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The allocation of capital

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 2 / 22

Capital allocation is the term usually referring to the subdivision of a
company’s aggregate capital across its various constituents:

• lines of business

• its subsidiaries

• product types within lines of business

• territories, e.g. distribution channels

• types of risks: e.g. market, credit, pricing/underwriting,
operational

A very important component of Enterprise Risk Management:

• identifying, measuring, pricing and controlling risks



K
.U

.
L
eu

v
en

-
S
em

in
a
r,

9
J
u
n
e

2
0
0
9

Figure: the allocation by lines of business

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 3 / 22
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The literature

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 4 / 22

There are countless number of ways to allocate aggregate capital.
Good overview of methods:

• Cummins (2000); Venter (2004)

Some methods based on decision making tools:

• Cummins (2000)- RAROC, EVA

• Lemaire (1984); Denault (2001) - game theory

• Tasche (2004) - marginal costs

• Kim and Hardy (2008) - solvency exchange option with limited
liability
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- continued
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Some methods based on risk measures/distributions:

• Panjer (2001) - TVaR, multivariate normal

• Landsman and Valdez (2003) - TVaR, multivariate elliptical

• Dhaene, et al. (2008) - TVaR, lognormal

• Valdez and Chernih (2003) - covariance-based allocation,
multivariate elliptical

• Tsanakas (2004, 2008) - distortion risk measures, convex risk
measures

• Furman and Zitikis (2008) - weighted risk capital allocations

Methods also based on optimization principle:

• Dhaene, Goovaerts and Kaas (2003); Laeven and Goovaerts
(2004); Zaks, Frostig and Levikson (2006)
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The allocation problem

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 6 / 22

• Consider a portfolio of n individual losses X1, . . . , Xn during
some well-defined reference period.

• Assume these random losses have a dependency structure
characterized by the joint distribution of the random vector
(X1, . . . , Xn).

• The aggregate loss is the sum S =
∑n

i=1 Xi.

• Assume company holds aggregate level of capital K which may
be determined from a risk measure ρ such that K = ρ(S) ∈ R.

• Here the capital (economic) is the smallest amount the
company must set aside to withstand aggregated losses at an
acceptable level.



K
.U

.
L
eu

v
en

-
S
em

in
a
r,

9
J
u
n
e

2
0
0
9

- continued

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 7 / 22

• The company now wishes to allocate K across its various
business units.

• determine non-negative real numbers K1, . . . ,Kn

satisfying:
n

∑

i=1

Ki = K.

• This requirement is referred to as “the full allocation”
requirement.

• We will see that this requirement is a constraint in our
optimization problem.
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Our contribution to the literature

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 8 / 22

• We re-formulate the problem as minimum distance problem in
the sense that the weighted sum of measure for the deviations
of the business unit’s losses from their respective capitals be
minimized:

• essentially distances between Kj and Xj

• Takes then into account some important decision making
allocation criteria such as:

• the purpose of the allocation allowing the risk manager to
meet specific target objectives

• the manner in which the various segments interact, e.g.
legal structure

• Solution to minimizing distance formula leads to several existing
allocation methods. New allocation formulas also emerge.
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Risk measures
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A risk measure is a mapping ρ from a set Γ of real-valued r.v.’s
defined on (Ω,F , P) to R:

ρ : Γ → R : X ∈ Γ → ρ [X] .

Let X,X1, X2 ∈ Γ. Some well known properties that risk measures
may or may not satisfy:

• Law invariance: If P[X1 ≤ x] = P[X2 ≤ x] for all x ∈ R,
ρ[X1] = ρ[X2].

• Monotonicity : X1 ≤ X2 implies ρ [X1] ≤ ρ [X2].

• Positive homogeneity : For any a > 0, ρ [aX] = aρ [X].

• Translation invariance: For b ∈ R, ρ [X + b] = ρ [X] + b.

• Subadditivity : ρ [X1 + X2] ≤ ρ [X1] + ρ [X2].



K
.U

.
L
eu

v
en

-
S
em

in
a
r,

9
J
u
n
e

2
0
0
9

α–mixed inverse distribution function

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 10 / 22

For p ∈ (0, 1), we denote the Value-at-Risk (VaR) or quantile of X
by F−1

X (p) defined by:

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} .

We define the inverse distribution function F−1+
X (p) of X as

F−1+
X (p) = sup {x ∈ R | FX(x) ≤ p} .

The α–mixed inverse distribution function F
−1(α)
X of X is:

F
−1(α)
X (p) = αF−1

X (p) + (1 − α)F−1+
X (p).

It follows for any X and for all x with 0 < FX(x) < 1, there exists

an αx ∈ [0, 1] such thatF
−1(αx)
X (FX(x)) = x.
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Some important concepts

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 11 / 22

Conditional Tail Expectation (CTE): (sometimes called TailVaR)

CTEp [X] = E
[

X | X > F−1
X (p)

]

, p ∈ (0, 1).

In general, not subadditivite, but so for continuous random variables.

Comonotonic sum: Sc =
∑n

i=1 F−1
Xi

(U) where U is uniform on
(0, 1).

The Fréchet bounds:

LF (u1, . . . , un) ≤ C(u1, . . . , un) ≤ UF (u1, . . . , un),

where

Fréchet lower bound: LF = max(
∑n

i=1 ui − (n − 1), 0), and

Fréchet upper bound: UF = min(u1, . . . , un).
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Some known allocation formulas

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 12 / 22

Many well-known allocation formulas fall into a class of proportional
allocations.

Members of this class are obtained by first choosing a risk measure ρ
and then attributing the capital Ki = γρ [Xi] to each business unit i,
i = 1, . . . , n.

The factor γ is chosen such that the full allocation requirement is
satisfied.

This gives rise to the proportional allocation principle:

Ki =
K

∑n
j=1 ρ[Xj ]

ρ[Xi], i = 1, . . . , n.
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Some known allocation formulas

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 13 / 22

Allocation method ρ[Xi] Ki

Haircut allocation
(no known reference)

F−1
Xi

(p) K
∑n

j=1
F−1

Xj
(p)

F−1
Xi

(p)

Quantile allocation
Dhaene et al. (2002)

F
−1(α)
Xi

(FSc (K)) F
−1(α)
Xi

(FSc (K))

Covariance allocation
Overbeck (2000)

Cov[Xi, S] K
Var[S]Cov [Xi, S]

CTE allocation
Acerbi and Tasche (2002),
Dhaene et al. (2006)

E
[

Xi

∣

∣S > F−1
S (p)

]

K
CTEp[S]E

[

Xi

∣

∣S > F−1
S (p)

]
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The optimal capital allocation problem

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 14 / 22

We reformulate the allocation problem in terms of optimization:

Given the aggregate capital K > 0, we determine the allocated
capitals Ki, i = 1, . . . , n, from the following optimization problem:

min
K1,...,Kn

n
∑

j=1

vjE

[

ζj D

(

Xj − Kj

vj

)]

such that the full allocation is met:

n
∑

j=1

Kj = K,

and where the vj ’s are non-negative real numbers such that
∑n

j=1 vj = 1, the ζj are non-negative random variables such that
E[ζj ] = 1 and D is a non-negative function.
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The components of the optimization

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 15 / 22

Elaborating on the various elements of the optimization problem:

• Distance measure: the function D(·) gives the deviations of the
outcomes of the losses Xj from their allocated capitals Kj .

• squared-error or quadratic: D(x) = x2

• absolute deviation: D(x) = |x|

• Weights: the random variable ζj provides a re-weighting of the
different possible outcomes of these deviations.

• Exposure: the non-negative real number vj measures exposure
of each business unit according to for example, revenue,
premiums, etc.
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The case of the quadratic optimization

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 16 / 22

In the special case where

D(x) = x2

so that the optimization is expressed as

min
K1,...,Kn

n
∑

j=1

E

[

ζj
(Xj − Kj)

2

vj

]

.

This optimal allocation problem has the following unique solution:

Ki = E[ζiXi] + vi



K −
n

∑

j=1

E[ζjXj ]



 , i = 1, . . . , n.
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Business unit driven allocations

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 17 / 22

Risk measure ζi = hi(Xi) E[Xihi(Xi)]

Standard deviation principle
Buhlmann (1970)

1 + a
Xi − E[Xi]

σXi

, a ≥ 0 E[Xi] + aσXi

Conditional tail expectation
Overbeck (2000)

1

1 − p
I

(

Xi > F−1
Xi

(p)
)

, p ∈ (0, 1) CTEp [Xi]

Distortion risk measure
Wang (1996), Acerbi (2002)

g′
(

FXi
(Xi)

)

, g : [0, 1] 7→ [0, 1],
g′ > 0, g′′ < 0

E
[

Xig
′
(

FXi
(Xi)

)]

Exponential principle
Gerber (1974)

∫ 1

0

eγaXi

E[eγaXi ]
dγ, a > 0

1

a
ln E

[

eaXi
]

Esscher principle
Gerber (1981)

eaXi

E[eaXi ]
, a > 0

E[Xie
aXi ]

E[eaXi ]
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Aggregate portfolio driven allocations

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 18 / 22

Reference ζi = h(S) E[Xih(S)]

Overbeck (2000) 1 + a
S − E[S]

σS

, a ≥ 0 E[Xi] + a
Cov[Xi, S]

σS

Overbeck (2000)
1

1 − p
I
(

S > F−1
S (p)

)

, p ∈ (0, 1) E[Xi|S > F−1
S (p)]

Tsanakas (2004)
g′(FS(S)), g : [0, 1] 7→ [0, 1], g′ > 0,

g′′ < 0
E

[

Xig
′(FS(S))

]

Tsanakas (2008)

∫ 1

0

eγaS

E[eγaS ]
dγ, a > 0 E

[

Xi

∫ 1

0

eγaS

E[eγaS ]
dγ

]

Wang2007
eaS

E[eaS ]
, a > 0

E[Xie
aS ]

E[eaS ]
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Market driven allocations

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 19 / 22

Let ζM be such that market-consistent values of the aggregate
portfolio loss S and the business unit losses Xi are given by
π[S] = E[ζMS] and π[Xi] = E[ζMXi].

To determine an optimal allocation over the different business units,
we let ζi = ζM , i = 1, . . . , n, allowing the market to determine which
states-of-the-world are to be regarded adverse. This yields:

Ki = π[Xi] + vi (K − π[S]) .

Using market-consistent prices as volume measures vi = π[Xi]/π[S],
we find

Ki =
K

π[S]
π[Xi], i = 1, . . . , n.

Rearranging these expressions leads to

Ki − π[Xi]

π[Xi]
=

K − π[S]

π[S]
, i = 1, . . . , n.
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Additional items considered in the paper

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 20 / 22

• Allocation according to the default option.

• ζi is suitably chosen to account for shareholders having
limited liability - not obligated to pay excess (S − K) in
case of default.

• We also considered other optimization criterion:

• absolute value deviation: D(x) = |x|

• combined quadratic/shortfall: D(x) = ((x)+))2

• shortfall: D(x) = (x)+

• Shortfall is applicable in cases where insurance market
guarantees payments out of a pooled fund contributed by all
companies, e.g. Lloyd’s.

• Such allocation can be posed as an optimization problem
leading to formulas that have been considered by Lloyd’s.
[Note: views here are the authors’ own and do not necessarily
reflect those of Lloyd’s.]
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Concluding remarks

Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 21 / 22

• We re-examine existing allocation formulas that are in use in
practice and existing in the literature. We re-express the
allocation issue as an optimization problem.

• No single allocation formula may serve multiple purposes, but
by expressing the problem as an optimization problem it can
serve us more insights.

• Each of the components in the optimization can serve various
purposes.

• This allocation methodology can lead to a wide variety of other
allocation formulas.
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Dhaene, J., Tsanakas, A., Valdez, E.A., and Vanduffel, S. – 22 / 22

Thank you.
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