
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title Optimal charging of electric vehicles in low-voltage distribution systems

Authors(s) Richardson, Peter; Flynn, Damian; Keane, Andrew

Publication date 2011-06-23

Publication information IEEE Transactions on Power Systems, 27 (1): 268-279

Publisher IEEE

Link to online version http://dx.doi.org/10.1109/TPWRS.2011.2158247

Item record/more information http://hdl.handle.net/10197/3388

Publisher's statement Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.

Publisher's version (DOI) 10.1109/TPWRS.2011.2158247

Downloaded 2022-08-24T19:19:22Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FTPWRS.2011.2158247&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F3388


1

Optimal Charging of Electric Vehicles in Low

Voltage Distribution Systems
Peter Richardson, Student Member, IEEE, Damian Flynn, Member, IEEE and Andrew Keane, Member, IEEE

Abstract—Advances in the development of electric vehicles,
along with policy incentives will see a wider uptake of this
technology in the transport sector in future years. However, the
widespread adoption of electric vehicles could lead to adverse
effects on the power system, especially for existing distribution
networks. These effects would include excessive voltage drops and
overloading of network components, which occur mainly during
periods of simultaneous charging of large numbers of electric
vehicles. This paper demonstrates how controlling the rate at
which electric vehicles charge can lead to better utilisation of
existing networks. A technique based on linear programming is
employed, which determines the optimal charging rate for each
electric vehicle in order to maximise the total power that can be
delivered to the vehicles while operating within network limits.
The technique is tested on a section of residential distribution
network. Results show that, by controlling the charging rate of
individual vehicles, high penetrations can be accommodated on
existing residential networks with little or no need for upgrading
network infrastructure.

Index Terms—road vehicle electric propulsion, linear pro-
gramming, load flow analysis, optimisation methods, power
distribution

I. INTRODUCTION

ELECTRIC vehicle technology is seen by many countries

as a key component in the effort to reduce harmful

greenhouse gas emissions, while also reducing the dependence

on imported petroleum within the transport sector. As a result,

many automotive manufacturers have begun to place increased

emphasis on the development of various types of electric

vehicle (EV). These include battery electric vehicles, which

operate purely from battery power, and plug-in hybrid electric

vehicles, which operate on power from a combination of an on-

board battery and a combustion engine. The batteries for both

technologies can be recharged from external energy sources,

e.g. an electricity network. Ambitious targets and incentives

for introducing EVs into the transport sector have been pro-

posed in many countries [1]–[3]. Such targets, along with the

likely increase in the cost of fossil fuels over the coming years,

will see EV technology become more widespread.

Distribution networks are rated (kVA limit) to deliver elec-

tricity depending on the number of customers in a given area
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and the historical electricity demand data for each of those

customers. The widespread adoption of EVs will introduce

new customer demand patterns, and large vehicle penetrations

could result in adverse effects on the network. Investigations

into the potential impact of EVs on load patterns and the

need for load management at the distribution network level

have been conducted since as early as the 1980s [4], [5].

More recent work in this area has sought to investigate the

limitations from large numbers of EVs on network infras-

tructure in terms of increased loading, impacts on efficiency

and loss of life for network assets [6]–[10]. These studies

examined varying scenarios, such as unrestricted charging,

peak and off-peak charging, diversified charging, and charging

at varying power levels. The general consensus from these

studies is that existing distribution networks should be able

to accommodate substantial penetration levels of EVs if the

majority of charging is restricted to low charging rates at off-

peak times. Uncoordinated charging, especially fast, 3-phase

charging, will lead to an increase in the number of occurrences

of component overloading and excessive voltage deviations

if it coincides with existing peaks from the residential load.

Staggering the charging start times for localised groups of

EVs is also shown to help avoid these adverse effects, as well

as spikes in demand due to simultaneous commencement of

charging. The impact on voltage levels from high penetrations

of EVs is also investigated in [11] and shows how high levels

of coincident charging can cause voltages to drop beyond

acceptable limits during times of high residential demand.

The introduction of advanced metering infrastructure (AMI)

systems in residential housing, be it for real-time pricing

or active demand side management, or both, will aid the

control/predictability of the load patterns on residential net-

works. AMI could potentially have the ability to control

certain loads within the household (including EVs) and allow

DSOs or demand side aggregators to manage these loads in

a coordinated manner. Such concepts have been investigated

previously. The work described in [12] proposes management

strategies for EV charging/discharging in LV microgrids. By

allowing network control devices to respond to voltage and

frequency levels, it is shown that the EV load can enable

LV microgrids to be operated in a stable manner. In [13], a

technique is employed to minimise power losses and on-load

tap changes for the network transformer, mainly due to the

charging/discharging of EVs located far from the slack bus.

In [14], various techniques are utilised to investigate the

impact of varying penetrations of EVs on residential networks.

Quadratic and dynamic programming techniques minimise the

impact from EV charging on network losses and voltage de-
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viation in particular. By controlling and optimising individual

EV charging rates, network losses and voltage deviations are

reduced for all penetration levels examined. The methodology

is examined using both deterministic and stochastic methods

and concludes that while the difference in the results obtained

using the quadratic or dynamic technique is negligible, the

dynamic technique is more computationally intense. Work

in [15] investigated the use of voltage control on EVs with

charge/discharge capabilities. Here the objective was to min-

imise the charging cost to the EV owner while maintaining

network voltage levels within acceptable limits. Results were

shown to vary significantly depending on the initial state of

charge of the EV batteries, with high dependence on the tariffs

associated with charging and discharging.

The work in this paper differs in its approach to the coordi-

nated charging of EVs described above. Instead of minimising

power losses and/or voltage deviations, the objective of the

optimisation technique employed here is to maximise the total

amount of energy that can be delivered to all EVs over a

charging period while ensuring that network limits are never

exceeded due to high levels of coincident EV charging. Such

an approach ensures that optimal use is made of available

network capacity while avoiding excessive voltage drop and

component overloading, which have been shown, in work

cited above, to be potential issues with high levels of EV

charging. The technique employs linear programming that

takes advantage of the approximately linear characteristics of

both the network voltages and component loading sensitivities

to the addition of EV load.

The methodology for this work is presented in Section II.

Section III describes the modelling of the test network, the

residential load and the electricity demand profiles of EVs.

Results and discussion for two specific charging periods are

presented in Section IV along with generalised results for a

wide range of network scenarios. Conclusions are presented

in Section V.

II. METHODOLOGY

A. Assumptions

Coordinated charging of EVs could be achieved in a variety

of ways. It is assumed here that EV owners are incentivised

to charge their vehicles at off-peak times of day. Once the

off-peak period has begun, no additional EVs will connect for

charging and no EVs will disconnect before reaching a full

battery state of charge (BSOC). Smart metering technology

with load control capability is also assumed to be present in

each household. It is assumed that this load control capability

can be utilised by the DSO (or a third-party aggregator), from

a remote location, in order to manage certain loads on the

consumer side of the meter. Such a scheme would be subject

to prior agreement by both the consumer and the DSO. For the

purposes of this work, the ability to control the load extends to

EV charging only and allows the operator to vary the charging

rate of each EV on the feeder. Each EV can charge at any

rate between zero and the maximum rated output, subject to

certain restrictions, which are outlined later in this section. The

ability to vary the charge rate of individual EVs in a continuous

manner has been studied for use in optimal charging strategies

previously [14], [16], [17]. While the possibility exists for

fast, 3-phase charging, it is assumed that each EV will be

connected to the network via a standard single-phase AC

connection. Although the concept of vehicle-to-grid for local

system support or otherwise exists [12], [13], [15], [17], bi-

directional flow of electricity to and from an EV battery is not

considered in this work.

B. Standard Objective Function

The objective of the method is to maximise the energy

delivered to all EVs within a set period of time. This is

achieved by optimising the charging rate of each connected EV

in order to maximise the total power that can be delivered for

each 15 minute time interval, subject to network constraints.

Coordinating the charging of EVs ensures that the network is

utilised to its fullest extent in terms of energy delivered.

The standard objective function, F, is given as

F =

N
∑

i=1

PEVi
xi (1)

where N is the number of customers being served by the

network, and PEVi
is the power delivered, measured in kW,

to the EV connected at the ith customer point of connection

(CPOC). It is assumed that PEVi
is a continuous control

variable that can vary between 0 kW and the maximum power

output of the charger at node i. xi is zero when an EV is not

connected at the ith CPOC or the EV battery is fully charged,

while xi equals one when the EV at the ith CPOC is connected

and the EV battery is less than fully charged.

C. Constraints

At each time step, the objective function, F, is maximised

subject to certain constraints. The first of these is that the

power demand of an EV cannot exceed the rated power output

of the charger supplying that vehicle, (2).

0 ≤ PEVi
≤ P max

EVi
(2)

In order to avoid large variations in the charging rate over

consecutive time steps, which is undesirable for current battery

technology [18], a rate of change constraint is also imposed

(3).

P t−1

EVi
−∆ ≤ P t

EVi
≤ P t−1

EVi
+∆ (3)

Here, t is the current time step and ∆ is a defined limit, in kW,

by which the charging rate can vary, compared to the charging

rate at the previous time step, excluding on/off transitions.

The next constraint relates to the acceptable voltage range

for the LV network. The addition of EV loads, for the most

part, will cause the voltage at various points of the network

to drop. The extent of the voltage drop can vary depending

on a number of factors, which include the location of the EV

and the rate of charge. The voltage at each CPOC must be

maintained within the rated voltage range specified for the

network, (4).
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Vmini
≤ Vi ≤ Vmaxi

i ∀N (4)

Here, Vi (V) is the voltage at the ith CPOC, while Vmini

and Vmaxi
are the minimum and maximum allowable network

voltage levels respectively.

The thermal loading of network components refers to the

ratio of the apparent power flowing through the component to

its rated capacity. For this study, the thermal loading of both

the network transformer and the mains cable connecting the

transformer to the network are considered. These constraints

are summarised in equations (5) and (6) respectively.

LTX ≤ LTXmax
(5)

LMC ≤ LMCmax
(6)

where LTX and LMC are the thermal loading (kVA) for

the transformer and mains cable respectively, while LTXmax

and LMCmax
are the associated maximum loading of the

components.

D. Network Sensitivities

A time-series, unbalanced, 3-phase load flow analysis of the

test network is performed in order to determine the network

voltage and thermal loading levels as a result of the residential

household load. This is performed using power system analysis

software [19] and applying residential load information. The

voltage sensitivities at each CPOC are also calculated for both

the addition of EV load at their own terminal and at each of the

other household terminals on the network, i.e. the change in

voltage due to charging demand from the EVs. For each time

step, EV load is added incrementally at each CPOC in turn and

the change in voltage at each CPOC is recorded. This data is

then used to calculate the voltage sensitivities of the network to

the addition of EV load. The addition of EV load to any CPOC

on the network causes variations in the voltage at each of the

other CPOCs. Thermal loading sensitivities for the network

components of interest are calculated in the same manner. The

addition of EV load at any point of the network causes an

increase in the thermal loading experienced by the transformer.

Analysis of the load flow results shows that the assumption of

linearity for both the voltage and thermal loading sensitivity

characteristics is adequate [11]. The constraint for the voltage

level can be summarised as,

Vmini
≤ Viniti + µiPEVi

+

N
∑

j=1

µjiPEVj
≤ Vmaxi

i ∀N , i ̸= j

(7)

where Viniti is the initial voltage at the ith CPOC of the

network with no EVs charging, µi (V/kW) is the sensitivity

of the voltage at the ith CPOC due to power demanded by the

EV connected at the same CPOC, µji is the sensitivity of the

voltage at the ith CPOC due to power demanded by an EV

connected at the jth CPOC.

The thermal loading constraints are summarised as

Fig. 1. Methodology for optimising the charging rates of EVs.

LTXinit
+

N
∑

k=1

δkPEVk
≤ LTXmax

k ∀N (8)

LMCinit
+

N
∑

k=1

βkPEVk
≤ LMCmax

k ∀N (9)

where LTXinit
and LMCinit

are the initial thermal loading

levels of the network transformer and mains cable respectively,

and δk (kVA/kW) and βk (kVA/kW) are the sensitivities of the

transformer and mains cable loading to power demand (PEVk
)

of an EV at the kth CPOC.

The voltage and thermal loading sensitivities are determined

for each time step of the analysis. Subsequently, a linear

programming tool in [20] determines the optimal charging

rate for each connected EV for each time step, in order to

maximise the total amount of energy that can be delivered

over the considered period. A summary of the methodology

is outlined in the flow chart presented in Fig. 1.

E. Weighted Objective Function

Due to the radial layout of the majority of LV residential

networks, the standard optimisation technique tends to charge

EVs connected near to the transformer at a higher rate than

those located far from the transformer. This is due to the

voltage levels being less sensitive to the addition of EV

load near to the transformer. In order to provide a more

even distribution of energy to the charging EVs and prioritise

batteries with a low BSOC, a modified objective function

is applied to the optimisation algorithm, which applies a

weighting according to each individual EV’s BSOC at the

previous time step. It is assumed that the BSOC of each EV
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Fig. 2. Single line diagram of test network. Circles show houses where EVs
are connected for charging.

is known at the beginning of each optimisation time step. The

modified objective function, F, is summarised as follows:

F =

N
∑

i=1

(

1−

(

BSOCi

BSOCmaxi

))

PEVi
xi (10)

where BSOCi is the current battery state of charge (kWh)

of the EV connected at the ith CPOC and BSOCmaxi
is the

maximum battery capacity of that EV.

III. MODELLING OF TEST NETWORK

A. Distribution Network

The test network is based on a LV residential distribution

feeder in a suburban area of Dublin, Ireland. A simplified

representation of the feeder is given in Fig. 2. In the actual test

feeder, each household, EV and service cable are modelled

separately. The model incorporates a 400 kVA, 10/0.4 kV

step-down transformer supplying a feeder of 134 residential

customers through 1.2 km of 3-phase copper mains cables and

980 m of single-phase copper service cables. A lumped load

model, representing a similar number of residential customer

loads with no EV loads, is included to represent another feeder

being supplied from the same transformer.

In Ireland, the LV distribution network is operated at a

nominal voltage of 230/400 V with a voltage range tolerance of

+/-10% [21]. For the most part, LV substation transformers in

Ireland do not have tap-changing capabilities, which is the case

for the transformer modelled in the test network. As such, the

medium voltage (MV) network supplying the LV transformer

is included in the model as an equivalent impedance in order

to take account of the voltage drop at this network level. The

MV network is modelled such that at maximum residential

load (with no EV charging), the voltage at all points of the

network does not exceed -10% of nominal. Specifications for

the network model components were supplied by Electricity

Supply Board (ESB) Networks, who are the DSO in the

Republic of Ireland, and are given in Table III in the Appendix.

B. Residential Customer Load Modelling

Typical load data for domestic electricity demand customers

was obtained from the DSO consisting of 15-minute time-

series demand data for high, medium and low use customers

over a one year period. Different electricity demand profiles

were randomly assigned to each of the houses in the test

network. However, in order to confirm that these load profiles

portrayed an accurate representation of the power demanded

by a real distribution feeder, the coincidence factor of the test

network was determined. The coincidence factor is defined as

the ratio of the maximum diversified demand divided by the

maximum non-coincidental demand [22]. From assessing the

yearly load profiles for each of the households on the network,

the coincidence factor was found to be 0.32, which compares

favourably with similar residential networks [23].

For modelling purposes, the power factor for each house-

hold load is set at 0.97 inductive during the day and 0.95

inductive at night. Here, daytime is specified as between 6 am

and 10 pm, and nighttime as between 10 pm and 6 am. The

load is modelled as a combination of constant power (P) and

constant impedance (Z). From April to September inclusive,

the load is modelled as 60% constant P, 40% constant Z.

From October to March inclusive, the load is modelled as 40%

constant P and 60% constant Z, due to an increase in electric

heating load. It is common practice to model residential loads

in this manner when exact information on the load type is not

available [23].

C. Electric Vehicle Load Modelling

It is assumed that each EV is connected at the same CPOC

as the household load through a single-phase connection.

Charging profiles for EVs can vary depending on battery type,

charging equipment and the electricity supply network. For

this work, EV batteries are modelled based on lithium-ion

battery technology. It is assumed that once connected, an

individual EV with no charge controlling capability charges

at a rate of 4 kW up to a BSOC of approximately 95%. After

this point the vehicle charges at a rate of 1.5 kW until the

battery has reached its maximum capacity. For this work, all

EV batteries are modelled with a capacity of 20 kWh. The

EV charging equipment is assumed to have a 90% efficiency

rating. The charging rate of 4 kW is appropriate in terms

of the power delivery capabilities of existing LV distribution

networks in Ireland [21]. EV batteries are modelled as constant

power loads with unity power factor.

D. Time Periods for Investigation

In order to demonstrate the benefits of the optimisation

technique, two specific periods of time within the one year

period of residential load data were chosen. For this study,
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Fig. 3. Distribution of the initial BSOC for each EV.

the charging period occurs from 10 pm to 7 am the next day.

One test period was chosen because it contained the highest

15-minute residential demand during the off-peak charging

periods (winter scenario). The maximum 15-minute residential

demand for this time period was approximately 152 kW. The

other test period chosen was a low-demand mid-week charging

period in the summer (summer scenario).

For the simulations, half of the residential households were

randomly assigned an EV, as shown in Fig. 2. This amounts to

67 EVs on the network with a potential combined maximum

demand of 268 kW. It was assumed that all EVs remain

connected to the network for the entire charging period, with

each EV randomly assigned an initial integer valued BSOC.

The distribution of the initial BSOC for each EV is shown in

Fig. 3. The average initial BSOC of all the EVs was 7.8 kWh,

or 39% of the maximum BSOC.

Table I shows the breakdown of EVs allocated to the

network as well as the total energy requirement of these

vehicles on a phase-by-phase basis. It is clear from this table

that there is a greater number of EVs on phase c, and thus

a larger energy requirement, compared to the other phases.

While a 50% penetration of EVs on a distribution feeder may

not be experienced in reality for many years to come, it was

deemed appropriate to examine such a demanding scenario

in order to fully capture the main benefits from controlled

charging strategies compared to uncontrolled charging.

TABLE I
INITIAL EV CONDITIONS

Combined Combined Total

Number Battery Initial Energy

of EVs Capacity BSOC Required

(kWh) (kWh) (kWh)

Phase a 19 380 139 241

Phase b 18 360 146 234

Phase c 30 600 236 344

Total 67 1340 521 819

E. Stochastic Scenario Analysis

The charging periods identified above are chosen to examine

the optimisation technique for specific network scenarios.

However, in order to demonstrate the benefits of the optimisa-

tion technique for a wider range of scenarios, a stochastic tool

is developed to generate different residential load scenarios

with probabilistic conditions for varying residential load, EV

location and initial BSOC.

Probability distribution functions (PDFs) for the household

load were created based on the residential load data provided

by the DSO with PDFs for low, medium and high use cus-

tomers. 15-minute household load profiles were then generated

for each house for a 9 hour period from 10 pm to 7 am the

next day, similar to the deterministic analysis. It is assumed

that all EVs are connected for charging at the beginning of this

period and remain connected until the end. At the beginning of

each 9 hour charging period the EV locations on the network

were randomly selected with each one then assigned an initial

BSOC. As no real charging data was available, a PDF (mean

= 10.75 kWh, standard deviation = 6 kWh) for assigning

initial BSOC was created. For each charging period time step,

network sensitivities are determined which are then used to

optimise the charging rate of each EV. The load model and

power factor for both the residential and EV load remain the

same as for the deterministic analysis.

IV. RESULTS AND DISCUSSION

The optimisation technique is tested with the two different

objective functions, (1) and (10). The results for each approach

are outlined below and are compared to scenarios with no EV

charging present and with uncontrolled EV charging.

A. Network Sensitivities

For each 15-minute time interval, a series of three-phase,

unbalanced load flow calculations are performed using the

customer demand profiles in order to determine the voltage

and thermal loading sensitivities of the network due to the

introduction of EVs. These sensitivities inform the optimal

charging rate of each EV for each time step of the charging

period. The voltage sensitivity at each CPOC is measured for

varying charging rates and varying EV charging locations on

the network. Fig. 4 demonstrates how the voltages measured

at the CPOCs closer to the transformer (i.e. 3 and 8 from Fig.

2) are less sensitive to the addition of EV loads as compared

to those located near the end of the feeder (i.e. points 6, 7, 11

and 12).

Since the household loads for this network are connected to

individual phases of the network, the addition of EV load to

a particular CPOC affects the voltage at that particular CPOC

as well as the voltage on the other phases of the network,

as demonstrated in Fig. 5. As can be seen, the addition of

EV load on phase c only causes the voltage on that phase to

decrease while the remaining phase voltages increase slightly.

This effect is not uncommon in unbalanced networks [22] and

is captured in the voltage constraint equation, (7), where the

sensitivity, µ, of the voltage at a particular CPOC can be either
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Fig. 4. CPOC voltage sensitivities to charging EVs at 6 network points for
the Winter Scenario.

Fig. 5. Interdependence of 3 CPOC voltages with EV charging on phase c
for the Winter Scenario.

positive or negative depending on the phase to which an EV

is connected.

The voltage sensitivities can vary significantly due to the

changes in the domestic household load, and therefore they are

calculated for each time step of the analysis. This information

is then subsequently used to optimise the EV charging rates,

the results of which are outlined in the following sections.

In order to determine the accuracy of the optimisation tech-

nique, error margins were calculated based on the difference

between the predicted CPOC voltages from the optimsation

algorithm and the CPOC voltages recorded from the sub-

sequent load-flow calculations. The average maximum error

margin over the summer charging period was found to be

1% for the standard and weighted objective functions. For the

winter charging scenarios these values were recorded as 1.4%

(standard objective function) and 1.5% (weighted objective

function). As can be seen in the results presented below, the

accuracy of the sensitivities is adequate to ensure that no

operating limits are exceeded due to EV charging.

Fig. 6. Voltage level for a CPOC at node 6 for base case and uncontrolled
charging scenarios with charge profile for an EV charging at the same CPOC.
(Winter scenario)

B. Uncontrolled EV Charging

With no active control over EV charging rates, all of the EVs

would be expected to commence charging at the beginning of

the charging time period at the maximum rate of charge. As

the network is not rated for this high level of demand, the

network operating conditions are severely impacted. Fig. 6

shows the voltage level at a CPOC at node 6 for the winter

scenario base case. The charge profile for an EV connected

at the same CPOC is also displayed. The initial BSOC of

this EV was 3 kWh or 15%. While all EVs on the network

would be fully charged by the end of the charging period the

lower voltage limit at this CPOC, i.e. 0.9 pu, is exceeded for

over 3 hours at the start of the charging period. The lowest

voltage experienced at this node is approximately 0.68 pu. It

is clear that such a scenario could not be permitted to occur

and it is likely that the number of EVs on the network would

be restricted to a predetermined limit. For the purposes of

comparison, an uncontrolled charging scenario was created

whereby there is a limit to the number of EVs that are allowed

to charge simultaneously. This number was determined by

incrementally adding EVs, charging at the maximum rate of

charge, to the extremities of the feeder up to the point before

the feeder exceeds an allowable operating limit. This test was

performed with the residential load at the maximum expected

midnight demand. Charging was restricted to begin only after

midnight to ensure that the residential load is off-peak. For the

test network utilised in this work, the predetermined number

of EVs that could be allowed to charge in an uncontrolled

scenario was found to be 21.

C. Controlled EV Charging

By employing the methodology described in Section II, the

rate at which each EV charges is now optimised in order to

deliver the maximum power to the EVs while maintaining all

voltages and network flows within acceptable operating limits

for each time step. At the beginning of the charging period, the

total energy required to return all EVs to 100% BSOC is 819

kWh. For the optimisation, the lower voltage limit is set at 210
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V or 0.913 pu, which allows for a margin of safety with respect

to the lower voltage limit defined in the Irish distribution

network code [21]. This ensures that any unexpected short

term variations in the demand, will not cause the network to

exceed its operating limits. The maximum variation allowable

for the rate of charge between time steps, i.e. ∆ in (3), is set

at 0.25 kW for each of the control strategies.

1) Standard Objective Function: From Table II it can be

seen that using the standard objective function a total of 810

kWh in the summer and 798 kWh in the winter were delivered

to the EVs by the end of the respective charging periods.

Although this means that the total EV energy requirement (819

kWh) was not met, in both cases the network was maintained

within normal operating limits for the entire duration of the

charging period.

TABLE II
TOTAL ENERGY DELIVERED TO EV BATTERIES

Total Energy % Energy

Delivered (kWh) Requirement

Uncontrolled Charging Summer 238 29

(21 of 67 EVs) Winter 238 29

Standard Objective Summer 810 98.9

Function Winter 798 97.4

Weighted Objective Summer 818 99.9

Function Winter 815 99.5

The voltage profile of a CPOC at node 6 with an EV

charging and the corresponding EV charge profile is given in

Fig. 7. It is evident that the voltage here is a binding constraint

for the optimisation technique as it is held just above the lower

voltage limit for the majority of the charging period. It can also

be seen that the EV connected to this CPOC does not truly

begin charging until the third hour of the charging period and

does not approach a maximum rate of charge until towards

the end of the period. This particular EV had an initial BSOC

of 3 kWh (15%) and had reached a BSOC of 15 kWh (75%)

by the end of the charging period. Clearly, this would be an

unacceptable outcome for an EV owner that desired a full

BSOC.

Fig. 8 shows the distribution function for the BSOC of each

EV at the end of both the summer and winter charging periods.

It is evident in both cases that a number of EVs, including the

one shown in Fig. 7, have not reached a full BSOC by the end

of the charging period. In the summer scenario, 64 of the 67

EVs were fully charged, while for the winter charging period,

63 EVs had a full BSOC. In both cases, the EVs with a BSOC

of less than 100% are all located near the end of the branches

of the feeder and are connected to phase c. From Table I it can

be seen that a greater number of EVs are connected to phase c

than either of the other phases, which results in a larger energy

requirement. Additional load due to EV charging at CPOCs

near the end of feeder branches will have a greater effect on

network voltage levels than if located closer to the transformer.

As a result, the optimisation method allocates low charging

rates to these EVs until the other EVs are fully charged. The

combination of both factors leads to a number of EVs not

Fig. 7. Voltage profile for a CPOC at node 6 and charge profile for EV
charging at the same CPOC with optimised charging employing the standard
objective function. (Winter scenario)

Fig. 8. Distribution function of the battery state of charge for all EVs at end
of the summer and winter charging periods: standard objective function.

receiving a full BSOC by the end of the charging period. This

outcome is displayed in Fig. 9, which shows the active power

demand, with and without EV charging, on each phase of

the network over the charging period. It is clear that, while

the EVs connected to phase a and phase b have completed

charging, power is still being delivered to some EVs connected

to phase c. Also shown in this figure is the lowest CPOC

voltage measured on each phase of the feeder for each time

step. It is clear that while power is being delivered to the EVs

on the feeder, the voltage levels at each of the CPOCs are held

above the lower voltage limit.

2) Weighted Objective Function: The standard objective

function optimisation technique will consistently tend to assign

low charging rates to EVs located further from the transformer.

Such a situation would clearly be unacceptable. In order

to overcome this, the optimisation process was repeated, as

described in Section II, with the objective function weighted

according to the current BSOC of each charging EV, (10).

By employing this method, 818 kWh of energy are delivered

to the EVs for the summer charging period and 815 kWh

are delivered in the winter charging period, which represents

99.9% and 99.5%, respectively, of the total energy required
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Fig. 9. Power delivered to network on each phase for the case with no EVs
charging and the optimised charging case employing the standard objective
function (Winter). The lowest CPOC voltage for each phase at each time step
for the optimised charging case is also shown.

to return all EV batteries to a full BSOC. The total power

delivered to the EVs for the uncontrolled and optimised

charging scenarios is shown in Fig. 10. While both objective

function methods deliver similar energy totals by the end of

the charging period, the individual EV charging patterns vary

significantly across the network. During the early stages of the

charging period, the SOF prioritises EVs that are located close

to the transformer, whereas the WOF assigns higher charging

rates to EVs with a low BSOC, wherever they may be located

in the network. Later in the charging period, applying the SOF,

vehicles located at the network extremes begin charging. As

the voltage is more sensitive to additional load at these points

of the network, the charging rates for these EVs are lower and

less energy can be delivered. The same restrictions are not as

severe using the WOF as the energy delivered to the EVs is

more evenly distributed across the network, resulting in more

energy being delivered towards the end of the charging period

(Fig. 13 and 14).

Fig. 11 shows the voltage profile, for the same CPOC as

shown in Fig. 7, as a result of the weighted objective function

optimisation technique. Once again, it is apparent that the

voltage at this CPOC is a binding constraint. However, the

EV begins charging much earlier and the BSOC by the end

of the charging period has reached 100%, as compared with a

figure of 75% using the standard objective function method.

The distribution function of the BSOC for the EVs by the

end of the charging period is given in Fig. 12, and shows

an increase in the number of EVs with a full BSOC for

both charging period scenarios when compared to the previous

method. Specifically, 67 EVs have a full BSOC by the end of

Fig. 10. Total power delivered to EVs for uncontrolled and optimised winter
charging scenarios.

Fig. 11. Voltage profile for a CPOC at node 6 and charge profile for EV
charging at the same CPOC with optimised charging employing the weighted
objective function. (Winter scenario)

the summer charge period, while 66 of the 67 EVs have a full

BSOC in the winter scenario. This compares favourably to the

standard objective function method where the lowest BSOC

of all the EVs was 68% and 58% for the summer and winter

charging periods respectively. As was the case for the previous

method, the EV that was not fully charged was connected to

phase c and is located near the end of the feeder branches.

It should be noted that the particular allocation of EVs in

this work resulted in there being a greater number of EVs

connected to one phase compared to the others. As this work

has shown, even an optimal method for maximising the energy

that can be delivered to charging EVs may be insufficient if

a large number of the EVs are connected to the same phase

of the network at the same time. Such scenarios may require

that the DSO reconfigure the distribution of load across the

phases.

D. Thermal Loading of Network Components

Thermal loading constraints of certain feeder components

are also taken into account by the optimisation technique.

Fig. 13 shows the loading of the LV transformer over the
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Fig. 12. Distribution function of the battery state of charge for all EVs at
end of the summer and winter charging periods: weighted objective function.

charging period for the winter scenario, while Fig. 14 shows

the loading for the 3-phase mains cable (Line 1-2 in Fig. 2)

that supplies the feeder from the transformer for the same

scenario. In both cases, it is evident that neither the transformer

nor the mains cable loading are the binding constraint on

this network. Clearly, the network equipment is more than

adequately rated for accommodating the additional load that

would be demanded by this high penetration of EVs, assuming

that the majority of charging occurs at off-peak times of day.

This may not be the case for all residential distribution feeders,

many of which may experience overloading of network com-

ponents due to large numbers of EVs charging simultaneously

at both peak and off-peak times of day. Without some form

of controlled charging for EVs, a significant increase in the

number of overloading incidences will impact on the lifetime

of these network components [6]. By employing a controlled

charging technique, like the one described in this paper, the

overloading of network components due to EV charging can

be avoided by incorporating certain constraints, (8), (9). While

this would result in increased loading levels during the off-

peak period, a flatter transformer load profile would impact

less on the transformer lifetime than a profile with large

overloads due to on-peak EV charging [24]. Together with

the introduction of other demand side management schemes,

many forms of residential load could be controlled in a manner

which would allow networks to be utilised to their fullest

extent while not impacting on component lifetimes.

E. Network Losses

The network losses as a percentage of the total energy

delivered to the network are presented in Fig. 15. For each

of the cases studied, the losses ratio is greater in the winter

charging period than in the summer period due to the increased

residential demand in the winter. The added demand from EVs

charging causes the losses ratio to increase significantly. This

is evident for both the standard (SOF) and weighted (WOF)

objective function methods. For the SOF case the losses ratio

increases from 0.3% to 4.1% in the summer and 1% to 4.5%

in the winter. For the WOF method these values increase to

4.6% in the summer and to 4.8% in the winter scenario.

Fig. 13. Thermal loading of LV transformer for winter charging period.

Fig. 14. Thermal loading of 3-phase mains cable supplying feeder for winter
charging period.

Fig. 15. Network losses for standard objective function (SOF) and weighted
objective function (WOF) cases.

F. Stochastic Scenario Analysis

A stochastic analysis of the network loading is carried out

in order to provide insight into the effects of the optimisation

technique while accounting for the variability associated with a

high penetration of charging EVs. The optimisation technique

using the weighted objective function was simulated for 500,
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Fig. 16. Distribution of measured voltages at network CPOCs.

9-hour charging periods (i.e. 18,500 time steps). Residential

load profiles for typical mid-week, winter scenarios were

generated based on the associated PDFs.

Fig. 16 shows the distribution of measured voltages for all

CPOCs over all charging periods for the scenario with no EVs

on the network and the scenario with 50% EV penetration with

optimised vehicle charging. This graph shows that the majority

of pre-optimisation voltage measurements are near or above

1 pu with reduced occurrences for decreasing voltage levels.

Following the application of the optimisation technique, the

majority of voltage measurements are recorded between 0.91

and 0.95 pu indicating that the optimisation technique was

able to maintain CPOC voltages above the low voltage limit

for the network. Any occurrence of voltage levels below the

lower voltage limit, in both the case with no EVs and the

optimised case, is due to the household demand. As a result,

these voltages remain unaffected in the optimised case as the

technique does not allow EV charging if the network is already

exceeding limits.

The distribution of thermal loading results for the trans-

former during the analysis is presented in Fig. 17. Prior to the

addition of EVs, the majority of loading measurements were

found to lie between 10% and 30% of rated loading. Following

the introduction of EVs, charged according to the optimisation

method, the majority of recorded measurements were found to

be in the region of 50-70% of rated loading.

Fig. 18 shows the distribution of measured thermal loading

for each phase of the 3-phase mains cable supplying the feeder

from the LV transformer. These measurements are from the

optimised case only. As can be seen from the loading results

for both the transformer and the mains cable, the rated loading

limit for either component is never the constraining factor for

the optimisation method. It is apparent that, for this particular

network, the electrical components are more than adequately

rated to accept the increased loading due to a high penetration

of charging EVs. Instead, the voltage limits are more likely

to be an issue with off-peak EV charging and, as a result, are

typically the constraining factor in the optimsation method.

Fig. 19 shows results for the final BSOC of all EVs after

each charging period, representing the BSOC of the EV with

Fig. 17. Distribution of measured thermal loading levels for the network
transformer.

Fig. 18. Distribution of measured loading levels on each phase of the 3-
phase mains cable supplying the network from the transformer (optimised EV
charging).

the least BSOC, as well as the average BSOC of all EVs.

For the high penetration level of charging EVs examined, the

optimisation technique results in an average BSOC of 99.9%.

While it is possible that not every EV will have a full BSOC

by the end of the charging period, such cases occur far less

frequently. The lowest final BSOC recorded over the analysis

was 13.3 kWh (66.5%).

The average losses on the LV feeder over all charging

periods were found to be 11 kWh for the case with no EVs and

80 kWh for the optimised charging case using the weighted

objective function method.

V. CONCLUSION

The introduction of large penetrations of EVs will have

significant impacts on the operating conditions of distribution

networks. If they are to be charged in a passive, uncontrolled

manner then major infrastructure upgrades may be required.

Controlled charging by the DSO could help to alleviate some

of these issues and allow EV owners to charge their vehicles

while maintaining the network within acceptable operating

limits. The work presented here has demonstrated how the

charging rates of a high penetration of EVs on a test network
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Fig. 19. Distribution of minimum and average BSOCs for all EVs recorded
at the end of each charging period.

can be optimised in order to deliver the maximum amount

of energy to the EVs within a set charging period subject

to network constraints, while ensuring that the underlying

residential load remains unaffected.

Results from this work have shown that maximising the

total power to all EVs according to network constraints will

favour those EVs that are connected near to the transformer,

rather than those connected towards the extremes of the radial

network. Therefore, a weighted objective function was studied,

which optimised the EV charging rates according to both the

impact on the network operating conditions and the BSOC of

the EVs. Results show that the modified objective function

increases the total energy delivered to the EVs. This objective

function was also tested for various charging period scenarios

and was shown to return an average BSOC of 99.9% for all

EVs over all periods examined.

Due to the use of linear programming, large amounts of data

are not required by the DSO at each time step in order to find

the optimal rate of charge for each EV. The technique is not

computationally intense nor does it require storage of historical

load data for subsequent use, and therefore could be easily

incorporated into a coordinated charging scheme. Determining

the various network sensitivities to additional load provides

insight into the condition of the network and could prove

very useful for DSOs employing such schemes. Assuming

the use of AMI within residential households and sufficient

communication links between the DSO and the AMI meter-

ing, practical implementation of the optimal charging method

would provide significant benefits in terms of accommodating

high penetrations of EVs.
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APPENDIX

TABLE III
CABLE CHARACTERISTICS

Line
Length R1 X1 R0 X0 C Irated

(m) (Ω) (Ω) (Ω) (Ω) (µF) (A)

MV 10,000 20.8 4 10 12 0.01 1000

1-2 190 0.032 0.014 0.095 0.041 0.053 510

2-3 27.5 0.008 0.002 0.024 0.006 0.008 368

3-4 85 0.024 0.006 0.073 0.018 0.026 368

4-5 97.5 0.028 0.007 0.084 0.021 0.029 368

5-6 154 0.062 0.011 0.185 0.033 0.046 300

4-7 119 0.048 0.009 0.143 0.026 0.036 300

2-8 32.5 0.009 0.002 0.028 0.007 0.01 368

8-9 59 0.017 0.004 0.051 0.013 0.018 368

9-10 106 0.03 0.008 0.091 0.023 0.032 368

10-11 95 0.027 0.007 0.082 0.021 0.029 368

9-12 217.5 0.087 0.016 0.261 0.047 0.065 368

Service Cable
0.8 0.07 - - 0.4 80

(per km)

R1 Positive sequence resistance R0 Zero sequence resistance
X1 Positive sequence reactance X0 Zero sequence reactance
C Capacitance Irated Rated current

REFERENCES

[1] Department of Transport, Republic of Ireland. “Smarter travel, a sus-
tainable transport future: a new Transport policy for Ireland 2009-2020”.
Available: http://www.transport.ie/upload/general/11284-0.pdf

[2] Department for Transport, United Kingdom. “Ultra-low carbon cars: next
steps on delivering the £250 million consumer incentive programme for
electric and plug-in hybrid cars”, July 2009. Available: http://www.dft.

gov.uk/adobepdf/163944/ulcc.pdf

[3] J. Heywood, P. Baptista, I. Berry, K. Bhatt, L. Cheah, F. de Sis-
ternes, V. Karplus, D. Keith, M. Khusid, D. MacKenzie and J.
McAulay, “An action plan for cars: the policies needed to reduce
U.S. petroleum consumption and greenhouse gas emissions”, Mas-
sachusetts Institute of Technology Energy Initiative Report, December
2009. Available: http://web.mit.edu/sloan-auto-lab/research/beforeh2/

actionplan/ActionPlan CombinedFinal ForPublication 8Feb10.pdf

[4] G. T. Heydt, “The impact of electric vehicle deployment on load manage-
ment strategies”, IEEE Transactions on Power Apparatus and Systems,
vol. PAS-102, no. 5, pp. 1253-1259, May 1983.

[5] S. Rahman and G. B. Shrestha, “An investigation into the impact of
electric vehicle load on the electric utility distribution system”, IEEE

Transactions on Power Delivery, vol. 8, no. 2, pp. 591-597, April 1993.

[6] J. Taylor, A. Maitra, M. Alexander, D. Brooks and M. Duvall, “Evaluation
of the impact of plug-in electric vehicle loading on distribution system
operations”, In Proc. IEEE Power and Energy Society General Meeting,
Calgary, Canada, July 2009.

[7] K. Schneider, C. Gerkensmeyer, M. Kintner-Meyer and R. Fletcher,
“Impact assessment of plug-in hybrid vehicles on Pacific Northwest
distribution systems”, In Proc. IEEE Power and Energy Society General

Meeting, Pittsburgh, Pennsylvania, USA, July 2008.

[8] C. Gerkensmeyer, M. Kintner-Meyer and J.G. DeSteese, “Technical
challenges of plug-in hybrid electric vehicles and impacts to the US
power system: distribution system analysis”, Pacific Northwest National
Laboratory Report, January 2010. Available: http://www.pnl.gov/main/

publications/external/ technical reports/PNNL-19165.pdf

[9] S. Shao, M. Pipattanasomporn and S. Rahman, “Challenges of PHEV
penetration to the residential distribution network”, In Proc. IEEE Power

and Energy Society General Meeting, Calgary, Canada, July 2009.

[10] G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley and M.
Narayana, “Impact of electric vehicles on power distribution networks”,
In Proc. IEEE Vehicle Power and Propulsion Conference, Dearborn,
Michigan, USA, September 2009.



12

[11] P. Richardson, D. Flynn and A. Keane, “Impact assessment of varying
penetrations of electric vehicles on low voltage distribution systems”, In

Proc. IEEE Power and Energy Society General Meeting, Minneapolis,
Minnesota, USA, July 2010.

[12] J. A. Peças Lopes, S. A. Polenz, C. L. Moreira and R. Cherkaoui,
“Identification of control and management strategies for LV unbalanced
microgrids with plugged-in electric vehicles”, J. Electric Power Systems

Research, vol. 80, no. 8, pp. 898-906, August 2010.
[13] S. Acha, T. C. Green, N Shah, “Effects of optimised plug-in hybrid

vehicle charging strategies on electric distribution network losses”, In

Proc. IEEE Power and Energy Society Transmission and Distribution

Conference and Exposition, New Orleans, Louisiana, USA, April 2010.
[14] K. Clement, E. Haesen and J. Driesen, “The impact of charging plug-

in hybrid electric vehicles on a residential distribution grid”, IEEE

Transactions on Power Systems, vol. 25, no. 1, pp. 371-380, February
2010.

[15] K. Clement-Nyns, E. Haesen and J. Driesen, “Analysis of the impact
of plug-in hybrid electric vehicles on residential distribution grids by
using quadratic and dynamic programming”, EVS24 International Battery,

Hybrid and Fuel Cell Electric vehicle Symposium, Stavanger, Norway,
May 2009.

[16] A. Brooks, E. Lu, D. Reicher, C. Spirakis and B. Weihl, “Demand
dispatch: using real-time control of demand to help balance generation
and load.” IEEE Power and Energy Magazine, vol. 8, number 3, pp. 20-
29, May/June 2010.

[17] E. Sortomme and M. A. El-Sharkawi, “Optimal Charging Strategies for
Unidirectional Vehicle-to-Grid”, IEEE Transactions on Smart Grid, vol.
2, no. 1, pp. 131-138, March 2011.

[18] F. Hoffart, “Proper care extends Li-ion battery life”. Power Electronics

Technology, April 2008. Available: http://powerelectronics.com/

portable power management/battery charger ics/proper care

extends-li-ion-battery-0425/ index.html

[19] DIgSILENT PowerFactory. DIgSILENT GmbH. Available: http://www.

digsilent.de/

[20] MATLAB R2009a. The MathWorks, Inc.
[21] ESB Networks Distribution Code, October 2007. Available: http://www.

esb.ie/esbnetworks/en/downloads/Distribution-Code.pdf

[22] W. H. Kersting, Distribution System Modeling and Analysis. London:
CRC Press, 2002.

[23] H. L. Willis, Power Distribution Planning Reference Book. Basel:
Marcel Dekker, 2004.

[24] IEEE guide for loading mineral-oil-immersed transformers, IEEE Stan-
dard C57.91, 1995.

Peter Richardson (S’08) received his B.E. degree
in Electrical Engineering from University College
Dublin in 2007. He is currently studying for his
Ph.D. at University College Dublin with research
interests in electric vehicles, distributed energy re-
sources and distribution networks.

Damian Flynn (M’96) is a senior lecturer in power
engineering at University College Dublin. His re-
search interests involve an investigation of the effects
of embedded generation sources, especially renew-
ables, on the operation of power systems. He is
also interested in advanced modelling and control
techniques applied to power plant.

Andrew Keane (S’04, M’07) received B.E. and
Ph.D. degrees in Electrical Engineering from Uni-
versity College Dublin in 2003 and 2007 respec-
tively. He is currently a lecturer with the School of
Electrical, Electronic and Mechanical Engineering,
University College Dublin with research interests in
power systems planning and operation, distributed
energy resources and distribution networks.


