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Two-Way Relay Networks in
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Abstract—In this paper, channel estimation and training
sequence design are considered for amplify-and-forward (AF)-
based two-way relay networks (TWRNs) in a time-selective
fading environment. A new complex-exponential basis expansion
model (CE-BEM) is proposed to represent the mobile-to-mobile
time-varying channels. To estimate such channels, a novel pilot
symbol-aided transmission scheme is developed such that a low
complex linear approach can estimate the BEM coefficients
of the convoluted channels. More essentially, two algorithms
are designed to extract the BEM coefficients of the individual
channels. The optimal training parameters, including the number
of the pilot symbols, the placement of the pilot symbols, and the
power allocation to the pilot symbols, are derived by minimizing
the channel mean-square error (MSE). The selections of the
system parameters are thoroughly discussed in order to guide
practical system design. Finally, extensive numerical results are
provided to corroborate the proposed studies.

Index Terms—Channel estimation, optimal training design,
time-varying channel, two-way relay network, basis expansion
model.

I. INTRODUCTION

THE two-way relay network (TWRN) concept [1], [2] has
attracted much attention recently due to its enhanced

spectral efficiency compared to the one-way relay network
(OWRN) [3]. In a TWRN, two source nodes simultaneously
send their signals to the relay node, which retransmits to both
source nodes after a “network coding”-like process [4]. By
removing the self-signal component, each source node obtains
the other source node’s information.
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Like any other wireless communication system, a TWRN
performs better with better channel estimates. Channel estima-
tion for TWRN flat fading channels was first studied in [5].
Shortly after, the frequency selective case was treated in [6] for
an orthogonal frequency division multiplexing (OFDM)-based
TWRN. Both these works revealed that channel estimation for
TWRNs is quite different from that for the conventional point-
to-point wireless systems [7], or even the OWRNs [8]. There
are more than one channel in a TWRN and usually the source
nodes can only estimate the convoluted channel unless special
methods are taken by the relay node [9]. Furthermore, to
facilitate channel estimation and data detection, the relay node
has to change some received symbols or add some symbols
before forwarding to the source nodes [6],[10].

In these previous works [5], [6], [9], [10], only the slow-
fading or the block-fading scenarios are considered. However,
a TWRN is more susceptible to the changing environment
because the relay and the two sources can all be mobile
and the relative motion between any two nodes doubles the
Doppler spread [11]. This fact places additional demands on
the estimation of time-varying channels, which are usually
tracked by using periodic training signals, also known as pilot
symbol aided modulation (PSAM) [12]. To the best of our
knowledge, time-varying channel estimation in TWRNs has
not yet been reported. The need for such techniques motivates
our current work.

Time-varying channels are typically represented in two
ways: by using the Gauss-Markov model [14], which tracks
channel variation through symbol-by-symbol updating, and by
using the basis expansion model (BEM) [15], which decom-
poses the channel into the superposition of the time-varying
basis functions weighted by time-invariant coefficients. Us-
ing the Gauss-Markov channel model for a flat-fading time-
varying channel, the channel estimation methods [16] and [17]
minimize the mean square error (MSE) and maximize the data
throughput criteria, respectively. The optimal training design
for doubly selective channels based on the BEM [18]–[20]
adopted the same criteria. The equivalence between these two
criteria was pointed out in [18].

In this paper, we address the problem of channel estimation
and training design for time-varying TWRN channels. We
adopt the complex-exponential BEM (CE-BEM) [21], which
represents the time-varying channels by a finite set of param-
eters and Fourier bases. To handle the special features of the
TWRN, we propose a new data frame structure, which enables
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Fig. 1. A two-way relay network over time-selective flat-fading channels.

the periodical reception of pilot symbols at the source nodes.
The conventional TWRN transmission structure [5], [6] is a
special case of our proposed structure. To reduce the estima-
tion complexity, the interval between the pilot sending and
pilot receiving is fixed, and the resultant BEM coefficients of
the cascaded channels can be estimated linearly. The optimal
training parameters, including the number of pilot symbols, the
placement of pilot symbols, and the power of pilots symbols,
are derived by minimizing the channel MSE criterion. Two
algorithms are then designed to recover the BEM coefficients
of individual channel coefficients. An iterative method is also
used to refine the estimates. We also provide a thorough
discussion of the system parameter selection and reveal many
interesting results. Finally, simulation results are provided to
corroborate our studies.

The novel contributions of this paper are summarized as
follows:

1) A new training structure suitable for TWRNs is pro-
posed.

2) The CE-BEM is modified and applied to TWRNs.
3) New algorithms are designed to recover the individual

channel knowledge from the estimated of the effective
channels.

4) Optimal training sequences are designed.

The rest of the paper is organized as follows. Section II
introduces the TWRN channel model, presents the PSAM
transmission structure, and identifies the parameters to be
estimated with the aid of the CE-BEM model. The channel
estimation algorithms and the optimal training design are then
provided in Section III. Useful discussions can be found in the
same section. In Section IV, our simulation results are pre-
sented to corroborate our study, and, finally, our conclusions
are provided in Section VI.

Notations: Vectors and matrices are boldface small and
capital letters; the transpose, complex conjugate, Hermitian,
inverse, and pseudo-inverse of the matrix A are denoted by
A𝑇 , A∗, A𝐻 , A−1 and A†, respectively; ℜ{A} and ℑ{A}
are the real and the imaginary part of A; diag{a} denotes a
diagonal matrix with the diagonal elements constructed from
a; ⊗ represents the linear convolution between two vectors;
tr(A) is the trace of A and E{⋅} denotes the statistical
expectation; ⌈⋅⌉ and ⌊⋅⌋ are the integer ceiling and integer
floor, respectively; the entry indices of vectors and matrices
start from 0.

II. PROBLEM FORMULATION

Consider a TWRN with two source nodes 𝕋1, 𝕋2 and
one relay node ℝ (Fig.1). Each node has only one half-
duplex antenna. The baseband channel from 𝕋𝑖, 𝑖 = 1, 2 to
ℝ is assumed to be time-selective flat-fading and is denoted
by ℎ𝑖(𝑛), where 𝑛 is the discrete time index. Moreover,
the channels are modeled as wide-sense stationary (WSS)

zero mean complex Gaussian (ZMCG) random processes with
variances 𝜎2

ℎ𝑖
. The channel from ℝ to 𝕋𝑖 is also denoted as

ℎ𝑖(𝑛). Perfect synchronization is assumed in this paper as did
in [10], [15],[21].

A. Time-varying Relay Channels

The channel statistics in a relay network depend on the
mobility of the three nodes, i.e., the fixed nodes or the moving
nodes [11]. Denote 𝑓𝑑1, 𝑓𝑑2 and 𝑓𝑑𝑟 as the maximum Doppler
shifts due to the motion of 𝕋1, 𝕋2, and ℝ, respectively. The
discrete autocorrelation functions of ℎ𝑖(𝑛)’s can be repre-
sented as [22]

𝑅ℎ𝑖(𝑚) =E{ℎ𝑖(𝑛+𝑚)ℎ∗
𝑖 (𝑛)} (1)

=𝜎2
ℎ𝑖
𝐽0(2𝜋𝑓𝑑𝑖𝑚𝑇𝑠)𝐽0(2𝜋𝑓𝑑𝑟𝑚𝑇𝑠), 𝑖 = 1, 2

where 𝐽0(⋅) is the zero-th order Bessel function of the first
kind, and 𝑇𝑠 is the symbol sampling time. The correlation
function in (1) has been widely adopted to describe the mobile-
to-mobile link, e.g., [11], [22]. If one node is fixed, i.e., if the
corresponding Doppler shift is zero, then (1) reduces to the
well-known Jakes model [13]. Meanwhile, (1) reveals that the
power spectra of ℎ1(𝑛) and ℎ2(𝑛) span over the bandwidths
𝑓1 = 𝑓𝑑1 + 𝑓𝑑𝑟 and 𝑓2 = 𝑓𝑑2 + 𝑓𝑑𝑟, respectively, which
indicates an increased Doppler effect for the mobile-to-mobile
transmission.

The parsimonious finite-parameter BEM [15] can be applied
to approximate the two time-varying channels, respectively, so
that during any time interval of 𝑁𝑇𝑠, ℎ𝑖(𝑛)’s can be modeled
by

ℎ1(𝑛) =

𝑄1∑
𝑞=0

𝜆𝑞𝑤1(𝑞), ℎ2(𝑛) =

𝑄2∑
𝑞=0

𝜇𝑞𝑤2(𝑞), (2)

where 0 ≤ 𝑛 ≤ 𝑁−1, 𝜆𝑞’s and 𝜇𝑞’s are the BEM coefficients
that remain invariant within one interval of 𝑁𝑇𝑠 but will
change in the next interval, while 𝑤𝑖(𝑞)’s are the bases that
capture the time variation and will remain the same for any
interval. The number of the bases 𝑄𝑖 is a function of the
channel bandwidth 𝑓𝑖 and the interval length 𝑁𝑇𝑠. Specific
choices for {𝑤𝑖(𝑞)}𝑄𝑖

𝑞=0 include the polynomial [23], wavelet
[24], discrete prolate spheroid sequence [25], and Fourier
bases [18]. In this paper, we choose the CE-BEM [21], a
specific form of Fourier bases. Then (2) can be explicitly
written as

ℎ1(𝑛) =

𝑄1∑
𝑞=0

𝜆𝑞𝑒
𝑗2𝜋(𝑞−𝑄1/2)𝑛/𝑁 , (3a)

ℎ2(𝑛) =

𝑄2∑
𝑞=0

𝜇𝑞𝑒
𝑗2𝜋(𝑞−𝑄2/2)𝑛/𝑁 . (3b)

The CE-BEM (3) can be viewed as the Fourier series of the
time-varying channels, and the number of bases 𝑄𝑖 should be
at least 2⌈𝑓𝑖𝑁𝑇𝑠⌉ in order to provide sufficient degrees of
freedom [18], [21].

To simplify the notation as well as the discussion, we
assume 𝑓1 = 𝑓2 = 𝑓𝑑 and 𝑄1 = 𝑄2 = 𝑄. Nonetheless, the
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Fig. 2. Approximating the mobile-to-mobile channels with CE-BEM.

extension to the general case is straightforward. We further
denote 𝜔𝑞 = 2𝜋(𝑞 −𝑄/2)/𝑁 and define

𝝀 = [𝜆0, 𝜆1, . . . , 𝜆𝑄]
𝑇 , 𝝁 = [𝜇0, 𝜇1, . . . , 𝜇𝑄]

𝑇

for subsequent use.
Remark 1: A detailed discussion of the accuracy of the

CE-BEM representation of the time-varying TWRN chan-
nels is beyond the scope of this paper. A brief example is
given in Fig. 2, where the system parameters are taken as
𝑓𝑑1 = 𝑓𝑑2 = 𝑓𝑑𝑟 = 40 Hz, 𝑇𝑠 = 1 ms, and 𝑁 = 40. Fig. 2
reveals that the larger the 𝑄 is, the better the approximation
will be. As pointed out in [18], [21], 𝑄 must be at least
2⌈𝑓𝑑𝑇𝑠𝑁⌉ = 4 in order to keep the shape of the envelope, i.e.,
with the sufficient degrees of freedom. However, for 𝑄 = 2
the ambiguous estimation appears due to the lack of sufficient
sampling degrees of freedom. Nonetheless, one can always
use a larger 𝑄 for a better approximation.

B. Transmission Strategy

To enable the use of PSAM in our TWRN, we propose a
new transmission strategy over one interval 𝑁𝑇𝑠, as depicted
in Fig. 3. Let 𝒟𝑡 and 𝒯𝑡 be the time index sets for the
transmitted information symbols and the pilot symbols from
𝕋𝑖, 𝑖 = 1, 2, respectively. Moreover, let 𝒟𝑟 and 𝒯𝑟 be the
time index sets for the received information symbols and pilot
symbols at 𝕋𝑖, respectively. These four sets are disjoint with
the property that 𝒟𝑡

∪ 𝒯𝑡
∪𝒟𝑟

∪ 𝒯𝑟 = {0, 1, . . . , 𝑁 − 1}. Let
us define the cardinality of the sets as ∣𝒟𝑡∣ = ∣𝒟𝑟∣ = 𝐷 and
∣𝒯𝑡∣ = ∣𝒯𝑟∣ = 𝑇 . Then, 𝑁 = 2(𝐷 + 𝑇 ) is an even integer.

We assume that the relay node ℝ forwards its received
symbols on time slot 𝑔(𝑛) to both 𝕋𝑖 on time slot 𝑛; i.e.,

𝒟𝑡
∪

𝒯𝑡 =
{
𝑔(𝑛)∣𝑛 ∈ 𝒟𝑟

∪
𝒯𝑟

}
. (4)

By defining the one-to-one mapping function 𝑔(𝑛), we im-
plicitly allow for the symbols’ order to be changed when
ℝ forwards them back to 𝕋𝑖. Hence, it is also possible
to optimize 𝑔(𝑛) according to different criteria, i.e., data

information symbol pilot symbol

Ti R

N

Fig. 3. Proposed transmission strategy for two-way relay network with time-
varying channel.

information symbol training symbol
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Fig. 4. Sub-block based transmission strategy.

detection MSE, bit-error-rate (BER), throughput, and others.1

A detailed discussion is beyond the scope of this paper and
will be left to the future research. Note that 0 ≤ 𝑔(𝑛) < 𝑛 is
required because ℝ can only forward a symbol after receiving
it. Interestingly, the conventional data transmission in a TWRN
[5], [6] becomes a special case of our proposed scheme if
𝑔(𝑛) = 𝑛−𝑁/2 is selected.

Remark 2: A special yet important case involves evenly
dividing 𝑁𝑇𝑠 intervals into several sub-blocks, as shown in
Fig. 4. This case corresponds to setting 𝑔(𝑛) = 𝑛 − 𝑀 ,
where 𝑀 divides 𝑁/2, and will be separately discussed
later. The decision on whether to adopt the general scheme
(Fig. 3) or the sub-block-based scheme (Fig. 4) depends on the
synchronization requirement in practical scenarios and other
design issues.

Denote the symbols sent from 𝕋𝑖 as 𝑠𝑖(𝑛), 𝑛 ∈ 𝒟𝑡
∪ 𝒯𝑡,

of which the average power for the information symbols
is 𝑃𝑖; i.e., E{∣𝑠𝑖(𝑛)∣2} = 𝑃𝑖, ∀𝑛 ∈ 𝒟𝑡, while the total
training power2 is 𝑃𝑖,𝑡; i.e.,

∑
𝑛∈𝒯𝑡

∣𝑠𝑖(𝑛)∣2 = 𝑃𝑖,𝑡. With perfect

synchronization, ℝ receives

𝑟(𝑛) = ℎ1(𝑛)𝑠1(𝑛) + ℎ2(𝑛)𝑠2(𝑛) + 𝑤𝑟(𝑛), 𝑛 ∈ 𝒟𝑡
∪

𝒯𝑡,
(5)

where 𝑤𝑟(𝑛) is the circularly symmetric complex Gaussian
(CSCG) noise with the variance 𝜎2

𝑟 . If the average transmit
power of ℝ is 𝑃𝑟, then 𝑟(𝑛) will be scaled by

𝛼(𝑛) =

⎧⎨
⎩

√
𝑃𝑟

𝜎2
ℎ1
𝑃1+𝜎2

ℎ2
𝑃2+𝜎2

𝑟
𝑛 ∈ 𝒟𝑟√

𝑃𝑟

𝜎2
ℎ1
𝑃1,𝑡/𝑇+𝜎2

ℎ2
𝑃2,𝑡/𝑇+𝜎2

𝑟
𝑛 ∈ 𝒯𝑟

(6)

before it is forwarded to 𝕋𝑖’s to keep the power constraint.
Remark 3: More practical considerations should include

the process delay at ℝ as well as the path-delay between 𝕋1

and 𝕋2. These considerations require only slightly changing
the channel from ℎ𝑖(𝑛) to ℎ𝑖(𝑛 + Δ𝑛), and the remaining
discussion holds the same.

1The dual problem of optimally re-ordering the subcarrier indices in a
frequency-selective environment has been studied in [26].

2We should not consider the average power constraints for training because
otherwise, the training length is trivially preferred to be as large as possible.
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C. On Channel Estimation

Due to symmetry, we present only the estimation procedure
at 𝕋1, and the received signal is

𝑦(𝑛) =𝛼(𝑛)ℎ1(𝑛)𝑟(𝑔(𝑛)) + 𝑤1(𝑛) (7)

=𝛼(𝑛)ℎ1(𝑛)ℎ1(𝑔(𝑛))︸ ︷︷ ︸
𝑏1(𝑛)

𝑠1(𝑔(𝑛))

+ 𝛼(𝑛)ℎ1(𝑛)ℎ2(𝑔(𝑛))︸ ︷︷ ︸
𝑏2(𝑛)

𝑠2(𝑔(𝑛))

+ 𝛼(𝑛)ℎ1(𝑛)𝑤𝑟(𝑔(𝑛)) + 𝑤1(𝑛)︸ ︷︷ ︸
𝑤(𝑛)

, 𝑛 ∈ 𝒟𝑟
∪

𝒯𝑟,

where 𝑤1(𝑛) is the CSCG noise at 𝕋1 with variance 𝜎2
1 ; 𝑤(𝑛)

denotes the overall noise; and 𝑏𝑖(𝑛), 𝑖 = 1, 2 can be treated
as the equivalent time-varying channel of 𝕋𝑖 → ℝ → 𝕋1. Ob-
viously, if 𝑏𝑖(𝑛)’s are known at 𝕋1, the self-signal component
𝑠1(𝑔(𝑛)) can be subtracted from 𝑦(𝑛) in order to detect the
desired information 𝑠2(𝑔(𝑛)).

To gain more insight into the time-varying channels, we
apply (3) and rewrite 𝑏𝑖(𝑛)’s as

𝑏1(𝑛) =

𝑄∑
𝑝=0

𝑄∑
𝑞=0

𝜆𝑝𝜆𝑞𝑒
𝑗(𝜔𝑝𝑛+𝜔𝑞𝑔(𝑛)), (8a)

𝑏2(𝑛) =

𝑄∑
𝑝=0

𝑄∑
𝑞=0

𝜆𝑝𝜇𝑞𝑒
𝑗(𝜔𝑝𝑛+𝜔𝑞𝑔(𝑛)), 𝑛 ∈ 𝒟𝑟

∪
𝒯𝑟. (8b)

The new expression (8) indicates that in order to obtain 𝑏𝑖(𝑛),
0 ≤ 𝑛 ≤ 𝑁−1, one needs to know either 2(𝑄+1) parameters
𝜆𝑝, 𝜇𝑝, 𝑝 = 0, . . . , 𝑄 or 2(𝑄 + 1)2 parameters 𝜆𝑝𝜆𝑞 , 𝜆𝑝𝜇𝑞 ,
𝑝, 𝑞 = 0, . . . , 𝑄. For a general mapping function 𝑔(𝑛),
the former approach requires a non-linear search, which is
computationally prohibitive, while the latter approach, though
could be implemented from linear approach, possesses large
redundancy in the number of estimated variables.

To facilitate the channel estimation, we propose to use

𝑔(𝑛) = 𝑛−𝑀, (9)

for 𝑛 ∈ 𝒯𝑟, while 𝑔(𝑛) for information transmission 𝑛 ∈ 𝒟𝑟
could still be designed from a certain optimization criterion.
The condition (9) says that ℝ retransmits each received pilot
symbol with a delay of 𝑀 -symbol interval, and this interval
is common for all pilot symbols.

With (9), the received pilot symbols at 𝕋1 can be further
expressed as

𝑦(𝑛) = 𝛼

2𝑄∑
𝑚=0

( 𝑚∑
𝑞=0

𝜆𝑚−𝑞𝜆𝑞𝑒−𝑗𝜔𝑞𝑀

︸ ︷︷ ︸
𝑥1(𝑚)

)
𝑒𝑗𝜃𝑚𝑛𝑠1(𝑛−𝑀)

+ 𝛼

2𝑄∑
𝑚=0

( 𝑚∑
𝑞=0

𝜆𝑚−𝑞𝜇𝑞𝑒−𝑗𝜔𝑞𝑀

︸ ︷︷ ︸
𝑥2(𝑚)

)
𝑒𝑗𝜃𝑚𝑛𝑠2(𝑛−𝑀) + 𝑤(𝑛),

(10)

where 𝑛 ∈ 𝒯𝑟, 𝜃𝑚 = 2𝜋(𝑚−𝑄)/𝑁 , 𝑥𝑖(𝑚) are defined as the
corresponding items, and the index 𝑛 in 𝛼(𝑛) is omitted for

brevity. When deriving (10), we use the property that 𝜔𝑝 +
𝜔𝑞 = 𝜔𝑝′ + 𝜔𝑞′ whenever 𝑝+ 𝑞 = 𝑝′ + 𝑞′.

Remark 4: If the sub-block transmission in Fig. 4 is ap-
plied, then (10) is also applicable for the received information
symbols 𝑛 ∈ 𝒟𝑟.

Interestingly, we may treat 𝑥𝑖(𝑚)’s as the equivalent BEM
coefficients with 2𝑄+1 carriers 𝑒𝑗𝜃𝑚𝑛 for the equivalent time-
varying channel 𝑏𝑖(𝑛), 𝑛 ∈ 𝒯𝑟. The equivalent BEM sequence
𝑥1(𝑚) is the convolution between the original BEM 𝜆𝑝 and
𝑒−𝑗𝜔𝑞𝑀𝜆𝑞 , while 𝑥2(𝑚) is the convolution between 𝜆𝑝 and
𝑒−𝑗𝜔𝑝𝑀𝜇𝑞 .

Define x𝑖 = [𝑥𝑖(0), 𝑥𝑖(1), . . . , 𝑥𝑖(2𝑄)]𝑇 ,
Γ = diag{𝑒−𝑗𝜔0𝑀 , 𝑒−𝑗𝜔1𝑀 , 𝑒−𝑗𝜔𝑄𝑀}, and define Λ as
the (2𝑄+ 1)× (𝑄+ 1) Toeplitz matrix with the first column
[𝝀𝑇 ,01×𝑄]𝑇 . We can explicitly express the convolutions as

x1 = 𝝀 ⊗ (Γ𝝀) = ΛΓ𝝀, x2 = 𝝀⊗ (Γ𝝁) = ΛΓ𝝁. (11)

Based on (10), we may estimate the equivalent BEM coeffi-
cient 𝑥𝑖(𝑚) (with 4𝑄+2 unknowns) and recover the original
BEM 𝜆𝑞 , 𝜇𝑞 (with 2𝑄 + 2 unknowns). Then, the equivalent
time-varying channels 𝑏𝑖(𝑛), 𝑛 ∈ 𝒟𝑟 can be obtained from
(8).

III. CHANNEL ESTIMATION ALGORITHMS

Let us specify the indices in 𝒯𝑟 as 𝑛0 < 𝑛1 . . . < 𝑛𝑇−1,
and define

y𝑡 =[𝑦(𝑛0), 𝑦(𝑛1), . . . , 𝑦(𝑛𝑇−1)]
𝑇 ,

w𝑡 =[𝑤(𝑛0), 𝑤(𝑛1), . . . , 𝑤(𝑛𝑇−1)]
𝑇 ,

t𝑖 =[𝑠𝑖(𝑛0 −𝑀), 𝑠𝑖(𝑛1 −𝑀), . . . , 𝑠𝑖(𝑛𝑇−1 −𝑀)]𝑇 ,

T𝑖 =diag{t𝑖}, 𝑖 = 1, 2,

where t𝑖 contains all the pilot symbols from 𝕋𝑖. For notational
simplicity, the 𝑚-th entry of t𝑖 is also denoted by 𝑡𝑖(𝑚), 𝑚 =
0, . . . , 𝑇 − 1.

With the aid of (10), we can express y𝑡 in matrix form as

y𝑡 = 𝛼T1Ax1 + 𝛼T2Ax2 +w𝑡, (12)

where A is the 𝑇 × (2𝑄+ 1) matrix

A =

⎡
⎢⎢⎢⎣

𝑒𝑗𝜃0𝑛0 𝑒𝑗𝜃1𝑛0 . . . 𝑒𝑗𝜃2𝑄𝑛0

𝑒𝑗𝜃0𝑛1 𝑒𝑗𝜃1𝑛1 . . . 𝑒𝑗𝜃2𝑄𝑛1

...
... . . .

...
𝑒𝑗𝜃0𝑛𝑇−1 𝑒𝑗𝜃1𝑛𝑇−1 . . . 𝑒𝑗𝜃2𝑄𝑛𝑇−1

⎤
⎥⎥⎥⎦ . (13)

A. Channel Estimation Algorithm

When 𝑇 ≥ 4𝑄 + 2, there are sufficient observations to
estimate all the unknown 𝑥𝑖(𝑚)’s. In this case, one could
choose a linear estimator, e.g., the least square (LS) or the
linear minimum mean square error (LMMSE) estimator, to
reduce the computational complexity. For example in [18]–
[20], the authors assumed that the knowledge of the statistics
of the BEM coefficients were available in order to derive the
LMMSE estimator. Moreover, a closed-form training design
requires the assumption that the BEM coefficients are un-
correlated among themselves [18]–[20]. Although the same
assumption can be invoked here, we would rather choose the
LS estimator in order to embrace more practical scenarios
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where the statistics of the BEM coefficients are not available.
This choice is further justified because the LS estimator
performs similarly to the LMMSE estimator at a relatively
high signal-to-noise ratio (SNR).

Let us define

T = [T1A,T2A], x = [x𝑇1 ,x𝑇2 ]
𝑇 .

The LS estimator of x is expressed as

x̂ =
1

𝛼
T†y =

1

𝛼
(T𝐻T)−1T𝐻y, (14)

with the error covariance matrix given by

W = T†M𝑤(T
†)𝐻 , (15)

where

M𝑤 =

⎡
⎢⎢⎣
𝜎2
𝑟 ∣ℎ1(𝑛0)∣2 + 𝜎2

1

𝛼2 . . . 0
...

. . .
...

0 . . . 𝜎2
𝑟 ∣ℎ1(𝑛𝑇−1)∣2 + 𝜎2

1

𝛼2

⎤
⎥⎥⎦ .

(16)

B. Optimal Training Design

The channel estimation MSE is defined as tr(W) and is
related to the instant CSI. In this case, we propose to minimize
the average MSE, which is defined as

AMSE = Eℎ{tr(W)} =

(
𝜎2
ℎ1

𝜎2
𝑟 +

𝜎2
1

𝛼2

)
tr((T𝐻T)−1),

(17)

where the property 𝐽0(0) = 1 is used. We further partition
(T𝐻T)−1 as

(T𝐻T)−1 =

[
A𝐻T𝐻1 T1A A𝐻T𝐻1 T2A
A𝐻T𝐻2 T1A A𝐻T𝐻2 T2A

]−1

. (18)

The optimal training design amounts to selecting the num-
ber of the pilot symbols, their placement, and the power
allocation for each pilot by minimizing the AMSE. The
optimization problem is then formulated as

(P1): min
t1,t2,𝒯𝑟

(
𝜎2
ℎ1

𝜎2
𝑟 +

𝜎2
1

𝛼2

)
tr((T𝐻T)−1) (19)

s.t.

𝑇−1∑
𝑚=0

∣𝑡𝑖(𝑚)∣2 ≤ 𝑃𝑖,𝑡, 𝑖 = 1, 2.

Since 𝛼 is related only to 𝑇 , we can first solve, for a given
𝑇 , the following problem:

(P2): min
t1,t2,

𝑛𝑖:0≤𝑖≤𝑇
tr((T𝐻T)−1) (20)

s.t.

𝑇−1∑
𝑚=0

∣𝑡𝑖(𝑚)∣2 ≤ 𝑃𝑖,𝑡, 𝑖 = 1, 2.

From [27], we know that

tr((T𝐻T)−1) ≥
4𝑄+1∑
𝑖=0

1

[T𝐻T]𝑖,𝑖
=

2∑
𝑖=1

2𝑄+ 1∑𝑇−1
𝑚=0 ∣𝑡𝑖(𝑚)∣2 ,

(21)

where [T𝐻T]𝑖,𝑖 is the 𝑖th diagonal elements of T𝐻T, and
the equality holds when T𝐻T is a diagonal matrix. However,

this inequality does not directly show that the diagonal must
hold for the optimal T𝐻T. Let us first formulate a new
optimization problem:

(P3): min
t1,t2

2∑
𝑖=1

2𝑄+ 1∑𝑇−1
𝑚=0 ∣𝑡𝑖(𝑚)∣2

(22)

s.t.
𝑇−1∑
𝑚=0

∣𝑡𝑖(𝑚)∣2 ≤ 𝑃𝑖,𝑡, 𝑖 = 1, 2.

Obviously, the optimal objective of (P3) serves as a lower
bound for (P2). Since (P3) is a simple convex optimization,
any training sequence satisfying

∑𝑇−1
𝑚=0 ∣𝑡𝑖(𝑚)∣2 = 𝑃𝑖,𝑡 is

optimal. Hence, if we can find t𝑖’s that satisfy the equality
constraints and make T𝐻T diagonal, then these t𝑖’s must also
be the optimal solutions for problem (P2). In other words, the
sufficient conditions for the optimal solutions to (P2) are

A𝐻T𝐻𝑖 T𝑖A = 𝑃𝑖,𝑡I2𝑄+1, 𝑖 = 1, 2, (23a)

A𝐻T𝐻1 T2A = 02𝑄+1. (23b)

Observing the Vandermonde structure of A and the structure
of 𝜃𝑚, we know that if the pilot symbols are equi-powered
and equi-spaced over {0, . . . , 𝑁 − 1}, then (23a) is satisfied;
i.e.,

C1) : ∣𝑡𝑖(𝑚)∣2 = 𝑃𝑖,𝑡/𝑇, ∀𝑚 = 0, 1, . . . , 𝑇 − 1, 𝑖 = 1, 2,

C2) : 𝑛𝑚 = 𝑚𝐿+ 𝑙0, ∀𝑙0 ∈ [𝑀,𝐿− 1],

and 𝐿 = 𝑁/𝑇 is an integer,

where we include the consideration that 𝑛0 ≥ 𝑀 in C2).3

Combined with C1) and C2), the following condition can
guarantee (23b):
𝑇−1∑
𝑚=0

𝑡∗2(𝑚)𝑡1(𝑚)𝑒−𝑗(𝜃𝑢+𝜃𝑣)𝑛𝑚 = 0, ∀𝑢, 𝑣 = 0, 1, ⋅ ⋅ ⋅ , 2𝑄

which can be simplified as

C3) :
𝑇−1∑
𝑚=0

𝑡∗2(𝑚)𝑡1(𝑚)𝑒𝑗2𝜋𝑚𝑘/𝑇 = 0,

∀𝑘 = −2𝑄,−2𝑄+ 1, . . . , 2𝑄.

One example of pilot sequences that satisfy conditions C1)–
C3) is

t1 =

√
𝑃1,𝑡

𝑇
[+1,+1,+1, . . . ,+1,+1]𝑇 , (24a)

t2 =

√
𝑃2,𝑡

𝑇
[1, 𝑒𝑗2𝜋𝑣/𝑇 , . . . , 𝑒𝑗2𝜋(𝑇−1)𝑣/𝑇 ]𝑇 , (24b)

∀𝑣 = 2𝑄+ 1, . . . , 𝑇 − 2𝑄− 1.

The minimum tr((T𝐻T)−1) is then (2𝑄 +
1) (1/𝑃1,𝑡 + 1/𝑃2,𝑡) and does not depend on 𝑇 . Hence,
the optimal value of 𝑇 should be independently obtained
from

𝑇 =argmin
𝑇

(
𝜎2
ℎ1

𝜎2
𝑟 +

𝜎2
1

𝛼2

)
=argmax

𝑇

𝑃𝑟
𝜎2
ℎ1

𝑃1,𝑡/𝑇 + 𝜎2
ℎ2

𝑃2,𝑡/𝑇 + 𝜎2
𝑟

. (25)

3𝑛0 = 𝑙0 denotes the index of the first symbol sent by ℝ. From the adopted
𝑔(𝑛), 𝑛0 = 𝑙0 ≥ 𝑀 is required.
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The objective function (25) is an increasing function of 𝑇 , so
the optimal 𝑇 should be made as large as possible. Note that
this result is different from the conventional training design
in point-to-point systems, where the channel estimation MSE
is related only with the total training power but not to the
training length.

However, increasing 𝑇 would reduce the efficiency of the
data transmission and, consequently, the system throughput.
Besides, the constant 𝜎2

ℎ1
𝜎2
𝑟 will dominate the summation

from
(
𝜎2
ℎ1

𝜎2
𝑟 +

𝜎2
1

𝛼2

)
when 𝑇 is greater than a certain thresh-

old. Therefore, increasing 𝑇 beyond a certain value cannot
improve the channel estimation MSE, but the throughput will
be linearly decreased. A more meaningful design of 𝑇 can be
obtained by maximizing the transmission throughput criterion
[18]–[20]. Due to the page limit, we in this paper focus only
on introducing the new channel estimation strategy in TWRN,
and we simply consider achieving the minimum amount of
training as our optimization goal.

The selection of the minimum possible 𝑇 depends on many
factors and will be discussed in the next subsection. When
𝑇 = 4𝑄 + 2 is allowed, the optimal pilot schemes become
more specific:

t1 =

√
𝑃1,𝑡

4𝑄+ 2
[+1,+1,+1,+1, . . . ,+1,+1]𝑇 ,

t2 =

√
𝑃2,𝑡

4𝑄+ 2
[+1,−1,+1,−1, . . . ,+1,−1]𝑇 ,

and the corresponding minimum AMSE is

AMSE =

(
1

𝑃1,𝑡
+

1

𝑃2,𝑡

) (
(2𝑄+ 1)𝜎2

ℎ1
𝜎2
𝑟 + 𝜗

)
, (26)

where

𝜗 =

(
𝜎2
ℎ1

𝑃1,𝑡 + 𝜎2
ℎ2

𝑃2,𝑡 + 2𝜎2
𝑟(2𝑄+ 1)

)
𝜎2
1

2𝑃𝑟
. (27)

Remark 5: Importantly, it can be verified that the designed
optimal pilot sequences for channel estimation at 𝕋1 are
also optimal at 𝕋2. Hence, simultaneous optimal channel
estimation can be achieved at both source nodes.

C. Parameter Selection

Observing C2), we know the following: (i) The pilot spacing
𝐿 should at least be 𝑀+1; (ii) To transmit non-zero informa-
tion symbols in one 𝑁𝑇𝑠 interval, we need 𝐷 = 𝐿𝑇−2𝑇

2 ≥ 1,
so the spacing 𝐿 should be at least 3;4 (iii) Since 𝑁 must be
even, either 𝑇 or 𝐿 should be an even integer.

The above discussion suggests the guidelines for choosing
𝑇 , i.e., select the smallest integer that is greater than or equal
to 4𝑄+ 2, divides 𝑁 , and satisfies 𝑁/𝑇 ≥ 3.

Remark 6: Since 𝑇 ≥ 4𝑄+ 2 pilot symbols are needed to
provide sufficient observations, and since 𝑄 ≥ 1 for a time-
varying channel, the TWRN requires that pilot symbols to
be transmitted back-and-forth at least 6 times. Therefore, the
conventional two-way frame transmission structure [1], [2],

4This conclusion is also seen from the fact that if 𝐿 = 2, then the only
choice for 𝑀 is 1, in which case 𝕋𝑖 alternatively transmits and receives pilot
symbols while no information can be sent.

[6], i.e., sending and receiving the continuous data sequence
only once, obviously does not work in time-selective envi-
ronment. We thus re-emphasize the novelty of the proposed
PSAM scheme in Fig. 3.

Remark 7: For the sub-block based frame structure in Fig.
4, the receiving equi-spaced pilot at 𝕋𝑖 is possible only if each
sub-block contains only one pilot symbol at the same position
of each sub-block.

D. Doppler Shift and Transmission Efficiency

From 𝑁 = 𝐿𝑇 ≥ 𝐿(4𝑄 + 2) and 𝑄 ≥ 2⌈𝑓𝑑𝑁𝑇𝑠⌉, a
successful channel estimation requires

𝑁 − 2𝐿

8𝐿𝑁
≥ 𝑓𝑑𝑇𝑠. (28)

To cope with more Doppler shift, the left-hand side (LHS) of
(28) should be as large as possible. From 𝐿 ≥ 3, there is

𝑁 − 2𝐿

8𝐿𝑁
≤ 𝑁 − 6

24𝑁
<

1

24
. (29)

Then the proposed strategy can handle the time-selective
scenario with

𝑓𝑑𝑇𝑠 <
1

24
= 0.0416. (30)

This normalized Doppler shift, fortunately, lies in the accept-
able range of most studies [16]–[20].

Moreover, the training requirement 4𝑄+ 2 ≤ 𝑇 = 𝑁/𝐿 ≤
𝑁/3 implies that the transmission efficiency has the range

𝜂 =
𝑁/2− 𝑇

𝑁/2
≤ 1− 16𝑓𝑑𝑇𝑠 − 4

𝑁
< 1− 16𝑓𝑑𝑇𝑠, (31)

and

𝜂 ≥ 𝑁/2−𝑁/3

𝑁/2
= 1/3. (32)

Therefore, the higher the 𝑓𝑑𝑇𝑠 is, the less the transmission
efficiency will be. This result is intuitively satisfying.

E. Recovering the Original BEM Coefficients

After estimating x𝑖’s, 𝑖 = 1, 2, we need to obtain the
original BEM coefficients 𝜆𝑞 and 𝜇𝑞 in order to build the time-
varying channel 𝑏𝑖(𝑛), 𝑛 ∈ 𝒟𝑟. This is the key difference of
TWRN from OWRN, as pointed out in [5], [6]. Retrieving
𝜆𝑞 and 𝜇𝑞 from x𝑖 generally requires solving multivariate
nonlinear equations, but doing so is computationally quite
expensive. In the following, we propose two simple methods
and describe them under a noise-free scenario.

1) Time-Domain Approach: Because of the structure of
𝑥1(𝑚), a straightforward way is to estimate 𝜆𝑞 sequentially.
Specifically, we first estimate 𝜆0 from

𝜆0 =𝐼𝑠
(
𝑥1(0)𝑒

𝑗𝜔0𝑀
)1/2

, (33)

where 𝐼𝑠 = ±1 denotes the sign uncertainty. By choosing any
of the positive or negative signs in (33), 𝜆1 can be computed
from

𝜆1 =
𝑥1(1)

𝜆0𝑒−𝑗𝜔0𝑀 + 𝜆0𝑒−𝑗𝜔1𝑀
. (34)
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We then sequentially compute 𝜆𝑞 from 𝑥1(𝑞) with the previous
estimates of 𝜆0, . . . , 𝜆𝑞−1. The detailed steps are straightfor-
ward and are omitted here.

The above process uses only the first 𝑄+1 entries in x1 and
cannot provide satisfactory precision. Nevertheless, with this
initial estimation, we can apply the gradient decent process
[28] to improve the estimation accuracy. The objective is to
minimize the distance between x and ΛΓ𝝀; i.e., 𝜁 = ∥x −
ΛΓ𝝀∥2. Then, 𝝀 can be updated according to

𝝀(𝑖+1) = 𝝀(𝑖) − 𝜖
∂𝜁

∂𝝀∗

∣∣∣∣
𝝀=𝝀(𝑖)

, (35)

where 𝜖 is the step size. See Appendix I for a brief illustration
of the gradient decent method with complex variables. The
partial differential in (35) can be explicitly expressed as

∂𝜁

∂𝝀∗ = −(ΛΓ+Ω)𝐻(x−ΛΓ𝝀), (36)

where Ω is a (2𝑄 + 1) × (𝑄 + 1) Toeplitz matrix with the
first column [(Γ𝝀)𝑇 ,01×𝑄]𝑇 .

Once 𝝀 is obtained, 𝝁 can be found from

𝝁 = Γ𝐻Λ†x2. (37)

Remark 8: Note that there exists a simultaneous sign am-
biguity (SSA) in the estimated results due to step (33); i.e.,
either {𝝀,𝝁} or {−𝝀,−𝝁} is found. Nonetheless, the SSA
does not affect the data detection when we reconstruct 𝑏𝑖(𝑛)’s.
A similar observation is also made in [5], [6].

2) Frequency-Domain Approach: Let 𝝀̃ be the 𝑍-point
discrete Fourier transform (DFT) of 𝝀 with 𝑍 ≥ 𝑄+1, whose
𝑚th entry is defined as

𝜆̃𝑚 =

𝑄∑
𝑞=0

𝜆𝑞𝑒
−𝑗2𝜋𝑞𝑚/𝑍 , 𝑚 = 0, . . . , 𝑍 − 1. (38)

On the other side, the 𝑚th element of the 𝑍-point DFT of Γ𝝀
is

𝜉𝑚 =

𝑄∑
𝑞=0

𝜆𝑞𝑒
−𝑗2𝜋 (𝑞−𝑄/2)𝑀

𝑁 𝑒−𝑗2𝜋𝑞𝑚/𝑍

=𝑒𝑗
𝜋𝑄𝑀

𝑁

𝑄∑
𝑞=0

𝜆𝑞𝑒
−𝑗 2𝜋𝑞( 𝑍𝑀

𝑁
+𝑚)

𝑍 . (39)

If 𝑅 ≜ 𝑍𝑀
𝑁 is an integer, then (39) becomes 𝑒𝑗

𝜋𝑄𝑀
𝑁 𝜆̃⟨𝑚+𝑅⟩𝑍 ,

where ⟨⋅⟩𝑍 denotes the modulo-𝑍 operation. Then the 𝑚th
element of the 𝑍-point DFT of x1(𝑚) is

𝑥̃1(𝑚) = 𝜉𝑚𝜆̃𝑚 = 𝑒𝑗
𝜋𝑄𝑀

𝑁 𝜆̃𝑚𝜆̃⟨𝑚+𝑅⟩𝑍 . (40)

Our target is to retrieve 𝑍 unknown 𝜆̃𝑚’s, 𝑚 =
0, 1, . . . , 𝑍 − 1 from 𝑍 equations

𝜆̃𝑚𝜆̃⟨𝑚+𝑅⟩𝑍 = 𝑥̃1(𝑚)𝑒−𝑗
𝜋𝑄𝑀

𝑁 ≜ 𝑐𝑚, ∀𝑚 = 0, . . . , 𝑍 − 1,
(41)

where 𝑐𝑚 is defined as the corresponding constant.
Theorem 1: If 𝑍 is odd and is co-prime with 𝑅, then 𝜆̃𝑚’s

can be found from (41) as

𝜆̃𝑚 =

(∏𝑍−1
𝑖=0 𝑐𝑖

)1/2

∏𝑍−3
2

𝑖=0 𝑐⟨𝑚+(2𝑖+1)𝑅⟩𝑍
, ∀𝑚 = 0, . . . , 𝑍 − 1,

(42)

with only a SSA.
Proof: See Appendix II.

Note that the selection of 𝑅 and 𝑍 is very important in
implementing the frequency-domain approach. Let 𝑁 ′/𝑀 ′ =
𝑁/𝑀 be the simplest form of the fraction; i.e., 𝑁 ′ and 𝑀 ′

are co-prime. The following ways to select 𝑍 are proposed:
∙ If 𝑁 ′ is odd and is greater than 𝑄+1, then we can choose

𝑍 = 𝑁 ′ and 𝑅 = 𝑀 ′.
∙ Otherwise, pick any integer 𝜅 such that 𝜅𝑁 ′ ≥ 𝑄 (𝜅

can be 1 to account for the case when 𝑁 ′ is greater than
𝑄+ 1 but is even):

– If 𝜅𝑁 ′ is even, then we choose 𝑅 = 𝜅𝑀 ′ and 𝑍 =
𝜅𝑁 ′ + 1, namely, 𝑍 = 𝑅𝑁/𝑀 + 1. This choice
will guarantee that 𝑍 is odd and is co-prime with 𝑅,
while the consequence is that

𝜉𝑚 =𝑒𝑗
𝜋𝑄𝑀

𝑁

𝑄∑
𝑞=0

𝜆𝑞𝑒
−𝑗 2𝜋𝑞(𝑅+𝑚)

𝑍 𝑒−𝑗
2𝜋𝑞 𝑀

𝑁
𝑍

≈𝜆̃⟨𝑚+𝑅⟩𝑍 . (43)

Note that, a similar approximation has been used in
many multi-carrier systems when the channel fre-
quency response on the adjacent carriers is assumed
to be the same [29]. Our approximation is more
accurate since the distortion phase of each summand
is only 2𝜋𝑞𝑀

𝑁

𝑍 < 2𝜋𝑞
𝑍 . Moreover, we can always

choose a large enough 𝑍 such that the approximation
becomes sufficiently accurate.

– If 𝜅𝑁 ′ is odd, then we choose 𝑅 = 𝜅𝑀 ′ and 𝑍 =
𝜅𝑁 ′+2, namely, 𝑍 = 𝑅𝑁/𝑀 +2. This choice will
guarantee that 𝑍 is odd and is co-prime with 𝑅. A
similar approximation on 𝜉𝑚 applies.

After obtaining 𝝀̃, we can find 𝝀 from the first 𝑄 + 1
elements of the 𝑍-point inverse Fourier transform (IDFT)
of 𝝀̃. Since the frequency-domain approach fully utilizes all
the information, the initial estimates of 𝜆𝑞’s are expected
more accurate than those from the time-domain approach.
However in the low SNR region, (42) is susceptible to error
enhancement due to the products in both the denominator and
numerator, as will be seen in our later simulations.

The same iteration (35) can be then applied to improve the
accuracy of 𝝀. Finally, 𝝁 can be found from (37).

IV. SIMULATION RESULTS

In order to evaluate the inherent performance of our algo-
rithms, the time-varying channels are generated directly from
the BEM model (3). The same approach has been adopted in
many other papers when testing the performance of channel
estimation [25], [30]. However, the real channel generated
from (1) will be applied for data detection [17], [18], [21].

A. Channel Estimation and Training Design

The parameters for channel estimation are taken as 𝑄 = 4,
𝑁 = 352, 𝑀 = 8, and 𝑇 = 22. A total of 10000 Monte-Carlo
trials are used for averaging. Optimal training is compared
with two types of random training. In the first one, all pilots
are equi-powered but randomly spaced. In the second one, the
pilot power levels are random, but the pilots are uniformly
spaced.
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Fig. 5. Channel estimation MSEs versus SNR for x.

1) Estimation of the equivalent BEM coefficients: The
estimation MSEs of the equivalent channel x = [x𝑇1 ,x𝑇2 ]

𝑇

from the three different types of training are shown in Fig.
5. The theoretical MSE is also displayed for comparison.
Clearly, the designed optimal training sequence given in (24)
achieves the best performance, with the MSE being close to
the theoretical one.

2) Recovery of the original BEM coefficients– time-domain
approach: In this example, the coefficients 𝝀 are extracted
from the estimated x̂1. The MSEs versus the SNR for the
initial estimate as well as those after several iterations are
shown in Fig. 6, which reveals that the initial estimate is
effective in the sense that the MSE curve linearly decreases
with the increase of the SNR. Moreover, the iterations can
significantly improve the estimation accuracy since the initial
estimation utilizes only part of the observations in x1. After
the tenth iteration, the improvement is negligible.

3) Recovery of the original BEM coefficients– frequency-
domain approach: Next we choose the frequency-domain
approach to recover the coefficients 𝝀. From (39), we take
𝑅 = 1, 2, 5, respectively, and 𝑍 = 𝑅𝑁/𝑀 + 1 is 45, 89, 221,
respectively. The estimation MSEs versus the SNR for the
initial estimation as well as those from the 10-th iteration are
shown in Fig. 7. The iteration in this case marginally improves
the estimation accuracy because the initial frequency-domain
estimate fully explores x1. Moreover, the choice of a different
𝑅 does not affect the performance significantly. As mentioned
previously, the performance of the frequency-domain approach
degrades at a relatively low SNR, say, 8 dB in Fig. 7, due to
the error enhancement.

4) Comparing the time- and the frequency-domain ap-
proaches: It is then of interest to compare the performances
of the two different approaches in recovering 𝝀. To make this
comparison clear, we present the results in a new figure, and
apply fifty iterations for both methods. As Fig. 8 indicates,
the initial frequency-domain estimation outperforms the time-
domain results at the high SNR region, even if the latter apply
iterations. Nonetheless, the performance gap is quite small.
At a relatively low SNR, say SNR= 8 dB, the time-domain
approach gives a better performance.
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Fig. 6. Channel estimation MSEs versus SNR for 𝝀: time-domain approach.
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Fig. 7. Channel estimation MSEs versus SNR for 𝝀: frequency-domain
approach.

5) Estimation of 𝝁: After obtaining 𝝀, 𝝁 can be estimated
through (37). The corresponding MSEs versus the SNR from
both time and frequency-domain approaches are shown in
Fig. 9. It is seen that the estimated 𝝁 contains a larger error
than the estimated 𝝀 in Fig. 8. This difference is expected
since 𝝁 is obtained through the estimated 𝝀 so that the errors
in 𝝀 propagate to the estimates of 𝝁.

B. Data Detection

For data detection, the channel is generated by using the
more realistic model (1). The bit error rate (BER) is the figure
of merit. The system parameters shown in Fig. 2 are taken.
We first apply the channel estimation method to find the BEM
coefficients and to reconstruct the time-varying channels 𝑏𝑖(𝑛).
Then, the self-signal component is canceled before the data
detection. The error due to non-perfect removal of the self-
signal will also affect the system performance. The time- and
the frequency-domain approaches are used to estimate 𝝀 and
𝝁. The BERs versus the SNR for different numbers of 𝑄,
and the BER under perfect channel knowledge are displayed
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Fig. 8. Comparison between the time- and the frequency-domain approaches.
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Fig. 9. Channel estimation MSEs versus SNR for 𝝁.

in Fig. 10. Clearly, the proposed methods yield effective data
detection. At high SNRs, the frequency-domain method yields
better BER performance than the time-domain method since
the former can provide better estimation results. An error floor
is observed in the high SNR region due to the mismatch
between the BEM model and the real channels. Obviously, the
place where the floor begins could be improved by increasing
the number of 𝑄s.

V. CONCLUSIONS

In this paper, we studied the problem of channel estimation
for time-varying TWRN channels. A new PSAM scheme was
designed, and the channel estimation was related to a finite
number of variables by using CE-BEM. The LS estimator
for the convolved BEM coefficients was derived along with
the optimal training sequences. Time-domain and frequency-
domain algorithms were then developed to recover the individ-
ual BEM coefficients from the convolved ones. The selection
of the system parameters to guide the practical design was
fully discussed. The simulation results clearly demonstrated
the effectiveness of the proposed algorithms and corroborated
the studies.
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Fig. 10. BER versus SNR for realistic mobile-to-mobile channels with
different values of 𝑄.

APPENDIX I
GRADIENT DECENT METHOD WITH COMPLEX VARIABLES

Let us define a new 2(𝑄 + 1) × 1 real vector 𝝆 =
[ℜ{𝝀}𝑇 ,ℑ{𝝀}𝑇 ]𝑇 . The gradient decent method to update 𝝆
can be directly obtained as [28]

𝝆(𝑖+1) = 𝝆(𝑖) − 𝜖′
∂𝜁

∂𝝆

∣∣∣∣
𝝆=𝝆(𝑖)

, (44)

or equivalently,[ℜ{𝝀}(𝑖+1)

ℑ{𝝀}(𝑖+1)

]
=

[ℜ{𝝀}(𝑖)
ℑ{𝝀}(𝑖)

]
− 𝜖′

[
∂𝜁

∂ℜ{𝝀}
∂𝜁

∂ℑ{𝝀}

]∣∣∣∣∣
𝝀=𝝀(𝑖)

. (45)

There is

𝝀(𝑖+1) = ℜ{𝝀}(𝑖+1) + 𝑗ℑ{𝝀}(𝑖+1)

=ℜ{𝝀}(𝑖) + 𝑗ℑ{𝝀}(𝑖)︸ ︷︷ ︸
𝝀(𝑖)

−𝜖′
(

∂𝜁

∂ℜ{𝝀} + 𝑗
∂𝜁

∂ℑ{𝝀}
)

︸ ︷︷ ︸
2 ∂𝜁

∂𝝀∗

∣∣∣∣
𝝀=𝝀(𝑖)

,

(46)

where the definition of the complex derivative [28] is used.
Setting 𝜖 = 2𝜖′ yields (35).

APPENDIX II
PROOF OF THEOREM 1

Let us first prove the following lemma:
Lemma 1: If 𝑍 and 𝑅 are co-prime, then the index set ℐ =

{⟨𝑚+𝑢𝑅⟩𝑍}𝑍−1
𝑢=0 is the same as the universal set {0, . . . , 𝑍−

1}, or equivalently,

⟨𝑚+ 𝑢𝑅⟩𝑍 ∕= ⟨𝑚+ 𝑣𝑅⟩𝑍 , for 0 ≤ 𝑢 < 𝑣 ≤ 𝑍 − 1.
(47)

Proof: Let us first assume the contrary holds; i.e.,

⟨𝑚+ 𝑢𝑅⟩𝑍 = ⟨𝑚+ 𝑣𝑅⟩𝑍 , ∃𝑢 < 𝑣. (48)

Then we know

(𝑣 − 𝑢)𝑅 = 𝑘𝑍 (49)
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for some integer 𝑘 ∕= 0. Since 𝑍 and 𝑅 are co-prime, their least
common multiple must be 𝑍𝑅. However in (49), (𝑣−𝑢) < 𝑍 ,
so the equality (49) cannot hold. By the contradiction, we
prove Lemma 1.

Define a new variable

𝑐 =

(
𝑍−1∏
𝑖=0

𝑐𝑖

)1/2

= 𝐼𝑠

𝑍−1∏
𝑖=0

𝜆̃𝑖. (50)

When 𝑍 is odd, the denominator in (42) can be expanded as

𝑍−3
2∏
𝑖=0

𝑐⟨𝑚+(2𝑖+1)𝑅⟩𝑍 =

𝑍−3
2∏
𝑖=0

𝜆̃⟨𝑚+(2𝑖+1)𝑅⟩𝑍 𝜆̃⟨𝑚+(2𝑖+2)𝑅⟩𝑍

=

𝑍−1∏
𝑖=1

𝜆̃⟨𝑚+𝑖𝑅⟩𝑍 =

𝑍−1∏
𝑖=0
𝑖∕=𝑚

𝜆̃𝑖, (51)

where Lemma 1 is applied in the last equality.
Dividing (50) by (51) proves Theorem 1, where 𝐼𝑠 serves

as SSA for all 𝜆̃𝑚.
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