
OPTIMAL CERTIFICATION POLICY, ENTRY, AND INVESTMENT IN

THE PRESENCE OF PUBLIC SIGNALS∗

JAY PIL CHOI† AND ARIJIT MUKHERJEE‡

Abstract. We explore the optimal disclosure policy of a certification intermediary in an
environment where (i) the seller’s decision on entry and investment in product quality are
endogenous and (ii) the buyers observe an additional public signal on quality. The interme-
diary mutes the seller’s entry incentives but enhances investment incentives following entry,
and the optimal policy maximizes rent extraction from the seller in the face of this trade-off.
We identify conditions under which full, partial or no disclosure can be optimal. The in-
termediary’s report becomes noisier as the public signal gets more precise, but if the public
signal becomes too precise, the intermediary resorts to full disclosure. In the presence of an
intermediary, a more precise public signal may also lead to lower social welfare.
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1. Introduction

Certification intermediaries are a common feature in many markets where the consumers
may not be able to readily assess the quality of the sellers’ product. For example, credit
rating agencies certify financial instruments, auditors certify the financial standings of orga-
nizations, numerous professional groups certify the qualifications and skills of their members,
and a large numbers of agencies and laboratories offer certification service for product safety.
It is also interesting to note that in such markets, the certification intermediaries are often
not the only source of information as the consumer may have access to some information that
is publicly available. For example, in the U.S., the investors in a publicly traded company
not only consider the firm’s credit rating but also its filings with the Securities and Exchange
Commission as they are informative about the firm’s overall financial strengths. Similarly,
though the firm may get its product certified by an intermediary, the ratings given by some
non-profit independent agency such as Consumer Report can be an additional source of
imperfect public signal on product quality.
There is a vast literature on certification intermediaries that studies how their presence

might improve trade efficiencies by alleviating the adverse selection problem in the mar-
ketplace through the provision of relevant information (Lizzeri, 1991). The reduction in
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information asymmetry between the trading parties can also enhance the sellers’ incentives
to invest in quality and improves allocational efficiency (Albano and Lizzeri, 2001). But
the presence of an intermediary also has redistributive consequences. Clearly, the seller’s
investment incentives get muted as the intermediary captures a share of the resulting gains.
Moreover, the seller can be worse off in the presence of an intermediary if the intermediary
can extract more surplus than what gets created due to the increased investment incentives.
The extant literature has not fully explored the interplay between such redistributive and
the efficiency effects as the extent of entry by sellers is typically assumed to be exogenously
fixed.
In this paper we consider a setting where the level of entry by the sellers is endogenous.

In such an environment, the presence of the intermediary gives rise to a novel trade-off: it
enhances the seller’s incentives to invest in quality following entry but mutes his incentive
to enter at the first place. The goal of the paper is to explore the intermediary’s optimal
certification policy in the face of this trade-off. In the presence of a public signal on quality,
we analyze how the informativeness of the intermediary’s signal interacts with the precision
of the public signal and draw out its welfare implications.
In order to explore the aforementioned trade-off between entry and investment incentives,

we consider a model of certification intermediary with the following key features. The in-
termediary first commits to a policy that specifies a certification fee and a disclosure policy
(we will elaborate on this shortly). Upon observing the certification policy, the seller decides
whether to enter by incurring a fixed cost, and following entry, whether to invest to improve
its product quality. The investment increases the likelihood of producing a high quality
product and the cost of investment depends on the seller’s private type. After the quality is
realized, the seller decides whether to use the intermediary’s service. The consumers cannot
directly observe the quality but can obtain relevant information from two sources: a public
signal whose precision is exogenously fixed, and the intermediary’s signal (i.e., whether the
seller has certified his product, and if so, what signal the intermediary has released). The
consumers offer a price that is driven by their belief about the product quality given the
available information.
As in Lizzeri (1999), we define a disclosure policy as probability distribution over a set of

signals conditional on the quality of the seller’s product. Such a specification accommodates
the extreme cases of full and no disclosure as well as the more generic case of partial disclosure
where the intermediary reveals a garbled information about the underlying product quality.
Also, in order to highlight the key trade-off between the entry and investment incentives
in the most transparent way, we restrict parameters such that entry is always efficient but
investment may be inefficient in the absence of the intermediary.
We derive three key results. First, we characterize a “full-disclosure” benchmark (Proposi-

tion 2) where the intermediary is required to reveal the quality without any noise should the
seller opt to use its service. In such a setting, the extent of efficiency in entry and investment
critically depends on the size of the entry cost. In particular, we find that when the entry
cost is below a cutoff, the entry is efficient. On the other hand the investment in quality,
though improves compared to the scenario where there is no intermediary, remains ineffi-
ciently low compared to the first-best (i.e., when the product quality is perfectly observed by
the buyers). In contrast, if the entry cost exceeds the cutoff, then both entry and investment
remain inefficiently low.
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The intuition is as follows. With mandated full disclosure, the intermediary’s problem is
similar to that of a monopolist–by charging a higher certification fee it can extract more
rents from the seller (i.e., the buyer of its certification service) but also reduces the likelihood
that the seller would purchase the certification service. Note that with full disclosure, only a
seller with high quality product opts to certify. Thus, in order to ensure that the intermediary
faces a robust demand for its service, it must protect both the entry and the investment
incentives of the seller. In other words, the intermediary chooses the certification price so
as to trade-off the gains from rent extraction with the losses from both the entry and the
investment distortions. When the entry cost is low, the optimal certification fee does not
affect the entry incentives and trades off rent extraction with distortions in investments only.
But as the entry cost increases, the entry gets distorted and the intermediary needs to reduce
its certification price to induce entry.
However, if the entry cost becomes sufficiently large, accommodating entry for all types of

the seller becomes too costly. In response, the intermediary chooses a price such that entry
is viable only if the seller also invests in quality (following entry), and all seller types with
relatively high investment cost are foreclosed from the market. Hence, under full disclosure,
when the entry costs are relatively low the intermediary leads to more efficient investment
(compared to the case when there is no intermediary) and also maintains efficiency in entry.
But, if the entry cost is relatively high, the presence of the intermediary leads to a trade-off
as it enhances the efficiency in investment but distorts the efficiency in entry.
Next, we characterize the optimal disclosure policy for the intermediary and explore the

interplay between the informativeness of the intermediary and the precision of the public
signal (Propositions 4 and 5). If the public signal is sufficiently precise, the optimal policy
calls for full disclosure irrespective of the cost of entry. Otherwise, the disclosure policy is
more nuanced. If the cost of entry remains either too low or too high, full disclosure is still
optimum. But for a moderate cost of entry the intermediary resorts to partial disclosure
where, with some probability, the low quality product receives the same certification that
the high quality product gets. Moreover, as the precision of the public signal increases, the
intermediary’s report becomes increasingly more noisy and eventually absolutely uninforma-
tive. But once the public signal becomes sufficiently precise, the intermediary reverts to full
disclosure.
To see the argument, recall that under full disclosure the intermediary has exactly one

instrument, namely the certification fee, to trade off the gains from rent extraction with
the losses from diminished incentives for both entry and investment. For low entry cost
the optimal fee does not distort entry, but as the cost increases the trade-off becomes more
acute as the certification fees not only mutes investment incentives of the seller but also his
incentives to enter the market at the first place. The intermediary must significantly lower
its certification fee in order to incentivize entry of all types, and as a result, ends up leaving
large amount rents to a high quality seller.
A noisy disclosure can attenuate this trade-off as it allows the intermediary to extract

more rents from the seller while the resulting damage to entry incentives is partly restored
through the garbling of information. By partly pooling the low and high quality seller, the
intermediary can increase its payoff by ensuring efficient entry and inducing the seller use
its service irrespective of the realized quality level. This is due to the fact that under partial
disclosure, even a low quality seller expects to be pooled with the high quality and fetch a
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better price from the consumers, whereas the consumers may believe the seller to be of low
quality if he does not use the intermediary.
However, when the cost of entry is too high, even if the intermediary resorts to partial

disclosure efficient entry would still call for a significant reduction of the certification fee.
And at this point it may be more profitable for the intermediary to switch back to full
disclosure and charge a higher fee in order to extract rents from the high quality sellers
only. This implies that partial disclosure can be an useful strategy when the entry cost is
intermediate and the trade-off between the rent extraction and seller’s entry and investment
incentives are most acute under full disclosure.
The argument for the optimality of partial disclosure is also useful in understanding how

the intermediary responds to the changes in the precision of the public signal. The optimal
partial disclosure policy stipulates a certain amount of spread between the expected prices
that a high and a low quality seller gets from the customer. Recall that the price that the
consumers offers for a product is tied to their posterior belief about the product’s quality.
Hence, given the precision of the public signal, the intermediary garbles its own report so as
to attain the optimal spread in the consumer’s belief.
But notice that as the intermediary’s signal is (weakly) informative, its ability to influence

the consumer’s posterior belief is constrained by the precision of the public signal. The
spread in the consumers’ posterior beliefs that a low and a high quality seller expects to
emerge following the intermediary’s report is at least as large as the spread that would have
been obtained when the consumers can access the public signal only. Until this constraint
is binding, the intermediary adds more noise in its signals as the public signal becomes
more precise. Thus, the informational content provided by the public signal and the certifier
interacts as substitutes. But once the constraint becomes binding, it is optimal for the
intermediary not to disclose any further information. Finally, as discussed earlier, when the
public signal becomes very precise, the intermediary switches from partial disclosure to full
disclosure; i.e., the intermediary’s and public signal become complements.
Our third key result analyzes how the social welfare under the intermediary’s optimal

policy varies with the precision of the public signal. We show that in the presence of the
intermediary, the precision of the public signal affects the social welfare only if the precision
is at a moderate range. Also, the welfare under intermediary need not be monotone with
the public signal’s precision. And finally, the “value of the intermediary”–i.e., the change
in social welfare due to the intermediary’s presence–decreases in the precision of the public
signal.
Recall that while the intermediary may improve the efficiency in investment, it can induce

inefficiently low entry, particularly when the entry cost is relatively high and the intermediary
resorts to full disclosure. The findings above stem from the fact that an increase in the
precision of the public signal can lead to a regime change in the intermediary’s disclosure
policy where it switches from partial disclosure that induces efficient entry to a full disclosure
policy where entry is restricted. The resulting welfare loss due to the entry inefficiency can
outweigh the gains due to stronger investment incentives, and can lead to an overall drop
in the social welfare. In contrast, as the public signal becomes more precise, welfare in
the absence of the intermediary always increases as it provides more incentives to invest in
quality. This implies that when the public signal is sufficiently precise, the intermediary’s
presence is detrimental to social welfare.
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Literature review : There is by now a large literature on the role of certification inter-
mediaries in markets plagued by asymmetric information (some early contributions include,
among others, Biglaiser, 1993; Biglaiser and Friedman, 1994; Lizzeri, 1999; and Albano and
Lizzeri, 2001; also see Dranove and Jin, 2010, for a survey). In relation to this literature, our
paper is closest to Lizzeri (1999) and Albano and Lizzeri (2001). Lizzeri analyzes the role of
certification intermediaries in a model of adverse selection, and shows that the optimal choice
for the intermediaries often entails no disclosure or partial closure in the form of minimum
quality certification. While Lizzeri assumes that the seller’s product quality is exogenously
fixed, Albano and Lizzeri (2001) extends Lizzeri’s model to endogenize the quality. They
analyze the issue of the optimal degree of information revelation and show that the presence
of intermediary enhances efficiency by increasing the sellers’ incentives to provide high qual-
ity (though the full information first-best allocation remains infeasible).1 But in contrast to
our setup, these models abstract away from the question of the seller’s entry incentives and
the interplay between the public signal on quality and the intermediaries’ disclosure policy
(i.e., they assume that the seller is already in the market and the intermediary is the only
source of information for the buyers).
A recent paper that explores how certification intermediaries may influence the sellers’

entry decision is Harbaugh and Rasmusen (2018). They consider a pure adverse selection
model without investment and show that “exact grading” is never optimal. As in our model,
coarse grading–i.e., partial disclosure–is used to induce more participation by senders; in
their model with a continuum of types, the middle types have more incentives to participate in
the certification process under a pass-fail scheme than an exact grading scheme as they would
like to distinguish themselves from the low types but pool with the high types. They assume
a non-profit certifier whose objective is to enhance the amount of information available to the
buyers while the seller incurs an exogenous certification cost. Our model, however, assumes
a profit-maximizing certifier with an endogenous certification price and the cost of garbling
information comes from reduced investment incentives rather than the loss of information
per se. In a related work, Dubey and Geanakoplos (2010) consider the optimal grading
scheme in inducing students’ efforts, that is, they focus on the optimal disclosure policy
for investments (but without considering participation constraints). They show that coarse
grading (i.e., partial disclosure) often motivates students to work harder when the students
care about their status (relative rank in the class).2 While these papers present theoretical
analyses of the intermediary’s impact on the agents’ behavior, Hui et al. (2018) provide
an empirical analysis on the effects of certification policies on the evolution of markets. By
using a change in the certification policy of eBay as a natural experiment, they investigate
how the stringency of certification policy affects the types of entrants and seller behavior.
However, the certification policy in their model is exogenous and the service is unilaterally
provided by a platform owner (i.e., eBay) without any price. In contrast, our focus is on
characterizing the optimal certification policy by a profit-maximizing certifier.
Our paper is also related to the literature on the optimal design of information structure

(Ostrovsky and Schwarz, 2010; Kamenica and Gentzkow, 2011; Rayo and Segal, 2010).
Kamenica and Gentzkow analyze the general Bayesian persuasion problem in which a sender

1In a related paper, Belleflamme and Peitz (2014), assume that consumers observe the investment (but
not the realization of the product quality) and show that the firm overinvest in quality compared to the full
informatioin benchmark.

2Similar issues are also discussed by Costrell (1994) and Boleslavsky and Cotton (2015).
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chooses the optimal information structure for a signal to be revealed to a receiver, and
derive general conditions under which the ability to control the informational environment
is beneficial to the sender.3 As in the Bayesian persuasion literature, we also assume that
the intermediary can precommit to a particular disclosure policy. However, in our setting
the intermediary’s problem cannot be modeled as a standard sender’s problem because the
distribution of the product quality (i.e., the underlying “state of the world” that the sender
reveals information on) is endogenous to the sender’s disclosure policy.
In a more recent paper, Boleslavsky and Kim (2018) develop a framework to analyze the

optimal design of information structure in the presence of moral hazard. In particular, they
consider a three-player Bayesian persuasion game which includes an agent, in addition to the
sender and the receiver, whose private effort determines the distribution of an unobservable
state. Our setup is similar to Boleslavsky and Kim in that the distribution of the “state of the
world”, i.e., the product quality is endogenously affected by the seller’s entry and investment
decisions. Nonetheless, our framework does not conform to the Boleslavsky and Kim’s setup
because we also have an element of adverse selection with heterogeneous agent types and
additional constraint on the entry whereas their model focuses only on the investment margin
with only one type of agent.4

Finally, it is worth noting that our analysis on the interplay between the informativeness
of the intermediary and the precision of the public signal is related to the literature on the
adverse consequences of transparency (if we interpret more precise public signal as more
transparency in an agency relationship). Prat (2005), for instance, shows that an agent with
career concerns may ignore his signal, to the detriment of the principal, and behave as a
conformist when his action is observed (i.e., transparent). Levy (2007) considers the effect
of transparency on committee decisions and identifies circumstances under which a secre-
tive committee that uses a particular voting rule makes better decisions on average. Their
analyses, however, are in completely different contexts and rely on career-based reputation
effects. Also, these papers only consider a binary choice between no transparency and full
transparency. In contrast, we consider a continuum of precision levels in the public signal,
which enables us to conduct a comparative static analysis and derive the non-monotonicity
result.
The remainder of the paper is organized as follows. In Section 2, we set up our basic model

of adverse selection with investments and endogenous entry in the presence of intermediary.
In Section 3, we characterize the market equilibrium in the absence of intermediary as a
benchmark. Section 4 explores the role of intermediary in our set-up, but consider an inter-
mediary who is constrained to fully disclose the quality. In Section 5, we present a general
analysis of optimal disclosure policy in which the intermediary can choose both the certifi-
cation price and the disclosure policy. We identify conditions under which the intermediary
may adopt partial disclosure by garbling information. Section 6 discusses the implications of
the optimal policy, its welfare consequences, and presents a conclusion. All proofs are given
in the Appendix.

3The Bayesian persuasion literature has been extended to many different directions to address the pos-
sibilities of multiple senders (Au and Keiichi, 2017; Gentzkow and Kamenica, 2017; Li and Norman, 2015),
multiple receivers (Chan et al. 2017), and a privately informed receiver (Kolotilin et al. 2017), for instance.
The framework has also been applied to a variety of contexts including voting (Alonso and Camara, 2016),
monopoly pricing (Roesler and Szentes, 2017), price discrimination (Bergemann et al. 2015), and career
concerns (Rodina, 2017).

4See Rosar (2017) for an analysis of a Bayesian persuasion game with voluntary participation.
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2. Model

Players: We consider an environment with three types of players: a seller, a certification
intermediary, and a set of identical buyers.

Actions and payoffs: The seller decides whether to enter a market to sell his product to
a set of identical buyers. The buyers’ valuation of the seller’s product is based on its quality.
The product quality could be either high or low and generates a value v ∈ {0, 1} for the
buyer, where v = 0 if the quality is low and v = 1 if it is high.
If the seller decides to enter the market, he incurs an entry cost of k. Upon entry he can

undertake an investment in quality in order to increase the likelihood of producing a high
quality product. Let I ∈ {0, 1} denote the seller’s investment decision where I = 1 if he
invests in quality and I = 0 otherwise. We have

(1) Pr (v = 1 | I = 1) = α >
1

2
= Pr (v = 1 | I = 0) .

The cost of this investment is determined by the seller’s type θ ∈ [0, 1], which is assumed
to be uniformly distributed on [0, 1] . For a seller of type θ, the cost of investment is c/θ for
θ 6= 0 (and C > 1 for θ = 0).5 The seller’s type is his private information and known to him
before he makes his entry decision.
The product quality is also privately observed by the seller, leading to an information

asymmetry in the product market. But the buyers can obtain information on quality through
two channels. First, the seller can hire a certification intermediary who can verify the quality
and disclose additional information. The intermediary is assumed to be a monopolist in the
market for certification services. At the beginning of the game, the intermediary commits
to a certification price p and a disclosure policy D that specifies what it may disclose to the
buyers, given the underlying quality of the product. However, the intermediary may not fully
reveal the quality of the product and can potentially garble its report. In order to allow for
such a noisy disclosure, we define a disclosure policy as a mapping D : {0, 1} → ∆X where
X is a pre-specified signal space (and hence, a part of the policy). That is, the disclosure
policy sends a signal x ∈ X that is drawn according to a given probability distribution,
conditional on the true quality of the product. We assume that the intermediary does not
incur any cost to evaluate the product quality.
Second, in addition to the intermediary’s signal, the buyers observe a public signal z ∈

{0, 1} that provides noisy information about the product quality, where

Pr (z = j | v = j) = π ∈ [1/2, 1), for j = 0, 1.

The parameter π represents the precision of the public signal; when π = 1
2
the pubic signal

is completely uninformative.
The seller makes his entry decision after observing the intermediary’s offer (p,D). Also,

the seller decides on whether to hire the intermediary after the quality realization but before

5For simplicity we normalize the seller’s probability of producing a high quality product without any
investment to be 1

2
. Also, if Pr (v = 1 | I = 0) = α0 <

1

2
< α1, we may not have a unique equilibrium

even in the absence of the intermediary, and the characterization of the optimal policy becomes analytically
intractable.
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the public signal is realized. Observing the available signals on the quality, the buyers
simultaneously bid for the product and the product is sold at the highest bid. All players
are assumed to be risk neutral. This implies that the product is sold at the expected value
of the product given the information available to the consumers.

Timing: The following time line summarizes the game.

• Stage 1: The intermediary commits to his certification policy (p,D).
• Stage 2: The seller observes his type θ and the intermediary’s policy and decides
whether to enter. (If there is no entry, the game ends.)

• Stage 3: If the seller enters, he decides whether to investment on quality, and observ-
ing his product quality, decides on whether to hire the certification intermediary.

• Stage 4: The intermediary reveals its signal x on the product quality.
• Stage 5: The public signal z on quality is revealed. Observing x (if available) and z,
the buyers bid for the product and the product is sold at the highest bid.

Strategies and equilibrium concept: The strategies of the players are as follows:
the intermediary’s strategy is to choose a certification policy (p,D). The seller’s strategy
has three components: (i) entry and (ii) investment decisions given his type and the in-
termediary’s policy, and (iii) decision on hiring the intermediary given his product quality
and the intermediary’s policy. Finally, the buyers’ strategy is to choose a bid given the
available information (i.e., the public signal, the intermediary’s certification policy, whether
the intermediary was hired or not, and if hired, the intermediary’s report). We use (pure
strategy) perfect Bayesian Equilibrium as the solution concept. The optimal disclosure pol-
icy is defined as the (p,D) pair that induces the highest feasible equilibrium payoff for the
intermediary.
Below, we maintain the following parametric restrictions to streamline our analysis. Let

∆ := α− 1
2
denote the social value of investment in quality.

Assumption 1. (i)
√
cα < ∆; (ii) c

2∆
< k < 1

2
.

Observe that Assumption 1 (i) implies c < ∆, i.e., at least for some types of the seller,
it is socially efficient to invest in quality. We maintain a stronger assumption (than simply
requiring c < ∆) so as to rule out certain corner solutions that clutter our analysis without
offering any important economic insight. Assumption 1 (ii) plays a similar role by stipulating
a moderate range of entry cost where the interplay of entry and investment decisions is non-
trivial and leads to a rich set of equilibrium characteristics.

3. Benchmarks: First-best and market equilibrium in absence of
intermediary

In this section, we consider two benchmark cases that inform our subsequent analysis of
the intermediary’s disclosure policy.
First, consider the social first-best–the entry and investment rule that maximizes the

aggregate surplus of the seller and the buyers. Note that the surplus created by a seller of
type θ with investment I ∈ {0, 1} is Pr (v = 1 | I)− Ic/θ− k. Hence, the first-best requires
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all types of the seller to enter (recall from (1) and Assumption 1 (ii), Pr (v = 1 | 0)− k > 0)
and all types θ ≥ θFBI to invest, where:

α− c

θFBI
=
1

2
, i.e., θFBI =

c

∆
.

As a second benchmark, consider the investment and entry incentives of the seller in
absence of the intermediary where the buyers’ only source of information is the public signal
z. Let ΘE ⊆ [0, 1] and ΘI ⊆ ΘE be the set of the seller’s types that enter the market
and invest in quality, respectively. Since the buyers competitively bid for the product, the
equilibrium is defined as follows: (i) The seller obtains a price of E (v | z, ΘE, ΘI), i.e., the
expected valuation of the product given the realized public signal and set of seller types that
enter and invest. (ii) Given the seller’s expected price (prior to the realization of the public
signal), only the types in ΘE enters, and among the entrants, only the types in ΘI invests.
Denote

vi (ΘE, ΘI) =
∑

z∈{0,1}
E (v | z; ΘE, ΘI) Pr (z | I = i) ,

which is the expected price the seller receives when his investment decision is I and the
buyers believe that the set of types that enter is ΘE and the set of types that invest is ΘI .
Now, for type θ, the expected payoff from entry and investment decision I is:

V (I; θ,ΘE, ΘI) =

{
v1 (ΘE, ΘI)− k − c

θ
if I = 1

v0 (ΘE, ΘI)− k if I = 0
.

The following proposition characterizes the equilibrium.

Proposition 1. (Equilibrium without intermediary) If there is no intermediary in the
market, the equilibrium has the following features:

(i) Entry is always efficient–all types of the seller enter (i.e., ΘE = [0, 1]).

(ii) Investment may be inefficient. There exists a threshold c > 0 such that if c > c no type
invests. Otherwise, there exists a unique cutoff θNII (> θFBI ) such that all types θ ≥ θNII
invest. Moreover, θNII is decreasing in π.

The proposition above has a simple intuition. Note that even if the seller does not invest, he
earns at least 1

2
−k > 0 by entering the market irrespective of his own type (v0 (ΘE, ΘI) ≥ 1

2

for all ΘE and ΘI). Hence, all types enter. Moreover, as the seller’s payoff from investment
is monotonically increasing in his type, the investment decision must follow a cutoff strategy:
unless the cost of investment is too high, all types above a threshold invest.
However, there is under-investment compared to the first-best because the seller cannot

receive a fair return from his investment due to asymmetric information on the product qual-
ity. But the investment inefficiency can be mitigated via the availability of a public signal,
and the extent of such inefficiency decreases with the signal’s precision. The more precise
is the public signal the higher is the return from investment, and the stronger investment
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incentive moves the type threshold closer to the first-best. In the limit, if the public signal
is perfectly informative (i.e., π = 1), there is no information asymmetry and we restore the
first-best (i.e., θNII = θFBI ). In contrast, if the public signal is completely uninformative (i.e.,
π = 1

2
), there is no incentive to invest for the seller regardless of his type (i.e., θNII = 1).

4. Intermediary with Full Disclosure

Given the benchmark analyses above, we now explore the role of intermediary in our
model. We first consider a simple case where the intermediary, if hired, is obligated to fully
disclose the quality. That is, under (mandatory) full disclosure, the intermediary can only
set the price p ≥ 0 for its certification service. The analysis of the full disclosure case clearly
illustrates the trade-offs that the intermediary faces while choosing its certification fee, and it
is also instructive in understanding when and how a partial disclosure policy may be optimal.
Let µ (x, z) = Pr (v = 1 | x, z) be the buyers’ (posterior) belief on quality given the in-

termediary’s report x and the public signal z. Note that under full disclosure, x ∈ {0, 1, ∅}
where, with a slight abuse of notation, we denote x = ∅ when the seller does not use the
intermediary. (Clearly, as the seller decides on hiring the intermediary after observing his
product quality, the buyers would update their beliefs even when the seller decides not to
hire the intermediary.) In what follows, we analyze the optimal PBE for the intermediary,
i.e., we derive the equilibrium certification price p and the associated belief µ that maxi-
mize the intermediary’s profit given that the beliefs are consistent and the seller’s entry and
investment decisions are sequentially rational (conditional on his type).

Lemma 1. In the optimal PBE under full disclosure, only the high quality seller hires the
intermediary.

The argument is straightforward (hence, we omit the formal proof): Notice that in any
PBE with p > 0, it cannot be the case that the seller hires the intermediary irrespective of
his product quality. Under full disclosure, the low quality seller is sure to get a price of 0
from the buyers if he hires the intermediary, and he can save on the certification fee by not
hiring the intermediary at the first place. Likewise, in the optimal PBE, it cannot be the
case that the seller never certifies irrespective of his product quality. If such an equilibrium
exists, the intermediary makes 0 whereas (at the time of the certification stage) the high
quality seller can only expect from the buyers a bid that is strictly less than 1 (as the public
signal is noisy). Any such equilibrium, even if it exists, gives lower payoff to the intermediary
compared to an equilibrium where the intermediary charges a sufficiently low price ε > 0
(with full disclosure), and µ (∅, z) = 0 for all z ∈ {0, 1} (i.e., the buyers take a “skeptical
posture” à la Milgrom and Roberts (1986) and believe that the product is of low quality if
the seller does not hire the intermediary). For such a price, the high quality seller would
find it profitable to use the intermediary, and the intermediary would earn a strictly positive
payoff.
In light of the above lemma, we focus on the fully separating PBE where only the high

quality seller hires the intermediary. If such a PBE exists, notice three salient features of
such an equilibrium: First, the public signal does not affect beliefs. Second, for any price of
certification, p, a seller of type θ enters the market only if
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(2) max

{
α (1− p)− c

θ
− k,

1

2
(1− p)− k

}
≥ 0.

Hence, in any equilibrium, we must have:

p ≤ p̄ := 1− k + c

α
,

as otherwise even the most efficient type (θ = 1) would choose to stay out. Third, all types
of the seller enter if 1

2
(1− p)− k > 0, i.e.,

p < pE := 1− 2k.

Note that for p < pE, the seller gets a strictly positive (expected) payoff by entering the
market even if he does not invest following entry. Also, for any p ∈ [pE, p̄) entry is profitable
only if the seller also invests in quality (pE < p̄ by Assumption 1 (ii)).
Based on the above observations, we can now characterize the optimal certification price

for the intermediary. In any PBE the set of seller’s types that enter (ΘE) and invest (ΘI)
are pinned down by their respective type cutoffs, θE and θI (say), where ΘE = [θE, 1] and
ΘI = [θI , 1]. (The argument is the same as in the benchmark cases discussed above, and
follows from the fact that the cost of investment is decreasing in the seller’s type).
Now, the intermediary can adopt one of two possible types of pricing strategies: (i) charge

p ≤ pE and induce full entry, i.e., ΘE = [0, 1], or (ii) charge p ∈ (pE, p̄] such that low types
stays out and all types that enter also invests in quality, i.e., ΘI = ΘE. Thus, in the most
profitable PBE for the intermediary, he charges a price that solves the following problem:

maxp Π (p) := pPr (v = 1 | θE, θI) = p
[
1
2
(θI − θE) + α (1− θI)]

]

=

{
ΠE(p) := p

(
1
2
θI + α (1− θI)

)
if p ≤ pE

ΠI(p) := pα (1− θI) if p ∈ [pE, p̄) ,

where θE and θI are the marginal types of the seller for whom it is profitable to enter and
profitable to invest (respectively), given the intermediary’s price. (Notice that θI − θE is
the mass of entrant types who do not invest whereas 1− θI is the mass of types who invest
following entry.) The lemma below states the solution to the above problem.

Lemma 2. There exist three entry cost cutoffs kE < kI < k∗ such that the intermediary’s
payoff at the most profitable PBE is:

Π∗ =

{
Π∗E if k < k∗

Π∗I otherwise
,

where

(3) Π∗E = max
p≤pE

ΠE(p) =

{
ΠE := α + c− 2√cα if k < kE
ΠE := α (1− 2k)

(
1− c

2kα

)
otherwise

,
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and

(4) Π∗I = max
p>pE

ΠI(p) =

{
ΠI := α + c− k − 2

√
c (α− k) if k ≥ kI

ΠI := α (1− 2k)
(
1− c

2k∆

)
otherwise

.

The intuition for the above result is as follows. By raising the certification price the
intermediary can extract more rents from the seller but also reduces the likelihood that the
seller would hire the intermediary at the first place. The latter effect on the intermediary’s
demand stems from the fact that the certification price distorts both the investment and the
entry incentives of the seller. Recall that under full disclosure only the high-quality seller
hires the intermediary, and the seller’s product quality is more likely to be high if he invests
in quality. But the larger is the certification price the weaker is the seller’s incentive to invest
as the intermediary keeps a larger share of the trade surplus. And if there is not enough
surplus left for the seller to cover his entry cost, he may not enter the market.
Consider the certification price p∗ (say) that the intermediary would have charged if the

seller were already on the market. In such a setting, the optimal price trades off the gains
from the rent extraction with the losses that emanates only due to weakened investment
incentives of the seller. Notice that for sufficiently low entry cost (k < kE) , p

∗ < pE. So,
even in our setting the intermediary would charge p∗ as such a price would not affect entry,
and all types of the seller would be on the market.
But as the entry cost increases beyond the threshold kE, we have p

∗ > pE, and there would
be inefficiently low entry at the price p∗–the seller may stay out if his type is sufficiently low
(i.e., cost of investment is sufficiently high). As long as the entry cost is moderately low (i.e.,
when kE < k < k∗) the intermediary is better off by lowering its price to pE. By charging
a lower certification price, the intermediary forgoes a part of the rent that it could have
extracted from the seller. But such a loss is more than offset by the gains from increased
likelihood of having a high-quality seller as the reduction in the certification price restores
entry efficiency and also strengthens the seller’s investment incentives.
However, when the entry cost is significantly large, accommodation of entry would consid-

erably hurt the intermediary as it would require a large reduction in the certification price.
As a result, when the entry cost crosses a threshold (k∗) the intermediary finds it optimal
to restrict entry by raising his certification price such that all entrants types have incentive
to invest in quality.
In light of the above lemma, we can characterize how the intermediary’s optimal pricing

policy (under full disclosure) affects the entry and investment efficiencies in our setting.

Proposition 2. (Efficiency implications of intermediary under full disclosure) If
k < k∗, there is efficient entry, i.e., all types enter, but investment remains inefficient as
only the types θ ≥ θfI invest, where

θfI := min

{√
cα

∆
,
c

2k∆

}
.

But for k > k∗, both entry and investment remain inefficient as only the types θ ≥ θiI enter
and invest where
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θiI :=

√
c

α− k
.

All other types stay out.
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Figure 1. The intermediary’s payoff (Π∗) and associated cutoff type
for investment (θI) as a function of entry cost k.

Figure 1 depicts the intermediary’s equilibrium payoff as a function of entry cost k and the
corresponding cutoff types for investment (as given by Lemma 2 and Proposition 2). Observe

that θfI is (weakly) decreasing whereas θ
i
I is increasing in the entry cost. The intuition is

simple and, again, can be seen from Lemma 2: When k < kE, entry is efficient and the
intermediary’s optimal price is independent of k–it is the same price that he would have
charged if the seller were already on the market. So, the seller’s share of the trade surplus is
also independent of the entry cost, and, consequently, the seller’s type cutoff for investment
(θfI ) remains constant. But when kE < k < k∗, the intermediary accommodates entry by
setting p = pE = 1− 2k. Thus, higher k calls for lower certification price and since the seller
gets to keep a larger share of the trade surplus, his incentive to invest increases. As a result
θfI is decreasing in k. In contrast, for k > k∗, entry is profitable only if the seller invests. So
with larger entry cost only the more efficient types enter; i.e., θiI is increasing in k.
To conclude our analysis of the full disclosure case, we compare the entry and investment

incentives with and without the intermediary (as given by Proposition 1 and 2 above).6

Proposition 3. (Comparing full- and no-disclosure) In the presence of the interme-
diary (under full disclosure) entry is inefficient iff k ≥ k∗. The efficiency in investment is
affected as follows:

6We omit the proof of Proposition 3 as it readily follows from the facts that θfI is decreasing and θ
i
I is

increasing in k (as given in Proposition 2), and θNII is decreasing in π (as given in Proposition 1).
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(i) If c ≥ c (i.e., when the intermediary is absent, all types enter but none invests), the
intermediary always improves efficiency in investment.

(ii) If c < c (i.e., when the intermediary is absent, all types enter and all types θ > θNII
invest), for all k, there exists a cutoff πk such that the intermediary improves investment
incentives iff π < πk. The threshold πk is increasing in k for k < k∗ but decreasing
otherwise.

5. Optimal Disclosure Policy

In this section, we turn to the question of optimal disclosure policy where the intermediary
may choose both his certification price as well as his disclosure policy. In particular, we allow
for partial disclosure where the intermediary may (partially) pool the low and high quality
sellers by using a stochastic disclosure rule.
To simplify the analysis, we adopt the direct revelation approach. As the buyers bid

competitively for the product, the equilibrium bid is simply the expected quality of the
product given the intermediary’s disclosure policy, the set of types ΘE and ΘI who enter
and invest, and the realized signals (x, z). For a given disclosure policy, let t0 and t1 be
the ex-ante expected bids (or “transfers” from the buyers) for a low and high quality seller
(respectively) when he uses the intermediary but before he learns the realization of the signals
(x, z). That is,

ti = E(x,z)|v=iEv [v | x, z, ΘE, ΘI ] , i ∈ {0, 1} .

With this direct revelation approach, the intermediary’s certification policy–certification
price p and disclosure policy D–can be represented by the triplet (p, t0, t1) . Under a strictly
partial disclosure policy we have 0 < t0 < t1 < 1 whereas under full disclosure, we have
t0 = 0 and t1 = 1.
Unfortunately, the direct revelation approach to solving the intermediary’s optimal policy

still lacks algebraic tractability. The complication primarily stems from the fact that both
entry and the hiring of intermediary are discrete choices of the seller, and the intermedi-
ary’s payoff need not be continuous in his certification policy (p, t0, t1). To circumvent this
problem, we proceed as follows:
First, we note that if a partial disclosure policy is optimal then we must have “full market

coverage” where all types (θ) of the seller enter and the seller always hires the intermediary
irrespective of his product quality. Next, we characterize the optimal partial disclosure
policy under “full market coverage”–i.e., we impose the constraint that the policy must
induce all seller types to enter and certify (regardless of the quality). Finally, we derive
the optimal policy by comparing the intermediary’s maximal payoff under the constrained
partial disclosure policy (as defined above) and its full disclosure counterpart. We begin our
analysis with the following lemma.

Lemma 3. If a partial disclosure policy is optimal, it must entail “full market coverage”:
in equilibrium, (i) all types (θ) of the seller enter the market, and (ii) the sellers for both
product qualities use the intermediary.
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To see the intuition behind the above result, consider the latter part first. If the inter-
mediary plans to sell its service only to the high quality seller, it is best to maximize the
difference in prices that a low and a high quality seller would receive from the buyer. Clearly,
this is attained under full disclosure as it removes all information asymmetries regarding the
product quality. Thus, a partial disclosure policy can be optimal only when the intermediary
intends to induce both the high and low quality sellers to certify their products.
A similar logic applies to the first part of the lemma. In any equilibrium, if it is the case

that only some types of the seller enter, it also must be the case that those types who enter
also invest. (Since the entry cost is the same for all types, if its profitable for some type θ to
enter even though it would not invest following entry, then entry must be profitable for all
types of the seller.) But if the intermediary only intends to induce entry of those types who
would invest as well, it can be argued that it is (weakly) optimal to adopt the full disclosure
policy. Thus, we can conclude that partial disclosure is adopted by the intermediary only
when it intends to engage in full market coverage.
In light of Lemma 3, we can now formulate the intermediary’s optimal partial disclosure

policy. We maintain the off-equilibrium belief µ (∅, z) = 0 as it is the most favorable to the
the intermediary, i.e., if the seller chooses not to use the intermediary, the buyers offer a
price of 0. Thus, for all types of the seller to enter and certify regardless of the realized
product quality, the certification price p should satisfy the following two conditions:

(IRE)
1

2
(t0 + t1)− k − p ≥ 0,

and

(IRC) t0 − p ≥ 0.

The first condition above (IRE) is the individual rationality condition for entry and states
that it is profitable for all types (θ) of the seller to enter the market even if he decides
not to invest in quality. Otherwise, a seller with low θ will not enter the market as his
cost of investment may be prohibitively high; consequently, we would not have full market
coverage. The second condition (IRC) states that the seller has incentives to certify even
when his product quality is low. Obviously, under full disclosure we have t0 = 0, and (IRC)
cannot be satisfied with any positive certification price. Hence, under full market coverage,
the intermediary needs to garble information if it were to receive a higher certification price.
So, for any disclosure policy (t0, t1) with full market coverage, the intermediary’s payoff is:

Π (p) = p = min

{
t0,
1

2
(t0 + t1)− k

}
.

As before, we can argue that the seller’s investment decision follows a cutoff strategy as
the cost of investment is monotonically decreasing in the seller’s type. Let v (θI) be the
“prior” expected value of the product–i.e., the probability that the seller’s product is of
high quality (so v = 1) given that all types enter and all types above θI invest, but without
any information on the signals (x, z). That is,
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v (θI) =
1

2
θI + α (1− θI) =

1

2
+ ∆ (1− θI) .

Any disclosure policy (t0, t1) must satisfy the following four conditions: First, a Bayes
rationality (BR) condition that requires the expected posterior mean quality must be equal
to the prior mean quality:

(BR) v (θI) t1 + (1− v (θI)) t0 = v (θI) .

Second, as the intermediary’s signal is (weakly) informative, we must have the following
bounds:

(L1) t1 ≥ t1 (θI) := Ez|v=1Ev [v | z,ΘE = [0, 1] , ΘI = [θI , 1]] .
and

(U0) t0 ≤ t0 (θI) := Ez|v=0Ev [v | z,ΘE = [0, 1] , ΘI = [θI , 1]] .

Finally, as discussed earlier in the case of full disclosure, if it is incentive compatible for
all types θ ≥ θI to invest, we must have:

(IC) θI = min

{
c

(t1 − t0)∆
, 1

}
.

Hence, the intermediary’s optimal partial disclosure policy solves the following program:

P :






maxt0,t1,θI∈[0,1] min
{
1
2
(t0 + t1)− k, t0

}

s.t. (BR) , (L1) , (U0) , and (IC) .

In order to solve the above program we first consider a relaxed problem that ignores the
boundary conditions (L1) and (U0) . If the optimal cutoff for the investment type, say θ̂I ,

in the relaxed problem satisfies the boundary conditions, then θ̂I is also the solution to
the original program P. Otherwise, we need to adjust the investment type cutoff in order
to account for the boundary conditions. As shown in the proof of Lemma 4, lowering the
investment cutoff level θI (i.e., inducing investment by more types) relaxes both boundary
conditions. Moreover, both of these conditions become strictly non-binding as θI becomes
sufficiently small, as stronger incentives for investment calls for more precise information
revelation; i.e., a larger spread between t1 and t0. Therefore, there is a positive cutoff level
θ̄I such that t1 ≥ t1 (θI) and t0 ≤ t0 (θI) if and only if θI ≤ θ̄I .When the boundary conditions
are not satisfied, the solution to the original problem thus requires a reduction of the cutoff
level from θ̂I to θ̄I .

Lemma 4. (Optimal partial disclosure policy under full market coverage) The

solution to P, (t̃0, t̃1, θ̃I), is characterized as follows:
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(i) The optimal cutoff above which all types of the seller invest in quality is given by θ̃I =

min{θ̂I (k) , θ̄I (π)}, where θ̂I is independent of π but decreasing in k, and θ̄I is independent
of k but decreasing in π.

(ii) There exist two thresholds, π and π, where 0 < π < π < 1, such that for any given k,

θ̃I = θ̂I (k) if π < π, and θ̃I = θ̄I (π) if π > π. Otherwise, i.e., if π ∈ [π, π], there exists
a threshold kπ ∈ [

√
c
4α
,
√

c
4∆
] such that θ̃I = θ̄I (π) if k < kπ and θ̃I = θ̂I (π) otherwise.

Moreover, kπ is increasing in π.

(iii) The seller’s prices t̃0 and t̃1 solve (BR) and (IC) evaluated at θ̃I .

As the public signal becomes more precise, the boundary conditions (L1) and (U0) become
tighter and there is less room for the intermediary to garble information. When the conditions
start binding, the optimal partial disclosure policy implements θ̃I = θ̄I (π) . Note that when
the boundary conditions hold with equality (i.e, when they are binding), the intermediary’s
(garbled) signal is pure noise as it does not contain any information on the product quality.
This implies that the investment threshold in this case is the same as the one under no
intermediary, that is, θ̄I (π) = θNII (π) .
We can now characterize the intermediary’s optimal policy by comparing his payoff under

full disclosure and partial disclosure (with full market coverage).

Proposition 4. (Optimal disclosure policy) There exists a threshold πFD (πFD > π,
where π is as defined in Lemma 4) such that:

(i) If π > πFD, full disclosure is optimal for all k.

(ii) Otherwise, there exists an interval (k1 (π) , k2 (π)), where k1 (π) ≤ k∗ ≤ k2 (π), such
that partial disclosure is strictly optimal if and only if k ∈ (k1 (π) , k2 (π)). Moreover,
(k1 (π) , k2 (π)) =

(√
c
4∆
, 1
2

)
for π < π, and the interval shrinks with π for π ∈ [π, πFD].

Proposition 4 illustrates how the optimal disclosure policy varies with the entry cost and
the precision of the public signal. When the public signal is relatively imprecise, partial
disclosure is optimal only if the entry cost is sufficiently large. Otherwise, partial disclosure
becomes optimal only for a moderate range of entry cost–if the cost is too high or too low, the
intermediary resorts to full disclosure. Moreover, this range of entry cost (i.e., where partial
disclosure is optimal) gets smaller as the public signal becomes more informative; when the
public signal is sufficiently precise (i.e., π > πFD) full disclosure is optimal regardless of the
cost of entry.
To see the intuition for the result, recall the trade-off with certification fee under full

disclosure. A larger fee extracts more rents from the seller who uses the intermediary but
reduces the likelihood that the seller would use the intermediary at the first place. The
reduction in the demand for the intermediary’s service stems from the fact that when the
intermediary extracts a larger share of the trade surplus, both the investment and the entry
incentives of the seller become muted.
But this trade-off could be softened with partial disclosure. By partially pooling the low

quality seller with the high quality one, the intermediary can ensure that an entrant gets a
relatively high price from the buyer even if he ends up with a low quality product. Thus, such
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a policy can induce all types of the seller to enter and use the intermediary irrespective of the
product quality while allowing the intermediary to charge a moderately large certification fee.
(Though investment incentives are dampened under partial disclosure it does not affect the
intermediary’s payoff under partial disclosure as the seller uses the intermediary irrespective
of his product quality.) The resulting profit dominates its counterpart under full disclosure
when the entry cost is sufficiently large. Recall that when the entry cost is high, under full
disclosure the intermediary either offers a deep discount in order to induce entry for all types
or forecloses the market for the types with relatively high cost of investment, considerably
dampening the intermediary’s payoff.
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Figure 2. Intermediary’s payoff (Π∗) and associated cutoff type for investment (θI)
under optimal disclosure policy (partial disclosure is optimal for k ∈ (k1, k2)).

But when the public signal gets more precise the boundary conditions (L1) and (U0) start
to bind–we have t0 = t̄0 and t1 = t1–and there is little room for the intermediary to
garble information. So, even if the intermediary sends a completely uninformative signal,
it must lower its certification fee considerably to meet the (IRE) and (IRC) constraints–
i.e., to induce the seller to enter and certify his product.7 Thus, the intermediary’s payoff
drops, and such a partial disclosure policy (i.e., “no disclosure”) cannot be optimal unless
the entry cost is at an intermediate level. Recall that when the entry cost is relatively low,
the certification fee under full disclosure remains relatively large yielding a higher payoff.
And for a sufficiently large entry cost, accommodating entry for all types would call for a
significant price concession even under partial disclosure (i.e., (IRE) gets tighter) and full
disclosure with restricted entry becomes more profitable.
Finally, as the public signal gets more precise, t̄0 becomes smaller; i.e., (IRC) gets tighter

reducing the intermediary’s payoff. As a result, partial disclosure policy (with full market
coverage) becomes less attractive whereas the profit from full disclosure remains unaltered.

7Notice that even if the intermediary does not provide any information whatsoever it still has a demand
for its service. This is due to the fact that a seller who does not use the intermediary is believed to be a
low-quality seller.
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Hence, the range of entry cost for which partial disclosure is optimal shrinks; and full disclo-
sure becomes optimal irrespective of the cost of entry when the public signal is sufficiently
precise.
Figure 2 depicts a generic example of the intermediary’s payoff and the associated in-

vestment cutoff as a function of the entry cost k under the optimal disclosure policy when
π < πFD. The intermediary resorts to partial disclosure for k ∈ (k1, k2) but adopts a full
disclosure policy otherwise. The equilibrium investment cutoff is weakly decreasing when
k < k2, and is constant over the range of k where partial disclosure is optimal. Also, for any
k < k2, entry is always efficient. However, for k ≥ k2 there is a discontinuous jump in the
cutoff as the intermediary switches from partial disclosure with full entry to full disclosure
with restricted entry.

6. Discussion and conclusion

6.1. Implementation of the Optimal Disclosure Policy. The optimal disclosure policy,
as given by Proposition 4, lends itself to a simple implementation rule. As shown in the
following proposition the intermediary only needs to use a binary signal structure: the high
quality always gets a “good” signal whereas the low quality may get a “good” signal some
of the time and a “bad” signal otherwise.

Proposition 5. Without loss of generality, we can restrict attention to disclosure policies
where X = {x0, x1} , Pr (x1 | v = 1) = 1 and Pr (x1 | v = 0) = ρ. If the optimal policy is full
disclosure, ρ = 0. If the optimal policy is partial disclosure with seller’s expected bids (t̃0, t̃1)

and investment type cutoff θ̃I , then ρ ∈ (0, 1] solves

(PD) t̃1 =
π2v(θ̃I)

πv(θ̃I) + ρ (1− π)
(
1− v(θ̃I)

) +
(1− π)2 v(θ̃I)

(1− π) v
(
θ̃I

)
+ ρπ

(
1− v(θ̃I)

) =: τ (ρ, π) .

Proposition 5 is also useful in uncovering how the informativeness of the intermediary’s
report interacts with the precision of the public signal. Fix any π < π and any k >

√
c
4∆

(i.e., partial disclosure is strictly optimal under such parameters). Recall from Lemma 4

that for any π < π, the boundary conditions (L1) and (U0) are slack and θ̃I = θ̂I (k) for any
k; therefore, t̃is remain constant. In other words, when the public signal gets more precise,
as long as π < π, the intermediary continues to filter information so that the expected bids
for both low and high quality sellers remain unaltered. As the right-hand side of (PD) (i.e.,
τ (ρ, π)) is increasing in π and decreasing in ρ, this implies that ρ must increase with π as
long as π < π.
In contrast, when the public signal is sufficiently precise, i.e., if π ≥ π, the boundary

conditions bind; so for any k where partial disclosure is still optimal, we must have t̃1 = t1
and θ̃I = θ̄I (π). But notice that

t1 = τ (1, π) .

So, the optimal partial disclosure policy sets ρ = 1 for all such π, i.e., “no disclosure”
becomes optimal as the intermediary sends the same signal irrespective of the product quality.
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Moreover, as π increases further, the optimal policy eventually switches from partial (or “no
disclosure”) to full disclosure. Thus, we have the following corollary.

Corollary 1. For any given k >
√

c
4∆
(i.e., a value of k such that partial disclosure is

strictly optimal if π < π) there exists a threshold of π (that depends on k), πFDk , such that
ρ is strictly increasing in π for π < π, ρ = 1 for π ∈

[
π, πFDk

]
and ρ = 0 if π > πFDk .

The key implication of the above finding is that as the public signal gets more precise, the
intermediary signal becomes less informative; but if the public signal becomes too precise,
partial disclosure ceases to be optimal and the intermediary’s signal becomes perfectly in-
formative (as the intermediary resorts to full disclosure). In other words, when the public
signal is relatively noisy, in the optimal policy the informativeness of the intermediary’s sig-
nal behaves as a substitute to that of the public signal. However, if the public signal becomes
sufficiently precise, they become complements as the intermediary opts for full disclosure.

6.2. Welfare Implications. How does the presence of the intermediary affect the social
welfare in terms of aggregate surplus? Also, how does the aggregate surplus vary as the
public signal gets more precise? Notice that for any given type cutoff for entry (θE) and
investment (θI) the aggregate surplus is given as:

W (θE, θI) = (θI − θE)

(
1

2
− k

)
+

∫ 1

θI

(
α− c

θ
− k

)
dθ.

Recall that (from Proposition 1) in the absence of the intermediary, all types enter (i.e.,
θE = 0) and all types above θ

NI
I invest if and only if the cost of investment c is not too large

(i.e., c < c̄ := (2π − 1)2∆). Thus, the aggregate surplus in the absence of the intermediary
is given as:

(5) WNI =

{
W (0, 1) if π < 1

2
+
√

c
4∆
=: πNI

W (0, θNII ) otherwise
.

In the presence of the intermediary, the type thresholds for entry and investment depend
both on the entry cost (k) and the precision of the public signal (π). Using Proposition 4,
the aggregate surplus in equilibrium can be obtained as follows:

(6)

if (k1 (π) , k2 (π)) 6= ∅,

WI =






W (0, θfI ) if k ≤ k1 (π)
W
(
θiI , θ

i
I

)
if k ≥ k2 (π)

W (0, θ̃I) otherwise

,

and if (k1 (π) , k2 (π)) = ∅,
WI =

{
W (0, θfI ) if k ≤ k∗

W
(
θiI , θ

i
I

)
if k ≥ k∗

.
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where θfI and θ
i
I (type thresholds for investment under full disclosure with and without full

entry, respectively) are as given in Proposition 2, and k∗ is as given in Lemma 2. The
following proposition describes the behavior of WI with respect to π.

Proposition 6. The following holds:

(i) ∂WI/∂π 6= 0 only if π ∈
[
π, πFD

]
.

(ii) Suppose that π increases from π′ to π′′ where π′ < πFD and π′′ > π. (a) If π′′ < πFD,
i.e., (k1 (π

′′) , k2 (π
′′)) 6= ∅, WI (strictly) increases if k ∈ [k1 (π′) , k2 (π′′)], decreases if k ∈

[k2 (π
′′) , k2 (π

′)] , and remains constant if k < k1 (π
′) or k > k2 (π

′). (b) If π′′ > πFD, i.e.,
full disclosure is optimal for all k at π′′ as (k1 (π

′′) , k2 (π
′′)) = ∅, WI (strictly) increases if

k ∈ [k1 (π′) , k∗], but decreases otherwise.

(iii) WI −WNI is (weakly) decreasing in π.

The above result shows that the welfare under intermediary is non-monotonic in the pre-
cision of the public signal. In particular, WI increases in π only if the entry cost lies in
a moderate range. However, the “value of the intermediary”, i.e., the gains in the aggre-
gate welfare when the intermediary is present vis-a-vis when it is not (WI −WNI), always
decreases when the public signal gets more precise.
To see the intuition, notice that a change in π affects the social welfare, both with and

without the intermediary’s presence. In the absence of the intermediary, a more precise
public signal elicits more investment (θNII is decreasing in π) and increases welfare. The
optimal disclosure policy of the intermediary, on the other hand, varies with π and affect
both entry and investment.
First, consider the impact of π on WI . As π increases, say from π′ to π′′, the range

of k over which partial disclosure is optimal–i.e., (k1 (π) , k2 (π))–shrinks (Proposition 4),
from [k1 (π

′) , k2 (π
′)] to [k1 (π

′′) , k2 (π
′′)]. So, when (k1 (π

′′) , k2 (π
′′)) 6= ∅ we have k1 (π′) <

k1 (π
′′) < k∗ < k2 (π

′′) < k2 (π
′).

Now, for relatively low or high values of k (i.e., for k < k1 (π
′) or k > k2 (π

′)), the
disclosure policy stays the same and there is no change in welfare. But for moderately
low values of k (i.e., for k ∈ [k1 (π

′) , k2 (π
′′)]) welfare increases as more types invest in

quality. The investment increases due to two reasons: (i) for k ∈ [k1 (π′) , k1 (π′′)), the policy
switches from partial to full disclosure leading to stronger incentive for investment (without
distorting entry). (ii) And for k ∈ (k1 (π′′) , k2 (π′′)], while the intermediary continues to
adopt partial disclosure, investment incentives are still stronger as the buyers have more
information (notice that the public signal is now more informative, and the intermediary’s
signal must (weakly) augment the information already available from the public signal).
Finally, for moderately high values of k (i.e., k ∈ (k2 (π′′) , k2 (π′)), the policy switches from
partial to full disclosure leading to inefficiently low entry. As a result, the welfare drops.
Next, consider the impact of π on the value of the intermediary, WI − WNI . Clearly,

the welfare in absence of the intermediary, WNI , increases in π as the investment cutoff
θNII decreases in π–when the buyers only rely on the public signal, a more precise signal
increases the incentives for investment in product quality. But as shown above, the welfare
under intermediary, WI , may also increase in π–either because the optimal policy switches
from partial to full disclosure (and entry remains efficient) or the buyers’ information on
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product quality (i.e., considering both the public and the intermediary’s signals) improves
even if the intermediary offers partial disclosure. In both cases, however, the gains in WI is
(weakly) less than that in WNI . For values of k where there is a switch from partial to full
disclosure, the cutoff type for investment remains larger than its counterpart in the absence
of intermediary (i.e., θfI > θNII ). And for values of k where partial disclosure remains optimal,

the investment cutoffs are the same with and without the intermediary (i.e., θ̃I = θNII ).
In this context, two remarks are in order. First, the above argument implies that there is a

threshold level in the precision of the public signal above which the intermediary’s presence
may be detrimental to social welfare (particularly, when the entry cost is sufficiently high).
Second, our analysis also shed light on the merits of the regulation that mandates full
disclosure from the intermediary. Suppose that k ∈ (k1 (π) , k2 (π)), the parameter space
in which partial disclosure is optimal and the full disclosure regulation has a bite. Recall
that under partial disclosure, the entry is always efficient. Therefore, full disclosure cannot
improve on the entry incentives. But full disclosure regulation can still improve welfare
by enhancing investment incentives, provided that k ∈ (k1 (π) , k∗), and hence entry is still
efficient. However, for k ∈ (k∗, k2 (π)), under full disclosure, the intermediary induces only
the relatively high types of the seller to enter market as maintaining the full entry is too
costly under such regulation. (In other words, the full disclosure regulation induces a regime

change from (θE, θI) = (0, θ̃I) to
(
θiI , θ

i
I

)
.) As shown in the proof of Proposition 6 (ii), such

regime change leads to a welfare loss due to a discrete downward jump in the extent of entry.
Thus, the full disclosure regulation does not necessarily leads to welfare gains.

6.3. Conclusion. We present a model of certification intermediary where the intermediary’s
policy influences the seller’s investments in product quality as well as his decision on market
entry. In our setting, the presence of an intermediary creates a novel trade-off: it improves
the seller’s incentives to investment in quality upon entry but mutes his entry incentives
ex-ante. The intermediary faces a canonical monopoly problem where a high certification
fee facilitates rent extraction from the seller but reduces the demand for certification service
at the first place, due to distortions in both entry and investment incentives of the seller.
We argue that a partial disclosure policy may be optimal as it can allow the intermediary
to charge a relatively high certification fee without causing a large distortion in entry and
investment.
A key insight that emerges from our model is that the informativeness of the intermedi-

ary’s signal varies non-monotonically with the public signal’s precision. When the public
signal is relatively noisy, the intermediary’s disclosure policy behaves as a substitute to the
public signal–intermediary’s report becomes less informative as the public signal becomes
more precise. But when the public signal becomes sufficiently precise, the intermediary’s
signal may complement its public counterpart as the intermediary resorts to full disclosure.
Our model also indicates that under high entry cost the optimal certification policy with
full disclosure may call for restricted entry. As a result, an increase in the precision of the
public signal may reduce social welfare. Therefore, in markets with certification intermedi-
aries commonplace interventions such as mandatory disclosure requirements or provision of
additional public information that are geared towards alleviating the information asymmetry
may be counterproductive and should be used with caution.
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7. Appendix

This appendix contains the proofs omitted in the text.

Proof of Proposition 1. Step 1. As for anyΘE andΘI , V (1; θ,ΘE, ΘI) is increasing in θ
whereas V (0; θ,ΘE, ΘI) is constant, in any equilibrium, the seller’s investment decision must
follow a cutoff strategy as the seller invests if and only if V (1; θ,ΘE, ΘI) ≥ V (0; θ,ΘE, ΘI).
Let θ′ be the investment cutoff type, that is, ΘI = [θ

′, 1] . For brevity of notation, denote

vi (θ
′) = vi (ΘE = [0, 1] , ΘI = [θ

′, 1]) ,

and
E (v | z; θ′) = E (v | z; ΘE = [0, 1] , ΘI = [θ′, 1]) .

We need to show that there exists a unique θNII such that (i) v1
(
θNII

)
− v0

(
θNII

)
= c

θNI
I

and (ii) V (0; θ,ΘE, ΘI) = v0
(
θNII

)
− k > 0.

Step 2. It is useful to note that Pr (z = 1 | I) =
∑

k∈{0,1}
Pr (z = 1 | v = k)P (v = k | I); so,

Pr (z = 1 |I = 1) = πα + (1− π) (1− α) , and Pr (z = 1 | I = 0) = 1/2.
Also,

E (v | z; θ′) = Pr (v = 1 | z; θ′) = Pr (z | v = 1)Pr (v = 1 | θ′)
Pr (z | θ′) .

We thus have

E (v | z = 1; θ′) = π (α− θ′∆)

π (α− θ′∆) + (1− π) (1− α + θ′∆)
,

and

E (v | z = 0; θ′) = (1− π) (α− θ′∆)

π (1− α + θ′∆) + (1− π) (α− θ′∆)
.

Step 3. Note that

∂

∂θ′
E (v | z = 1; θ′) = − (1− π) π∆

(1− (π − α (2π − 1) + (2π − 1) θ′∆))2
< 0,

and
∂

∂θ′
E (v | z = 0; θ′) = − α (1− π) π∆

(π − α (2π − 1) + (2π − 1) θ′∆)2
< 0.

This implies that both v1 and v0 are decreasing functions of θ
′. Note that v0 (1) =

1
2
. So,

v0 (θ
′) ≥ 1

2
> k for any investment cutoff type θ′ ∈ [0, 1]. Hence, all types of the seller enter

for any investment cutoff θ′.

Step 4. Now we show that there exists a unique type cutoff for investment. Let ψ (θ′) =
v1 (θ

′) − v0 (θ
′) denote the private value of investment in the presence of adverse selection

due to asymmetric information about the product’s quality. This value depends on the
investment cutoff θ′. Using the above expressions, we obtain

∂

∂θ′
ψ (θ′) =

1

(D (1−D))2
[
π (1− π) (∆ (2π − 1))2 (2α1 − 1− 2θ′∆)

]
.
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where D is a linear function of θ′. Note that α ≥ α − θ′∆ ≥ 1/2 since 2α − 1 − 2θ′∆ ≥ 0.
As a result, we have ∂

∂θ′
ψ (θ′) ≥ 0. Furthermore, we have ψ (1) = (2π − 1)2∆ =: c, say.

Step 5. So, if c > c, c/θ′ > ψ (θ′) for all θ′ and none of the types invests. Otherwise,
ψ (θ′ = 1) > c and ψ (θ′) < c/θ′ as θ′ → 0. Hence, there exists a cutoff type, θNII (say), such
that ψ

(
θNII

)
= c/θNII . Moreover, as ψ (θ

′) is increasing in θ′ and ψ (1) = c < ∆, we must have

ψ (θ′) < ∆ for all θ′. So, θNII > θFBI (otherwise, we must have ψ
(
θNII

)
= c/θNII > c/θFBI = ∆,

which is a contradiction).

Step 6. Finally, note that

∂

∂π
ψ (θ′) =

1

(D (1−D))2
A (1− A) (2π − 1)∆ > 0,

where A = α (1− θ′) + 1
2
θ′ ∈

(
1
2
, 1
)
. Hence, θNII is decreasing in π.

Proof of Lemma 2. Recall that depending on the intermediary’s price, we can have two
cases: (I) p ≤ pE (Full entry regime): In this case, all types enter (i.e., θE = 0) and type θ
invests if and only if:

(7) α (1− p)− c

θ
≥ 1

2
(1− p) , or, θ ≥ θfI :=

c

(1− p)∆
,

with the superscript f denotes the full entry regime.
(II) p ∈ (pE, p̄] (Investment-type-only entry regime): In this case, it is suboptimal for a

seller to enter if he is not going to invest on quality; all entrants invest and we have ΘI = ΘE.
Hence, type θ enters and invests if

(8) α (1− p)− c

θ
− k ≥ 0, or, θ ≥ θiI :=

c

α (1− p)− k
,

and all types θ < θiI (= θE) stay out, where the superscript i denotes the investment-type-
only entry regime.
Now, using (7) and (8) , it is routine to derive the following first-order conditions:

(9) p∗E = argmax
p<pE

ΠE =

{
1−

√
c
α

if k < kE :=
√

c
4α

1− 2k otherwise
,

and

p∗I = argmax
p>pE

ΠI = max

{
1− 1

α

(
k +

√
c (α− k)

)
, 1− 2k

}
(10)

=

{
1− 1

α

(
k +

√
c (α− k)

)
if k > kI :=

1
8∆2

(
−c+

√
c2 + 16cα∆2

)

1− 2k otherwise
.

As c < ∆ from Assumption 1 (i), we obtain kE < kI . Now, the proof directly follows from
equations (7) , (8), (9), (10) and the fact that there exists a unique k∗ ∈ (kI , 1/2) such that
Π∗I ≥ Π∗E iff k ≥ k∗. The proof of this claim is given in the following steps:
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Step 1: Recall from Assumption 1 (ii) that k ∈
[
c
2∆
, 1
2

]
. Observe that at k = 1

2
, Π∗I = ΠI >

Π∗E = 0 (note that at k = 1
2
, ΠI = (

√
∆ − √c)2 > 0 as ∆ > c by Assumption 1) and at

k = c
2∆
, Π∗I = ΠI = 0 < Π∗E = ΠE. As both Π

∗
Is are continuous functions of k, they must

intersect at some k = k∗, say. In what follows, we argue that k∗ is unique and k > kI .

Step 2: We must have k∗ > kI ; and at k
∗, we have Π∗E = ΠE = ΠI = Π

∗
I . The proof is as

follows: Note that ΠE > ΠI ∀k ∈
(
c
2∆
, 1
2

)
. To see this, observe that the above inequality can

be simplified as:

2
√
cα < k + 2

√
c (α− k) ∀k ∈

(
c

2∆
,
1

2

)
.

Now, f (k) := k + 2
√
c (α− k) is an increasing function of k (f ′ = 1 −

√
c/(α− k) > 0 as

α − k > c) where f (0) = 2
√
cα. Furthermore, we must have ΠI ≥ ΠI ∀k ∈

(
c
2∆
, 1
2

)
as the

left-hand side is the value under unconstrained optimum (notice that by definition of kI , the
equality holds only under k = kI). Combining the two, we get ΠE > ΠI ≥ ΠI ∀k ∈

(
c
2∆
, 1
2

)
.

As we know Π∗E intersects Π
∗
I at k

∗, it must be the case that at k∗, Π∗E = ΠE = Π
∗
I . So,

k∗ ∈ (kE, 1/2). Now, recall that kE < kI , and so, for all k ∈ (kE, kI ], Π∗E = ΠE > ΠI = Π∗I
(as α > ∆). As we know ΠE intersects Π

∗
I at k

∗, it must be the case that k∗ > kI and at k
∗,

we have Π∗E = ΠE = ΠI = Π
∗
I .

Step 3: Recall that at k = kI , ΠE > ΠI = ΠI (as ∆ < α) and at k = 1/2, ΠE < ΠI .
Moreover ΠE is concave in k (∂

2ΠE/∂k
2 = −c/k3 < 0) and ΠI is convex in k (∂2ΠI/∂k2 =√

c/(2(α − k)3/2) > 0). Hence k∗ must be unique. The proof is by contradiction. Suppose
ΠE = ΠI at multiple k ∈ (kI , 1/2) and let k′ and k′′ be the smallest and the largest solutions.
As ΠE (k) > ΠI (k) for k ∈ (kI , k′), and ΠE (k) < ΠI (k) for k ∈ (k′′, 1/2), we have

Π′E (k
′) < Π

′
I (k

′) and Π′E (k
′′) > Π

′
I (k

′′) .

But as ΠE is concave in k, we have Π
′
E (k

′) > Π
′
E (k

′′). So, we must have

Π
′
I (k

′) > Π′E (k
′) > Π

′
E (k

′′) > Π
′
I (k

′′) .

But this inequality contradicts the fact that ΠI is convex in k (as we must have Π
′
I (k

′) <

Π
′
I (k

′′)).

Proof of Lemma 3. It is instructive to argue part (ii) first. This claim follows directly
from the fact that both the low and high quality sellers must find it sequentially rational to
use the intermediary if pooling between qualities is feasible at the first place.

We prove part (i) by contradiction. In any equilibrium where only some types enter, it
must be the case that entry is profitable only if the seller invests. Now, we already argued
that both types must use the intermediary in equilibrium. So, the intermediary’s price cannot
exceed t0. Hence, for any entry cutoff θI , the intermediary’s payoff is (1− θI) t0. Moreover,
the marginal type must be willing to enter whereas it must be unprofitable to enter if the
firm does not undertake any investment. Hence, the optimal policy must satisfy the following
constraints: (i) Bayes Rationality (BR) : αt1 + (1− α) t0 = α; (b) Entry for marginal type
(Eθ) : α− k− c/θI ≥ t0; (c) Essentiality of investment (EI) : t0 ≥ 1

2
(t0 + t1)− k. Hence, the

intermediary’s problem is:
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max
t0, t1, θI

(1− θI) t0 s.t. (BR) , (Eθ) , (EI) .

Consider a relaxed program by ignoring (BR) and (EI). The optimal θI =
√
c/ (α− k)

which is same as in Proposition 2. Now t0 = α − k −
√
c (α− k). From (BR), we have

t1 = 1 − 1−α
α
t0. So, from (EI) we obtain that the solution is feasible if k∆ > 1

2

√
c (α− k).

That is, if k is sufficiently large, the solution to the original program is same as full disclosure
solution. But otherwise, the payoff must be (weakly) lower than that in the full disclosure
case. Hence, if partial disclosure is optimal, it must be the case that all types enter.

Proof of Lemma 4. (i) We solve P in the following two steps:

Step 1: Consider the relaxed problem PR obtained from P by ignoring (L1) and (U0), and
replacing (IC) by

θI =
c

(t1 − t0)∆
(ICR) .

Step 1a: Using (ICR) and (BR) constraints to solve for tis, we obtain:

(11) t0 (θI) = c+ α (1− θI) +
θI
2
− cα

θI∆
, t1 (θI) = c+ α (1− θI) +

θI
2
+
c (1− α)

θI∆
.

So, PR boils down to:

max
θI∈[0,1]

p (θI) = min

{
1

2
(t0 (θI) + t1 (θI))− k, t0 (θI)

}
.

Step 1b: Notice the following: (i) both t0 (θI) and t0 (θI)+ t1 (θI) are concave in θI ; hence,
so is p (θI). (ii)

(
1
2
{t0 (θI) + t1 (θI)} − k

)
− t0 (θI) is decreasing in θI and has a unique root

c
2k∆

. Hence,

p (θI) =

{
t0 (θI) if θI <

c
2k∆

1
2
{t0 (θI) + t1 (θI)} − k otherwise

(iii) And finally,

argmax
θI

t0 (θI) =
1

∆

√
cα, and argmax

θI

1

2
{t0 (θI) + t1 (θI)} − k =

√
c

∆
.

where
√

c
∆
< 1

∆

√
cα.

Step 1c: The observations (i) to (iii) imply the following: (a) if 1
∆

√
cα < c

2k∆
, i.e., if

k < 1
2

√
c
α
,

max p (θI) = max t0 (θI) ,

(b) if c
2k∆

<
√

c
∆
, i.e., k > 1

2

√
c
∆
,

max p (θI) = max
1

2
{t0 (θI) + t1 (θI)} − k,

(c) otherwise,

max p (θI) = t0

( c

2k∆

)
.
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Hence, the solution to the relaxed problem is as follows:

(12) θ̂I =






1
∆

√
cα if k < 1

2

√
c
α

c
2k∆

if k ∈
[
1
2

√
c
α
, 1
2

√
c
∆

]
√

c
∆

if k > 1
2

√
c
∆

.

It is routine to check that θ̂I is decreasing in k.

Step 2: Consider the original problem P. Note that the solution to PR satisfies (IC) as
1
∆

√
cα < 1 (by Assumption 1). So, it remains to check when θ̂I may violate the constraints

(L1) and (U0) and what is the solution to P in such a scenario. Notice that:

t1 (θI) =
π2v (θI)

πv (θI) + (1− π) (1− v (θI))
+

(1− π)2 v (θI)

(1− π) v (θI) + π (1− v (θI))
,

and

t0 (θI) =
π (1− π) v (θI)

(1− π) v (θI) + π (1− v (θI))
+

(1− π) πv (θI)

πv (θI) + (1− π) (1− v (θI))
,

where, as defined earlier, v (θI) =
1
2
θI + α (1− θI).

Step 2a: For θI ≤ 1
∆

√
cα, it is routine to check that (i) t1 (θI) − t1 (θI) is (strictly)

decreasing and t0 (θI)− t0 (θI) is (strictly) increasing in θI . (ii) t1 (θI) is increasing in π and
for all θI , t1 (θI) → 1 as π → 1. (iii) t0 (θI) is decreasing in π and for all θI , t0 (θI) → 0 as
π → 1.

Step 2b: Note that t0 (θI)→ −∞ and t1 (θI)→∞ as θI → 0.Hence, using the observations
(i) to (iii) in Step 2a above, we can claim the following:

(A) Either t1 (θI) ≥ t1 (θI) for all θI ∈ (0, 1∆
√
cα], or there exists a unique θ ∈ (0, 1

∆

√
cα],

θ1I (say), such that t1
(
θ1I
)
= t1

(
θ1I
)
and t1 (θI) ≥ t1 (θI) iff θI ≤ θ1I .Moreover, θ

1
I is continuous

and decreasing in π as t1 (θI) is increasing in π for all θI whereas t1 (θI) is independent of π.

(B) Either t0 (θI) ≤ t0 (θI) for all θI ∈ (0, 1∆
√
cα], or there exists a unique θ ∈ (0, 1

∆

√
cα], θ0I

(say), such that t0
(
θ0I
)
= t0

(
θ0I
)
and t0 (θI) ≤ t0 (θI) iff θI ≤ θ0I . Moreover, θ

0
I is continuous

and decreasing in π as t0 (θI) is decreasing in π for all θI whereas t0 (θI) is independent of π.

(C) If θ0I exists, so does θ
1
I , and vice versa. Moreover, it must be that θ

1
I = θ0I . To see this

consider the term

φ (θI) := v (θI) (t1 (θI)− t1 (θI)) + (1− v (θI))
(
t0 (θI)− t0 (θI)

)
.

But notice that by (BR),

φ (θI) = v (θI)−
[
v (θI) t1 (θI) + (1− v (θI)) t0 (θI)

]

= v (θI)−
{
v (θI)Ez|v=1Ev [v | z,ΘE = [0, 1] , ΘI = [θI , 1]]

+ (1− v (θI))Ez|v=0Ev [v | z,ΘE = [0, 1] , ΘI = [θI , 1]]
}

= v (θI)− v (θI) = 0.

Hence, if θ0I exists such that t0
(
θ0I
)
− t0

(
θ0I
)
= 0, it must be that t1

(
θ0I
)
− t1

(
θ0I
)
= 0; i.e.,

θ0I = θ1I .
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Step 2c: Define

θ̄I =

{
θ0I if exists
1
∆

√
cα otherwise

.

As p (θI) is concave, if θ̂I is not feasible under (L1) and (U0), p (θI) is maximized at the largest

feasible θI < θ̂I . That is, the solution to P is θ̃I = min{θ̂I , θ̄I}. Finally, θ̄I is decreasing in
π as θ0I

(
= θ1I

)
is.

(ii) As θ0I (= θ1I) is continuous and decreasing in π, there exists a π such that for all π < π,

θ̄I =
1
∆

√
cα, and hence, θ̃I = θ̂I . Similarly, there exists a π > π such that for all π > π,

θ̄I <
√
c/∆, and hence, θ̃I = θ̄I . For π ∈ [π, π], θ̄I ∈

[√
c
∆
, 1
∆

√
cα
]
. As θ̂I is decreasing in k,

for the expression for θ̂I we obtain that there exists a kπ ∈
[√

c
4α
,
√

c
4∆

]
such that θ̂I ≤ θ̄I

iff k ≥ kπ. Hence, θ̃I = min{θ̂I , θ̄I} = θ̄I iff k < kπ. Finally, as θ̂I is decreasing in k (but
independent of π) whereas θ̄I is independent of k but decreasing in π, kπ must be increasing
in π.

(iii) This observation directly follows from the fact at any feasible solution to P, (BR) and
(IC) must hold.

Proof of Proposition 4. Step 1. From Lemma 2, we obtain:

Π∗ =






α + c− 2√cα if k <
√

c
4α

α (1− 2k)
(
1− c

2αk

)
if k ∈

[√
c
4α
, k∗
]

α + c− 2
√
c (α− k)− k if k > k∗

.

Step 2. If π < π, by Proposition 4 we know that there exists a kπ ∈
[√

c
4α
,
√

c
4∆

]
such that

the solution to the program P yields:

θ̃I =






θ̄I if k < kπ
c

2k∆
if k ∈

[
kπ,
√

c
4∆

]
√

c
∆

if k >
√

c
4∆

,

Recall that θ̃I is continuous as θ̄I = θ̂I (kπ) =
c

2kπ∆
. Let ΠP be the value associated with the

program P. So, we have:

ΠP (k) =






α (1− 2kπ)
(
1− c

2αkπ

)
if k < kπ

α (1− 2k)
(
1− c

2αk

)
if k ∈

[
kπ,
√

c
4∆

]

α + c− 2
√
c∆− k if k >

√
c
4∆

.

Note that as k∗ >
√

c
4∆
(as ΠE − Π̄I is decreasing in k and positive at k =

√
c
4∆
, while

ΠE = Π̄I at k
∗), ΠP (k) > Π

∗ iff k >
√

c
4∆
.

Step 3. If π > π, θ̃I = θ̄I , and, moreover, θ̄I <
√

c
∆
. So, we have

ΠP (k) =

{
α (1− 2k1)

(
1− c

2αk1

)
if k ≤ k1

1
2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
− k if k > k1

,
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where θ̄I = c/2k1∆. Notice that ΠP (k) is continuous and decreasing in k, as, by definition
of k1, we have:

α (1− 2k1)
(
1− c

2αk1

)
= t0

(
θ̄I
)
=
1

2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
− k1.

Step 4. Now, if k1 < k∗, we have

α (1− 2k1)
(
1− c

2αk1

)
=
1

2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
− k1 > α+ c− 2

√
c (α− k1)− k1.

But at k = 1/2, we must also have

1

2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
− k < α+ c− 2

√
c (α− k)− k.

To see this, notice that

1

2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
− k <

1

2

{
t0

(√
c

∆

)
+ t1

(√
c

∆

)}
− k,

and

1

2

{
t0

(√
c

∆

)
+ t1

(√
c

∆

)}
− k = α + c− 2

√
c (α− k)− k for k = 1/2.

So, there exists a cutoff k2 where k2 > k∗ > k1 and is the unique solution to

1

2

{
t0
(
θ̄I
)
+ t1

(
θ̄I
)}
= α + c− 2

√
c (α− k),

such that ΠP (k) > Π
∗ iff k ∈ (k1, k2).

Step 5. As θ̄I is decreasing in π, k1 is increasing in π. And, from the equation above it
follows that k2 is decreasing in π. Thus, there exists a threshold for π, π

FD (say) such that
for π > πFD, k1 ≥ k∗ and ΠP (k) ≤ Π∗ for all k.

Proof of Proposition 5. Consider any equilibrium where partial disclosure is optimal and
the solution to the intermediary’s problem is (t̃0, t̃1, θ̃I). Notice that:

t1 (θI) = E(x,z)|v=iEv

[
v | x, z, ΘE = [0, 1] , ΘI = [θ̃I , 1]

]

=
∑

x,z Pr[v = 1 | x, z, θ̃I ]× Pr [x, z | v = 1]

= Pr[v = 1 | x1, z = 1, θ̃I ]× Pr [x1, z = 1 | v = 1]
+Pr[v = 1 | x1, z = 0, θ̃I ]× Pr [x1, z = 0 | v = 1]

= Pr[v = 1 | x1, z = 1, θ̃I ]π + Pr[v = 1 | x1, z = 0, θ̃I ] (1− π) .
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Now, consider a disclosure policy where the set of signals isX = {x1, x0} and Pr (x1 | v = 1) =
1 and Pr (x1 | v = 0) = ρ. Under this policy, for a given ρ, we have:

Pr
[
v = 1 | x1, z = 1, θ̃I

]
=

Pr
[
x1, z = 1 | v = 1, θ̃I

]
Pr
[
v = 1 | θ̃I

]

∑
v Pr

[
x1, z = 1 | v, θ̃I

]
Pr
[
v | θ̃I

]

=
πv(θ̃I)

πv(θ̃I) + ρ (1− π)
(
1− v(θ̃I)

) ,

and, similarly,

Pr
[
v = 1 | x1, z = 0, θ̃I

]
=

(1− π) v(θ̃I)

(1− π) v(θ̃I) + ρπ
(
1− v(θ̃I)

) .

We thus have

t1 (θI) =
π2v(θ̃I)

πv(θ̃I) + ρ (1− π)
(
1− v(θ̃I)

) +
(1− π)2 v(θ̃I)

(1− π) v(θ̃I) + ρπ
(
1− v(θ̃I)

) ,

and ρ must solve:

(13) t̃1 =
π2v(θ̃I)

πv(θ̃I) + ρ (1− π)
(
1− v(θ̃I)

) +
(1− π)2 v(θ̃I)

(1− π) v(θ̃I) + ρπ
(
1− v(θ̃I)

) .

We claim that for any t̃1 ∈ [t1(θ̃I), 1], there exists a value of ρ that satisfies (13), where

t1

(
θ̃I

)
= Ez|v=1Ev

[
v | z,ΘE = [0, 1] , ΘI = [θ̃I , 1]

]

=
π2v(θ̃I)

πv(θ̃I) + (1− π)
(
1− v(θ̃I)

) +
(1− π)2 v(θ̃I)

(1− π) v(θ̃I) + π
(
1− v(θ̃I)

) .

But this is trivial as ρ takes all values from 0 to 1, and hence the right-hand side takes all
values from t1(θ̃I) to 1. The corresponding value of t̃0 could also be induced by the same
value of ρ as t̃1 uniquely pins down t̃0 by (BR) , which can be written as

t̃0 =
v(θ̃I)

1− v(θ̃I)

(
1− t̃1

)
.

Proof of Proposition 6. Part (i): Step 1. From Proposition 4, we know that if π < π,
(k1 (π) , k2 (π)) =

(√
c
4∆
, 1
2

)
, and the following holds: (a) for all k <

√
c
4∆
, full disclosure is

optimal and the associated θE = 0 and θI = θfI , (b) for all k ≥
√

c
4∆
, partial disclosure is

optimal and the associated θE = 0 and θI = θ̃I . Moreover, from the proof of Proposition
4 (part (ii)), we know that , θ̃I = θ̂I for all k > kπ ≥

√
c
4∆
. Since both θfI and θ̂I are

independent of π, WI is invariant to π.

Step 2. If π ≥ πFD, WI depends on θ
f
I , θ

i
I , and k

∗, all of which are invariant to π; and
hence, so is WI .
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Part (ii): Step 1. First consider the case where π′′ < πFD, i.e., (k1 (π
′′) , k2 (π

′′)) 6= ∅.
The proof is obtained by characterizing WI in each of the following mutually exclusive and
exhaustive parameter ranges for k.

Step 1a: For k < k1 (π
′), full disclosure remains as the optimal policy with θE = 0 and

θI = θfI . Hence, there is no change in WI .

Step 1b: For k ∈ [k1 (π′) , k1 (π′′)), optimal policy switches from partial disclosure where

(θE, θI) = (0, θ̃I) to full disclosure where (θE, θI) = (0, θ
f
I ). We claim that for k ∈ [k1 (π′) , k1 (π′′))

and π = π′, θ̃I ≥ θfI . The argument is as follows. As π
′′ < πFD, k1 (π

′′) < k∗. So, for any

k ∈ [k1 (π′) , k1 (π′′)) ⊆ [
√

c
4∆
, k∗), θfI =

c
2k∆
, and hence, strictly decreasing in k. But θ̃I re-

mains constant. If π′ ≤ π, from the proof of Proposition 4 (ii), we know that k1 (π
′) =

√
c
4∆

and θ̃I =
√

c
∆
= c

2k1(π′)∆
. Also, if π′ > π, from the proof of Proposition 4 (ii) and the proof

of Proposition 4 (step 3) we have θ̃I = θ̄I =
c

2k1(π′)∆
. Hence, for all k ∈ [k1 (π′) , k1 (π′′))

θ̃I =
c

2k1(π′)∆
≥ c

2k∆
= θfI .

Step 1c: For k ∈ [k1 (π
′′) , k2 (π

′′)] partial disclosure remains optimum. So, we have

(θE, θI) = (0, θ̃I) and θ̃I = min{
√

c
∆
, θ̄I}. Hence, WI is increasing in π as θI is decreas-

ing in π.

Step 1d : Finally, for k > k2 (π
′′), two cases can arise: (i) for k > k2 (π

′) > k2 (π
′′) full

disclosure remains as the optimal policy where (θE, θI) =
(
θiI , θ

i
I

)
, and hence there is no

change in WI for a given k. (ii) For k ∈ (k2 (π′′) , k2 (π′)] the optimal policy switches from
partial disclosure to full disclosure and the associated type cutoffs change from (θE, θI) =

(0, θ̃I) to
(
θiI , θ

i
I

)
. But notice thatWI(0, θ̃I) ≥ WI(0,

√
c
∆
) > WI(θ

i
I , θ

i
I). The first inequality

follows from the fact that for such k, θ̃I = min{
√

c
∆
, θ̄I} and WI is decreasing in θI . The

second inequality follows as WI(0,
√

c
∆
) = WI(θ

i
I , θ

i
I) at k =

1
2
(recall that θiI =

√
c

α−k ), and

for k < 1
2
, ∂
∂k
WI(0,

√
c
∆
) = −1 whereas ∂

∂k
WI

(
θiI , θ

i
I

)
= −1 + 1

2
( c
α−k +

√
c

α−k ) ∈ (−1, 0) .

Step 2. The case where π′′ ≥ πFD can be treated exactly as above by setting k1 (π
′′) =

k2 (π
′′) = k∗.

Below we present a set of lemmas that are useful in our proof of part (iii) of Proposition
6.

Lemma 5. Suppose that all types enter but only type θ > θ∗ ∈ [0, 1] invests. Then,
v1 (θ

∗)− v0 (θ
∗) = ∆

(
t1 (θ

∗)− t0 (θ
∗)
)
.

Proof. The proof follows from direct computation of the terms given in the equation above.
Denote E (v | z; θ∗) := E (v | z; ΘE = [0, 1] , ΘI = [θ∗, 1]) and recall that

vi (θ
∗) :=

∑

z∈{0,1}
E (v | z; θ∗) Pr (z | I = i) , i = 0, 1,

that is, the expected value of the product after z is realized. Also note that,
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t1 (θ
∗)− t0 (θ

∗) = Ez|v=1Ev (v | z; θ∗)− Ez|v=0Ev (v | z; θ∗)

= [E (v | z = 1; θ∗) π + E (v | z = 0; θ∗) (1− π)]
− [E (v | z = 1; θ∗) (1− π) + E (v | z = 0; θ∗) π] .

Now,

v1 (θ
∗)− v0 (θ

∗) =
∑

i∈{0,1}




∑

z∈{0,1}
E (v | z; θ∗) Pr (z | I = i)



 ,

and
Pr (z = 1 | I = 1) =

∑

v∈{0,1}
Pr (z = 1 | v, I = 1)Pr (v | I = 1)

= πα + (1− π) (1− α) ,

and

Pr (z = 1 | I = 0) = 1

2
π +

1

2
(1− π) =

1

2
.

So,

v1 (θ
∗)− v0 (θ

∗) =
∑

i∈{0,1}




∑

z∈{0,1}
E (v | z; θ∗) Pr (z | I = i)





= E (v | z = 1; θ∗) π∆+ E (v | z = 1; θ∗)
(
(1− π) (1− α)− 1

2
(1− π)

)

−E (v | z = 0; θ∗) (πα + (1− π) (1− α)) + E (v | z = 0; θ∗)
(
1
2
π + 1

2
(1− π)

)

= E (v | z = 1; θ∗) π∆− E (v | z = 1; θ∗) (1− π)∆
−E (v | z = 0; θ∗) π∆+ E (v | z = 0; θ∗) (1− π)∆

= ∆
(
t1 (θ

∗)− t0 (θ
∗)
)
.

Hence the proof.

Lemma 6. For π ≥ π and k ∈ [k1 (π) , k2 (π)], θ̃I = θNII . Also, for π < π and k >
√

c
4∆
,

θ̃I =
√

c
∆
.

Proof. For π ≥ π and k ∈ [k1 (π) , k2 (π)], θ̃I = θ̄I where for (IC) we have

∆
(
t1
(
θ̄I
)
− t0

(
θ̄I
))
=

c

θ̄I
.

So, using Lemma 5, we have

(14) v1
(
θ̄I
)
− v0

(
θ̄I
)
= ∆

(
t1
(
θ̄I
)
− t0

(
θ̄I
))
=

c

θ̄I
.

Now, θNII is the unique solution to

(15) v1 (θ)− v0 (θ) =
c

θ
.

Hence, we must have
θNII = θ̄I = θ̃I .



OPTIMAL CERTIFICATION POLICY 33

For π < π, θ̃I = θ̂I , and hence, from equation (12) we have θ̃I =
√

c
∆
for k >

√
c
4∆
.

Lemma 7. πNI < π.

Proof. By definition, equation (15), i.e.,

v1 (θ)− v0 (θ) =
c

θ

has a unique solution in [0, 1) if and only if π > πNI and no solution otherwise. Also, by
definition, at π = π, θ̄I =

√
c
∆
< 1 and ∆

(
t1
(
θ̄I
)
− t0

(
θ̄I
))
= c

θ̄I
. But by equation (14) as

given in the proof of Lemma 6, θ̄I =
√

c
∆
is also a solution to equation (15). Since equation

(15) does not have any solution for π ≤ πNI , we must have π > πNI .

We are now ready to present the proof of part (iii) of Proposition 6.

Proof of Proposition 6. Part (iii). Step 1. WNI is invariant to π if π < πNI but increases
otherwise as θNII is decreasing in π.

Step 2. For π < π, WI is invariant to π since it depends on either θ
f
I or θ

i
I , and both

are independent of π. Hence, for π < πNI , WI −WNI is constant (note that by Lemma 7,
πNI < π) but for π ∈ [πNI , π), WI −WNI is strictly decreasing in π.

Next, consider π ∈ [π, πFD). If k 6∈ (k1 (π) , k2 (π)), WI is invariant to π as it only depends

on either θfI or θ
i
I . Otherwise, WI = W (0, θ̃I) = W

(
0, θNII

)
= WIN (by Lemma 5). Hence,

in the former case, WI −WNI is strictly decreasing in π and in the later case WI −WNI = 0
for all such π.

Finally, for π ≥ πFD,WI is still invariant to π as k
∗ is also independent of π. So,WI−WNI

is strictly decreasing in π. Hence, the proof.
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