: S' II of

1: (Sj <Sj); j;=m+Z j:=j+l; goto99
2: (Si= Sj): i:=i+l; j:=j+l; goto99
3: (Si>Sj orj=n+l): repeatm:=m+(j-i); appendm to FACT

until m 2 i
endcase

endwhile
end

The structural simplicity of Procedure L rests on subtle combinatorial properties. We refer

to [Du] for the details, and limit our discussion to the operation of the procedure on the example

smng x = babaabbabaabbabaab. The first time the while loop is entered, it immediately results in
an instance of case 3. The procedure sets /1 = b, and re-enters the while loop with m = 1. The

second iteration compares s2 with s3 and s4, in succession, which results in case I and 3,

respectively. The procedure identifies /2 = ab, and re-enters the while loop with m = 3. The third

iteration lasts until the condition j = n+1 (end of the string) is met, since no intervening instance of
case 3 stops it in between. Through the repeat cycle, the procedure sets /3 = /4 = aabbab. The

final iteration finds finally /s = aab. The nontrivial invariant conditions exploited by the procedure

are that, at the beginning of each iteration, the factorization of s1 s2 ... sm has been correctly

computed and, moreover, such a factorization is a prefix of the factorization of x. Along these

lines, it is possible to establish the following theorem.
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Theorem 2 [Du]. Procedure L computes the Lyndon factorization of a word x of length n in
O(n) time, with a number of character comparisons bounded by 2n and
constant auxiliary space.

As mentioned, a faster variant of Procedure L is possible. Such a variant perfonns no more

than 1.5n character comparisons, but it needs n/2 auxiliary storage locations. The reader is referred

to [Du] for the details. Some rearrangements in the body of Procedure L lead to the code presented

below. The procedure so modified will be called Procedure LR. As is easy to check, removal from

Procedure LR of the statement identified with an asterisk leads to a code that is perfectly equivalent

to that of the original procedure L. The role of statement (*) is that of recording in a list SP? all

possible candidates for a leftmost LSP of x. By Theorem I, such candidates coincide with the

positions of prospective special factors, and thus they correspond to all values of m in

correspondence with which, during execution of either L or LR, the index} reaches the value n+ I.

For later use, the recording of statement (*) is not limited to the value m. Rather, the value of the

index i at the time of recording is also saved. Clearly, statement (*) does not increase the number of

character comparisons of the procedure, nor does it affect its time complexity.

Once Procedure L is available, it is not difficult to devise a procedure that, given a string x

and the queue SP?, detects the position m of the earliest special factor in the Lyndon decomposition

ofx. Theorem I ensures then that such an m is also an LSP for x. Our procedure is called LSP and

is given below in a slightly redundant but self-explanatory fonn.

Procedure LR
beginFACF:= SP?:: theemptysequence;m::O; i:=l; }:=2;

while m< n do begin
case "compare sf:: S}" of

1: (Si < S) and} :;n): i:: m+l;}:= j+l;
2: (si = Sj andj $n): i := i+l;j:= j+l;
3: (s;> Sj orj = n+l):

begin
(*) if Ci = n+1) then append pair (m , i) to SP?

repeat m := m+ (j-i); append m to FACF
until m ~ i
i:= m+l;j:: m+2

end
endcase

endwhile
end
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Procedure LSP
Input: A string x = s1 s2 ... sn of symbols over an alphabet L; the queue SP?
Output: an LSP of x.

12

( p is the period of sm+ I .. .sn = 1...1resl(1) ; p = III}
{ at the ourset, r is the fIrst position of resr(lJ }
( Lemmas 2 and 5, case resl(I) empty )

begin
special := false;
while special = false do begin

(m,O := next(SP?); r := m;
p:=n+ l-i;
repeat r := r +p until (r ~ i);
if (r = n) then special := true;

else
begin
j:= 1;
while (i :;; r) and (j :;; m) and (xU] = x[Jl) do

begin i := i + 1; j:= j + 1 endwhile;
if (i = r + 1) then special := true;

( Lemmas 3 and 7, case I prefix of resl(I)prev!l) }
else if (j = m + 1) then ( i:;;r )

special := false ( Lemma 8, case rest!l)prev(l) prefix of I )
else if (x[i] < xJj]) then special := true; ( Lemma 9 )

else special := false; ( Lemma 9 )
end

endwhile
onlput (LSP = m)

end

We leave it for the interested reader to show that, with minor additions, Procedure LSP

can be made to output also the length of the smallest period of x whenever x has more than one

LSP. This information is sufficient for the subsequent task of generating all LSP's of x. The

correctness of LSP is readily established by simple inspection of its code and accompanying

captions. From now on, we concentrate on the assessment of the time complexity of the procedure.

Lemma 10. Procedure LSP performs at most d = LSP(x) character comparisons.

Proof. We prove the claim by induction on the iterations of the outennost while loop of LSP.

The claim clearly holds if the condition r = n (i.e., rest(l) is empty) is detected the first time that

while is entered, since no character comparison is involved before that test. Assuming now r < n,

this prompts the execution of the inner while loop, which performs at most m character

comparisons. At this point, we distinguish two cases, as follows.

Case 1: The statements following the inner while result in setting variable special to the value true.

Then LSP terminates with LSP = m, whence the claimed bound follows.
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encaps: Variable special is set to false. Then LSP > m, and we can charge the character

comparisons made so far to the first m positions of x. Let I be the Lyndon factor occurring at

position m in x. Since m was a candidate in SP?, then resc(l) is a prefix of l. Since Procedure LSP

entered the inner while loop, then Irest(l)1 < III. Let (m', i') be the next candidate in the queue

SP?, and let l' be the corresponding Lyndon factor. Since l' is a prefix of rest(/), then 1/1:5: Irest(l)l

< Ill. Thus, prior to testing m', the number of character comparisons perfonned by the procedure

does not exceed m' - Ill. By the structure of LSP, testing m' requires no more than III

comparisons, and there are enough characters of I to undertake the associated charges.

The above argument is easily iterated through the candidates in SP?, which establishes the

claim....

Lemma 11. Procedure LSP performs less than n/2 character comparisons.

Proof. Let (mk, ik) be the k-th element in the queue SP? Let I(k) be the Lyndon factor at position

mk>. Let gk be the length of rest(l(k)) and hk be the number of character comparisons perfonned

by Procedure LSP in order to test (mk, ik).

We certainly have &1 +hl :5: n/2, since rest(l(1)) is a prefix of 1(1)' Setting x = w resc(I(1)),

we observe, in addition, that the characters compared by the procedure fall pairwise within disjoint

sets of positions of the word w.
For every other pair (mk, ik), one may note that Procedure LSP deals with Lyndon factors

confined into the suffix of leng[h gk.l of x. This implies gk+hk < gk-l' (In fact, one can see that

the tighter inequality 2gk+hk :5: gk-l holds for k > 1.)

Adding up all these inequalities for k = I, 2, etc. leads to J:.hk:5: n/2, which completes the proof.···

As an example, let x = abaabbaabaacaabaabbaabaaca. Its Lyndon factorization is

(abaabbaabaac, aabaabbaabaac, a). Procedure LSP takes exactly 12=lxI!2-1=d character

comparisons.

Lemma 12. Procedure LSP runs in O(n) time and uses conStant auxiliary space.

Proof. The bound on the additional space used is trivial. All the operations inside the outer while

loop other than those involved in the inner while or repeat take constant time. Since the number

of candidates in SP? is bounded by n, then the total cost of these operations is O(n). By Lemma

10, the total cost of all the executions of the inner while loop is Oed). Thus, we only need to



Oplimal Substring CanonizaLion 9/11/90 14

examine the total cost charged by the executions of the repeat. Observe that each execution of the

repeat of LSP can be put in one~to~one correspondence with a corresponding execution of the

repeat cycle of either Procedure L or LR. The claim then follows from Theorem 2.•••

The following Theorem summarizes these results.

Theorem 3. Let mj, m2•...,me be the positions of x, in increasing order, of all factors in the
Lyndon decomposition ofx which admit of their respective rests as their prefix. Let
d be the smallest LSP of x. Then the LSP's of x can be found in at most/ = min[d,
n12] character comparisons, D(n) time and constant auxiliary space.

Theorems 1 and 2 yield an overall bound of 2n+/for the cascaded procedures LR and LSP.

If we are interested only in the LSP's of x, however, then the execution of LR can be stopped as

soon as the first special factor is detected. It turns out that this policy has the effect of fully

absorbing the character comparisons needed by LSP within the 2n bound of LR. To be more

precise, let SPECIAL(m,L) be a function that tests whether m is an LSP for x. Function SPECIAL

can be extracted trivially from the body of Procedure LSP. Let now LR' be the procedure obtained

from LR by substituting [he statement "if (j = n+l) then append pair (m, i) to SP? " with the

statement "if (j = n+1) and SPECIAL(m,i) then stop (LSP = m) ".

Theorem 4. Procedure LR' finds an LSP of input string x in at most 2n character comparisons,
using constant auxiliary space.

Proof. Let m 1 be the first value of m which is handed by LR' to SPECIAL for testing. We prove

first that, immediately prior [0 this test, the total number of character comparisons performed by the
procedure is bounded by n + m1 . Immediately prior to this test, index} has reached the value n+1

for the first time. It is not difficult to check (or cf. [DuD that the total number of character
comparisons performed by LR' (or, equivalendy, by L or LR) up to the moment that mj was added

to the list FACT is bounded above by 2mj. Immediately after appending mj to FACT, Procedure

LR' sets the index} to the value mj + 2. Since no Lyndon factor was added to FACT while}

moved from mj + 2 to n +1, then no instance of case 3 occurred during this time. Thus, whilej

moved from ml + 2 to n +1, only caSes 1 and 2 were handled by the procedure. Observe that each

one of these cases involves precisely one character comparison and one unit advancement of}, and

j is never backed up by the procedure. We charge each comparison to the position of x identified

by the current value of j, so that each position of x in the range [m + 2, n + 1] is now charged

exactly once. In conclusion, the total number of comparisons performed by the procedure while j
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moved from m] + 2 to n +1 is (n + I) - (m] + 2) + I = n - m] . This shows that the overall

number of character comparisons performed by LR' up to the moment that index j reaches the
value n + 1 for the first time is bounded by n + m] .

Let now 1(1) be the Lyndon factor at position m /_ Let g / be the length of resc(I(1)) and hI

be the number of character comparisons performed by Function SPECIAL in order to test m].

Recall that, as a consequence of Theorem I, It] ~ 11(1) I - g j . We may thus charge these h]

comparisons to the last ll(]) I • h] positions of I(]) . By this, the positions ofx occupied by the last

II(]) I - h] characters of I(]) have been charged at most twice, i.e., once through the sweeping ofj

from m I + 2 to n + 1 and once while performing the h] comparisons of SPECIAL. If now the test

of mj succeeds, this clearly proves the claim. If it does not, then this implies that resl(/( I)) is nor

empty, and that, prior to resuming with any character comparisons, the procedure will append the
position m2 of rest(l(])) to FACT. This implies that the character comparisons will resume withj

=m2 + 2. Observe at this point that each position of resl(l(1)) has been charged only once, but the

same holds for the first gj positions of l(l) . Letting those gj positions of l(l) undenake the

charge of the corresponding positions of rese(I(l)) leads again to the assertion that, immediately

after m2 has been added to FACT, the total number of character comparisons performed by the

procedure is bounded by 2m2. Since reseO( 1)) is a prefix of I(1) , and no instance of case 3

occurred whilej moved from m + 2 to n +1, then no instance of case 3 can occur whilej moves
from m2 + 2 towards n +1. Hence, j will reach agai n n + I, which makes m2 precisely the next

candidate to be tested by SPECIAL. 1111S enables to iterate the above argument, which leads to

establish the claim. ...

4. USING LINEAR AUXILIARY SPACE

In this Section, we relax the constraint on the auxiliary space. Although our next algorithms

will use a modest number of additional memory locations (from nl2 to n), such a resource seems

crucial to their performance.

It is instructive to revisit the results of the previous section under the assumption that the

second Lyndon factorization algorithm of [Du] is used in the place of Procedure L. That algorithm

requires nl2 auxiliary locations, but its bound on the total number of character comparisons is 1.5n.

The bound implied by Theorem 3 becomes, correspondingly, 1.5n+f. An alternate analysis, which

we leave for an exercise, leads to n + min[n, LSd]. Both bounds are not better than 2n in the

worst case. This is panly due to the fact that resort to linear auxiliary space does not affect the
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charges (linear in n or in d) of Lemmas 10 and 11. It also seems to suggest that the computation of

the LSP's of all prefixes of the input string inherently requires quadratic time. It turns out that, with

linear auxiliary storage, linear time suffices. The auxiliary space is needed to store a table similar to

the next function [KMP] of x. The interested reader shall find that, if such a table was given at no

expense in advance, then an algorithm for the LSP's of x developed from the second factorization

in [Du] would match the n + d/2 bound of [Sh]. Throughout most of the rest of this Section, we

shall be concerned with the proof of the following Theorem.

Theorem 5. Given a string x of n symbols, the LSP's of all prefixes of x can be
produced in optimal O(n) time and linear space.

Theorem 5 is an easy consequence of the discussion and lemmas that follow. The basic

criterion subtending the Theorem can be derived by purely combinatorial arguments. However, it is

more convenient for us to reason in tenns of the procedures of the previous Section, since the

correctness of such procedures encapsulates the needed combinatorial propenies in a succinct way.

Our technique is illustrated in tenns of the constant space procedures of Section 3, but

similar constructions hold for the variant that uses linear auxiliary space. To start with the

description of this technique, we need to introduce the notion of a run.

With the execution of Procedure L (or equivalently, LR or LR') on some inpur string x, we

associate a unique parse of the string 12...n of positions of x into consecutive x-runs, as follows.

An x·run is identified by giving the ordered pair [le!l, right] of its endpoints. Let fiefll' righll],

[le!12, right2], ... , [lefld, rightd] be the x-runs, with left endpoints in increasing order. Then leftb 1

::; k ::; d , is the value that the variable i gets assigned through the opening line (i.e., i := m+ I; j :=

m+2) of the k-th iteration of the while loop of Procedure L. We also have rightd = nand rightk =

leftk+l - 1 for k < d. Observe that the while loop is re-entered only following an instance of Case

3. An alternative definition of righlk (k = 1,2,...d-l) is that rightk is the value assigned to the

variable m as the final result of the management the k-th instance of Case 3 during execution of

Procedure L. If [left, right] is an x-run, then the x-shadow corresponding to that run is the set of

positions of x in the interval [left, reach}, where reach +1 is the largest value attained by variable)

while variable i lies inside that nm. While the collection of all x-runs defines a partition of the

positions of x, the collection of all x-shadows represents a covering, since the shadows of two

consecutive runs may possibly overlap.
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As an example, the runs that the procedure produces on the string x =

caabaabbaabaacaabaabbaabaacaabaabbaabaa are: [1, 1] (a), [2, 27] (aabaabbaabaacaabaabbaabaac),

[28,34] (aabaabb), [35, 37] (aab), [38,39] (aa). The corresponding shadows are, in succession: [1,

1], [2, 39], [28, 39], [35,39], [38, 39].

Let now xp = Sl S2 ...sp be the p-th prefix of x, p == 1,2, ." n. The following facts are easy

consequences of the structure and correctness of Procedure L.

FACT 3.

FACT 4.

If [/eftk, reachk] is an x-shadow, then [/eftk, min[p, reachk]] is an xp-shadow for
any p ;;, IeIlk.

Assume that, for some k $; d and p > leflk, xp is given as input to Procedure L. Then
the opening line of the k~th iteration of the while loop will set i := leflk and j :==
leflk+ I, Moreover, during the k-th iteration, variable j will move unifonnly and in
unit increments from leflk to 1 + minrp, reachk]. Finally, variable i will have values
in [leflt, min[p, righlk]] only during the k-th iteration.

From the above Facts we get, in particular, that for any vallie of k, leflk -1 is the position of

a factor in the Lyndon decomposition ofxp for every p ~ leflk' Wilh reference to some fixed xp , let

now [left, reach] be some x-shadow for which left :5p :::; reach, and let [lefI, rig hI] be the x-run

starting at lefl. For every value of j in [lefl + I, reach], let con(j) be the value of i such that con(j) is

in [/efl, rig hI] and Scon(;) is compared with Sj by the procedure. This definition of conU) is

unambiguous, because of Facts 3 and 4.

Lemma 13. Let W = siefl sleft+l ... sp Then one of the following cases holds. Case 1: p = left or
Scon (P) < sp : then the Lyn,don factor of xp at position1 left - 1 is precisely w. Case
2: Scon (P) = Sp. Then seumg h = p-con(jJ) and u = Sleft Sleft+l ... Sleft+h , we have
that w = (ui u' for some k > 0, u is a factor in the Lyndon decomposition of x and
u' is a nonempty prefix of u.

Proof. It follows from Facts 3 and 4 that, letting Procedure L run on input xp, would produce the

xp-shadow [left, p]. That either Case 1 or Case 2 above applies is a consequence of the fact that no

instance of the Case 3 of the procedure may occur while the j variable scans the interval [/efl+ I, pl.
The claim descends then from the correctness of the procedure as applied to the input soing xp (cf.

the possible actions taken by the procedure following the comparison of the claim). •••

lRccall mal if x = VIVY, lhcn the position of IV in r is Ivi.
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Let now first(/eft, p) be the minimum m such that m + 1 ;::: left and m is the position in xp
of a special factor in the Lyndon decomposition ofxp . We havefirst(/eft, left) = left-I, since [left,

left] is an xlefl-shadow and the single character sleft is a Lyndon word.

Lemma 14. [ffirst(left,p) > Left -I, thenfirst(left,p) =first(left,p-con(p)) +p-eon(p).

Proof. We know from Lemma 13 that either w = sleft sleft+l ... sp is a Lyndon word and hence

also the last factor in the Lyndon decomposition of xp • or else the Lyndon decomposition of w has

the form (u)k u' where u is a Lyndon word, lui = p - con(p) and u' = resr(u) is a proper prefix ~f u.

In the first case, w meets one of the conditions for being a special factor in the Lyndon

decomposition of xp, namely, that rest(w) is empty. Thusjirst(/eft, p) = left - 1, which contradicts

the assumption first(left, p) > left -1. Thus, it must be that slefe sleft+l ... sp has the fonn (u)k u',

with u a Lyndon word, lui = P - con(p) and u' = rest(u) a nonempty prefix of u. Now u cannot be a

special factor, otherwise we would have againjirst(left,p) = left -1. Thus lu'l < lui, and lu'l mayor

may not be a Lyndon word. We now discuss the two corresponding cases.

Assume first that u' is a Lyndon word. Then (u)k u' represents the last k+ 1 factors in the

Lyndon decomposition of xp ' Since u is not a special factor and u' meets the condition: rest(u')

empty, we have thatfirst(left, p) = left -1 + klul. Now, Facts 3 and 4 ensure that left is the left

endpoint of a run in the Lyndon factorization of the prefix X(p.lul). Clearly, the last k factors in such

a factorization are in the form (u)k-l u'. By Theorem I, the conditions for u to be a special factor

depend only on the three words u, u' and prev(u). Therefore, if u is not a special factor in xp, then

u is not a special factor in X(P-Iul). Since u' is a Lyndon word, thenfirst(/eft, p-con(p)) = left + (k­

1)lul = fim(left, p) - (p-con(p)). Thus, the claim holds in this case.

If u' is not a Lyndon word, then [he Lyndon factorization of u' is in the fonn vgv' for

some integer k and nonempty words v and v' with v' a prefix of v. We also havejirst(left, p);::: left

-I + klul, andfim(left, p-con(p)) ;, Left -I + (k-I)lul. [fnow v' is a Lyndon word, then applying to

v' the argument previously applied to u' yields the claim. Otherwise first(left, p);::: left -1 klul +
glvl, and we can argue as above thatfirsl(left, p-con(p);::: left ~l (k-l)lul + glvl. Iteration of this

argument yields the claim. •••

Our next ingredient for the linear-time canonization of all prefixes of x is represented by a

precomputed table that enables to know, in constant time, the result of the lexicographic
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comparison between x and an arbitrary suffix ofx. Clearly, such a table supports, in constant time,

any necessary test between some prev(l) and the corresponding segment of 1, without resort to the

procedure LSP. We call such a table compare, and defme it formally as follows. For every position

i of x, we have that compare(i) = ">" iff 51 S2 ... Sn-i > Si +] ... 5n, compare(i) = "=" iff S]

S2 ... Sn-i = Si +1 ... Sn , and finally compareei') = "<" iff S1 S2 ... Sn-i < Si +1 ... sn . The

precomputation of compare can be based on that of a table such as the function next of [KMP].

Recall that next(i) is defined as the largest) less than i such that 5i #= Sj and, moreover, S1 52 ... Sj_

] = 5i-j+1 ... 5i.] . The construction of next that is given in [KMP] takes 2n character

comparisons for a string of length n. It is not difficult to check, however, that if 51 = s2 then that

bound becomes 1.5n. Such an improved bound can also be achieved in the cases where 5] #= 52 :

informally, the key to this improvement is the observation that, once it is known that 5] #= 52, then

during the consecutive alignments of the string wim itself that are considered in the computation of

next one does nOt need to compare s I until an occurrence of 52 has been found. The computation

of compare can be carried out within the same control struc[Ure of the computation of next, and

within the same number of character comparisons. In fact, as soon as the procedure for the

computation of next finds that next(i) = j, then we can decide the value of compare(i-j) simply

based on the result of the comparison between Si and Sf Observe that, since compare can take one

of only three values, irrespective of n, then irs space occupancy does not affect the bound of n on

the auxiliary storage needed.

Proof of Theorem 5. Clearly, the position of the earliest special factor in the decomposition of

xp is the minimum value attained by first (k, p) over all xp-shadows of the form [k, p]. The facts

and lemmas of this Section show that we do not need to compute all such shadows explicitly, since

each one of them is implicit in the strUcture of some corresponding x-shadow_ Now, we can regard

the application of Procedure L to input string x as a stream of consecutive managements of

individual x-shadows. Besides its normal operation, me procedure can compute an n-location table

special, initially filled with some integer larger than n. For every pin [1, n], special(p) will report

at the end an LSP for xp. At the beginning, the procedure sets special(l) = O. While j describes an

x-shadow of left endpoint m+l, the procedure computes first(m+l, j). As already seen, first(m+ 1,

m+l) =m. By Lemma 14, forj=p >m + 1 we only need to test the conditionfir5t(m+l, p) =m.

The table compare supports this test in constant time. The invariant condition is clearly that

first(m+ 1, p - con(p» is available at this point, sincej moved unifonnly from m+2 to p. Thus, the

procedure can compute firsr(m+ I, p) in constant time (and actually wilhom performing character
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comparisons). The procedure can now set special(p) to the minimum betweenfirst(m+l, p) and the

old value of special(p), and proceed to the next value ofp. Since only constant time statements were

added. this upgrade of Procedure L still takes linear time.•••

As noted, the upgraded procedure of Theorem 5 does not perfonn additional character

comparisons. Combining the 2n upper bound of Procedure L with the 1.5n needed [0 compute

compare, we get a total bound of 3.5n character comparisons for this upgrade. It is easy to show

that the shadow covering of x would not change if we used me faster, 1.5n character comparisons

Lyndon decomposition algorithm. This leads to a variant that computes the LSP's of all prefixes of

x within the same 3n character-comparisons bound of the previously fastest on-line algorithms for

the canonization of a single string. Straightforward iteration of either variant through all suffixes of

x yields our final claim.

Theorem 5. Given a string x of length n, the LSP's of all substrings of x can be produced in
optimal O(n2) time and linear space.
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