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Abstract: Active power filters (APFs) are used to mitigate the harmonics generated by nonlinear
loads in distribution networks. Therefore, due to the increase of nonlinear loads in power systems,
it is necessary to reduce current harmonics. One typical method is utilizing Shunt Active Power
Filters (SAPFs). This paper proposes an outstanding controller to improve the performance of the
three-phase 25-kVA SAPF. This controller can reduce the current total harmonic distortion (THD),
and is called fractional order PI-fractional order PD (FOPI-FOPD) cascade controller. In this study,
another qualified controller was applied, called multistage fractional order PID controller, to show the
superiority of the FOPI-FOPD cascade controller to the multistage FOPID controller. Both controllers
were designed based on a non-dominated sorting genetic algorithm (NSGA-II). The obtained results
demonstrate that the steady-state response and transient characteristics achieved by the FO (PI + PD)
cascade controller are superior to the ones obtained by the multistage FOPID controller. The proposed
controller was able to significantly reduce the source current THD to less than 2%, which is about a
52% reduction compared to the previous work in the introduction. Finally, the studied SAPF system
with the proposed cascade controller was developed in the hardware-In-the Loop (HiL) simulation
for real-time examinations.

Keywords: three-phase shunt active power filter; repetitive controller; fractional-order (PI + PD)
cascade controller; multistage fractional-order PID Controller

1. Introduction

At present, developments in power electronic technology have led to a major increase
in the usage of power electronic converters in the power grid while also increasing the use
of electrical energy. However, power electronic converters generate reactive power and
harmonics, which pollute the power system [1]. Therefore, the optimal compensation of
nonlinear loads’ harmonics is an important issue in power networks. Current harmonics
boost losses, destroy the quality of the voltage sine waveform, cause metering devices to
malfunction, and may lead to resonances and interferences [2]. As a result, distortions
in current and voltage sine waveforms are not only a source of technical problems, but
also have economic effects [3]. There are several popular devices such as active power
filters (APFs), which may be of a series, shunt or hybrid type [4–6], static compensator, and
unified power quality controller. These utilities are widely used to decrease power quality
problems [7] that affect the distribution side [8].

From the viewpoint of circuit topology, Reference [9] has a more comprehensive
taxonomy of available APFs, which are divided into parallel/series/hybrid type and other
types. The active power filter is an effective inhibition device of active compensation
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harmonics that can efficiently omit harmonic contamination and improve the power factor
compared with the classic passive filter [10]. Although series and/or shunt APFs are
generally used to eliminate power quality problems, shunt APFs are used more often
than series APFs due to their excellent performance [11,12]. SAPF is an especially efficient
solution for power quality issues [13], and can reduce harmonic pollution [14–19] and
compensate reactive power generated by linear/nonlinear loads in distribution networks.
Therefore, SAPFs play an increasingly essential role in power distribution and delivery [20].
These filters are connected in parallel with the nonlinear loads to remove undesired current
harmonics. A traditional PI controller or other control techniques, combined with the
repetitive controller, can modify the dynamic response time of the repetitive controller [21].

In most cases, some characteristics should be complied with, such as low total har-
monic distortion (THD) for the compensated currents and a fast transient response. To
ensure an excellent design, it is believed that compromises must be found between some dif-
ferent necessities. Therefore, applying a multi-objective optimization approach to achieve a
set of desirable objective functions based on the APFs’ specifications is essential. SAPFs
equipped with repetitive controllers promise an excellent compensation at steady-state
with a slow, transient response [22]. In Reference [23], a traditional PI controller and FOPI
controller were used to promote the performance of a 25-kVA parallel active filter based
on the NSGA-II optimization approach. The optimization results proved that the obtained
results using the FOPI controller were more acceptable than the achieved results by the tra-
ditional PI controller. The minimum obtained value of THD was about 3.8% in this article.
In Reference [24], research was carried out looking at the superiority of FOPID controller
compared to the integer-order PID controller. In fact, it is believed that the fractional-order
PID/PI controller has a better performance than the integer-order PID/PI controller. In
a different work, researchers presented the multistage PID controller for the automatic
generation control of power systems. Hence, we were inspired by the multistage PID
controller to devise a novel method, called a multistage fractional-order PID controller [25].
In the present research, a novel optimal fractional-order controller is proposed to achieve a
better performance from the 25-kVA parallel active power filter, called a fractional-order
(PI + PD) cascade controller, which was recently presented in Reference [26]. In addition,
another fractional-order controller is designed for comparison with our proposed method.
To the best of our knowledge, this controller was applied for the first time in this case study.
It is called a multistage fractional-order PID controller.

As mentioned before, two different controllers were designed to optimize the perfor-
mance of the shunt active power filter with the high-performance repetitive controller called
the fractional order PI-fractional order PD cascade controller and multistage fractional-
order PID controller. These controllers were designed based on the NSGA-II optimization
method. This optimization approach is still a powerful multi-objective optimization tech-
nique to minimize the objective functions that the other researchers are using in several
fields [27–39]. According to this optimization method, there are two result categories:
one of them is related to the variables selected to design each controller, called the Pareto
Optimal Set (POS), and another set of results is concerned with two objective functions,
called the Pareto Optimal Front (POF). It is mandatory to choose an appropriate range for
each variable in order to reach an excellent POF.

An acceptable performance means achieving both fast transient/settling time to ob-
tain an appropriate transient response and a low THD to obtain a proper steady-state
response [22,23]. It should be mentioned that transient time and THD are taken as two
objective functions that must be simultaneously minimized, as well as settling time and
THD. In fact, there is a compromise between two objective functions: the smaller the value
of one, the higher the value of the other, and vice versa. In this research, first, the proposed
controller is applied to acquire some transient/settling time and THDs, which are the
same POF; therefore, the obtained results show the efficiency of this controller. Secondly, a
multistage FOPID controller is used; different results are obtained for this, which include
transient/settling time and THDs similar to the proposed controller. Eventually, the ob-
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tained results from both controllers are compared to show the better performance of the
proposed method for a three-phase shunt active power filter. The key contributions of the
present study are summarized as follows:

1. Fractional controller is applied due to its having more tunable parameters, which
allow for more flexibility to achieve a high accuracy.

2. The cascade controller is able to rapidly reject disturbance before it leaks to the other
parts of the system.

3. Multi-objective NSGA-II algorithm offers optimal solutions to multidimensional
objective functions, which minimize the THD.

The rest of this paper is structured as follows: Section 2 outlines the system under
study, which is a three-phase shunt active power filter with a high-performance repetitive
controller. In Section 3, the proposed controllers are implemented. Section 4 describes
the NSGA-II optimization method, objective functions, case studies, and design parame-
ters. The real-time results are discussed in Section 5, and, finally, Section 6 summarizes
the conclusions.

2. Shunt Active Power Filter and Repetitive Controller

Some devices, such as passive, active, or hybrid power filters and operation strategies,
have been developed for the local correction of power-quality problems [40–43]. Since the
performance of SAPFs is more dependent on the current control method, many current-
control schemes have been proposed in the research [44–46]. However, in this research, a
25-kVA parallel active power Filter (Figure 1) with a high-performance repetitive controller
(Figure 2) is optimized [22].
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As seen in Figure 1, with these specifications Vs = 380 v, fs = 50 Hz and Is = 80 A [22],
the functioning idea is based upon the injection of a compensating current into the net-
work, which provides the basic reactive component and the harmonic currents due to
the distorting load operation. Hence, a reference waveform for the current to be injected
in the alternative current (AC) network should be provided by the control unit, so that
the inverter is required to produce a current that is as close as possible to the reference.
In Figure 1, LS is the equivalent supply inductance, as seen by the bus where the active
filter and the distorting load are connected; LL is the equivalent inductance of the line
supplying the load, while LF is the inductance of the series inductor filter [47]. In 1981, the
repetitive control notion was initially developed [48–50]. The primary motivations and
representative examples include the rejection of periodic disturbances in a power supply
control application [48,50] and the tracking of periodic reference inputs in a motion control
application [49,50]. The repetitive controller is mainly used in continuous processes to
track or reject periodic exogenous signals [50]. Although this controller has a high tracking
operation, its operation is inherently slow. This controller is inserted in series with a used
controller, which is a PI controller in this figure, as shown in Figure 2, and a discrete
Fourier transform (DFT) is used. This DFT has a frequency response that almost equals the
frequency response used to track the harmonic reference (Figure 2) [51]. Equation (1) gives
us the discrete transfer function of the mentioned DFT.

FDFT(Z) =
2
N

N−1

∑
i=0

(
∑

k∈Nh

cos
[

2π

N
h(i + Na)

])
Z−i (1)

Here, N is the number of the coefficients; Nh is the set of selected harmonic frequencies,
and Na is the number of leading steps that are essential to guarantee the stability of the
system. In fact, (1) can be considered a finite-impulse response (FIR) band pass filter of
N taps with a unity gain at all selected harmonics h, and is also called a discrete cosine
transform (DCT) filter [51].

3. Fractional Controllers
3.1. Fractional-Order PID Controller (FOPID Controller)

The traditional PID controllers are basic, robust, impressive, and easily implementable
control techniques [25]. The transfer function of the PID controller is as follows:

TPID(s) = Kp + KiS−1 + KdS (2)

In recent years, one of the best possibilities for improving the quality and robustness
of PID controllers is to apply fractional-order controllers with non-integer derivation and
integration parts [52,53]. The PIαDβ controller generalizes the PID controller including an
integrator of order α and a differentiator of order β.

The transfer function of the FOPID controller is acquired using the Laplace transfor-
mation, as given below:

TFOPID(s) = Kp + KiS−α + KdSβ (3)

To design a FOPID controller, three parameters (Kp, Ki, Kd) and two non-integer
orders (α, β) should be optimally determined.

3.2. Fractional-Order (PI + PD) Cascade Controller

As far as we know, it is difficult to achieve an excellent performance in terms of
transient/steady-state response using a conventional PID controller. In this study, we
applied a FOPI-FOPD cascade controller and a multistage FOPID controller instead of
the traditional PI controller, as seen in Figure 2. Therefore, the FO (PI + PD) cascade
controller is our proposed controller. It includes two controllers, which were connected in
cascade, as shown in Figure 3. One of them is the FOPI controller and the other one is the
FOPD controller. When the FOPI receives the ACE signal, the fractional-order PI controller
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produces a signal, which also operates as the input of another controller. The output of the
FO (PI + PD) cascade controller is the reference power setting or control input.
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∆Pre f for the electric power systems to be controlled, as mathematically given by
Equation (4):

∆Pre f = ACE×
(
Kp1 + Kis−∝)× (Kp2 + Kdsβ

)
(4)

For ∝= 1 and β = 1 the FOPI-FOPD cascade controller is transformed to a simpler
form of conventional PI − PD cascade controller, i.e., Kp1, Ki, Kp2, Kd, α, and β are six
variable parameters that must be optimized.

Three objectives contribute to the design of the FO (PI + PD) cascade controller. First
of all, it should be economical, straightforward, and easy to apply and develop. As a
result, its operation is comparable to that of a PID controller. Second, PI and PD controllers
are cascaded, i.e., PI − PD, to combine the benefits of their distinct specifications and
capabilities. On the other hand, a cascade controller has more adjustable parameters than a
non-cascade controller, and it is obvious that if there are more adjustable parameters, the
controller will provide a better system performance. Furthermore, the cascade controller is
attractive because it can rapidly reject disturbances, before they reach the rest of the system.
To comply with the third goal, a non-integer integrator/derivative order is considered,
i.e., FOPI-FOPD, to enhance its freedom to design and promote PI – PD cascade controller
performance [26].

3.3. Multistage Fractional-Order PID Controller

As stated before, it is difficult to obtain an excellent performance when applying a
classic PID controller. According to Equation (2), increasing the integral gain to eliminate
the steady-state error worsens the system’s transient response. The existence of integral
gain affects the speed and stability of the system during transient conditions, which leads
to decreases in these parameters. To improve the transient response, the integrator must
be disabled during the transient part [25]. A two-stage FOPD-FOPI controller with a first-
stage fractional-order PD controller and a second-stage fractional-order PI controller can
accomplish this. Sensors generate noise in an automated control system. This noise usually
has a high frequency. Sometimes, the tie-line telemetry system generates noise. Due to this
noise, if the derivative term is used, the plant input becomes excessively big. As a result, it
can be removed by applying a first-order derivative filter that reduces the high-frequency
noise. Figure 4 depicts the structure of the presented multistage FOPID controller. The
transfer function of the multistage FOPID controller is represented by:

Tmultistage−FOPID(s) =
[

Kp + Kd

[
N

N + Sβ

]]
×
[

1 + Kpp +
Ki
Sα

]
(5)

In the controller scheme shown in Figure 4, Kp, Kd, β, Ki, α, Kpp and N are proportional,
derivative, non-integer derivative, integral, non-integer integral, proportional gain, and
filter coefficient, respectively. The input of the controller is Area Control Error (ACE), as
well as output of the controller is (∆F), which produces a control signal through these
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two stages. Afterward, this enters the power system. It is worth noting that the frequency
deviation (∆F) is the ACE in the case of a single-area system.
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4. NSGA-II Optimization Method and Objective Functions
4.1. NSGA-II: An Overview

NSGA-II is a popular multi-objective-optimization algorithm, which has three particu-
lar specifications: a speedy non-dominated sorting approach, prompt crowded distance
estimate method and simple crowded comparison operator [54]. Typically, NSGA-II is
described in detail as follows:

1. Population initialization:

The population must be initialized based upon the range of the problem and
its limitations.

2. Non-dominated sorting process based upon non-domination criteria of the population
that was initialized.

3. Crowding distance:

When the sorting is complete, the value of the crowding distance is determined
in advance. The individuals in the population are chosen based on crowding distance
and rating.

4. Selection:

Individuals are selected by applying a binary contest election with a crowded-
comparison operator.

5. Genetic Operators:

Actual coded GA is achieved by applying simulated polynomial mutation and bi-
nary crossover.

6. Recombination and selection:

Population of children and population of the current generation are combined. The
next generation is set by election. The new generation is filled by each front until the size
of the population exceeds the current population size [55]. Figure 5 shows the NSGA-
II procedure.

4.2. Objective Functions

The purpose of this work is to minimize the transient/steady-state response as two
objective functions by the proposed controller based on the NSGA-II optimization technique.
It offers optimal solutions to multidimensional objective functions [23]. Three objective
functions have been chosen, which must be minimized in two case studies, as follows:

1. Steady-State Response (THD (up to the 50th harmonic) of the source current)

Steady-State Response: In electronics, steady-state is an equilibrium condition of a
circuit that occurs when the effects of transients are no longer important. Steady-State
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determination is an important issue because many design features of electronic systems are
given in terms of their steady-state characteristics. The periodic steady-state solution is also
a prerequisite for small-signal dynamic modeling. The steady-state analysis is, therefore,
an essential component of the design process.

Total harmonic distortion (THD) is a widely occupied concept when defining the level
of harmonic content in alternating signals, which is measured in percentages.

2. Transient Response (Transient/Settling Time): In electrical engineering, transient
response is the response of a system to changes from the equilibrium. The impulse
response and step response are transient responses to a specific input (an impulse and
a step, respectively).

Rise time or transient time (tr) refers to the time required for a signal to alter from a
specified low value to a specified high value. Usually, these values are 10% and 90% of the
step height. Settling time (ts) is the time needed for a response to become steady. This is
defined as the time needed by the response to reach and remain within the determined
range of from 2% to 5% of its final value. Therefore, the following two case studies were
considered to be synchronously minimized:

Case study 1: THD (up to the 50th harmonic) and Transient (Rise) Time must be
synchronously minimized.

Case study 2: THD (up to the 50th harmonic) and Settling Time must be synchronously
minimized.

The set of designing parameters used to minimize the objective functions is presented
in the next section.
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4.3. Design Parameters

DC bus voltage (Vdc) and the FO (PI + PD) cascade controller parameters, which are
Kp1, Ki, Kp2, Kd, α and β, in Figure 3, as well as Vdc and multistage FOPID controller param-
eters, which are Kp, Kd, β, Ki, α, Kpp and N in Figure 4, are determined based on the NSGA-II
optimization technique. Vdc affects the transient response and the steady-state response in
the shunt active power filter. In fact, it acts an important role to decrease current harmonics,
i.e., THD. Hence, it was chosen as a design variable. In this optimization approach, the
mentioned parameters are experimentally limited. These limitations dramatically reduce
the computational time [41]. Therefore, it is said that Kp1, Ki, Kp2, Kd, α, β, Vdc are POS
members for the FO (PI + PD) controller, and the POS for multistage FOPID controller has
the following parameters:

Kp, Ki, Kpp, N, Kd, α, β, Vdc. As mentioned before, the different obtained values
from POS members are called POF, and concern the values of the objective functions.

The general multi-objective optimization problem is considered as the following, with
x as the design:

Minimize

g = f (x) = ( f1(x), . . . fi(x), . . . fk(x))

Subject To :

x = (x1, x2, . . . xn) ∈ X

(6)

where k is the number of objective functions, n is the number of inequality constraints, x is
a vector of design variables, and f (x) is a vector of the objective functions to be minimized.
Figure 6 depicts a Pareto front block diagram.
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Therefore, in this research, for the first case study, the goal is as follows:

Minimize

g = f (x) = (THD(up to the 50th harmonic), tr)

Subject To :

x =
(
Kp1, Ki, Kp2, Kd, α, β, Vdc

)
∈ X f or FO (PI + PD)controller,

x =
(
Kp, Ki, Kpp, N, Kd, α, β, Vdc

)
∈ X f or multistage FOPID controller

(7)



Designs 2022, 6, 32 9 of 22

For the second case study, the goal is as follows:

Minimize

g = f (x) = (THD(up to the 50th harmonic), ts)

Subject To :

x =
(
Kp1, Ki, Kp2, Kd, α, β, Vdc

)
∈ X f or FO (PI + PD)controller,

x =
(
Kp, Ki, Kpp, N, Kd, α, β, Vdc

)
∈ X f or multistage FOPID controller

(8)

5. Real-Time Simulation Results

In this research, the 25-kVA parallel APF in Figure was developed in the hardware-
In-the Loop (HiL) to verify the efficiency of the proposed control scheme in the real-time
framework. The HiL set-up based on the OPAL-RT simulator was adopted to consider the
effects of the control errors and computation delays on the SAPF system (see Figure 7) [57].
The compensator was a three-phase PWM inverter with a switching frequency of 10 kHz.
A 3.3 us dead time was also considered for the inverter’s switches [22]. The NSGA-II
algorithm in the aforementioned case studies was implemented for 20 generations. Each
generation includes 30 individuals. For all the sections of the case studies, the remaining
parameters for the repetitive controller were: N = 200, Na = 3, and k f = 1 [51]. For the FO
(PI + PD) cascade controller and multistage FOPID controller, the Crone approximation
with order 5 and frequency range equals [0.01; 1000] rad/s has been considered. According
to the above description, all tables and figures related to POF show the optimization results
after 20 generations based on the NSGA-II multi-objective optimization method.
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5.1. Case Study 1: THD (up to the 50th Harmonic) and Transient (Rise) Time Must Synchronously
Be Minimized

Transient time and settling time can determine the transient response. In this case
optimization, the rise time is the quantity that must be optimized with the THD. This time
is defined as the time gap between the beginning of the compensation and the time when
the THD starts to be lower than 5% [22]. Here, THD (up to the 50th harmonic) of the source
current and rise time were synchronously minimized. The system outcomes achieved using
an FO (PI + PD) cascade controller and multistage FOPID controller are as follows.

5.1.1. First Section of the First Case Study: Applying FO (PI + PD) Cascade Controller

In this work, the POS for FO (PI + PD) cascade controller included (Kp1, Ki, Kp2, Kd, α,
β) and Vdc. The obtained results from POS members are known as POF; the POF is related
to THD values and rise time. All obtained results are optimal, but the designer can pick
one of them based on any other issues posed by the technical, economical, or managerial
benefits requirements. The THD range and transient time for the FO (PI + PD) cascade
controller are important from the technical viewpoint. According to Table 1, the lowest
THD and the highest rise time are related to row no. 6; row no. 9 is concerned with the
highest THD and the lowest rise time, as shown in Figure 8:

Table 1. POS and POF for FO (PI + PD) cascade controller.

No Kp1 Ki Vdc Kp2 Kd α β THD (%) tr(s)

1 2.4154 10.4602 815.0000 3.0000 0.4257 0.7481 0.3224 1.9673 0.0369
2 2.0321 10.4680 815.0000 2.5807 0.4287 0.7496 0.3224 1.9048 0.0387
3 1.9759 12.4680 815.0000 3.0000 0.4257 0.7481 0.3224 2.0416 0.0368
4 2.2689 12.4055 815.0000 3.0000 0.4287 0.7481 0.3224 2.0654 0.0367
5 1.9759 12.4680 815.0000 2.5807 0.4287 0.7481 0.3216 1.8360 0.0388
6 2.0321 12.4679 814.9904 2.5807 0.4287 0.7481 0.3224 1.8068 0.0388
7 2.2689 12.4055 814.9904 2.5807 0.4287 0.7481 0.3224 1.9122 0.0387
8 2.4154 10.4602 815.0000 2.9902 0.4703 0.7481 0.3302 2.1114 0.0366
9 2.2970 12.4680 814.6924 3.0000 0.4257 0.7481 0.3224 2.1513 0.0366

10 2.4154 10.4602 814.9994 2.9902 0.4257 0.7481 0.3224 2.1024 0.0366
11 2.4154 10.4602 815.0000 2.9207 0.4287 0.7481 0.3224 1.9616 0.0370
12 2.4154 10.4602 815.0000 2.5807 0.4287 0.7480 0.3212 1.9345 0.0385
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The compensated source current (Figure 9) and THD (Figure 10) diagrams are related
to row no. 6, also Is (Figure 11) and THD (Figure 12) diagrams are associated with row
no. 9 as below:
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Figure 10 (row no. 6) and Figure 12 (row no. 9) show the variations in THD using the
FO (PI + PD) cascade controller. By looking at these two figures, we can see that the value
of THD in Figure 10 is lower than the THD value in Figure 12. Additionally, this claim is
valid for subsequent sections with similar conditions.
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5.1.2. Second Section of the First Case Study: Applying Multistage FOPID Controller

According to Table 2, (Kp, Ki, Vdc, Kpp, N, Kd, α, β) are members of POS. THD and tr
are concerned with POF. In the case of variables for the multistage FOPID controller and
Vdc has already been discussed. This table shows that row no. 2 is related to the lowest
THD and the highest rise time; row no. 7 is associated with the highest THD and the lowest
rise time, as shown in Figure 13.

Table 2. POS and POF for multistage FOPID controller.

No Kp Ki Vdc Kpp N Kd α β THD (%) tr(s)

1 2.5400 12.4261 719.0607 11.2424 1.7693 0.9098 0.9000 0.0287 2.0274 0.0386
2 1.8393 10.7355 573.2281 11.7506 1.6734 0.1000 0.9408 0.0904 1.9219 0.0393
3 2.6000 13.2472 601.7378 11.7506 1.6734 0.6063 0.9041 0.0287 2.0992 0.0370
4 2.6000 10.0000 812.8484 11.7428 1.0054 0.2728 0.9683 0.0760 2.0621 0.0386
5 2.5315 13.8570 812.8484 11.7424 1.7693 0.2728 0.9683 0.0535 1.9946 0.0388
6 2.4969 13.8570 812.8484 11.6879 1.7547 0.9098 0.9683 0.0287 1.9299 0.0389
7 2.5764 11.1837 529.0360 11.3453 1.6186 0.4805 0.9335 0.0801 2.8242 0.0369
8 2.5764 11.5726 686.4316 11.9324 1.5213 0.6709 0.9335 0.0960 2.2386 0.0369
9 2.5764 11.5745 686.4515 11.9324 1.5213 0.6709 0.9336 0.0967 2.1409 0.0369

10 2.5764 11.5764 686.4515 11.9324 1.5213 0.6709 0.9336 0.0967 2.2158 0.0369
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Is (Figure 14) and THD (Figure 15) diagrams are concerned with row no. 2, also the
compensated source current (Figure 16) and THD (Figure 17) diagrams are related to row
no. 7 as follows:
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Figure 15 (row no. 2) and Figure 17 (row no. 7) illustrate the changes in source current
THD using a multistage FOPID controller. Therefore, by comparing Figures 15 and 17, it is
obvious that the THD value in Figure 17 is higher than the THD value in Figure 15.

5.1.3. Third Section of the First Case Study: Comparison between FO (PI + PD) Cascade
Controller and Multistage FOPID Controller

In this section, the real-time results of two controllers are compared with each other.
Figure 18 depicts a comparison between the obtained POF values of FO (PI + PD) cascade
controller and the acquired POF values of a multistage FOPID controller. This figure proves
that the values obtained by the FO (PI + PD) cascade controller dominate all the values
using a multistage FOPID controller. Figure 19, which has two parts, shows a comparison
between the values of current THD that were obtained using these two controllers. The
magnified part precisely demonstrates that the FO (PI + PD) cascade controller has better
behavior than the multistage FOPID controller. Additionally, this figure shows that the
THD (around 1.8068%) related to our proposed controller reached steady-state earlier than
the THD (around 1.9219%), which is related to the other controller.
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Figure 18. POF of FO (PI + PD) cascade and multistage FOPID controller—a comparison.
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In the following, it is worth noting that Figure 20 shows that the THD (around 2.1513%),
which is related to row no. 9 in Table 1, is much lower than the THD (around 2.8242%),
which is seen in row no. 7 in Table 2. As a result, this figure also confirms the superiority
of the FO (PI +PD) cascade controller compared to the multistage FOPID controller in
this research.
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5.2. Case Study 2: THD (up to the 50th Harmonic) and Settling Time Must Synchronously
Be Minimized

In the second case study, the THD (up to the 50th harmonic) of the source current
and settling time were chosen to be minimized at the same time. Therefore, a low THD is
necessary, and the transient response of the compensator is momentous, especially when
quick and frequentative variations occur in the load [22]. In this part, the settling time was
computed based on the time needed for the source current THD to reach and stay inside
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a ±2% error band near its steady-state value. The system results that were obtained by
means of FO (PI + PD) cascade controller and multistage FOPID controller are as follows.

5.2.1. First Section of the Second Case Study: Applying FO (PI + PD) Cascade Controller

According to Table 3, as stated, (Kp1, Ki, Kp2, Kd, α, β) and Vdc are related to POS. THD
and ts are associated with POF. This table indicates that the lowest THD and the highest
settling time are related to row no. 3. Row no. 7 is concerned with the highest THD and the
lowest settling time, as shown in Figure 21.

Table 3. POS and POF for FO (PI + PD) cascade controller.

NO Kp1 Ki Vdc Kp2 Kd α β THD (%) ts(s)

1 1.2000 13.9922 816.6667 2.1886 1.2999 0.8416 0.3667 1.8429 0.1130
2 1.2000 13.9922 816.6667 2.1618 0.0100 0.7333 0.6349 1.8836 0.1013
3 2.4667 13.4800 816.6667 2.2449 1.2999 0.8416 0.3667 1.7717 0.1197
4 3.0667 14.2904 552.2070 3.0000 1.3000 0.6000 0.3667 2.7445 0.0643
5 2.6000 10.0000 616.6667 2.1667 0.8700 0.6000 0.1000 2.0936 0.0720
6 2.6000 10.0000 616.6667 2.1618 0.8700 0.9999 0.1000 2.0609 0.0763
7 2.6000 10.0000 500.0000 2.1618 1.3000 0.6002 0.1000 2.7926 0.0590
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Figure 21. POF for FO (PI + PD) cascade controller.

For a fair comparison in the third section, “row no. 1” should be selected as an
example, instead of “row no. 3”, because the POF values related to the first row can
thoroughly dominate the values of the corresponding POF in the next table. Therefore, the
compensated source current (Figure 22) and THD (Figure 23) diagrams are associated with
row no. 1, also Is (Figure 24) and THD (Figure 25) diagrams are concerned with row no. 7,
as shown below:
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Figure 22. Compensated source current for row no. 1 (THD = 1.8429) using FO (PI + PD) cascade
controller.
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Figure 23. Row no. 1 (with THD = 1.8429 at steady-state) using FO (PI + PD) cascade controller.
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Figure 24. Compensated source current for row no. 7 (highest THD) using FO (PI + PD) cascade
controller.

Designs 2022, 6, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 23. Row no. 1 (with THD = 1.8429 at steady-state) using FO (PI + PD) cascade controller. 

 
Figure 24. Compensated source current for row no. 7 (highest THD) using FO (PI + PD) cascade 
controller. 

 

Figure 25. Row no. 7 (with the highest THD at steady-state) using FO (PI + PD) cascade controller. 

Based on the above-mentioned results, we can recognize that Figure 25, which has a 
higher THD value, reached steady-state earlier than Figure 23. In other words, Figure 25 
has a lower settling time than Figure 23. 

5.2.2. Second Section of the Second Case Study: Applying Multistage FOPID Controller 
According to Table 4, as previously mentioned, (Kp, Ki, Vdc, Kpp, N, Kd, α, β) are 

members of POS. THD and 𝑡  are related to POF. This table shows that the lowest THD 
and the highest settling time are shown in row no. 1. The highest THD and the lowest 
settling time are shown in row no. 3, as seen in Figure 26: 

Table 4. POS and POF for multistage FOPID controller. 

NO Kp Ki Vdc Kpp N Kd α β THD (%) 𝒕𝒔 (s) 
1 2.5434 11.0508 794.7464 11.6264 1.3662 0.8016 0.9822 0.0984 1.8948 0.1180 
2 2.5432 11.8920 763.7147 11.9952 1.2958 0.8016 0.9399 0.0321 2.1301 0.0829 
3 2.4183 11.7547 490.0000 11.9461 0.1583 1.0000 0.9169 0.0886 2.9171 0.0597 
4 2.1557 11.8764 763.7147 11.2523 0.2918 0.4703 0.9822 0.0984 1.9191 0.1100 
5 2.1426 11.8998 763.7147 11.2523 0.2754 0.4703 0.9688 0.0984 1.9363 0.1065 
6 2.1426 11.8920 763.7147 11.2523 0.2918 0.8016 0.9688 0.0666 1.9108 0.1153 
7 2.3213 10.6331 547.4531 11.0189 1.2924 0.2266 0.9267 0.0921 2.2803 0.0762 

TH
D

 (%
) =

 1
.8

42
9 

Figure 25. Row no. 7 (with the highest THD at steady-state) using FO (PI + PD) cascade controller.

Figure 23 (row no. 1) and Figure 25 (row no. 7) show the changes in THD using the
FO (PI + PD) cascade controller.

Based on the above-mentioned results, we can recognize that Figure 25, which has a
higher THD value, reached steady-state earlier than Figure 23. In other words, Figure 25
has a lower settling time than Figure 23.

5.2.2. Second Section of the Second Case Study: Applying Multistage FOPID Controller

According to Table 4, as previously mentioned, (Kp, Ki, Vdc, Kpp, N, Kd, α, β) are
members of POS. THD and ts are related to POF. This table shows that the lowest THD and
the highest settling time are shown in row no. 1. The highest THD and the lowest settling
time are shown in row no. 3, as seen in Figure 26:
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Table 4. POS and POF for multistage FOPID controller.

NO Kp Ki Vdc Kpp N Kd α β THD (%) ts(s)

1 2.5434 11.0508 794.7464 11.6264 1.3662 0.8016 0.9822 0.0984 1.8948 0.1180
2 2.5432 11.8920 763.7147 11.9952 1.2958 0.8016 0.9399 0.0321 2.1301 0.0829
3 2.4183 11.7547 490.0000 11.9461 0.1583 1.0000 0.9169 0.0886 2.9171 0.0597
4 2.1557 11.8764 763.7147 11.2523 0.2918 0.4703 0.9822 0.0984 1.9191 0.1100
5 2.1426 11.8998 763.7147 11.2523 0.2754 0.4703 0.9688 0.0984 1.9363 0.1065
6 2.1426 11.8920 763.7147 11.2523 0.2918 0.8016 0.9688 0.0666 1.9108 0.1153
7 2.3213 10.6331 547.4531 11.0189 1.2924 0.2266 0.9267 0.0921 2.2803 0.0762
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Figure 26. POF for multistage FOPID controller.

Is (Figure 27) and THD (Figure 28) diagrams are related to row no. 1, also Is (Figure 29)
and THD (Figure 30) diagrams are associated with row no. 3, as follows:
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controller.
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Figure 28. Row no. 1 (with the lowest THD at steady-state) using multistage FOPID controller.
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Figure 30. Row no. 3 (with the highest THD at steady-state) using multistage FOPID controller.

Figure 28 (row no. 1) and Figure 30 (row no. 3) indicate the variations in THD using a
multistage FOPID controller. As in the two aforementioned figures, the difference between
the values of THD and settling time is quite explicit.

5.2.3. Third Section of the Second Case Study: Comparison between FO (PI + PD) Cascade
Controller and Multistage FOPID Controller

In this section, Figure 31 shows a comparison between Figures 21 and 26. As discussed
earlier, Figure 21 is related to POF values, which were obtained using FO (PI + PD) cascade
controller, and Figure 26 is concerned with POF that was achieved using the multistage
FOPID controller. This figure confirms that the values acquired using the FO (PI + PD) cas-
cade controller dominate the values by means of the multistage FOPID controller. Figure 32
shows a comparison between the THD values obtained by the mentioned controllers. The
magnified part of this figure affirms that the multistage FOPID controller was dominated
by the proposed controller. Moreover, this figure demonstrates that the THD (around
1.8429%), which is associated with the FO (PI + PD) controller, reached steady-state sooner
than the THD (around 1.8948%) related to the multistage FOPID controller.

Finally, Figure 33 demonstrates that the THD (around 2.7926%), which is related to
row no. 7 in Table 3, is lower than the THD (around 2.9171%), which is seen in row no. 3 in
Table 4. Hence, this figure also affirms that the performance of the proposed controller is
better than the multistage FOPID controller in this research.
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5.3. Summary

In this section, this work and the obtained results are stated. The steps were as follows:

• We designed two different controllers to improve the performance of a shunt active
power filter based on the NSGA-II optimization approach.

• The mentioned controllers were the FO (PI + PD) cascade controller and multistage
FOPID controller.

• For the first time, we devised a multistage FOPID controller using the inspired multi-
stage PID.

• FO (PI + PD) cascade controller was our proposed controller, which was compared
with the other controller.
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• The obtained results demonstrate that the first controller is superior to the other one.
Table 5 shows the compared THDs with their corresponding tr and ts.

Table 5. POF for FO (PI + PD) cascade/ Multistage FOPID controller—a comparison.

NO Controller THD (%) t r(s) THD (%) ts(s)

1 FO (PI + PD) cascade 1.8068 0.0388 1.8429 0.1130
2 Multistage FOPID 1.9219 0.0393 1.8948 0.1180
3 FO (PI + PD) cascade 2.1513 0.0366 2.7926 0.0590
4 Multistage FOPID 2.8242 0.0369 2.9171 0.0597

Row no. 1/2 and row no. 3/4 show the lowest/highest THD for each controller,
respectively. The obtained POF demonstrates that the lowest values belong to the FO
(PI + PD) cascade controller.

6. Conclusions

In this paper, two new controllers, called the FO (PI + PD) cascade and multistage
FOPID controller, were employed to promote the performance of a 25-kVA parallel active
power filter with a repetitive controller. They were devised based on the NSGA-II opti-
mization method, and each controller was applied instead of the classic PI controller in the
repetitive controller. Although both are powerful and practical, the FO (PI + PD) cascade
controller was the proposed compensator in this study. It should be mentioned that the cas-
cade controller can rapidly reject disturbance before it leaks to the other parts of the system.
Eventually, real-time results based on the HiL setup proved that the intended controller has
better behavior than the multistage FOPID controller in terms of its steady-state/transient
response. Despite the successful performance of the proposed scheme, it suffers from a lack
of adaptivity, because the control gains are adjusted in an offline manner. Therefore, the
future work can be directed towards the development of robust control design using the
training ability of neural networks.
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