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Abstract

This paper provides a competitive equilibrium model of capital structure and industry dy-
namics. In the model, firms make financing, investment, entry, and exit decisions subject to
idiosyncratic technology shocks. The capital structure choice reflects the tradeoff between
the tax benefits of debt and the associated bankruptcy and agency costs. The interaction be-
tween financing and production decisions influences the stationary distribution of firms and
their survival probabilities. The analysis demonstrates that the equilibrium output price
has an important feedback effect. This effect has a number of testable implications. For
example, high growth industries have relatively lower leverage and turnover rates.
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The interaction between capital structure and product market decisions has recently received
considerable attention in both economics and finance. Beginning with Brander and Lewis (1986,
1988) and Maksimovic (1988), a growing number of theoretical papers investigate this interac-
tion. In addition, many empirical studies (Chevalier (1995a, 1995b), Phillips (1995), Kovenock
and Phillips (1997), Maksimovic and Phillips (1998), Zingales (1998), Lang, Ofek, and Stulz
(1996), Mackay and Phillips (2004)) examine the relation between capital structure and firm
entry, exit, investment and output decisions.1 These studies generally document the following:

• Industry output is negatively associated with the average industry debt ratio.

• Plant closings are positively associated with debt and negatively associated with plant-level
productivity.

• Firm entry is positively associated with debt of incumbents.

• Firm investment is negatively associated with debt.

• There is substantial inter- and intra-industry variation in leverage.

It is well known that debt causes the underinvestment and asset substitution problems iden-
tified by Myers (1977) and Jensen and Meckling (1976). However, it is important to emphasize
that simply taking leverage as an exogenous regressor may be misleading. This is because ra-
tional firms may anticipate the effect of leverage on product/input market behavior so that the
latter may influence capital structure choices. This endogeneity problem makes the interpreta-
tion of the above empirical evidence controversial. As pointed out by Zingales (1998, p.905),
“in the absence of a structural model we cannot determine whether it is the product market
competition that affects capital structure choices or a firm’s capital structure that affects its
competitive position and its survival.”

The main contribution of my paper is to fill this theoretical gap by providing an industry
equilibrium model in which capital structure choices and production decisions are simultaneously
influenced by the same exogenous factors. The second contribution of my paper is related to
industrial organization. Many empirical studies in industrial organization have documented
cross-industry differences in firm turnover. However, little theoretical research has been devoted
to understanding the impact of financing policies on firm turnover.2 The present paper adds to
this literature both by showing how the interaction between financing and production decisions
influences firm turnover and by providing new testable predictions regarding its determinants.

The basic structure of the model is as follows. The model features a continuum of firms facing
idiosyncratic technology shocks. These firms are controlled by shareholders and make financing,
entry, exit, and production decisions. The capital structure choice is modelled by incorporating
approaches of Modigliani and Miller (1958, 1963), Kraus and Litzenberger (1973), and Jensen
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and Meckling (1976).3 Moreover, this choice reflects the equilibrium interaction between fi-
nancing and production/investment decisions. Specifically, production/investment decisions are
chosen to maximize equity value after debt is in place so that shareholder-bondholder conflicts
lead to agency costs as in Jensen and Meckling (1976) and Myers (1977).4 The initial cap-
ital structure choice, made ex ante, trades off the tax benefits of debt versus the associated
bankruptcy and agency costs. Thus, the model departs from the standard Modigliani-Miller
framework.

In a long-run stationary industry equilibrium, there is a stationary distribution of surviving
firms. These firms exhibit a wide variation of leverage. Furthermore, all industry-wide equilib-
rium variables are constant over time, although individual firms are continually adjusting, with
some of them expanding, others contracting, some starting up, and others closing down.

I derive a closed-form solution for the unique stationary equilibrium so that the model
can be analyzed tractably. I also study the effects on the equilibrium of changes in growth
of technology, riskiness of technology, starting distribution of technology, fixed operating cost,
entry cost, bankruptcy cost, and corporate tax.

I now highlight the main mechanism operating in the model by an example. Consider the
effect of an increase in technology growth in a risk-neutral environment. First, this increase has
a cash flow effect, in the sense that operating profits are higher. It also has an option effect in
the sense that it changes the expected appreciation in the value of the option to default. These
two effects raise firm value and the benefit of remaining active. Thus, the firm is less likely
to default, and has lower expected bankruptcy costs. The standard single-firm tradeoff theory
then predicts that the firm should issue more debt. However, the prediction that high growth
firms have high leverage is refuted by many empirical studies (see Rajan and Zingales (1995),
Barclay, Morellec, and Smith (2002), and references cited therein).

In the present industry equilibrium model, there is an important price feedback effect associ-
ated with an increase in technology growth. That is, potential entrants will anticipate increased
firm value and hence prefer to enter the industry. As a result, product market competition
causes the output price to fall. The decreased output price influences the firm’s financing and
liquidation/exit decisions. In particular, in contrast to standard single-firm tradeoff models, this
feedback effect may dominate so as to raise exit probabilities, lower coupon payments, and lower
the average industry leverage ratio.

The model also has important implications for industry dynamics. Specifically, an increase
in the rate of technology growth and the induced increase in the exit threshold have a selection
effect in that the stationary distribution of surviving firms changes. This selection effect causes
inefficient firms to exit and be replaced by new entrants, thereby leading to higher industry
output and a lower turnover rate.

2



The present paper relates to three strands of literature. One strand beginning with Black
and Scholes (1973) and Merton (1974) is in the framework of dynamic contingent claims analysis.
Brennan and Schwartz (1984), Mello and Parsons (1992), Mauer and Triantis (1994), and Titman
and Tsyplakov (2002) analyze the interaction between investment and financing decisions using
numerical methods. Dixit (1989) studies entry and exit decisions under all-equity financing.
Leland (1994, 1998), Leland and Toft (1996), Goldstein, Ju, and Leland (2001), and Morellec
(2001) analyze corporate asset valuation and optimal capital structure using analytical methods.
All these models consider a single-firm environment. Under perfect competition, Leahy (1993)
analyzes entry and exit under all equity financing in an industry equilibrium framework. Fries,
Miller, and Perraudin (1997) generalize Leahy’s model and study how entry and exit affect
corporate asset valuation and capital structure.5 Lambrecht (2001) analyzes the impact of debt
financing on entry and exit in an oligopoly environment.

Another strand is based on the framework developed by Hopenhayn (1992a, 1992b) and
Hopenhayn and Rogerson (1993), where the concept of stationary equilibrium is introduced to
analyze industry dynamics. Dixit and Pindyck (1994, chapter 8) study industry investment in
a similar framework. They assume firms exit the industry exogenously through sudden deaths.
Most papers in this strand assume that firms are all-equity financed. Cooley and Quadrini
(2001) introduce capital structure decisions into this framework and study how financial frictions
account for the negative dependence of firm dynamics (growth, job reallocation, and exit) on size
and age. They assume exogenous exit and consider standard one-period debt contracts based
on asymmetric information.

The third strand of literature is based on strategic models. Some papers in this strand
(Brander and Lewis (1986, 1988) and Maksimovic (1988)) argue that product market compe-
tition becomes “tougher” when leverage increases, while others (e.g., Poitevin (1989), Bolton
and Scharfstein (1990), and Dasgupta and Titman (1998)) reach the opposite conclusion. Since
most models in this strand are essentially static, it seems that they are not suitable to address
the questions of industry dynamics and corporate asset valuation.

My model combines elements of the first two strands of literature. In particular, I incorporate
capital structure decisions into the framework of Hopenhayn (1992a), using the contingent claims
analysis. This allows me to derive a number of new predictions regarding the relation between
leverage and firm turnover. My model is also closely related to Fries, Miller, and Perraudin (1997)
and Lambrecht (2001). Unlike Lambrecht (2001), I study perfectly competitive industries. In
addition, unlike these two papers, where uncertainty comes from aggregate industry demand
shocks, I assume that firms face idiosyncratic technology shocks as in Hopenhayn (1992a). The
basic intuition behind the difference between firm-specific shocks and industry-wide shocks is
explained in Dixit and Pindyck (1994, Chapter 8).

The remainder of the paper is organized as follows. Section I sets up the model. Section
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II studies a single firm’s optimal capital structure choice in an industry setting. Section III
derives closed-form solutions for the unique equilibrium. Section IV analyzes properties of the
equilibrium. Section V concludes. Technical details are relegated to appendices.

I. The Model

Consider an industry consisting of a large number of firms. Suppose information is perfect and
all investors are risk neutral and discount future cash flows at a constant risk-free rate r > 0.

The assumption of risk neutrality does not lose any generality. If agents are risk averse, the
analysis may be conducted under the risk-neutral measure (see Harrison and Kreps (1979)).

Time is continuous and varies over [0,∞). Uncertainty is represented by a probability space
(Ω,F ,P) over which all stochastic processes are defined. The objective is to study long-run
stationary industry equilibria in which all industry-wide aggregate variables are constant (see
Section I.D for a formal definition). In particular, the equilibrium output price is constant, and
there is an equilibrium stationary distribution of surviving firms.

A. Industry Demand

Industry demand is given by a decreasing function. For simplicity, take the following iso-
elastic functional form:

p = Y − 1
ε , (1)

where p is the output price, Y is the industry output, and ε > 0 is the price elasticity of demand.

B. Firms

There is a continuum of firms. Firms behave competitively, taking prices of output and input
as given. At each date, each firm suffers independently exogenous death under the Poisson
process with parameter η > 0. This assumption captures the fact that some firms exit the
industry for reasons that are not related to bankruptcy. In addition, it is important to ensure
the existence of a stationary distribution of firms, since the technology shock is a nonstationary
process, as I describe next.

Technology Each firm rents capital at the rental rate R to produce output with the production
function F : R+ → R+, F (k) = kν , where ν ∈ (0, 1). The decreasing-returns-to-scale assumption
ensures that the firm’s profit is positive so that the decision problem of entry and exit studied
below is meaningful. Capital depreciates continuously at a constant rate δ > 0. Thus, the rental
rate R is equal to r + δ.

Firms are ex ante identical in that their technology or productivity shocks are drawn from
the same distribution. They differ ex post in the realization of idiosyncratic shocks. Suppose
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that there is no aggregate uncertainty, and a law of large numbers for a continuum of random
variables is such that industry aggregates are constant (see Judd (1985), Feldman and Gilles
(1985), and Miao (2004) for discussion in the discrete time case).

For an individual firm, the technology shock process (zt)t≥0 is governed by a geometric
Brownian motion:

dzt/zt = µzdt + σzdWt, (2)

where µz and σz are positive constants. Here (Wt)t≥0 is a standard Brownian motion representing
firm-specific uncertainty.

Profit Function At each time, each firm incurs a fixed operating cost cf > 0 to produce
output. Corporate income is taxed at the rate τ with full loss-offset provisions.6 Define the
after-tax profit function Ψ as

Ψ(z; p) = max
k≥0

(1− τ) (pzF (k)− δk − cf )− rk. (3)

Notice that according to the U.S. tax system, the depreciation of capital is tax-deductible,
but the interest cost of capital is not. Profit maximization implies the following neoclassical
investment rule:

pzF ′(k) = r/ (1− τ) + δ. (4)

That is, the marginal product of capital is equal to the tax-adjusted user cost of capital. Using
this equation, one can solve for the capital demand and output supply

k(z; p) = zγ

(
pν

r/(1− τ) + δ

)γ

, y(z; p) = zF (k(z; p)) = zγ

(
pν

r/(1− τ) + δ

)νγ

, (5)

where I define
γ ≡ 1

1− ν
. (6)

Substituting the above equations into (3) yields the after-tax profit function

Ψ(z; p) = (1− τ) [a(p)zγ − cf ] , (7)

where

a(p) ≡ pγ(1− ν)
(

ν

r/(1− τ) + δ

)νγ

. (8)

It is convenient to define the before-tax profit function

π(z; p) ≡ a(p)zγ − cf . (9)

This function will be used repeatedly below.
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Debt Contracts Because interest payments to debt are tax deductible, each firm has an
incentive to issue debt. In order to stay in a time-homogenous environment, I consider debt
contracts with infinite maturity, as in Leland (1994) and Duffie and Lando (2001). Debt is issued
at par. The debt contract specifies a perpetual flow of coupon payments b to bondholders. The
remaining cash flows from operation accrue to shareholders. If the firm defaults on its debt
obligations, it is immediately liquidated. Upon default, bondholders get the liquidation value
and shareholders get nothing.

Liquidation Value Suppose that debt reorganization is so costly that after default the firm is
immediately liquidated and exits the industry.7 I model liquidation value as a fraction α ∈ (0, 1)
of the unlevered firm value A(z; p). The remaining fraction accounts for bankruptcy costs. One
can model liquidation value as a general function of the output price X(p) as in Fries, Miller,
and Perraudin (1997). Here, I follow Mello and Parsons (1992). Unlevered firm value is equal
to the after-tax present value of profits, plus the option value associated with abandonment
opportunities. Normalize the abandonment value of the firm to zero. The firm then chooses an
abandonment time T so that unlevered firm value can be formally described as

A(z; p) = (1− τ) sup
T∈T

Ez

[∫ T

0
e−(r+η)tπ(zt; p)dt

]
, (10)

where the maximization is over the set T of all stopping times relative to the filtration generated
by the Brownian motion (Wt)t≥0, Ez is the expectation operator for the process (zt)t≥0 starting
at z, and the factor e−ηt accounts for the possibility of Poisson deaths.

Investment and Liquidation Decisions At each date t, after servicing coupon payments
b, residual cash flows (1 − τ) (pztF (kt)− δkt − cf − b) − rkt are distributed to shareholders as
dividends. Shareholders select the investment and default policy to maximize the value of their
claims, taking price p as given. Assume that default is triggered by the decision of shareholders
to cease raising additional equity to meet the coupon payment, as in Mello and Parsons (1992),
Leland (1994), Fries, Miller, and Perraudin (1997), Lambrecht (2001), and Duffie and Lando
(2001).

The following problem describes the investment and liquidation decisions made by a typical
firm with the current level of technology shock z and coupon payment b :

e(z, b; p) = sup
(kt)t≥0,T∈T

Ez

{∫ T

0
e−(r+η)t [(1− τ) (pztF (kt)− δkt − cf − b)− rkt] dt

}
. (11)

Using the previously defined before-tax profit function, one can rewrite this problem as

e(z, b; p) = sup
T∈T

(1− τ)Ez

[∫ T

0
e−(r+η)t(π(zt; p)− b)dt

]
, (12)
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where π(zt; p) is given in (9). The expression e(z, b; p) represents the equity value of the firm.
Since one can show that it is increasing in z, the default decision is described by a trigger policy
whereby the firm is immediately liquidated and exits the industry once its technology shock
(zt)t≥0 falls below an endogenously determined threshold zd(b; p) (see Duffie and Lando (2001)).
In what follows, without risk of confusion, I may simply use zd to denote zd(b; p).

The equity-value-maximizing investment policy is similar to that described by the neoclas-
sical rule (4). The difference is that here, investment takes place only in the no-default region
z > zd(b; p). This is related to the underinvestment problem of debt pointed out by Myers (1977)
and is consistent with the empirical evidence mentioned in the introduction.

Notice that the limited liability feature of equity is embodied in problem (11) since equity
value is always positive before default (z > zd(b; p)), and is zero only upon default (z = zd(b; p)).

Debt Value and Firm Value The arbitrage-free value of debt is equal to the sum of the
present value of coupon payments accruing to bondholders until the default time and the present
value of liquidation value upon default. That is, debt value d(z, b; p) is given by

d(z, b; p) = Ez

[∫ Tzd

0
e−(r+η)tbdt

]
+ αA(zd; p)Ez

[
e−(r+η)Tzd

]
, (13)

where Ty denotes the first time that the process (zt)t≥0 falls to some boundary value y > 0.

Firm value v(z, b; p) is the sum of equity value and debt value,

v(z, b; p) = e(z, b; p) + d(z, b; p). (14)

Entry and Financing At each date there is a continuum of potential entrants. Upon entry
firms incur a fixed sunk cost ce. This cost can be financed by equity and debt. After entry,
a firm’s initial level of technology z is drawn from the distribution ζ, which is uniform over
[z, z]. This firm is then in the same position as an incumbent with the initial level of technology
z. However, firms differ over time because they may experience different idiosyncratic shocks.
Notice that the uniform entry distribution is important to derive a closed-form solution for the
stationary distribution of incumbents.

Assume that z > zd(b; p). Since zd is endogenous, this assumption must be verified in
equilibrium. I rule out the case in which the initial draw of the technology shock is below the
default threshold so that the entrant is immediately liquidated and exits the industry.

Before entry, firms are identical and they do not know their initial technology levels and
subsequent random evolution of technology. In a competitive equilibrium, if there is positive
entry, then the expected benefit of entry must be equal to the entry cost. That is, the following
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entry condition must hold, ∫ z

z
v(z, b; p)ζ(dz) = ce. (15)

Finally, upon entry firms may adjust the capital structure in order to balance the benefit
and cost of debt. The optimal coupon rate b∗(p) is chosen to maximize the expected value of
the firm,

∫ z
z v(z, b; p)ζ(dz). Since all firms are ex ante identical, they choose the same optimal

coupon rate. For tractability, I assume that firms do not re-adjust debt after entry, as in most
contingent claims models of capital structure.

Timeline for Decisions In summary, the sequence of events and the timing of decisions for
a typical firm are described in Figure 1.

[Insert Figure 1 Here]

C. Aggregation

In a long-run steady state, there is a stationary distribution of surviving firms µ and a
constant entry rate N .8 Note that the distribution µ is not a probability measure. For any
Borel set B in the real line, µ(B) describes the number of surviving firms whose technology
shocks lie in the set B. Since a firm exits when its technology shock falls below zd(b; p), the
support of µ is the interval [zd(b; p),∞). Using this stationary distribution, aggregate variables
can be computed; for example, industry output supply is given by

Y (µ, b; p) =
∫ ∞

zd(b;p)
y(z; p)µ(dz), (16)

where y(z; p) is given in (5). Intuitively, suppose z takes finitely many values zi ∈ [zd(b; p),∞),
i = 1, ...n, and µ (zi) is the mass of surviving firms whose technology level is zi. Then industry
output supply is given by

Y (µ, b; p) =
n∑

i=1

y(zi; p)µ(zi). (17)

D. Equilibrium

A stationary industry equilibrium with exogenous leverage, (p∗, ze, N
∗, µ∗), consists of a con-

stant output price p∗, an exit threshold ze = zd(b; p∗), an entry rate N∗, and a distribution of
incumbents µ∗ such that: (i) Firms solve problem (11); (ii) the market clears

p∗ = Y (µ∗, b; p∗)−1/ε, (18)

where Y (·) is given in (16); (iii) the entry condition (15) holds; and, (iv) the distribution µ∗ is
an invariant measure over [ze,∞).
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In this equilibrium, the coupon rate b is exogenously given. When b is chosen to maximize
firm value, the resulting equilibrium is called the stationary equilibrium with endogenous leverage.
Such an equilibrium is denoted by (po, zo

e , N
o, µo).

Conditions (i)-(iii) in the above definition are standard requirements for a competitive equi-
librium. Condition (iv) requires that, in a long-run steady state, the distribution of firms be
constant over time. This is possible because there is a continuum of firms that are subject to id-
iosyncratic shocks and a law of large numbers is assumed. As pointed out by Dixit and Pindyck
(1994, p.277), “at the industry level, the shocks and responses of firms can aggregate into long-
run stationary conditions, so that the industry output and price are nonrandom. However, the
equilibrium level of these variables are affected by the parameters of firm-specific uncertainty.
Also, behind the aggregate certainty lies a great deal of randomness and fluctuations: firms
enter, invest, and exit in response to the shocks to their individual fortunes.”

To better understand condition (iv), it is helpful to use a discrete time approximation similar
to that in Hopenhayn (1992a). The following equation describes the evolution of firm distribu-
tions:

µt+dt(B) = (1− ηdt)
∫ ∞

ze

Q(B|z)µt(dz) + N∗ζ([z, z] ∩ B)dt. (19)

The interpretation is as follows: At any date t, let µt be the distribution of firms at date t.

After an instant dt, firms transit to the set B at date t + dt according to the transition function
Q (B|z) . Each firm survives with probability (1− ηdt) . Moreover, each firm exits the industry
when its technology shocks fall below ze. Thus, the first term in (19) describes the mass of firms
that lie in the set B at date t + dt. The second term in (19) describes the mass of new entrants
entering the set B. The sum of these two terms is equal to the total mass of firms that lie in
the set B at date t + dt, which is µt+dt(B). In the long-run stationary equilibrium, this mass
must not change over time. This determines the invariant distribution µ∗ (B). Notice that firms
are identified by the technology levels z. The mass of firms with technology levels lying in B is
constant over time. However, the actual identities of firms occupying these positions may keep
changing.

II. Optimal Capital Structure

In this section, I fix the output price p and consider a single firm’s capital structure decision.
This decision is modelled in the spirit of the standard EBIT-based single-firm contingent claims
models, such as Mello and Parsons (1992) and Goldstein, Ju, and Leland (2001). However,
different from these models, investment policies are not fixed and the product market influences
the capital structure decision through the output price.

A. Unlevered Firm Value
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I begin by deriving unlevered firm value. Because unlevered firm value is increasing in z, the
solution to (10) is described by a threshold value zA. The firm is abandoned the first time the
technology shock falls below zA. To solve for this threshold value zA and unlevered firm value,
let

A(z; p|y) = (1− τ)Ez

[∫ Ty

0
e−(r+η)tπ(zt; p)dt

]
(20)

be unlevered firm value given any threshold level y > 0. Here Ty denotes the first passage time
of the process (zt)t≥0 starting from z to y. The abandonment threshold zA is determined by the
smooth-pasting condition

∂A(z; p|zA)
∂z

∣∣∣∣
z=zA

= 0. (21)

The following proposition describes unlevered firm value and the abandonment decision.

PROPOSITION 1: Suppose

λ ≡ r + η − µzγ − σ2
zγ(γ − 1)/2 > 0. (22)

Then unlevered firm value is given by

A(z; p) = (1− τ)Π(z; p)− (1− τ)Π(zA; p)
(

z

zA

)ϑ

, z ≥ zA, (23)

where
ϑ ≡ 1

σ2
z

[
(σ2

z/2− µz)−
√

2(r + η)σ2
z + (σ2

z/2− µz)2
]

< 0, (24)

Π(z; p) ≡ Ez

[∫ ∞

0
e−(r+η)tπ(zt; p)dt

]
=

a(p)
λ

zγ − cf

r + η
, (25)

and

zA (p) =
[

ϑλcf

(ϑ− γ)(r + η)a(p)

]1/γ

. (26)

The firm is abandoned the first time its technology process falls below the threshold value zA.

Note that Π(z; p) in (25) represents the before-tax present value of the profit flow. As-
sumption (22) ensures that Π(z; p) is finite. Equation (23) implies that unlevered firm value
is equal to the present value of after-tax profits plus the option value of abandonment. Since
Π (zA, p) = γ

ϑ−γ
cf

r+η < 0, the firm is not abandoned as soon as losses are incurred: Only if
the firm’s technology shock is bad enough, is the firm abandoned – because abandonment is
irreversible and waiting has positive option value.

B. Liquidation Decision and Levered Equity Value

Recall that the firm’s liquidation decision is described by a trigger policy. To solve for equity
value and the optimal default threshold zd, let

e(z, b; p|y) = (1− τ)Ez

[∫ Ty

0
e−(r+η)t(π(zt; p)− b)dt

]
(27)
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denote the equity value when the default threshold is given by y and the coupon rate is given
by b.

Since shareholders may always cover operating losses by raising additional equity, they choose
a default threshold y so as to maximize equity value e(z, b; p|y). The optimal default threshold
zd satisfies the smooth-pasting condition

∂e(z, b; p|zd)
∂z

∣∣∣∣
z=zd

= 0. (28)

The following proposition describes equity value and liquidation decisions.

PROPOSITION 2: Let assumption (22) hold. Then equity value is given by

e(z, b; p) = (1− τ)

[
Π(z; p)− b

r + η
+

(
b

r + η
−Π(zd; p)

)(
z

zd

)ϑ
]

, z ≥ zd, (29)

where

zd(b; p) =
[

ϑλ(b + cf )
(ϑ− γ)(r + η)a(p)

]1/γ

. (30)

The firm is liquidated the first time its technology shock falls below the threshold value zd (b; p) .

Equation (29) implies that equity value is equal to the after-tax value of the present value
of the profit flow, minus the present value of coupon payments, plus the option value of default.
Similar to abandonment, default is irreversible and waiting to default has positive option value.

Using equation (25), one can rewrite equation (30) as

Π(zd; p) =
ϑ

ϑ− γ

b

r + η
. (31)

This implies that the optimal liquidation policy for shareholders consists in liquidating when
the present value of the profit flow upon default Π(zd; p) is equal to the cost of servicing debt
b/(r + η) multiplied by the factor ϑ/(ϑ− γ) ∈ (0, 1) that represents an option value of waiting
to default. It is important to note that product market behavior affects the liquidation decision
because the output price affects the present value of the profit flow.

Equation (30) also implies that the liquidation threshold zd(b; p) is increasing in b and de-
creasing in p (note that a(p) given in (8) is increasing in p). Thus, higher debt or lower output
prices cause the firm to exit earlier. Higher debt also induces underinvestment as in Myers
(1977) in the sense that the range of the states over which investment takes place is smaller.

C. Debt Value and Levered Firm Value

Using the standard contingent claims analysis, one can derive debt value and firm value from
equations (13)-(14).
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PROPOSITION 3: Let assumption (22) hold. Then debt value is given by

d(z, b; p) =
b

r + η
+

(
αA(zd; p)− b

r + η

)(
z

zd

)ϑ

, z ≥ zd, (32)

and firm value is given by

v(z, b; p) = A(z; p) +
bτ

r + η

[
1−

(
z

zd

)ϑ
]
− (1− α)A(zd; p)

(
z

zd

)ϑ

, z ≥ zd. (33)

Equation (32) demonstrates that debt value is equal to the present value of coupon payments,
plus the probability-adjusted changes in value if and when default occurs. Note that under the
present specification of liquidation value, one can show that αA(zd; p) < b

r+η , so debt is risky,
that is, d(z, b; p) < b

r+η .

By definition, levered firm value is the sum of equity value and debt value as given in (29)
and (32). Equation (33) demonstrates that levered firm value equals unlevered firm value plus
the probability-adjusted tax shield of debt minus probability-adjusted bankruptcy costs.

D. Optimal Coupon

Upon entry, the firm adjusts its capital structure to balance the benefit and cost of debt.
Thus, it chooses an optimal coupon rate b∗ to maximize its expected value; that is,

b∗(p) ∈ arg max
b

∫ z

z
v(z, b; p)ζ(dz). (34)

Since it can be shown that v is strictly concave in b, the following first-order condition determines
the optimal coupon rate:

τ

r + η

[
1−

∫ z

z

(
z

zd

)ϑ

ζ(dz)

]
=
−ϑ

γ

τb

(r + η)(b + cf )

∫ z

z

(
z

zd

)ϑ

ζ(dz) (35)

+
1− α

γ(b + cf )
[
A′(zd; p)zd − ϑA(zd; p)

] ∫ z

z

(
z

zd

)ϑ

ζ(dz),

where the liquidation threshold zd is given by (30).

The expression on the left side of equation (35) represents the probability-adjusted marginal
tax advantage of debt and the expression on the right side represents the marginal bankruptcy
cost. In particular, the first term on the right side represents the loss of marginal tax shield due
to bankruptcy. The second term on the right side represents the loss of marginal liquidation
value due to an inefficient choice of liquidation time by the shareholder. The optimal capital
structure prescribes a coupon rate so that the marginal benefit of debt equals the marginal cost.
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The present model implies that product market competition influences the firm’s financing
decisions since industry output prices affect the optimal coupon rate. This is transparent when
there is no fixed operating cost (cf = 0). In this case, there is a closed-form solution to (35):

b∗(p) =
(ϑ− γ)(r + η)a(p)

ϑλ

[
γ − ϑ

γ
− ϑ(1− α) (1− τ)

γτ

] γ
ϑ

[∫ z

z
zϑζ(dz)

] γ
ϑ

. (36)

This equation implies that the optimal coupon is increasing in the output price p. The intuition
is that when the output price p is higher, the firm is less likely to default so that it prefers to
issue more debt.

E. Agency Costs

Given the coupon rate b and the technology shock z, the firm’s first-best liquidation policy is
to choose a liquidation threshold zFB

d so as to maximize firm value, instead of equity value. Since
upon default the firm only recovers a fraction of unlevered firm value, it prefers to postpone
default as long as possible in order to benefit from tax shields. However, the firm also incurs
the fixed operating cost, and hence eventually suffers losses. The first-best liquidation threshold
must be chosen to trade off these benefits and costs.

Due to the conflict of interest between shareholders and bondholders, the first-best liqui-
dation policy cannot be enforced ex post. These agency costs are measured by the difference
between the first-best firm value and firm value under the liquidation policy chosen by the
shareholder. The following proposition describes the first-best liquidation policy, firm value,
and agency costs.

PROPOSITION 4: Let assumption (22) hold. Then the first-best firm value is given by

vFB(z, b; p) = A(z; p) +
bτ

r + η

[
1−

(
z

zA

)ϑ
]

, (37)

where zA is given by (26). Under the first-best liquidation policy, the firm is liquidated the first
time its technology process falls below the threshold value zA. The agency cost is given by

cA(z, b; p) =
bτ

r + η

[(
z

zd

)ϑ

−
(

z

zA

)ϑ
]

+ (1− α)A(zd; p)
(

z

zd

)ϑ

> 0. (38)

This proposition demonstrates that the first-best liquidation threshold is equal to the aban-
donment threshold value zA, that is, zFB

d = zA. Since Propositions 1-2 show that zA < zd,

the equity-maximizing liquidation policy implies an inefficient early liquidation time. Equation
(37) shows that the first-best firm value is equal to unlevered firm value plus the probability-
adjusted tax shield. Equation (38) shows that agency costs consist of the loss of tax shields
due to inefficient early liquidation plus the probability-adjusted liquidation costs. Since ϑ < 0
and zA < zd, it follows from (38) that agency costs decrease with the technology level z for any
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fixed coupon rate b. This implies that agency costs are less severe for more efficient firms. The
intuition is that more efficient firms are less likely to default and hence the loss of tax shields
and probability-adjusted liquidation costs are smaller.

III. Stationary Equilibrium

This section analyzes the existence and uniqueness of stationary equilibrium. I first consider
the case in which leverage is exogenous. Then I consider the case in which leverage is chosen to
maximize firm value.

A. Equilibrium with Exogenous Leverage

Throughout this subsection, the coupon rate b is assumed to be fixed exogenously. The
following proposition establishes the existence and uniqueness of stationary equilibrium.

PROPOSITION 5: Suppose

r + η > µzγ + σ2
zγ(γ − 1)/2, (39)

0 > γ +
1
σ2

z

(
µz − 0.5σ2

z −
√

(µz − 0.5σ2
z)

2 + 2σ2
zη

)
, (40)

η > σ2
z − µ, (41)

where γ = 1/(1− ν). Then there is a unique stationary equilibrium with the coupon rate b ≥ 0,

(p∗, ze, N
∗, µ∗), such that z > ze.9

I first comment on the assumptions. As explained earlier, assumption (39) ensures that the
present value of profits is finite. Assumption (40) ensures that certain high-order moments of
the scaled stationary distribution is finite. This assumption is necessary since the stationary
distribution has an infinite support and the moments are improper integrals. Assumption (41)
is important for the existence of a stationary distribution.10 It simply says that the Poisson
death rate cannot be too small. The reason lies in the fact that the geometric Brownian motion
technology process (zt)t≥0 is nonstationary. Heuristically, without Poisson deaths, the number
of firms with high technology levels can explode and a stationary distribution cannot exist. One
needs to assume a sufficiently high death rate to prevent this explosion. From this argument, one
can deduce that the Poisson death assumption is not needed if (zt)t≥0 is a stationary process, for
example, the mean-reverting process. However, the mean-reverting technology process does not
permit any intuitive closed-form solution for the stationary equilibrium. Consequently, complex
numerical methods are needed. This is typical in the discrete time models (e.g. Hopenhayn
(1992b), Hopenhayn and Rogerson (1993), Cooley and Quadrini (2001)). Finally, the condition
z > ze guarantees that the initial draw of the technology shock cannot be so bad that the
firm has no incentive to enter the industry. Since ze = zd (b; p∗) , it follows from (30) that this
condition requires that the fixed cost cf is not too big.
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Note that when there is no debt (i.e., b = 0), firms are all-equity financed and the model
reduces to the one similar to the discrete time industry dynamics model studied by Hopenhayn
(1992a). As mentioned earlier, one important difference is that here the technology shock is
modelled as a nonstationary process, whereas it is modelled as a stationary process in Hopenhayn
(1992a).

I now outline the intuition behind the theorem and relegate the detailed proof to the ap-
pendix. The proof is by construction, which follows from a similar procedure described in both
Hopenhayn and Rogerson (1993) and Dixit and Pindyck (1994, chapter 8). It consists of three
steps.

In the first step, I use the entry condition (15) to determine the equilibrium output price
p∗. It is easy to show that firm value is strictly increasing in the output price. When the output
price is high enough, expected firm value exceeds the entry cost ce, and potential entrants have
incentives to enter the industry. As more firms enter the industry, market competition drives
down the output price. On the other hand, when the output price is low enough, expected firm
value may be lower than the entry cost. In this case, no firm prefers to enter the industry. In
sum, if there is positive entry, the equilibrium output price p∗ must be such that the expected
firm value equals the entry cost, which is the entry condition (15). To show that there is a unique
solution p∗ to (15), observe the following: As price p goes to infinity, the firm makes unbounded
profits and hence firm value goes to infinity. However, as p goes to zero, the firm becomes
unprofitable so that it is abandoned and firm value goes to zero. Thus, a unique equilibrium
output price p∗ is determined using the intermediate value theorem, as illustrated in Figure 2.

[Insert Figure 2 Here]

In the second step, I solve for the invariant distribution µ∗. I first solve for the exit threshold
and the support of µ∗. Given the equilibrium output price p∗, the equilibrium exit threshold
ze = zd(b; p∗) is determined using equation (30). This threshold value is exactly analogous to
the corresponding formula for the single-firm liquidation decision described in Section II. The
intuition is similar to that discussed in Dixit and Pindyck (1994, chapter 8). When uncertainty
is firm-specific, a firm that observes a favorable shock z has an edge over its competitors. Its
favorable z cannot be “stolen” by competitors. Thus, a positive value of waiting does survive,
and the standard single-firm option value analysis can be embedded in an industry equilibrium
model.

Since inefficient firms with technology levels lower than ze exit the industry, the support of
the stationary distribution of incumbents µ∗ is given by [ze,∞). Note that equation (19) implies
that µ∗ is linearly homogenous in the entry rate N∗. Thus, it is convenient to scale µ∗ by the
factor N∗ when solving it. In Appendix A, I derive the scaled density of µ∗ using the method
described in Dixit and Pindyck (1994, chapter 8). The main idea of this method follows from
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the intuitive description given in Section I.D. That is, in order for the density to be constant
over time, the rate at which firms arrive at any technology level because of entry must be equal
to the rate at which firms move away from that level because of Poisson deaths or bankruptcy.

In the final step, the entry rate N∗ is determined by the market-clearing condition (18).
Since the stationary distribution µ∗ is proportional to the entry rate N∗, it follows from (16)
that industry output supply Y (µ∗, b; p∗) is also proportional to N∗. Equating the industry
demand p∗ = Y (µ∗, b; p∗)−1/ε yields the entry rate N∗.

B. Equilibrium with Endogenous Leverage

When each firm chooses value-maximizing capital structure, it selects the coupon rate b∗(p)
to solve problem (34). The equilibrium output price po is then the solution to the following
equation derived from the entry condition:

∫ z

z
v(z, b∗(p); p)ζ(dz) = ce. (42)

Now, the equilibrium with endogenous leverage can be characterized in the same manner
as that with exogenous leverage except for the following changes: (i) The output price p∗ is
replaced by the above value po; (ii) the coupon rate b takes the value bo ≡ b∗(po); and, (iii) the
exit threshold ze takes the value zo

e = ze(bo; po). The detailed computation of the equilibrium
(bo, po, zo

e , N
o, µo) is described in Appendix B.

Importantly, if there is no fixed operating cost (i.e., cf = 0), then the equilibrium with
endogenous leverage can be characterized completely in closed form.

PROPOSITION 6: Let assumptions (39)-(41) hold. Also assume cf = 0. Then the unique
stationary equilibrium with optimal leverage (po, zo

e , N
o, µo) is characterized as follows:

zo
e =

[
γ − ϑ

γ
− ϑ(1− α) (1− τ)

γτ

] 1
ϑ

[∫ z

z
zϑζ(dz)

] 1
ϑ

, (43)

po = (ce)
1
γ

{
(1− ν)

(
ν

r/(1− τ) + δ

)νγ [
1− τ

λ

zγ+1 − zγ+1

(z − z)(γ + 1)
+

τ

λ
(zo

e)
γ

]}− 1
γ

, (44)

No = (po)−(ε+γν)

(∫ ∞

ze

zγfo(z)dz

)−1 (
ν

r/(1− τ) + δ

)−νγ

, (45)

where Nofo is the density of the stationary distribution µo and its explicit expression is given
in the appendix. Moreover, the optimal coupon rate is given by

bo =
(ϑ− γ)(r + η)a(po)

ϑλ

[
γ − ϑ

γ
− ϑ(1− α) (1− τ)

γτ

] γ
ϑ

[∫ z

z
zϑζ(dz)

] γ
ϑ

. (46)
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Equation (43) implies that the exit threshold does not depend on the equilibrium output
price. This result does not hold true if there are positive fixed operating costs. In fact, when
there are positive fixed costs, the equilibrium output price has an important feedback effect on
the exit threshold and hence on the production and financing decisions, as illustrated in the
simulations below. Note that equation (44) implies that the equilibrium output price increases
with entry cost. Although it is often argued that the entry cost should not play a role in
subsequent price competition, as it is a sunk cost, the present model demonstrates that this
sunk cost may feed back into the entry rate and consequently in the output price. In particular,
a high entry cost discourages entry and hence protects incumbents. Thus, competition is less
intense and the output price becomes higher.

To close this section, I introduce the concept of turnover rate. The turnover rate is an impor-
tant measure of industry dynamics (see Dunne, Roberts, and Samuelson (1988) and Hopenhayn
(1992a)). The turnover rate of entry is defined as the ratio of the mass of entrants to the mass of
incumbents. The turnover rate of exit can be defined similarly. Since in a stationary equilibrium
the entry rate is equal to the exit rate, these two measures of turnover are equal. Appendix
B presents the explicit expressions for the turnover rate as well as other important equilibrium
variables. In particular, the formula for the turnover rate (B5) implies that the turnover rate is
determined exclusively by the exit threshold and the scaled stationary distribution of firms.

IV. Results

To examine the implications of the model, I first calibrate a base case model. I then conduct
simulations based on this model. For all simulations, input parameter values are chosen such
that the conditions of Proposition 5 are satisfied.

A. Parameter Values

The base case model studies the equilibrium with endogenous leverage described in Propo-
sition 6. The parameter values are either taken from estimated values from the data or chosen
such that the model’s equilibrium behavior matches some measured statistics as closely as pos-
sible. They are used as an illustrative benchmark. Some parameter values can be fine-tuned as
in the real business cycle literature (e.g., Kydland and Prescott (1982)).

I first set the fixed operating cost cf = 0 so that there is a closed-form solution to the unique
equilibrium. I then set the price elasticity of demand ε = 0.75. This number is within the range
estimated by Phillips (1995).

Next, I calibrate parameters related to technology. Set the returns-to-scale parameter ν =
0.40, as estimated by Caballero and Engel (1999). This implies γ = 1/(1 − ν) = 1.667. As in
the business cycle literature, set the depreciation rate of capital δ = 0.1. In order to calibrate
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the drift µz and volatility σz, use π(zt; p) to proxy a firm’s cash flow. The growth rate and
volatility of cash flows are roughly equal to 2.5% and 25%, respectively, for a typical Standard
& Poor’s 500 firm. Thus, apply Ito’s Lemma to equation (3) to derive that σz = 0.25/γ = 15%
and µz = (0.025− 0.5γ(γ − 1)σ2

z)/γ = 0.75%

Set the risk-free r = 5.22% so that it is equal to the average rate on Treasury bills, as
reported in Standard & Poor’s The Outlook in 2001. Set the corporate tax rate τ = 34%, as
estimated by Graham (1996). Set the bankruptcy cost parameter 1− α = 20%, which is at the
upper bound of recent estimates reported in Andrade and Kaplan (1998).

Set the Poisson death parameter η = 4%. This number follows from the facts that the
annual turnover rate is roughly 7% (see Dunne, Roberts, and Samuelson (1988) and Hopenhayn
(1992b)) and that the default rate is roughly 3% (see Brady and Bos (2002)).

It remains to calibrate the parameters ce, z, and z. First, follow Hopenhayn (1992b) and
normalize the equilibrium output price po = 1. Next, use equation (42) to determine ce once z

and z are known. Finally, choose values for z and z so that the following numbers are roughly
matched: (i) The average industry Tobin’s q is equal to 2.7, which is in the range estimated by
Lindenberg and Ross (1981); and, (ii) the turnover rate is 7%.

The base case parameter values are summarized in Table I.

[Insert Table I here]

B. The Base Case Model

The equilibrium for the base case model is reported in Panel 1 of Table II. It shows that the
average industry leverage ratio is equal to 23.09%. This number is close to the historical average
leverage ratio (25%) reported in Barclay, Morellec, and Smith (2002). To compare with the
standard single-firm EBIT-based contingent claims model, I adopt the same parameter values
for a single risk-neutral firm. The optimal leverage ratio is 71.59%, which is much higher than
that typically observed in practice.11 The main reason that the present model predicts low
leverage is that I compute equilibrium average industry leverage level, instead of a single firm’s
leverage. In a stationary equilibrium, there are not many surviving firms that have high leverage
ratios.

[Insert Table II Here]

I also compute the industry tax advantage of debt, which is measured as
∫∞
zo
e

boτ
r+η

[
1− (z/zo

e)
ϑ
]
µo(dz)

∫∞
zo
e

v(z, bo; po)µo(dz)
× 100%. (47)
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The value is 7.08%, which is close to the estimate (9.7%) reported in Graham (2000).

Figure 3 plots the stationary distribution of surviving firms. This figure implies that more
efficient firms are less likely to exit, since they have higher technology (productivity) levels
which are farther away from the exit threshold. This prediction is consistent with the empirical
finding reported by Kovenock and Phillips (1997). Since the size of a firm measured by either
output y (z, p) or input k (z, p) is an increasing function of its technology shock z, the long-run
size (probability) distribution plotted in Figure 4 has a similar shape to that plotted in Figure
3. Notice that the size distribution does not depend on firm age. The issue of size and age
dependence is studied by Cooley and Quadrini (2001).

[Insert Figures 3-4]

Another property of the base case model is that although all firms in the industry are ex
ante identical, and hence pay the same coupon amount, the leverage ratios vary across firms. In
particular, small or inefficient firms take on high leverage. This is because surviving firms differ
in realizations of technology shocks so that they have different equity values. 12 This result is
related to the empirical finding of Welch (2004) that leverage changes are mainly determined by
equity returns.

Simulations reported in Table II also reveal that the average industry agency cost accounts
for 2.57% of the first-best average industry firm value. In later simulations, I find that the
magnitude of the average industry agency cost is approximately 2% for a wide range of parameter
values. Thus, the agency costs arising from the conflict of interest between shareholders and
bondholders are quite small. A similar finding is reported in Parrino and Weisbach (1999).
The present model implies that competition can mitigate the bondholder-shareholder agency
problem. This is because inefficient firms have high agency costs as discussed in Section II.E,
but they cannot survive in an industry equilibrium.

To compare with Hopenhayn’s (1992a) industry dynamics model without debt financing, I
set the fixed operating cost cf = 5 and compute equilibria with and without debt financing.
The equilibrium outcome for the model with debt financing is reported in the 12th row of Table
II. By contrast, when firms do not take into account tax advantages of debt and are all-equity
financed, industry output is 0.72, the turnover rate is 4.77%, and average industry firm value
is 372.12, all of which are lower than the model with debt financing. Thus, debt financing not
only raises firm value,13 but also facilitates efficient exit and increases industry output. The
intuition is simple. Debt increases the exit threshold (see equations (26) and (30)), and hence
induces inefficient firms to exit. In addition, increased firm value promotes entry. Competition
then drives down the output price and raises industry output.

C. Comparative Statics
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Since capital structure and production decisions may simultaneously respond to changes
in exogenous factors, I focus on the stationary equilibrium with optimal leverage described in
Section III.B and examine comparative static properties of the equilibrium based on the base
case model studied earlier.

Technology Growth and Entry Distribution Panel 2 of Table II details the effect of
changes in technology growth. As argued in the introduction, the standard single-firm tradeoff
model cannot explain the empirical evidence that high growth firms have low leverage. However,
in the present industry equilibrium framework, the trade-off theory can still explain this fact.
This is because the price feedback effect discussed in the introduction plays an important role.
Simulations reported in Table II show that this effect dominates so that the optimal coupon
rate falls and the liquidation threshold rises with technology growth µz. Simulations also reveal
that the tax benefit of debt falls and average industry leverage falls with µz.

Since the market-to-book ratio is positively related to technology growth,14 it is negatively
related to leverage. The usual interpretation of this fact is based on the underinvestment problem
of debt identified by Myers (1977) or the free cash flow theory of Jensen (1986). Two recent
interpretations are offered by Welch (2004) and Baker and Wurgler (2002). The present model,
however, offers a new interpretation in an industry equilibrium setting.

To examine why the price feedback effect may dominate and how robust the result is, consider
the expression for the before-tax present value of profits (25),

Π(z; p) =
pγ(1− ν)

(
ν

r/(1−τ)+δ

)νγ

r + η − µzγ − σ2
zγ(γ − 1)/2

zγ − cf

r + η
, (48)

where I have substituted the expressions for a(p) and λ in (8) and (22). If Π(z; p) is price elastic
(i.e., γ > 1), and if the level and changes of the growth rate µz are small, then the decrease
in the price p may well dominate the increase in µz. In the present model, under decreasing-
returns-to-scale technology ν < 1, γ ≡ 1/ (1− ν) must be bigger than one. Moreover, for a
typical firm the growth rate of cash flows and its change are unlikely to be high. Therefore, I
conclude that the result is quite robust for a wide range of reasonable parameter values.

The increase in µz also has a positive selection effect because it changes the liquidation
threshold and the stationary distribution of firms. Figure 3 illustrates that this effect causes
the scaled density function to shift to the right. Thus, to survive in the industry, firms must
have high productivity or technology levels. This makes entry tougher. Thus, the turnover rate
decreases.

Notice that even though the increase in technology growth may cut the present value of
profits, the average industry equity value and firm value rise with technology growth. Simulations
show that when µz increases from 0.75% to 1.5%, average industry equity value increases from
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203.57 to 1338.2 and average industry firm value increases from 264.68 to 1400.8. This is because
those values are computed using the stationary distribution of surviving firms. In addition, the
positive selection effect implies that a high growth industry has a greater number of highly
efficient firms than a low growth industry. These highly efficient firms have higher equity value
and firm value. Furthermore, simulations show that the size of the high growth industry is much
lower than that of the low growth industry.

The impact of an improvement of the entry distribution (i.e., an increase in z) is similar
to that of an increase in technology growth, as reported in Panel 4 of Table II. So I omit the
discussion.

Riskiness of Technology Panel 3 of Table II documents the effect of changes in technology
volatility. As in the standard contingent claims model, the volatility parameter σz provides a
measure of bankruptcy risk and hence is an important determinant of leverage. Panel 3 of Table
II reveals that volatility is negatively related to average industry leverage. This prediction is
similar to that in the single-firm model and is consistent with the empirical evidence documented
by Titman and Wessels (1988).

Panel 3 of Table II also reveals that volatility is positively related to industry output. This
is because an increase in σz has an option effect in that it raises the option value of waiting to
default. This results in higher firm value and hence encourages entry. Competition then drives
down the output price and raises industry output. Finally, Panel 3 of Table II reveals that an
increase in volatility has a positive selection effect, resulting in a high turnover rate.

Bankruptcy Cost and Corporate Tax Panel 5 of Table II reports the effect of changes in
the bankruptcy cost. An increase in the bankruptcy cost parameter 1− α has a negative cash
flow effect. This effect decreases the value of an active firm and depresses entry. As a result,
the output price rises and industry output falls.

While it is intuitive that bankruptcy costs are negatively related to leverage, Panel 5 of Table
II also reveals that bankruptcy costs are negatively related to the turnover rate. The intuition
is that an increase in the bankruptcy cost lowers debt and hence decreases the opportunity cost
of remaining active. Thus, each incumbent prefers to stay longer in the industry. Consequently,
the liquidation threshold falls. The lower value of the liquidation threshold implies less selection
and higher expected lifetime of firms. As a result, the turnover rate falls.

An increase in the corporate tax rate has the same negative cash flow effect as an increase in
the bankruptcy cost so that industry output falls with the tax rate. However, the increase in the
corporate tax rate raises the tax benefit of debt and hence has an opposite effect on leverage and
turnover relative to an increase in the bankruptcy cost. The impact of the tax rate is reported
in Panel 6 of Table II. I omit the detailed analysis.
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Fixed Operating Cost So far, I have set the fixed operating cost cf to zero. Because the
fixed cost is related to the degree of economies of scale, I now examine the impact of the fixed
operating cost on equilibrium outcomes, as reported in Panel 7 of Table II.15

The panel reveals that the fixed cost is positively related to the turnover rate, and negatively
related to industry output and leverage. The intuition is as follows. An increase in the fixed
operating cost lowers the operating profit and hence lowers firm value. This depresses entry,
raises the output price, and hence lowers industry output. As reported in Panel 7 of Table II,
the positive price feedback effect is dominated so that each incumbent prefers to exit earlier,
resulting in an increased exit threshold and an increased turnover rate.

I now analyze the impact on leverage. While the increased fixed cost lowers the tax benefit
of debt, it also lowers unlevered firm value and hence bankruptcy costs. Simulations reported
in Panel 7 of Table II reveal that the latter effect dominates so that the optimal coupon rises.
Thus, the average industry value of debt also rises. However, due to the positive selection and
price effects, average industry firm value also increases with the fixed cost. The intuition is that
following an increase in the fixed cost, surviving firms are more efficient since the exit threshold
is higher and the positive price effect is stronger for those firms. A similar result is derived
in Hopenhayn (1992a, 1992b) for all-equity financed firms. Simulations reported in Panel 7 of
Table II show that the increase in firm value dominates the increase in debt value so that average
industry leverage falls with the fixed cost.

Entry Cost In the short run, an increase in the entry cost ce does not affect a firm’s cash
flows and its liquidation decision. Thus, it does not affect the value of an active firm. However,
the entry cost acts as a barrier to entry. High entry costs protect incumbents and drive up
the industry output price. This price feedback effect will generally influence financing and exit
decisions.

Specifically, the increase in the output price raises the benefit of remaining active and the tax
advantage of debt. On the other hand, this implies that each firm prefers to issue more debt and
hence the optimal coupon rises. This leads to an increased opportunity cost of remaining active.
The impact on the exit threshold depends on these two opposite effects as shown in equation
(31). When there is no fixed operating cost, these effects offset each other so that changes in
the entry cost do not affect the exit threshold (see equation (43)). Consequently, these changes
do not have a selection effect.

However, this result is not robust to the introduction of the fixed operating cost. To illustrate
this point, I set the operating cost cf = 5. Panel 8 of Table II documents the impact of increases
in the entry cost. It reveals that the entry cost is positively related to leverage and negatively
related to the turnover rate.16 This is because in response to an increase in the entry cost, the
positive price feedback effect dominates so that the exit threshold decreases. This results in a
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negative selection effect so that the turnover rate falls. This prediction is consistent with the
evidence reported by Orr (1974) for Canadian industry. A similar result is derived by Hopenhayn
(1992a) for all-equity financed firms. In the present model, a lower exit threshold also induces
lower default/exit probabilities, and hence expected bankruptcy costs are lower. This results in
higher leverage.

Industry Demand Elasticity I now analyze the impact of changes in the demand elasticity,
which is an important industry characteristic. From Proposition 6, one finds surprisingly that
the output price po, the exit threshold zo

e , and the scaled density fo do not depend on the
demand elasticity parameter ε. Consequently, the turnover rate and average industry leverage
do not depend on ε. However, the change in demand elasticity does have effect on industry
output, industry size, and entry rate. As can be seen from Appendix B, this result is also true
for positive fixed costs cf > 0. The key intuition is that the competitive entry condition (15),
which determines the equilibrium output price, is independent of the industry demand elastic-
ity. This implies that the industry output price is also independent of the demand elasticity.
Consequently, the exit threshold is independent of the demand elasticity since it is determined
by an individual firm’s behavior taking industry prices as given. Since the scaled stationary
distribution is determined by the exit threshold and the exogenous evolution of the technology
process, it is also independent of the demand elasticity.

To illustrate the above result, I set cf = 5 and fix other parameter values as in Table I. Panel
9 of Table II illustrates the effect of increases in the demand elasticity. I find that the industry
output, industry size, and entry rate all decrease. This is because the iso-elastic demand function
(1) implies that the industry output decreases with the demand elasticity for any fixed price
p > 1. To accommodate decreased industry output, the entry rate and industry size must fall.

Poisson Deaths As discussed earlier, a sufficiently high Poisson death rate is needed for the
existence of a stationary equilibrium in the present model. I now examine the impact of changes
in this rate, as detailed in the last panel of Table II. As expected, increased death rates lower
industry output. Surprisingly, firms issue more debt and average industry leverage increases.
This is because an incumbent enjoys high output price and hence high tax benefits of debt
(see equation (36)). Consider next the turnover rate. In order for the population of firms to
keep being refreshed, the turnover rate of entry must rise in response to an increased Poisson
death rate. Surprisingly, the turnover rate of exit due to bankruptcy also rises, which is the
difference between the turnover rate of entry and the Poisson death rate.17 This is because the
exit threshold rises following an increase in the Poisson death rate. Thus, firms are more likely
to go bankrupt and exit.
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V. Conclusion

In this paper, I present a competitive equilibrium model of industry dynamics and capital struc-
ture decisions. I show that technology (productivity) heterogeneity is important in determining
a firm’s survival probability and leverage ratio. In particular, in equilibrium there is a station-
ary distribution of surviving firms. These firms exhibit a wide variation of capital structures.
In addition, more efficient firms are less likely to exit and have lower agency costs. Finally, I
analyze comparative static properties of changes in technology growth, technology risk, entry
distribution, entry cost, fixed cost, bankruptcy cost, and tax policy.

The analysis reveals that the interaction between financing and production decisions is im-
portant in an industry equilibrium. Moreover, the equilibrium output price has an important
feedback effect. As a result, several conclusions reached in the standard single-firm contingent
claims models do not hold true in an equilibrium setting. Moreover, it moves predictions in the
right direction in terms of reconciling the empirical evidence. Specifically, the analysis shows
that either one of the following exogenous factors can simultaneously explain the empirical find-
ings mentioned in the introduction: The slowdown of technology (productivity) growth, the
deterioration of entry distribution, or the increase in the corporate tax rate.

The paper also provides a number of new testable predictions regarding capital structure and
industry dynamics. First, industries with high technology growth or good starting distributions
of technology have relatively lower average leverage, lower turnover rates, and higher output.
Second, industries with risky technology have relatively lower average leverage, higher turnover
rates, and higher output. Third, industries with high bankruptcy costs have relatively lower
average leverage, lower turnover rates, and lower output. Fourth, industries with high fixed
operating costs have relatively lower average leverage, higher turnover rates, and lower output.
Finally, industries with high entry costs have relatively higher average leverage, lower turnover
rates, and lower output.

The paper could be extended in several directions, which are left for future research. First,
in the paper, the expected returns of equity and other macroeconomic variables are constant.
To study equity premium and other time-series behavior of the industry, it is necessary to intro-
duce aggregate uncertainty. Second, this paper considers only the conflict of interest between
shareholders and bondholders. It would be interesting to study the conflict of interest between
shareholders and managers. Third, I analyze firms’ initial capital structure decisions only, as in
most contingent claims models of capital structure in the literature. A model of dynamic capital
structure would be worth pursuing (Leland (1998), Goldstein, Ju, and Leland (2001), Ju et al.
(2003), and Hackbarth, Miao, and Morellec (2004)). Finally, it would be interesting to consider
finite maturity debt. This requires a constant default threshold in stationary equilibrium, which
can be delivered using the framework of Leland and Toft (1996) or Leland (1998).
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Appendix A. Proofs

Proof of Propositions 1-2:18 I first prove Proposition 2. Proposition 1 is obtained by setting
b = 0. It follows from (27) that equity value given a default threshold y is given by

e(z, b; p|y) = (1− τ)Ez

[∫ Ty

0
e−(r+η)t(π(zt; p)− b)dt

]
. (A1)

This expression is equal to

(1− τ)Ez

[∫ ∞

0
e−(r+η)t(π(zt; p)− b)dt

]
− (1− τ)Ez

[∫ ∞

Ty

e−(r+η)t(π(zt; p)− b)dt

]

= (1− τ)Ez

[∫ ∞

0
e−(r+η)t(π(zt; p)− b)dt

]
− (1− τ)Ey

[∫ ∞

0
e−(r+η)t(π(zt; p)− b)dt

]

×Ez
[
e−(r+η)Ty

]
, (A2)

where the last equality follows from the strong Markov property of the process (zt)t≥0 (see
Karatzas and Shreve (1991, p. 82)). By an argument similar to that in Karatzas and Shreve
(1991, p. 197),

Ez
[
e−(r+η)Ty

]
=

(
z

y

)ϑ

, (A3)

where ϑ is given in (24). Substitute this expression into above equations to derive

e(z, b; p|y) = (1− τ)

[
Π(z; p)− b

r + η
+

(
b

r + η
−Π(y; p)

)(
z

y

)ϑ
]

. (A4)

Use the smooth-pasting condition (28) to derive the optimal default threshold zd (b; p) in (30).
Use the fact that e (z, b; p) = e (z, b; p|zd) to derive equity value in (29). Q.E.D.

Proof of Proposition 3: As in the proof of Propositions 1-2, one can use (13) and the
strong Markov property to derive

d(z, b; p) = Ez

[∫ Tzd

0
e−(r+η)tbdt

]
+ αA(zd; p)Ez

[
e−(r+η)Tzd

]
(A5)

= Ez

[∫ ∞

0
e−(r+η)tbdt

]
−Ez

[∫ ∞

Tzd

e−(r+η)tbdt

]
+ αA(zd; p)Ez

[
e−(r+η)Tzd

]

=
b

r + η
−Ez

[∫ ∞

0
e−(r+η)tbdt

]
Ez

[
e−(r+η)Tzd

]
+ αA(zd; p)Ez

[
e−(r+η)Tzd

]

=
b

r + η
+

(
αA(zd; p)− b

r + η

)
Ez

[
e−(r+η)Tzd

]
.

Use the last expression and (A3) to obtain (32). Finally, one can derive firm value in (33) using
equations (13), (29), and (32). Q.E.D.
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Proof of Proposition 4: Similar to the derivation of equation (33), one can deduce that
firm value given a default threshold y is given by

v(z, b; p|y) = A(z; p) +
bτ

r + η

[
1−

(
z

y

)ϑ
]
− (1− α)A(y; p)

(
z

y

)ϑ

. (A6)

The first-best liquidation policy is to choose default threshold y so as to maximize firm value
in (A6). It can be verified that the maximizer is zFB

d = zA. Equation (37) follows from the fact
that vFB (z, b; p) = v(z, b; p|zA). Finally, equation (38) follows from cA (z, b; p) = vFB (z, b; p) −
v (z, b; p) . Q.E.D.

Proof of Proposition 5: As argued in Section III.A, the proof consists of three steps. In
the first step, one uses the entry condition to solve for the equilibrium output price p∗. Then
the exit threshold ze is determined by ze = zd (z, b; p∗) using equation (30). In the second step,
one solves for the density f of the stationary distribution µ∗ up to a scale factor N∗. In the final
step, the entry rate N∗ is determined by the market-clearing condition (18). Specifically, use
(5) and (16) to derive the industry output

Y (µ∗, b; p∗) = N∗
∫ ∞

ze

zγf(z)dz

(
pν

r/(1− τ) + δ

)νγ

. (A7)

Use the market-clearing condition p∗ = Y (µ∗, b; p∗)−1/ε to derive the entry rate

N∗ = (p∗)−(ε+γν)

(∫ ∞

ze

zγf(z)dz

)−1 (
ν

r/(1− τ) + δ

)−νγ

. (A8)

Notice that the integral
∫∞
ze

zγf(z)dz is improper since the density f has an infinite support.
Once f is derived towards the end of the proof, one will see that assumption (40) ensures that
this improper integral is finite.

The remainder of the proof is devoted to the second step, which is key. It is convenient to
work in terms of the logarithm, x = log z. Then (xt)t≥0 is a Brownian motion satisfying:

dxt = µxdt + σxdWt, (A9)

where µx = µz− 1
2σ2

z and σx = σz. Because the initial draw of z is uniform over [z, z], the initial
draw of x = log(z) has an exponential distribution over [x, x], where x = log z and x = log z.

This distribution has a density function

g(x) = exp(x− x̂), (A10)

where x̂ = log(z − z).

Let the stationary distribution of incumbent firms have a density function N∗φ(x) on [xe,∞),
where xe = log(ze) and N∗ is the entry rate determined later. I will now use the Kolmogorov
equation to find the function φ(x) by considering three cases.
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I adapt the heuristic argument from Dixit and Pindyck (1994, Chapter 8). First, approximate
the Brownian motion by a random walk. To do so, divide time into short intervals of duration
dt, and the x space into short segments, each of length dh = σx

√
dt. Of the firms located in one

such segment, during time dt a proportion ηdt will die. Of the rest, a fraction qr will move one
segment to the right, and a fraction ql will move to the left, where

qr =
1
2

[
1 +

µx

σx

√
dt

]
, ql =

1
2

[
1− µx

σx

√
dt

]
. (A11)

Now consider the first case, where x ≤ x < x. Then there are new entrants that realize shock
x since the support of their initial draw of shocks is [x, x]. There are N∗φ(x)dh firms in the
segment centered at x. In the next unit of time period dt, all of these firms move away with
either Poisson or Brownian shocks. New entrants, as well as firms from the left and right, arrive
to take their places. For balance,

N∗φ(x)dh = N∗dtg(x)dh + qr(1− ηdt)N∗φ(x− dh)dh (A12)

+ql(1− ηdt)N∗φ(x + dh)dh.

Apply Taylor’s Expansion Theorem and simplify to obtain the ODE

1
2
σ2

xφ′′(x)− µxφ′(x)− ηφ(x) + g(x) = 0. (A13)

A particular solution to this equation can be derived as

φ0(x) = ex−x̂/(η + µx − σ2
x/2). (A14)

To make economic sense, this density must be positive (also see Dixit and Pindyck (1994, p.275)).
This is ensured by assumption (41) since η + µx− σ2

x/2 = η + µz − σ2
z > 0. The general solution

to (A13) is given by

φ(x) = A1e
β1x + A2e

β2x + φ0(x), for x ≤ x < x, (A15)

where

β1 =
µx −

√
µ2

x + 2σ2
xη

σ2
x

, β2 =
µx +

√
µ2

x + 2σ2
xη

σ2
x

, (A16)

and A1 and A2 are constants to be determined.

In the second case, xe < x < x, there is no new entrant in the segment centered at x. Apply
a similar method to show that φ satisfies the following ODE:

1
2
σ2

xφ′′(x)− µxφ′(x)− ηφ(x) = 0. (A17)

The general solution to this equation is given by

φ(x) = G1e
β1x + G2e

β2x, for xe < x < x, (A18)
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where G1 and G2 are constants to be determined.

In the third case, x ≥ x, there is no new entrant in the segment centered at x, so φ still
satisfies the above ODE. Let the solution be

φ(x) = H1e
β1x + H2e

β2x, for x ≥ x, (A19)

where H1 and H2 are constants to be determined.

The constants A1, A2, G1, G2, H1, and H2 are determined by the following six boundary
conditions:

∫ ∞

x
φ(x)dx < ∞, (A20)

φ(xe) = 0, (A21)

lim
x↑x

φ(x) = lim
x↓x

φ(x), (A22)

lim
x↑x

φ′(x) = lim
x↓x

φ′(x), (A23)

lim
x↑x

φ(x) = lim
x↓x

φ(x), (A24)

lim
x↑x

φ′(x) = lim
x↓x

φ′(x). (A25)

Equation (A20) says that the total mass of incumbents must be finite. Equation (A21) is derived
from the fact that when the process (xt) falls to xe, the firm exits the industry. Finally, equations
(A22)-(A25) follow from Theorem 4.4.9 in Karatzas and Shreve (1991, p. 271). These equations
ensure sufficient smoothness of φ. Using equations (A20)-(A25), one can derive H2 = 0 and
G1, G2, A1, A2,H1 solve the following system of linear equations:

G1e
β1xe + G2e

β2xe = 0, (A26)

G1e
β1x + G2e

β2x = A1e
β1x + A2e

β2x + φ0(x),

G1β1e
β1x + G2β2e

β2x = A1β1e
β1x + A2β2e

β2x + φ′0(x),

A1e
β1x + A2e

β2x + φ0(x) = H1e
β1x,

A1β1e
β1x + A2β2e

β2x + φ′0(x) = H1β1e
β1x.
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The solution in terms of z is

A1 =
(1− β1) zβ2−β1

e

(
z1−β2 − z1−β2

)
+ (1− β2) z1−β1

(β2 − β1) (z − z) (η + µz − σ2
z)

, (A27)

A2 = − (1− β1) z1−β2

(β2 − β1) (z − z) (η + µz − σ2
z)

,

G1 =
(1− β1) zβ2−β1

e

(
z1−β2 − z1−β2

)

(β2 − β1) (z − z) (η + µz − σ2
z)

,

G2 =
(1− β1) (z1−β2 − z1−β2)

(β2 − β1) (z − z) (η + µz − σ2
z)

,

H1 =
(1− β1)z

β2−β1
e

(
z1−β2 − z1−β2

)
+ (β2 − 1)

(
z1−β1 − z1−β1

)

(β2 − β1) (z − z) (η + µz − σ2
z)

.

In terms of z, the density function of µ∗ is given by N∗f(z) = N∗
z φ(log(z)), where

f(z) =





G1z
β1−1 + G2z

β2−1, for ze < z ≤ z,

A1z
β1−1 + A2z

β2−1 + 1
(z−z)(η+µz−σ2

z)
, for z < z ≤ z,

H1z
β1−1, for z > z.

(A28)

I finally show that assumption (40) ensures
∫∞
ze

zγf(z)dz is finite. It suffices to show that∫∞
z zγf(z)dz is finite. Since f(z) = H1z

β1−1 for z > z,

∫ ∞

z
zγf(z)dz = H1

∫ ∞

z
zβ1+γ−1f(z)dz =

H1

β1 + γ

(
lim

z→∞ zβ1+γ − zβ1+γ
)

. (A29)

Thus, if and only if β1 + γ < 0 is satisfied, limz→∞ zβ1+γ = 0 and the above integral is finite.
By (A16), the condition β1 + γ < 0 is equivalent to assumption (40). Q.E.D.

Proof of Proposition 6: The analysis in Section II.D shows that when cf = 0, for any
output price p the optimal coupon rate b∗ (p) is given by (36). Since cf = 0, it follows from (31)
that the exit threshold is given by

zd(b; p) =
[

ϑλb

(ϑ− γ)(r + η)a(p)

]1/γ

. (A30)

Substituting (36) for b into this expression yields

zd (b∗ (p) ; p) =
[
γ − ϑ

γ
− ϑ(1− α) (1− τ)

γτ

] 1
ϑ

[∫ z

z
zϑζ(dz)

] 1
ϑ

. (A31)

Since this expression is independent of the output price, it is also the equilibrium exit threshold
zo
e given in (43). I now derive the equilibrium output price using the entry condition (42).

Substituting (33), (36), and (43) into (42), one can solve for the unique equilibrium output price
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po given in (44). Finally, the equilibrium entry rate No is obtained from (A8) by replacing p∗

with po and the scaled density fo is obtained from (A28) by replacing ze with zo
e . Q.E.D.

Appendix B. Computation of Stationary Equilibrium

This appendix provides explicit formulas and an algorithm to compute the stationary equi-
librium with endogenous leverage (bo, po, zo

e , N
o, µo) described in Section III.B for the case with

positive fixed cost cf > 0. The algorithm consists of the following steps:

Step 1. Solve for the optimal coupon rate bo and the equilibrium output price po using the
system of two equations (34) and (41). Specifically, rewrite (34) and (41) in an explicit form

τ

r + η

[
1−

∫ z

z

(
z

zd

)ϑ

ζ(dz)

]
=
−ϑ

γ

τb

(r + η)(b + cf )

∫ z

z

(
z

zd

)ϑ

ζ(dz) (B1)

+
1− α

γ(b + cf )
[
A′(zd; p)zd − ϑA(zd; p)

] ∫ z

z

(
z

zd

)ϑ

ζ(dz),

ce =
∫ z

z
A(z; p)ζ(dz) +

bτ

r + η

[
1−

∫ z

z

(
z

zd

)ϑ

ζ(dz)

]
(B2)

−(1− α)A(zd; p)
∫ z

z

(
z

zd

)ϑ

ζ(dz).

Substituting the expressions for zA, zd, and A (z, p) in equations (25), (29), and (22) respectively
into the above two equations yields a system of two nonlinear equations for two unknowns, (b, p) .

Any standard nonlinear equation solver can deliver numerical solutions for (bo, po).

Step 2. Solve for the exit threshold zo
e . Once (bo, po) is obtained, use (29) to compute

zo
e = zd (bo; po) .

Step 3. Solve for the scaled density fo of the stationary distribution µo. The expression for
fo is the same as that given in (A28), but ze must be replaced by zo

e in the support and also in
the coefficients A1, A2, G1, G2, and H1.

Step 4. Solve for the entry rate No. The expression for No is the same as that given in
(A8), but p∗ must be replaced by po.

The expressions for other important equilibrium variables are described as follows:

• Industry output. Use the industry demand (1) to derive

Y (µo, bo; po) = (po)−ε . (B3)
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• Turnover rate. It is defined as the ratio of the entry rate to the mass of incumbents. Since
the mass of incumbents (size of the industry) is given by

Mo =
∫ ∞

zo
e

µo(dz) = No

∫ ∞

zo
e

fo(z)dz, (B4)

the turnover rate No/Mo is given by

No

Mo
=

1∫∞
zo
e

fo(z)dz
. (B5)

• Average industry agency costs. The absolute value is defined as the total industry agency
costs divided by the mass of incumbents

1
Mo

∫ ∞

zo
e

cA(z, bo; po)µo(dz) =
No

Mo

∫ ∞

zo
e

cA(z, bo; po)fo(z)dz. (B6)

The relative value is defined as the percentage of the average industry first-best firm value

1
Mo

∫∞
zo
e

cA(z, bo; po)µo(dz)
1

Mo

∫∞
zo
e

vFB(z, bo; po)µo(dz)
=

∫∞
zo
e

cA(z, bo; po)fo (z) dz∫∞
zo
e

vFB(z, bo; po)fo (z) dz
. (B7)

• Average industry leverage. It is defined as the ratio of the average industry debt value to
the average industry firm value:

1
Mo

∫∞
zo
e

d(z, bo; po)µo(dz)
1

Mo

∫∞
zo
e

v(z, bo; po)µo(dz)
=

∫∞
zo
e

d(z, bo; po)fo (z) dz∫∞
zo
e

v(z, bo; po)fo (z) dz
. (B8)
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Table I. Base Case Parameter Values

Parameter Value
Returns to scale ν 0.40
Depreciation rate δ 0.10
Shock drift µz 0.75%
Shock volatility σz 0.15
Riskless rate r 5.22%
Corporate tax rate τ 0.34
Bankruptcy cost 1− α 0.20
Poisson death η 0.04
Entry cost ce 78.35
Entry distribution z 2.50
Entry distribution z 3.50
Price elasticity ε 0.75
Fixed cost cf 0.00
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Table II. Comparative Statics for Selected Parameter Values. The parameter values
for the base case model are given in Table I. Comparative statics is based on the base case model.
When performing simulations for the entry cost and demand elasticity, I set the fixed cost cf = 5.

Industry Industry Average Turnover Exit Optimal Agency
Output Price Leverage % Rate % Threshold Coupon Cost %

Base case 1.00 1.00 23.09 7.51 1.91 6.66 2.57

µz = 0.5% 0.97 1.04 28.12 7.73 1.89 6.70 3.37
µz = 1.0% 1.03 0.96 17.50 7.29 1.92 6.62 1.80
µz = 1.5% 1.10 0.88 4.46 6.91 1.94 6.55 0.39

σz = 10% 0.97 1.04 39.43 6.04 2.04 6.28 2.76
σz = 15% 1.00 1.00 23.09 7.51 1.91 6.66 2.57
σz = 20% 1.06 0.92 7.04 9.13 1.79 7.18 1.08

z = 3.5 1.00 1.00 23.09 7.51 1.91 6.66 2.57
z = 4.0 1.06 0.92 22.42 7.46 2.03 6.49 2.42
z = 4.5 1.12 0.86 21.68 7.40 2.15 6.30 2.25

α = 95% 1.01 0.998 24.50 8.27 2.02 7.20 2.51
α = 90% 1.006 0.992 24.00 7.98 1.98 7.01 2.54
α = 80% 1.00 1.00 23.09 7.51 1.91 6.66 2.57

τ = 25% 1.04 0.95 20.43 7.12 1.84 5.96 1.74
τ = 34% 1.00 1.00 23.09 7.51 1.91 6.66 2.57
τ = 40% 0.97 1.04 25.00 7.70 1.94 7.08 3.22

cf = 5 0.82 1.31 16.64 9.37 2.15 7.77 1.77
cf = 10 0.72 1.55 13.54 10.83 2.27 8.48 1.30
cf = 12 0.69 1.64 12.68 11.35 2.30 8.76 1.17

ce = 70 0.85 1.25 16.16 9.55 2.16 6.94 1.70
ce = 85 0.80 1.35 16.97 9.24 2.13 8.23 1.82
ce = 100 0.76 1.44 17.61 9.01 2.11 9.52 1.92

ε = 0.60 0.85 1.31 16.64 9.37 2.15 7.66 1.77
ε = 0.75 0.82 1.31 16.64 9.37 2.15 7.66 1.77
ε = 0.90 0.79 1.31 16.64 9.37 2.15 7.66 1.77

η = 0.03 1.07 0.91 10.04 6.16 1.89 5.99 1.12
η = 0.04 1.00 1.00 23.09 7.51 1.91 6.66 2.57
η = 0.05 0.94 1.08 31.35 8.80 1.92 7.33 3.46
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value is equal to the entry cost.
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Figure 3: The effect of an increase in growth of technology on the scaled density of
firms. The solid line is for the base case model. The dashed line is for µz = 1.5%. All other
parameter values are given in Table I.
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equilibrium stationary distribution. The parameter values are given in Table I.
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Notes

1Early studies that relate the cross-sectional behavior of leverage to industry characteristics include Bradley,

Jarrell, and Kim (1984) and Titman and Wessels (1988), among others.

2See Caves (1998) for a survey of the empirical literature on firm turnover. See Jovanovic (1982), Hopenhayn

(1992), and Ericson and Pakes (1995) for important theoretical models of industry dynamics. All these papers

assume that firms are all-equity financed.

3See Harris and Raviv (1991) for a survey of the theory of capital structure. They point out that “with regard

to further theoretical work, it appears that models relating to products and inputs are underexplored, while the

asymmetric information approach has reached the point of diminishing returns” (pp. 299-300).

4I do not consider conflicts between shareholders and managers. Morellec (2004) examines these conflicts in a

contingent claims framework.

5Maksimovic and Zechner (1991) present a three-period industry equilibrium model in which firms can adopt

different technologies. They do not study entry and exit decisions. See Williams (1995) for an extension in a

four-period model.

6I abstract from personal taxes in the paper.

7This assumption could be relaxed by allowing debt to be reorganized through, for example, debt exchange

offers as in Mella-Barral (1995) and Lambrecht (2001). This kind of analysis is, however, beyond the scope of this

paper.

8The entry (exit) rate is defined as the number of firms entering (going bankrupt and exiting) the industry

at each time. The same term used in some empirical studies (e.g. Dunne, Roberts, and Samuelson (1988))

corresponds to the turnover rate defined later.

9The explicit expressions for the equilibrium are given in Appendix A.

10The same assumption is also made in Dixit and Pindyck (1994, p.275).

11For a wide range of reasonable parameter values, the Leland-style single-firm contingent claims model typically

predicts a much higher leverage ratio than that observed in practice. However, dynamic capital structure models

such as Goldstein, Ju, and Leland (2001), Ju et al. (2003), and Hackbarth, Miao, and Morellec (2004) can predict

lower leverage ratios. A duopoly model in which firms strategically set their leverage in the run-up to a war of

attrition may also generate a low leverage level for at least one of the two firms.

12Maksimovic and Zechner (1991) attribute the variation of capital structures to the adoption of different

technologies within the industry.

13Average industry firm value is 395.57 in the present model. This number is not reported in Table II.

14Simulations (not reported in Table 2) confirm this positive correlation. The market-to-book ratio is a com-

monly used proxy for growth opportunities.

15As a robustness check, I redo all previous simulations for a number of positive values of the entry cost. I find

the results do not change qualitatively.
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16This result does not depend on the choice of cf = 5 since it is verified by simulations for many other values

of cf .

17This rate is given by 3.16, 3.51, and 3.80 for η equal to 0.03, 0.04, and 0.05, respectively.

18Here I use a probabilistic proof method similar to Mella-Barral (1995) and Morellec (2004). An alternative

standard method is to use ODEs (e.g., Leland (1994)).
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