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1. Introduction

The learning or experience curve is one of the earliest management

science tools, its development dating back to World War II when it was used to

forecast aircraft production rates ([13]). Starting in the late 1960's, several

consulting companies, notably theBoston Consulting Group [2], expanded the

scope of the curve by applying it to the output of an entire industry in

order to analyze competition among companies in that industry. Strategic

plans for a particular company were related to its position relative to

other companies on the industry learning curve. See [4] for a recent survey

of these applications and [5] for discussions of the learning curve

in the more general context of strategic planning.

More recently, articles have appeared in the economics literature

([6], [l0], [li], [12]), containing mathematical models that formalize the

insights of the consulting studies. The models are simplified descrip-

tions of markets, industries and companies within the markets. Their

purpose is to expose fundamental relationships that the authors believe

exist among a small number of key variables which a company can adjust to

control output, market position, and their competitors' behavior.

The purpose of this paper is to show how mathematical programming

models can be used for analyzing a company's capacity expansion plans in

the face of significant learning effects in production, and in the market.

Mathematical programming models differ from those appearing in the litera-

ture cited above by the degree to which they are data driven, their explicit

incorporation of resource constraints, and their ability to capture discon-

tinuities and economies of scale which are intrinisic to a company 's expan-

sion plans.
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Learning curves provide the decision maker with options regarding

returns to scale that are spread out over time. Mixed integer programming

(MIP) modeling techniques can readily capture this phenomenon, but the

resulting models may be difficult to optimize. Thus, more than the

usual amount of attention must be given to the interplay between model

formulation and optimization. For this reason, we present in this paper a

simple MIP model intended to illustrate the important modeling and analytic

concepts. This model, which we call the study model, is presented in sections

2 and 3. Although models based on linear programming incorporating learning

effects have appeared in the management science literature (e.g., [3], 7]),

the development here appears to be the first to use MIP. Section 4 contains

the details of an implemented study model and results of several optimization

runs. In the final section, we discuss extensions of the study model encom-

passing additional details that would be required by an actual application.

We also discuss briefly in that section future modeling research directcd at

other aspects of long range planning related to learning such as uncertain-

ties in production and the market, and competitors' behavior.

2. Study Model and Optimization Conditions

The model that we propose to study in detail addresses the multi-

period planning problems faced by a company that manufactures and sells

a single product for which there are significant learning effects. These

effects are manifested by unit manufacturing costs that decrease as a Flic-

tion of cumulative production. We also assume that market prices for t{ie

product decrease over time reflecting industry wide learning and competition

among companies in the industry. The company must simiultaneously decide
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how quickly it wants to get out on the learning curve, and how it wants

to invest over time in expanding manufacturing capacity in order to im-

plement this plan.

Let t = 1,...,T denote the time periods of the planning horizon.

For each period, the company must decide how much to produce, denoted by

xt, and how much to sell, denoted by dt . The values of these variables

determine in the usual manner the change in inventory level from the end

of the previous period to the end of the current period; namely, if i
t

denotes ending inventory in period t, we have i - it 1 = x - dt . Holdingt t-l t t

costs are ht per unit of ending inventory. A salvage credit vT is given

for each unit of inventory at the end of the planning horizon.

Marginal manufacturing costs decline with cumulative production y as

depicted in Figure 1. Letting C(y) denote the total manufacturing cost to

produce y units, the cost of producing x units in period t is given by

C(x + C(x +...+ xt ).
1 ' t (X ' t-l

A specific functional form for C(y) is given in section 4 where we discuss

an implemented version of the study model. Throughout the paper, we assume

that C is a concave function.

The company's capacity expansion options over the T periods are described

as follows. Analysis reveals K discrete alternatives from which at most one

can be selected. Associated with alternative k are the T scalars bkl,...

bkT, where bkt denotes the capacity addition in period t under option k.

Also associated with alternative k is a net present value Ik equal to the

sum of discounted costs required to achieve the associated cap)acity addi-

tions minus a discounted salvage credit for equipment in place at the end
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of te horizon.

The quantities Ik may reflect returns to scale in construction in

the following sense. Suppose capacity expansion alternatives k and j

refer to the same physical construction with the same timing, but differ

in scale by the factor 0 > 1; that is, b = bkt for t = 1,.. .,T. In
j kt I

this case, we would have f < fk due to economies of scale associated
k

with larger construction.

In the study model, we assume the company is relatively small

and not an industry leader. According to the Stackelberg-Nash-

Cournot theory, this implies that the market price for the product

is independent of the company's actions. In other words, the com-

pany cannot set the market price nor can it affect the price in any

way through its production strategies. Moreover, the sales of

the company in any period are constrained by the maximum market

share it can expect to capture. Under these assumptions, it is

appropriate to define an exogenous revenue function for each per-

iod in our planning horizon. Specifically, revenues in period t

from selling dt units of the product are given by ft(dt), where ft

is a concave function. Numerical realizations of these functions

should capture the market phenomenon of declining prices over time.

One such function is given in section 4.
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With this background, we can give a mathematical statement of our

study model

ft (dt)

+ TvThT -T T

K t
t - Z Z bkTpk

k=1 Tl

x+d
t 

i t -it 1t t-1

- C(x +...+ Xtl)] - h1 ' ' t- 

K

Ikp k
k=l

(l.a)

(1 .b)< b 

= 0 (1 .c)

K
ZXp < 1

k=l 

> , i > 0, d > , Pk = 0 or 1
xt -- t - t - k

i0 = , x0
= 0
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The constraints (l.b) link the production decisions to the capacity

expansion decisions. The constraints (l.c) are inventory balance equa-

tions. The multiple choice constraint (l.d) states that at most one of

the K capacity expansion plans may be selected.

Problem (1) as stated is nonlinear and nonconvex. It is

difficult to optimize primarily due to the concave production cost

functions to be minimized. In particular, if we let

G(xl,... xT) = total discounted cost of
the production vector (xl,...,xT)

we see from (1) that
T-1 t-l T-1

G(xl,... ,xT) = (1-a) Z a C(x + .. + xt) +aT1 C(x +...+x ) . (2)
t=l t 1

It follows immediately that G is a concave function since it is the positive

sum of the concave functions C(.).

The special form of G, however, given by (2) permits us to approximate

it to an arbitrary degree of accuracy using MIP modeling techniques. This

transformation is given in the following section.

Before proceeding to the MIP formulation of problem (1), we should like

to discuss briefly two related properties of the production cost function G.

First, we note that

G(Xl,..., x ) = t dC(x +. . .+ x )

~xt dy

+t (C + Xt+l) dC(C(Sl +...+ x dC(s t)

dy dy

+ 1 dC(x + + x dC(x +...+ x
T (x1 +.1

dy dy
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The first term in this expression is the immediate marginal production

cost in period t that results from producing x units. The remainder of
t

the terms are all non-positive and represent discounted rents paid back

to production in period t by production in later periods which profit

from the learning that took place in period t.

Additional interpretation is possible if we assume that the invest-

ment variables k in problem (1) have been exogenously set. Problem (1)

then becomes a continuous optimization problem, allowing us to apply the

Kuhn-Tucker necessary optimality conditions. To this end, consider an

optimal solution for (1) with the fixed investment decision, denoted by

x, dt, it. Consider further a period t in which both sales d and pro-~~~~~~~~~~~tt

duction x are positive. In this case, the necessary optimality conditions
t

imply the existence of t, which measures the marginal value of another

unit of production capacity in period t, that satisfies

t= a df(dt) - G(Xl, T) 1
dd ~ ~ Xj

dt Dt

This expression can be compared to a similar expression for measuring the

marginal value of another unit of production capacity in period t when

there are no learning effects; namely,

df(dt dC(Xl t

ddt dy J

As we have noted above, this last expression will be less than t by exactly

the rents paid by future periods to period t from the learning caused by x t.
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3. Mixed Integer Programming Formulation of the Study Model

The MIP formulation of the study model (1) is achieved by adapting

classical MIP modeling techniques. Suppose we approximate the concave

cumulative cost function shown in Figure 1 by a piecewise linear function

as shown in Figure 2. In general, we will have R linear intervals with c
r

equal to the slope in interval r, and M equal to the length of interval r.
r

Let xt denote the decision variable corresponding to production in interval
rt

r in period t. For our problem, the xrt must obey the logical condition

t
x > O Z x =M
rt r=1 r- l

In words, this condition says that xrt can be positive, with its lower

marginal production cost c , only if, in the interval immediately to the

left of interval r, cumulative production over the first t periods has

reached its upper bound. It is easy to see that this condition implies

xrt can be positive only if cumulative production over the first t periods

th
equals at least M1 +...+M rl which is the lower bound on the r h interval,

The logical condition can be mathematically expressed by the inequalities

xr - A M < 0rt rt r -

A t j for r=2,...,R;

A M - Z x < O t=l,... ,T
rt r- 1 =irl, <

where the A are zero-one variables.
rt

Finally, we approximate the concave revenue function ft(dt) by a

piecewise linear function. In particular, let f, j=l,...,J denote the
J

slopes in successive intervals of length D; since f (-) is assumed to
I ~t

be concave, we have f f+ for all j. Let d denote the dcision

variable corresponding to sales in the j interval in period t.
variable corresponding to sales in the j~ th interval in period t.
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Substituting

dt =dt + d2t ... +dt
t it 2t Jt

Xt = Xlt + x2t +... XRt

and the corresponding objective function approximations in the study

model (1), plus the logical conditions (3), we obtain

T
max Z ae

J

j=l

+ TvThTT T

fjt djt

R

r=l
cx -hi
r rt t t

K

- Z IkPk
k=l

;I
R

s.t. Z
r=l

K t

rt kll bkTPk

R

i t
i

J

t - x + Z d
r=l j=l j

AM
rt r-l

x -A M < 
r rt r -

t
- E x

T=1 r-1l,

for r=2,...,R

t=l,... ,T

K (4)

E Pk< 1
k=l

x > O, D
rt - j dt > 0 i > 0 k = 0 or 1, A = 0 or 1

i0 = , x0 = 0

11
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Problem (4) is the MIP model approximating the original study

model (1). Although we omit any details here, further analysis could

be performed to bound apriori any errors resulting from the objective

function approximation. Of course, the closer we make the approximation

of the cumulative production bounds cost function, the greater the

number of integer variables we will have in problem (4).

We observe in passing that there are many valid inequalities

involving the integer variables that could be added to problem (4).

For example

A -A <0
r,t r,t+l -

is a valid inequality for any r and t since At = 1 implies satur-
r, t

ation of the (r-l)st interval by period t which in turn implies saturation

of the same interval by period t+l. Similarly,

A - A <0
r,t q,t -

is a valid inequality for q < r.

Stronger inequalities than these can be written by relating the

zero-one variables determining capacity expansion to those controlling

learning.

Theorem 1: For all t and r=2,...,R,

K t\
Art( +...+ M 1 ) ( Z(t- + )bk Pk < tb0 (5)

k=is a valid inequality for problem (4).=1
is a valid inequality for problem (4).
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Proof: From (4) we have for any s and any r=2,...,R

R K s

E x < b + Z Z bkTPk
r=lrs 0 k=l T=l

Summing both sides from s=l to s=t, we obtain

t r K t
Zx <-tb + Z Z (t-T + )b p (6)

s=l r=l k=l T=l

where we have rearranged the triple sum on the right to collect similar

terms. The sum on the left in (6) equals cumulative production through

period t.

Suppose the sum on the right in (6) is less than M + ... M 1

This implies that cumulative production through period t must be in-

sufficient to allow production in the rth interval of the discretized

learning curve. From (5), we have A = 0, a valid condition in this
rt

case. On the other hand, if the sum on the right in (6) is greater

than or equal to M1 +... + Ml, the constraint (5) is not binding

and Art may equal 1, which from a production capacity viewpoint is

correct. The variable A may still be constrained to zero due to
rt

other constraints in problem (4).

4. Numerical Example of the Study Model

In the numerical example, a model is implemented and optimized to

determine the production strategy for a single product produced by a

company over a five year planning horizon. The objective is to maximize

the net present value of sales less production and capacity expansion costs.

The industry producing this product is characterized by a learning curve

13



with moderate learning effects. Thus, as we discussed in section 2, early

entrants to the industry have a competitive advantage over later entrants.

In particular, the learning curve for the company's product is given by

-Xy
C(y) = my + c0(1 - e y)

0 0

where y is cumulative production and C(y) is the cumulative production costs.

Here we take m = 800, c = (2400)(23000) and X = 1/23000, with an upper

bound on y over the five year horizon equal to 50,000. The production costs

therefore will range between 3200 dollars per unit and 1073 dollars per unit

during this period.

An interesting observation by Spence [10] is that moderate learning

presents the greatest planning dilemma. If X is large, learning occurs

rapidly and the learning effect approximates a fixed cost to entry equal

to c. The company must then decide whether or not to incur this fixed cost,

a choice that should be relatively easy to make. On the other hand, if A

is small, learning effects are not pronounced, and the compamy can proceed

as if there is a constant marginal cost approximately equal to m0 + cO.

The model tracks the average annual inventory of the company for which

holding costs are convex piecewise linear functions of average inventory.

Convex functions are used to model the increasing burden on the firm of

holding large amounts of inventory. The inventory carrying costs are 350

dollars per unit for the first 500 units and 45 dollars per unit for the

next 2,500 units.

The capacity expansion decisions are modeled by five capacity expansion

scenarios as shown in Table 1. Table 2 gives the capacity expansion costs

used to calculate the discounted costs in Table 1. The company can initially

build plants of capacity 20 or 40 thousand machine hours per year at either

14



CAPACITY EXPANSION OPTION

YEAR

TOTAL
DISCOUNTED

COST

1

1 *(BI) :20

2 (BII):20

3 (EI):10O

4 (EII):10

5 (EI):10

939,793

2

(BI) :40

3

(BI) :40

4 5

(BI) :20

(BI):20

(BII):20

(BII) :40

846,562

(EII):20

937,172

(BII) :20

322,207 488,413

TABLE 1. Capacity expansion options (in thousand machine hours per year)

*Note: BI = build at site I, EII = expand at site II.
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BUILD/EXP.

Build

Build

Build

Build

Expand

Expand

Expand

Expand

SITE

I

I

II

II

I

I

II

II

COST

20

40

20

40

10

20

10

20

417.8

612.8

487.4

668.5

139.3

236.8

146.2

250.7

TABLE 2. Capacity expansion costs (1,000's $)
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site. Furthermore, if the firm opts to build a smaller plant initially,

it can expand the plant at a later time. However, the maximum total

capacity of 40 thousand machine hours per year cannot be exceeded at either

site. The capacity expansion costs shown in Table 1 reflect the economies

of scale normally encountered in highly volatile and rapidly expanding

industries. The model selects the best capacity expansion option, identify-

ing the tradeoffs between the economies of scale and the cost of maintaining

excess capacity.

We do not constrain the cash flow of the company. Therefore, it is

feasible for the firm to take an early loss in overcoming the barrier to

entry. The company may be seen as an established firm attempting to break

into a new high-growth industry. It must decide how to deal simultaneously

with the learning curve effects, which serve to lower production costs,

and the increase in competition which serves to lower the market price.

The market prices in our example are determined from the equation

P(t,d) = a0e2td
-2 / 3

where t is time and d is sales. The exponential term is derived from the

assumption that the market is growing at a rate of 20% per year. In any

given time period T, the function P(T,) is monotonically decreasing. The

interpretation of this function is more natural if one examines the inverse

function

d(P,T) = K(T) -3/2

This function represents the market the firm can capture in period T if it

charges a price p. Note that the form of the equation is identical to that

for a constant elasticity demand curve. In our numerical example, we set

a 0 = 900.
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The results of optimizing the example are shown in Table 3. The

selected capacity expansion option takes full advantage of economies of

scale by building the largest plants possible at the two sites in years

1 and 4. This capacity expansion decision resulted in lost sales and a

corresponding drop in market share penetration in year 3.

Capacity utilization is maintained at 100% over the 5 year horizon by

allowing inventory to build up during the years when production capacity

exceeded demand. The inventory is subsequently drawn down when the demand

exceeds production capacity. The costs associated with these fluctuations

in average inventory are justified in part by the rapid growth of the market

and in part by the relatively high cost of production and capacity expansion

compared to the cost of holding inventory. If the economies of scale on the

construction of new production facilities had been less pronounced, we would

expect production to follow demand and inventories would go to zero.

The negative cashflow in the first year is the result of two factors.

First, the production costs are high since the company is low on the learning

curve. As more units are produced and the variable production costs decline,

each unit becomes more profitable, at which point the company starts to

make money. The second cause of the initial capital requirements is the

capacity expansion expense. Such expenses also account for the relatively

small net cashflow in year 4 compared to that of year 5. These periodic

lumpy investments are found in all industries and are a source of significant

barriers to entry for small undercapitalized firms.
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2 3

Production

Sales

Inventory

Capacity
(Machine
hours)

Cashflow -

Change in
Market share

5,500

4,000

1,500

44,000

492,030

5,500

7,000

0

44,000

1,524,760

+ 43%

5,500

5,500

0

44,000

668,700

- 36%

TABLE 3: Numerical Example Results
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10,500

10,000

500

84,000

716,000

+ 51%

10,500

11,000

0

84,000

1,646,770

- 8%

4 Period 1



5. Directions of Future Research

The study model that was proposed and implemented for this paper

illustrate how mixed integer programming can be applied to capacity

expansion planning when there are learning effects. The model and the

modeling concepts can be easily extended to capture a wider range of

planning phenomena that we would expect to encounter in practice. For

example, planning problems where there are products with multiple components,

each with its own learning curve, can be readily described by the types of

constraints we used in the study model. The issue for these problems is

the selection of balanced expansion plans among the components.

Another desirable model extension would be to more explicitly describe

the allowable ranges of sizes of new facilities, and their associated re-

turns to scale. We chose to model these options implicitly in the study

model in order to simplify it. Capital financing and cash flow constraints

could also be added to the study model with no conceptual difficulty.

A model extension that is less obvious and requires further investiga-

tion is one permitting a closer reconciliation between discounting and

learning, expecially when the two occur at commensurate rates. Since both

occur continuously over the relatively long time periods in our models,

each period's production costs would be more appropriately calculated by

integration, rather than taking differences in cumulative cost functions.

The manner in which this can be done will be given in a subsequent paper.

Explicit treatment of uncertainty is an important extension of the

study model. In particular, we envision the application of stochastic

programming with recourse models to these capacity expansion problems.
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Benders decomposition method can be useful in dealing with dimensionality

difficulties arising from multiple recourse scenarios (see [8]). The

method is also well known for its application to mixed integer programming.

In fact, these two uses of Benders' method have been integrated and applied

successfully to related capacity expansion models (see [1]). For capacity

expansion with learning, we anticipate that significant experimentation

with model representation and specific algorithmic procedures might be

required to stabilize the method. Inequalities such as (5) added

to the Benders' master problems should be useful in providing this stability.

Finally, an important area of future research is the explicit modeling

and analysis of competitors behavior for manufacturing and marketing new

products with learning effects. Here we envision using the study model

and its extensions to describe each company in the competitive market.

Assuming that there is a single company which leads the market, and the

other companies follow, recent research indicates that the individual

models can be integrated into a market model (see[9]).
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