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Optimal Chance-Constrained Scheduling of
Reconfigurable Microgrids Considering Islanding

Operation Constraints
Mohammad Hemmati , Behnam Mohammadi-Ivatloo , Senior Member, IEEE, Mehdi Abapour ,

and Amjad Anvari-Moghaddam , Senior Member, IEEE

Abstract—Microgrid concept is one of the suitable strategies for
increasing resilience and preventing load curtailment, especially
in emergency conditions. Operation in islanded mode is one of
the unique features of microgrids that can provide numerous ben-
efits for both consumers and energy producers. Unlike the con-
ventional distribution networks, reconfigurable microgrids enable
the reconfiguration process to achieve optimal structure. In this
article, a new optimal strategy for scheduling of reconfigurable mi-
crogrids considering islanding capability constraints is presented.
To demonstrate the successful islanding operation, the islanding
capability is considered as a probability of islanding operation
(PIO) index which shows the probability, that the microgrid has
adequate level of spinning reserve to meet the local load. Taking into
account the forecast errors of generated power by renewable energy
resources (PV and wind) as well as load demand, the 13-interval
approximation is used for the simplification of nonlinearity of
PIO. The scheduling of reconfigurable microgrid with islanding
operation constraints is formulated as a chance-constrained goal
optimization problem, where the objective is defined as minimizing
the total operation cost of microgrid in terms of fuel cost, reliability
cost, cost of purchasing power from the mains, and switching
cost. The proposed method is implemented on a 10-bus radial
reconfigurable microgrid test system with photovoltaic (PV) panels,
wind turbines, battery, and microturbines, with different levels of
PIO. The numerical results show the effectiveness of the proposed
scheduling method.

Index Terms—Chance-constrained goal programming
(CCGP), microgrid, probability of islanding operation (PIO),
reconfiguration, spinning reserve.
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NOMENCLATURE

Indices

b Index of battery storage units.

i Index of microturbine units.

J Index of system buses.

k Index of branches.

L Index of load.

s Index of remotely controlled switches.

t Index of time.

Parameter

CL
j Cost of interruption in jth bus.

Imax
k Maximum current of kth branch.

MUT/MDT Minimum up/down time.

MD/MC Minimum discharging/charging time.

Nsw,max Maximum number of switching actions.

Pmax
pcc /Pmin

pcc Maximum/minimum power exchanged.

Pmin
charb

/Pmax
charb

Minimum and maximum charging power

of the bth battery.

Pmin
disb

/Pmax
disb

Minimum and maximum discharging

power of the bth battery.

Pmin
i /Pmax

i Minimum/maximum generated power by

ith micro-turbine (MT).

PIOtarget Target probability for scheduling of mi-

crogrid in islanded mode.

RUi/RDi Ramp up/down of the ith MT.

SOCmin/SOCmax Minimum/maximum state of charge of a

battery.

V min
j /V max

j Minimum and maximum voltage of jth

bus.

Variables

Ik Current of the kth branch.

Laj Average load connected to the jth bus.

Nsw
s Number of switching action of the sth

switch.

Ppcc Exchanged power with upstream network.

Pd Forecasted load demand.

Pw/PPV Forecasted wind and PV power genera-

tion.

Pb Battery charge or discharge power.

Pi,t Generated power by the ith MT at tth time

interval.
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Rd
i /R

u
i Down/up spinning reserve of the ith MT.

Rd
b/R

u
b Down/up spinning reserve of the bth

battery.

SOCb State of charge of the bth battery.

Ss,t Status of the sth switch at tth time interval.

T on
i /T off

i Number of ON/OFF hours of the ith MT.

T char
b /T dis

b Number of charge/discharge hours of the

bth battery.

Vj Voltage of the jth bus.

Xc
b/X

d
b Binary variable for charge/discharge of

battery.

Xi,t State of the ith MT at tth time interval.

I. INTRODUCTION

T
HE need for highly reliable and flexible distribution net-

works is a critical challenge for energy producers and

consumers. This problem can be solved by management and

scheduling of microgrids, which are key players in active distri-

bution networks. Microgrid is a small or medium-scale distribu-

tion network consisting of distributed generation (dispatchable

and nondispatchable unit), energy storage system (ESS), con-

trollable load, and switches [1]. Microgrid is connected to the

upstream network at the point of common coupling (PCC) and

can exchange power with it. One of the significant advantages

of microgrids lies within their islanding capability during the

disturbance and emergency conditions through which they can

secure local loads and improve the system reliability. According

to the IEEE.1547.7 standard, the islanded mode can provide sev-

eral benefits such as reliability and power quality improvement,

cost minimization, and ancillary services [2].

Besides the conventional microgrids, reconfigurable micro-

grids (RMGs), which are deemed as the next-generation of

microgrids, have attracted much attention over the past years

[3]–[6]. Generally, RMG is a type of microgrid that is equipped

with remotely controlled switches (RCSs) (i.e., tie switches and

sectionalizers) and is able to provide a flexible structure for

rerouting the power throughout the network. In comparison with

traditional distribution networks, RMG has more control vari-

ables (such as dispatchable units, controllable loads, and RCS)

[7]. The reconfiguration capability can facilitate the microgrid

scheduling for different goals, such as reliability improvement

[8], cost minimization [9], load restoration [10], etc.

Although the microgrid scheduling has been studied widely,

most of the studies focus on the microgrid scheduling in con-

nected mode. In [11], microgrid management is presented in

a grid-connected mode using reconfiguration and unit com-

mitment. In [12], the problem of integrated heat and power

microgrid in the presence of selling/purchasing power price

uncertainty is developed. The proposed microgrid contains var-

ious types of heat and power generation units and the goal

of the article is to find the optimum set points of microgrid

components in order to minimize the operation cost. Likewise,

in [13], the energy management problem, under uncertainties

based on chance-constrained programming for a grid-connected

microgrid, is investigated.

Renewable energy sources (RESs) also have a major role in

microgrids, however, they could cause power fluctuations. To

address the uncertainty caused by these units, the scheduling

problem must be investigated by stochastic methods. Three

methods, namely, chance-constrained programming, stochastic

programming, and robust optimization, are among the most

widely used approaches for uncertainty modeling [14], [15]. A

scenario-based robust energy management is introduced in [16]

for uncertainly handling in worst case. By optimizing the worst

case scenario, the microgrid energy management will become

robust against the possible realizations of the uncertain param-

eters which are simulated by Monte Carlo. Authors in [17] take

advantages of battery ESSs for providing multiple services to

microgrid. Besides introducing an energy management approach

for thermal and electrical sources of the studied microgrid,

a chance-constrained planning is implemented to handle the

load and solar power fluctuations. In [18], a chance-constrained

stochastic model for scheduling of microgrid is presented. The

uncertainties of RESs and load variation, as well as, the provi-

sional islanding causes by external disturbances are handled by

stochastic scenarios and a joint chance-constraint is proposed

for controlling the operational risks.

Due to the intermittent and unpredictable nature of RESs,

a scenario-robust mixed-integer linear programing is presented

for improving the performance of hybrid microgrids [19]. In

[20], a chance-constrained information gap decision theory

(IGDT) model is proposed by considering two categories of

uncertainty for multiperiod scheduling of a microgrid. The

chance-constraints are imposed in the operational stage for

uncertainty modeling, including hourly generated power of

RESs and load variation. In [21], an optimal control strategy

is introduced for power flow management in microgrids. Due to

different types of uncertainties caused by RESs, load demand,

and charging/discharging behaviors of electric vehicles (EVs),

the problem is reformulated as a stochastic chance-constrained

optimization.

Although microgrid scheduling with different types of uncer-

tainty is reported in the literature, there are few research works

which consider the scheduling of microgrids with islanding

capability. In [14], a chance-constrained energy management

model for an islanding microgrid is developed following the

objective of minimizing the generation cost, ESS degradation

cost, and emission cost. Generated power by RES is considered

as an uncertain parameter and a novel ambiguity set is proposed

to capture the uncertainty. In [22], microgrid scheduling with

multiperiod islanding constraints is proposed. To identify the mi-

crogrid capability in operating in islanded condition, the T-τ cri-

terion is introduced. In [23], mixed-integer linear programming

(MILP)-based splitting method is introduced for islanding op-

eration of power system. However, uncertainties in the forecast

methods may lead to incorrect decision in energy management

system for islanding microgrid. In [24], differences between

the actual and predicted data sequence were used to determine

compensation of uncertainty associated with PV in islanded

microgrid. The probability of successful islanding (PSI) criteria

is proposed in [25] to determine the probability of microgrid

meeting demands and maintaining a sufficient amount of reserve
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TABLE I
COMPARISON OF THE INNOVATIONS OF THIS ARTICLE WITH OTHER WORKS

capacity in islanded mode. The proposed approach is developed

with chance-constrained islanding capability to guarantee the

successful islanding operation with a specified probability. In

[26], to demonstrate the microgrid capability for operating in

islanded mode, a probability-based concept is proposed. The

proposed method is analyzed in presence of forecast errors of

demand and wind power generation. In [27], by considering the

uncertainties of load demand, price of electricity, and renewable

energy, a risk-constrained stochastic framework for autonomous

microgrids is proposed. In [28], a robust optimization-based

algorithm is developed for optimal scheduling of microgrid

operation with islanding capability constraints. With the proper

robust level, the proposed microgrid scheduling model with

islanding constraints ensures the successful off-grid operation

with minimum load shedding.

The review of the literature shows that the scheduling of

microgrids in islanded mode has attracted the attention of

researchers recently. Nevertheless, the microgrid scheduling

with islanding capability is not studied for RMGs as the next

generation of microgrids. In this article, chance-constrained

goal (CCG) scheduling of an RMG with islanding capability

operation is proposed. The probability of islanding operation

(PIO) as a successful islanding index is formulated based on

the forecast errors of PV and wind power generation as well as

load demand. This criterion guarantees the supply of local loads

in islanded operation and provides much more flexibility and

reliability for microgrid. The main contributions of the article

can be summarized as follows.

1) Introduction of a new index for islanding operation ca-

pability called PIO which represents the capability of

microgrid to meet the local load in autonomous operation.

2) Formulate the RMG scheduling with islanding constraint

as a CCG programming (CCGP).

3) Analyze the proposed RMG scheduling for different lev-

els of PIO considering the limitation on the number of

switching actions.

For further clarification, article’s innovations are compared to

similar works in details, which is given in Table I.

The rest of this article is organized as follows. Section II

provides the microgrid optimal scheduling problem formulation

including objective function and related constraints. The pro-

posed CCG scheduling with islanding capability is introduced

in Section III. Section IV presents numerical results and investi-

gates the performance of the proposed model. Finally, Section V

concludes the article and draws future works.

II. PROBLEM FORMULATION

This section describes the microgrid optimal scheduling for-

mulation. In the examined microgrid with a number of dis-

patchable unit (i.e., microturbine), nondispatchable unit (i.e.,

wind and PV), ESS (i.e., battery), and normally open and close

switches, the objective is to minimize the total operation cost

in terms of generation cost, purchasing cost of electricity from

upstream network, reliability cost, and switching cost. The ob-

jective function is given by

Min

T
∑

t=1

(

NG
∑

i=1

(F (pi)Xi,t + SUi,t + SDi,t) +

T
∑

t=1

λtP
PCC
t

+

J
∑

j=1

LajC
L
j λj +

T
∑

t=1

S
∑

s=1

NSW
s,t λ

sw

)

(1)

where (F (Pi,t) is the fuel cost consumption function of the ith

MT at the tth time that is calculated as follows [29]:

F (Pi,t) = ai + biPi,t + ci(Pi,t)
2 i ∈ N, t ∈ T. (2)

The second and the third terms of (1) represent the startup

and shutdown cost, respectively. The fourth term represents

the purchasing cost of power from the upstream network. As

mentioned, the microgrid can exchange power with the mains at

PCC.λt is a price of purchasing power at the tth time interval.

To consider the effect of reliability improvement in the problem

formulation, the expected consumer interruption cost as [30]

is considered by the introduction of the fifth term in (1). The

last term of (1) represents the switching cost. λ
sw is the cost

of each switching action and NSW
s,t is the switching action of

the sth switch at the tth time interval. The state of each switch

can be either 0 or 1 denoting the open or closed condition,

respectively. Therefore, the total numbers of switching actions

for the sth switch at the end of the examined period (NSW
s ) can

be calculated as

Nsw
s =

T
∑

t=1

|Ss,t − Ss,t−1|. (3)

The objective function is subject to different constraints as

follows:

Pmin
i (t) ≤ Pi(t) ≤ Pmax

i (t) ∀t ∈ T, i ∈ NG

(4)

MUTi (Xi,t −Xi,t−1) ≤ T on
i ∀t ∈ T, i ∈ NG

(5)

MDTi (Xi,t−1 −Xi,t) ≤ T off
i ∀t ∈ T, i ∈ NG

(6)
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P
i
(t)− P

i
(t− 1) ≤ RUi ∀t ∈ T, i ∈ NG

(7)

P
i
(t− 1)− P

i
(t) ≤ RDi ∀t ∈ T, i ∈ NG

(8)

Pmax
i Xi,t − Pi,t ≥ Ru

i,t ∀t ∈ T, i ∈ NG

(9)

Pi,t − Pmin
i Xi,t ≥ Rd

i,t ∀t ∈ T, i ∈ NG

(10)

Pmin
disb

(t)Xd
b,t ≤ Pb(t) ≤ Pmax

disb
(t)Xd

b,t ∀t ∈ T, b ∈ NB

(11)

Pmin
charb

(t)Xc
b,t ≤ −Pb(t) ≤ Pmax

charb
(t)Xc

b,t ∀t ∈ T, b ∈ NB

(12)

Xc
b +Xd

b ≤ 1 ∀b ∈ NB
(13)

T char
b ≥ MCb

(

Xc
b,t −Xc

b,t−1

)

∀t ∈ T, b ∈ NB

(14)

T dis
b ≥ MDb

(

Xd
b,t −Xd

b,t−1

)

∀t ∈ T, b ∈ NB

(15)

SOCmin ≤ SOCb,t ≤ SOCmax
b ∀b ∈ NB

(16)

Pmax
disb

− Pb,t ≥ Ru
b,t ∀t ∈ T, b ∈ NB

(17)

Pmax
charb

+ Pb,t ≥ Rd
b,t ∀t ∈ T, b ∈ NB

(18)

V min
j ≤ Vj ≤ V max

j ∀j (19)

|Ik| ≤ Imax
k ∀j (20)

Nsw
s ≤ Nsw,max ∀s (21)

Pmin
Pcc (t) ≤ PPcc(t) ≤ Pmax

Pcc (t) t ∈ T (22)

NG
∑

i=1

Pi,t + Pw,t + Ppv,t

+ PPcc,t ±
NB
∑

b=1

Pb,t =

ND
∑

d=1

Pd,t ∀t. (23)

Constraint (4) represents that generated power by the ith MT

is bounded by an upper and a lower limit. The MT must be

ON/OFF for a minimum time before it can be shutdown/started

up, respectively, as stated in (5) and (6). Constraints (7) and

(8) represent the ramp up and ramp down of the ith MT. To

have a reliable system operation spinning reserve capacities

(both up and down reserves) must be considered. For an un-

expected load demand increase, unpredictable collapse in PV

or WT power output and/or constrained outage of MT, the

up spinning reserve capacity is required to be supplied by the

dispatchable units. Similarly, for sudden load demand decrease

and/or unexpected increases in renewable generation unit power

output, the down spinning reserve has to be activated [31]. To

this end, constraints (9) and (10) represent the up and down

spinning reserves, respectively [25]. The charging/discharging

power of the battery should also be bounded by certain values as

shown in (11) and (12), whereXd
b,tand Xc

b,tare binary variables

for discharging (“0”) or charging (“1”) modes, respectively. The

operation modes of the battery are separated by (13). The battery

is subject to minimum charging and discharging time limits as

(14) and (15) [22]. The battery state of charge (SOC) is presented

in (16). Similar to MT, up and down spinning reserves limitations

for a battery unit are given in (17) and (18). After reconfiguration,

the voltage of each bus must be in an acceptable range as stated in

(19). Constraint (20) shows the branch current constraint. The

total number of switching actions during reconfiguration that

is calculated in (3) is limited by (21). The power purchased

is bounded by upper and lower limits as (22). Finally, (23)

denotes the supply–demand power balance constraint, where

NG, NB, and ND are the number of MTs, batteries, and load,

respectively.

III. OPTIMAL SCHEDULING OF RMG WITH PROBABILITY

ISLANDING OPERATION (PIO) CONSTRAINT

The general form of chance-constraint programming (CCP)

is formulated as

Pr {fi(x, ξ) ≤ bi} ≤ Bi (24)

where Bi is the confidence level, x is a set of decision vari-

ables, ξ is a set of uncertain parameters, and bi is a value of

objective function (f). In the CCP, the probability of changes

of uncertain parameters cannot exceed a predetermined level.

Therefore, to improve the flexibility of CCP, it is reformed to the

CCGP as

Pr
{

fi(x, ξ)− bi ≥ d+i
}

≥ B+
i (25)

Pr
{

bi − fi(x, ξ) ≤ d−i
}

≥ B−
i (26)

where d+i and d−i are positive deviations from the value of

target.

As mentioned, PV and WT power output, as well as load

demand forecast, are prone to errors. The forecast error of WT

power output (∆Pw), PV power output (∆Ppv), and forecast

error of load demand (∆Pd) can be characterized as indepen-

dent Gaussian distributed random variables. All three uncertain

parameters are the result of real value and a prediction error. The

value of net forecast demand is the result of subtracting the load

consumption and total power generated by the renewable units,

which can be represented as

P t
dF

= P t
dA

− P t
PVA

− P t
WA

+∆eNt (27)

where P t
PVA

, P t
WA

, and P t
dA

are actual PV, wind power output,

and load demand, ∆eNt is a net error which is a combination of

PV and wind, as well as, load demand forecast errors. Given that

the forecasted errors of all uncertain parameters are unrelated,
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the standard deviation of net error can be calculated as

σN
t =

√

(

σt
Pd

)2
+
(

σt
Ppv

)2

+
(

σt
Pw

)2
. (28)

As [32], the standard deviation of load forecasted error is a

percentage of actual load demand in whole forecasting horizon

σt
Pd

=
k

100
P t
dA

(29)

where k is a function of the predication accuracy percentage.

The standard deviation of wind and PV power output forecast

errors can be approximated as

σt
Ppv

=
1

5
P t
PVF

+
1

50
P t
PVI

(30)

σt
Pw

=
1

5
P t
wF

+
1

50
P t
wI

(31)

where I and F symbol represent the total installation capacity

and forecasted value of wind and PV unit.

According to the above description, the net forecast error can

be represented by Gaussian distribution

∆eNt
(

µN
t , σN

t

)

. (32)

To guarantee adequate spinning reserves for an islanding

operation, the following constraint should be considered:

−
NG
∑

i=1

Rd
i,t −

NB
∑

b=1

Rd
b,t − PPcc,t ≤ ∆t

e

≤
NG
∑

i=1

Ru
i,t +

NB
∑

b=1

Ru
b,t − PPcc,t. (33)

Based on (25) and (26), the reserve CCGP constraints con-

sidering up and down spinning reserves are reformed as

Pr
{

∑

Rup
i,t +

∑

Rup
b,t − Ppcc,t ≥ ∆eNt

}

≥ Bup
t (34)

Pr
{

−
∑

Rdown
i,t −

∑

Rsown
b,t − Ppcc,t ≤ ∆eNt

}

≥ Bdown
t .

(35)

The amount of required reserve that guarantees the operation

of RMG in the islanded mode and represents the successful

islanding operation can be approximated by dividing the net

error probability distribution to the 13 intervals. Fig. 1 depicts

the Gaussian distribution function of net error which consists of

13 intervals. Each interval is associated with a probability like

πc. The probability of a scenario occurrence in the cth interval

with the upper and lower bands can be assessed as

πc =

∫ ub

lb

1

σN
t

√
2π

e
− (

x−µN
t )

2

2σN2

t dx =
1

2
erf

(

x− µN
t√

2σN
t

)

∣

∣

∣

∣

∣

∣

∣

ub

lb

(36)

where lb and ub are the lower and upper band of each interval,

respectively. For 13-interval approximation (see Fig. 1), lb and

Fig. 1. Thirteen-interval Gaussian distribution approximation based on net
forecast error.

ubare calculated as

lb =

(

µN
t − (c− 7)

σN
t

)

− 1

2
σN
t c = 1, 2, . . . 13 (37)

ub =

(

µN
t − (c− 7)

σN
t

)

+
1

2
σN
t c = 1, 2, . . . 13. (38)

It should be noted that the larger number of intervals increases

the accuracy while demanding a larger computational require-

ment. Whenever the probability of net error, which is a function

of up and down spinning reserve as well as a power exchanged

with the upstream network, is between the negative and positive

changes (25–26), a sufficient reserve for successful islanding

operation is guaranteed. In other words, the area between d−

and d+ axes (which are determined by the value of reserves

and exchanged power) indicates the PIO. To recognize intervals

which denote the islanding capability, binary variable υt
c is

introduced. Then

PIO =

Nc
∑

c=1

υt
c × πt

c and PIO ≥ PIOtarget (39)

where υt
c = φt

uc
− φt

uc
. φt

uc
and φt

uc
are auxiliary binary vari-

ables which are associated with realization of net forecast error

and calculated as

φt
uc

=

{

1 if ubc ≤ ∑

Rup
i,t +

∑

Rup
b,t − Ppcc,t

0 otherwise
(40)

φt
bc

=

{

1 if lbc ≤ −∑

Rup
i,t −

∑

Rup
b,t − Ppcc,t

0 otherwise.
(41)

The proposed PIO index based on CCGP provides the micro-

grid operator with an opportunity for scheduling after temporary

islanding with definite probability.

IV. NUMERICAL SIMULATION

The proposed chance-constrained RMG scheduling with is-

landing capability, which was introduced in Sections II and III,

is implemented on a 10-bus test system [7]. The single-line

diagram of the examined system is depicted in Fig. 2.
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Fig. 2. Structure of the 10-bus RMG test system.

TABLE II
PARAMETERS OF BATTERY-BASED ESS [25]

TABLE III
PARAMETERS OF MICROTURBINES [26]

As can be seen, the modified test system includes multiple

resources, such a PV farm, a wind turbine, a battery-based ESS,

and three microturbines. There are 11 switches in the network,

and due to the radial structure, two of them should be open at

any time. To establish this limitation, the bus incidence matrix

is implemented.

The characteristic of battery and MTs are given in Tables II

and III, respectively.

The 120-kW WT is considered according to [33]. Based

on forecast results of wind speed, the corresponding power

generated by WT is calculated, which is shown in Fig. 3. Also, as

in [34], the irradiation and temperature data are used to calculate

the generated power of a 150-kW PV farm which is shown in

Fig. 3.

Fig. 3. Forecasted power generation of a 120-kW wind turbine and 150-kW
PV panel.

The forecast error of renewable sources (WT and PV) power

output are modeled by independent normal distributions with

zero mean and 10% standard deviation. The forecasted load

demand is given in Table IV. As another uncertain parameter, the

forecast error of load demand is subject to the normal distribution

with 2% standard deviation and zero mean. The day-ahead

market price is also given in Table IV.

The maximum number of switching action for each switch

is considered to be ten actions per day. Also, the cost of each

switching action is $1. Computer simulations and required cod-

ing are carried out in MATLAB software and using CPLEX 11.2

solver. To find the optimal topology of the system, time-varying

acceleration coefficients particle swarm optimization (TVAC-

PSO) algorithm is used [7], [35].

To conduct the stochastic study, 1000 scenarios are generated

by using Monte Carlo simulation for PV, WT, as well as, load

demand. For each scenario, the power exchange at PCC is
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TABLE IV
FORECASTED LOAD DEMAND AND DAILY MARKET PRICE

Fig. 4. MTs power dispatch for 24 h with PIO = 0.999.

calculated based on forecast error of PV, WT, and load demand

and the islanding condition is examined.

To demonstrate the effectiveness of the proposed chance-

constrained scheduling, simulation results are presented for two

cases. In the first case, the microgrid scheduling is analyzed with

PIOtarget = 0.999. In the second case, RMG scheduling is done

with different levels of probability of islanding operation.

A. Chance-Constrained Scheduling of RMG With

PIO = 0.999

In this case, the microgrid scheduling is done with

PIOtarget = 0.999, this value equals 12σt.The optimal schedul-

ing of MTs is depicted in Fig. 4. As can be seen from Fig. 4, MT

1 is committed only in pick-load hours (12–16 and 20–22 P.M.)

due to its higher cost of operation.

Table V shows the normally open switches (NO) at any hour.

It can be seen that to satisfy the radial structure of the system,

two switches should be open at any hour.

Also, Table V shows the battery state for 24 h. It should be

noted that charging, discharging, and idle states of battery are

represented by −1, 1, and 0, respectively.

Fig. 5 shows the total amount of up/down spinning reserve

of dispatchable units (MTs and battery). As can be seen, up

TABLE V
RESULT OF RECONFIGURATION WITH PIO = 0.999

Fig. 5. Amount of up/down spinning reserve with PIO = 0.999.

Fig. 6. Power exchanged between RMG and upstream network at PCC with
PIO = 0.999.

and down spinning reserves have different behaviors. Up spin-

ning reserve is considered for compensation of unexpected load

increase. Therefore, when microgrid imports more energy from

upstream network, up spinning reserve should be at higher values

to secure the operation in case of an unintentional islanding

event.

Also, the down spinning reserve, which is considered for

compensation of fluctuation in PV and WT power generation,

should be equal to its high value when there is surplus power

and the microgrid can sell power to the upstream network.
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TABLE VI
RESULT OF RECONFIGURATION AND BATTERY OPERATION FOR

DIFFERENT LEVELS OF PIO

Fig. 6 shows the exchanged power at PCC between RMG and

upstream network. Comparing the results shown in Figs. 5 and

6 proves the relationship between up/down spinning reserve and

power exchanged at PCC. For example, at 20–23 P.M. when the

high power is injected from the upstream network, up spinning

reserve reaches its highest value. Also, at 12–16 P.M., when

the microgrid sells the high amount of power to the upstream

network, the value of down spinning reserve reaches its highest

value.

B. Chance-Constrained Scheduling of RMG With Different

PIO Levels

To demonstrate the effect of islanding criterion (PIO) on

microgrid scheduling, RMG scheduling with different levels of

PIO are analyzed and compared in this section.

Fig. 7 shows the generated power by MTs. In scheduling

with high level of PIO [see Fig. 7(c)], MTs are committed

more frequently than the situations with lower levels of PIO

[see Fig. 7(a) and (b)]. Obviously, at higher PIOs, to maintain

a suitable level of reliability, local units should be committed at

more times and generate more power compared to the scheduling

with PIO = 70 and 80%. Table VI represents the normally

open switches for three different values of PIO. As can be seen,

with increasing PIO, the change in topology of the microgrid is

increasing. In other words, at higher PIOs, where the probability

of interruption of local load is nearly one, the microgrid should

have an optimal structure. By applying appropriate switching

Fig. 7. MTs power dispatch for 24 h with (a) PIO = 70%, (b) PIO = 80%,
and (c) PIO = 90%.

actions, it is possible to minimize power losses through optimal

power rerouting. However, it should be noted that with the

increasing PIO value, the number of switching action is also

increasing. Also, Table VI illustrates the battery state for the

different levels of PIO. As can be seen, with the increasing PIO

value, variation in the amount of energy stored in battery also
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Fig. 8. Amount of (a) up spinning reserve and (b) down spinning reserve with
different levels of PIO.

Fig. 9. Power exchanged between the RMG and the upstream network at
different levels of PIO.

increases. At higher levels of PIO, when the microgrid needs

more energy supplement, the battery discharges more frequently

compared to cases with lower levels of PIO. In this regard, the

idle time of battery is less once the PIO is higher.

Figs. 8 and 9 show the amount of up/down spinning reserve

and exchanged power at PCC for the different levels of PIO,

respectively. As can be seen, with increasing PIO, the amount

of up/down spinning reserve is increasing. Also, with increasing

Fig. 10. Total operation cost of RMG for different levels of PIO.

PIO, the amount of power exchanged at PCC is decreasing. By

increasing the value of PIO, when the value of up/down spinning

reserve reaches its highest value (20–23 P.M. and 12–15 P.M.),

i.e., in PIO = 90%, power exchanged at PCC decreases.

Finally, the total cost of RMG scheduling with different levels

of PIO is depicted in Fig. 10. As observed, with the increasing

value of PIO, microgrid total cost increases. Increase in the total

cost is less at lower levels of PIO (6.41% for PIO increases

from 0.1 to 0.7). Once the PIO is higher (from 0.8 to 0.999),

the slope of PIO is greater. It illustrates that while microgrids

have adequate power to meet the local load and reliability is high,

small increase of reliability level will need a remarkable increase

of total cost. However, the increase in total cost of microgrid

is negligible compared to the multiple advantages created by

increasing PIO.

V. CONCLUSION

In this article, a new strategy for scheduling of RMGs with

related constraints was presented. A new islanding operation

index named PIO was considered to measure the probability of

successful islanding operation and show that microgrid has an

adequate level of spinning reserve to meet the local loads during

the off-grid operation. The proposed scheduling was formulated

as a chance-constrained global optimization problem and using

the 13-interval approximation method, taking into account the

forecast errors of PV and wind power generation, as well as, load

demand. Simulation results were presented for different levels

of PIO. Numerical results showed that by increasing the value

of PIO, power generated by dispatchable units, the value of up

and down spinning reserves and changes in microgrid structure

are increased. Also, at the high value of PIO when microgrid

transacts high amount of power with upstream network, the

values of reserves are increased. At these times, the value of up

and down spinning reserve reaches the highest values. Monetary

results showed that by increasing the value of PIO, the total cost

increases. The percentage increase of total cost is greater once

the value of PIO is higher. This represents that a small increase

of reliability level demands a remarkable increase in total system

costs while the reliability is already high.

In this article, it is assumed that the electricity price is already

known and does not include the uncertain parameters. The

efficiency of the proposed method will be further improved

by considering the uncertainty of power price and integration
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of demand response program in regional RMGs. Moreover,

reliability assessment from different reliability index points of

view is left to future work.
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