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Abstract— There is a strong need for advanced control meth-
ods in battery management systems, especially in the plug-in
hybrid and electric vehicles sector, due to cost and safety issues
of new high-power battery packs and high-energy cell design.
Limitations in computational speed and available memory
require the use of very simple battery models and basic control
algorithms, which in turn result in suboptimal utilization of
the battery. This work investigates the possible use of optimal
control strategies for charging. We focus on the minimum-
time charging problem, where different constraints on internal
battery states are considered. Based on features of the open-
loop optimal charging solution, we propose a simple one-step
predictive controller, which is shown to recover the time-optimal
solution, while being feasible for real-time computations. We
present simulation results suggesting a decrease in charging
time by 50% compared to the conventional constant-current /
constant-voltage method for lithium-ion batteries.

I. INTRODUCTION

There is an increasing trend towards the electrification of

the automobile, and most car manufacturers have announced

plans to produce plug-in hybrid and electric vehicles. Besides

other technological challenges, one important aspect of an

electric vehicle is the time needed to recharge the battery

pack. Advanced battery management systems need to provide

adequate charging strategies for ’refueling’ the battery pack

in a fast, safe, and reliable manner.

Although it is widely recognized that an appropriate charg-

ing strategy of the battery is critical for preventing damage

and performance degradation, in general only current and

voltage limits are considered during the charging process. As

mentioned in [1], voltage limits might be too conservative for

new batteries and possibly dangerous for aged batteries due

to the changed behavior.

Most charging strategies are ad hoc methods, where certain

design parameters determine the major part of some rule

based control design. Fast charging of batteries is a popular

research topic is the electrochemical community, however,

this problem has received very little attention from the con-

trols community. Popular charging strategies are constant-

current / constant-voltage (CC/CV), pulse current charging,

pulse voltage charging [2], [3], [4], with CC/CV being the

most wide-spread method to recharge Li-ion batteries. In [5],

[6] some promising charging strategies are presented; how-

ever, the maximum performance determined by the electro-

chemistry of the battery is not approached by those methods.

In an ideal battery, and without limitation of the charging

unit, one could pass all the charge needed to bring a battery
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from one state of charge (SOC) to another SOC instanta-

neously. Many internal processes of the battery have an influ-

ence on the charge transfer capabilities, e.g. finite diffusion

rate of lithium ions in the electrolyte, reduction/oxidation

of materials other than the active material, and formation of

resistive films on the active particle surface. These limitations

allow only a finite current to be passed through a battery.

The faster the charge transfer is forced to happen, the

stronger these processes affect the health of the battery. Cell

manufacturers thus always provide additional information

about utilization constraints on their cells. These constraints

involve limits on the maximum charge/discharge current,

limits of lower and upper cut-off voltages, and the operating

temperature domain. All these limits are geared towards the

CC/CV charging method, and hence are rather conservative,

since they are specified for the complete lifetime of the

battery. In this paper, we alleviate this problem by presenting

an optimal charging strategy based on nonlinear model

predictive control (NMPC) techniques to charge the battery

in the fastest possible manner, while guaranteeing safety

throughout the battery’s life.

The rest of the paper is structured as follows. In section II

we describe in detail the time-optimal charging problem for

Li-ion batteries. The developed optimal control problem is

studied in simulations and the main features of the solution

are characterized. Based on the observations from section

II, in section III we present a NMPC scheme for fast battery

charging. The proposed NMPC, while being computationally

tractable, is able to recover the time-optimal solution. In

section IV we describe the standard charging method CC/CV

and compare the results with the time-optimal solution.

Finally, section V concludes the presented work and points

out future work necessary to improve the current status of

battery management systems.

II. OPTIMAL CHARGING STRATEGY

In the following we describe in detail the formulation of

the fast battery charging process as a time optimal control

problem. First, however, we briefly present the electrochem-

ical model of the battery used in this work.

A. Cell model

The state variables of the macro-homogeneous 1-D elec-

trochemical model of a lithium ion battery are the lithium

concentration ce(x, t) in the electrolyte, the lithium concen-

tration cs(x, r, t) in the positive and negative electrodes, the

potential Φe(x, t) in the electrolyte, the potential Φs(x, t) in

the positive and negative electrodes, the ionic current ie(x, t)
in the electrolyte, and the molar ionic flux jn(x, t) between
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the active material in the electrodes and the electrolyte. The

governing equations are given by (see also [1], [7], [8])

ǫe
∂ce(x,t)

∂t = ∂
∂x

(

ǫeDe
∂ce(x,t)

∂x +
1−t0c
F ie(x, t)

)

, (1)

∂cs(x,r,t)
∂t = 1

r2
∂
∂r

(

Dsr
2 ∂cs(x,r,t)

∂r

)

, (2)

∂Φe(x,t)
∂x = − ie(x,t)

κ +

2RT
F

(

1− t0c
)

(

1 +
d ln fc/a(x,t)

d ln ce(x,t)

)

∂ ln ce(x,t)
∂x , (3)

∂Φs(x,t)
∂x = ie(x,t)−I(t)

σ , (4)

∂ie(x,t)
∂x = 3ǫs

Rp
Fjn(x, t), (5)

jn(x, t) =
i0(x,t)

F

(

e
αaF
RT η(x,t) − e

−αcF
RT η(x,t)

)

. (6)

In Eq. (6), the exchange current density i0(x, t) and the

overpotential η(x, t) for the main reaction are modeled as

i0(x, t) = reffce(x, t)
αa(cmax

s − css(x, t))
αacs(x, t)

αc , (7)

η(x, t)=Φs(x, t)−Φe(x, t)−U(css(x, t))−FRf jn(x, t), (8)

where css(x, t) ≡ cs(x,Rp, t), U(css(x, t)) is the open-

circuit potential of the active material and cmax
s is the maxi-

mum concentration in the active material of each electrode.

The internal temperature is described by [7]

ρavgcp
dT (t)
dt = hcell (Tamb(t)− T (t)) + I(t)V (t)−

∫ 0+

0−

3ǫs
Rp

Fjn(x, t)
(

U(c̄s(x, t))− T (t)∂U(c̄s(x,t))
∂T

)

dx, (9)

where Tamb(t) is the ambient temperature and c̄(x, t) repre-

sents the volume averaged concentration of a particle in the

solid phase defined as

c̄s(x, t) =
3

R3
p

∫ Rp

0

r2cs(x, r, t)dr. (10)

Utilizing the notation of [1], the initial conditions of the

battery model are given by

ce(x, 0) = c0e(x), cs(x, r, 0) = c0s(x, r), T (0) = T 0, (11)

and the boundary conditions are given by

∂ce(0
−,t)

∂x = ∂ce(0
+,t)

∂x = 0 (12)

ce(L
−, t) = ce(0

sep, t), ce(L
sep, t) = ce(L

+, t), (13)

ε−e De
∂ce(L

−,t)
∂x = εsepe De

∂ce(0
sep,t)

∂x , (14)

εsepe De
∂ce(L

sep,t)
∂x = −ε+e De

∂ce(L
+,t)

∂x , (15)

∂cs(x,0,t)
∂r = 0,

∂cs(x,Rp,t)
∂r = − jn(x,t)

Ds
, (16)

Φe(L
−, t) = Φe(0

sep, t),Φe(L
sep, t) = Φe(L

+, t), (17)

Φe(0
+, t) = 0, (18)

ie(0
−, t) = ie(0

+, t) = 0, ie(x
sep, t) = −I(t), (19)

ie(L
−, t) = −ie(L

+, t) = −I(t), (20)

where xsep ∈ {0sep, Lsep} represents the entire separator

domain of the battery. In general, it is difficult to provide

consistent initial conditions for the battery model, hence we

always initialize the model at some equilibrium state where

consistent initial conditions are easily obtained [9].

In the above equations, ǫe, ǫs, σ, R, Rp, F , αa, αc, ρavg ,

cp, hcell and t0c are model parameters and are constant in

each region of the cell, while κ, fc/a and De are known

functions of the electrolyte concentration. Additionally, reff ,

Rf , Ds, κ, fc/a and De have an Arrhenius-like temperature

dependency of the form

Θ(T ) = ΘT0
e
Aθ

T (t)−T0

T (t)T0 , (21)

where T0 is some standard temperature and Aθ is a constant.

The voltage is given by the potential difference in the solid

phase at the boundaries of the electrodes

V (t) = Φs(0
+, t)− Φs(0

−, t). (22)

The model parameters are chosen such that the battery

mimics the behavior of a mixed high energy/ high power

cell. The main feature of energy cells are thicker electrodes

of approximately 200µm, compared to 50µm in power cells.

Based on the model parameters, the designed cell has a

nominal capacity of 3.5Ah.

B. Problem formulation

Loosely speaking, the control problem considered in this

work can be described as calculating the appropriate current

I(t) to be applied to a cell, which transfers a given amount

of charge Q from one electrode to the other in the shortest

time possible, while not excessively aging the cell. In the

following we will clarify this statement and bring it into a

mathematical framework.

The appropriate current is considered to be constrained as

0 ≤ I(t) ≤ Imax (23)

for two reasons. First, any charging unit is physically limited

to supply a finite amount of current. Secondly, in general a

charging unit cannot handle negative currents. Furthermore,

the charging current is also constrained by the given amount

of charge Q as

Q =

∫ tf

0

I(t)dt, (24)

where tf is the final time at which the charging process stops.

Note that, since a battery has a finite capacity, Q has to be

chosen such that a solution exists at all. In order to ensure

this, we calculate the needed charge such that the cell is

charged from the initial equilibrium voltage V0 to a final

equilibrium voltage Vf , where V0 ≤ Vf , in terms of the bulk

state of charge (SOC) of the negative electrode [9] as

Q = Q−(SOC−
Vf

− SOC−
V0
), (25)

where Q− is the theoretical capacity of the negative elec-

trode, while SOC−
V0

and SOC−
Vf

denote the SOC− at

equilibrium voltages V0 and Vf , respectively. SOC− is given

by

SOC−(t) =

∫ L−

0

c̄−s (x,t)

cmax,−
s L−

dx = SOC−(0)+

∫ t

0

I(τ)
Q−

dτ. (26)
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From (25) and (26) we see that (24) is equivalent to

SOC−(tf ) = SOC−
Vf
. (27)

Hence, the input current constraint (24) can be reformulated

as a final state constraint (27) on SOC−(tf ).
Since aging of Li-ion batteries is still an active research

topic, the term excessively aging is more difficult to address.

In order to reduce aging of the cell, we introduce constraints

on some internal states of the battery that have to be satisfied

during the charging process. First, it is widely acknowledged

that cells age faster at elevated temperatures, thus we impose

a constraint on the maximum temperature by

T (t) ≤ Tmax. (28)

Second, we want to avoid regimes where unwanted side

reactions become important. These regimes are in general

described in terms of overpotential inequalities on ηsr.

Cathodic side reactions occur whenever ηsr < 0, while

anodic side reactions occur whenever ηsr > 0. For a more

detailed explanation of overpotentials see [1]. Especially

during charging, we want to minimize the lithium deposition

side reaction [1], [10], which is a cathodic side reaction and

occurs in the negative electrode. Thus, we impose in the

negative electrode the constraint

ηsr(x, t) = Φs(x, t)− Φe(x, t)− Usr(x, t) > 0, (29)

where Usr(x, t) = 0 in this case. Note that this constraint is

conservative, since the contribution from an additional term

involving the ionic flux of the side reaction is neglected due

to unknown reaction kinetics. Similar constraints may be

utilized to minimize other undesired side reactions, provided

Usr(x, t) of those reactions are known.

Finally, mechanical stress induced from concentration gra-

dients can cause particle fracture [11], [12]. If the battery

model includes the governing equations for calculating the

stress distribution in the electrodes, one should consider

appropriate constraints on the stress distribution. Note that

since the relationship between the concentration gradient in

the solid phase and the stress required to fracture a particle

is still being actively researched [11], [12], constraints on

the concentration gradients are not considered in this work.

We are now in the position to formulate the minimum

time charging problem in the optimal control framework as

Problem 1: Find the optimal charging current

Iopt(t) = argmin
I(t)

∫ tf

0

1dt (30)

subject to: model equations (1) − (9), (11) − (20)

input constraints (23), (24)

state constraints (28), (29)

The solution of Problem 1 is difficult to obtain in the gen-

eral case for several reasons. The underlying battery model

consists of a set of coupled nonlinear partial differential

algebraic equations. Furthermore, state and input constraints

makes the problem very difficult to analyze. Note that (24)

is an integral equality constraint involving both the current

profile and the final time.

When considering Problem 1 without (28) and (29) and

with a suitable upper bound on the current in (23), it can be

shown that the solution is given by

Iopt(t) = Imax, t ∈ [0, Q
Imax

3600]. (31)

If, in addition to (28) and (29), the constraint (23) is also

removed, the solution to Problem 1 is actually more difficult

to obtain. Assuming the battery model admits a solution

for all current profiles, then the solution to Problem 1 is

impulsive, since the charge Q is transferred instantaneously.

However, the difficulties arise since the model equations do

not admit a solution for all current profiles, i.e. the electrolyte

concentration can be driven to 0, or the surface concentration

in the solid phase can become either 0 or cmax before all

the charge Q can be transferred.

C. Simulation results

The model equations are implemented in Matlab R© and

Problem 1 is solved numerically. Considering the complexity

of the problem, we decided that a direct solution approach

is more appropriate than indirect methods. In our approach

we reformulate the optimal control problem as a nonlinear

programming problem by parameterizing the control input by

a sequence of constant current inputs Ii, i = {1, 2, · · · , n}
with a fixed time interval δt for each current. We use the

fmincon function to obtain the optimal Ii values which

describe the optimal charging profile. Note that, since the

total charging time is to be minimized, we initialize the

optimizer with a sequence of n current values such that

∫ t

0

Ii(τ)dτ =

n
∑

i=1

Iiδt ≥ Q. (32)

We evaluate the model equations and the constraints only

until tf , where tf is calculated such that (24) is satisfied. The

main benefit of this approach is that the problem to be solved

becomes much easier for the optimizer, since the equality

constraint (24) is now implicitly taken care of. However, in

this approach the unused tail of the sequence Ii becomes

larger during the optimization, and a significant amount of

time might be spent computing the jacobians w.r.t these

unused optimization parameters.

In the following simulations we used V0 = 3V as the initial

equilibrium voltage and Vf = 4.1V as the final equilibrium

voltage to which the battery needs to be charged. The

temperature is constrained to be lower than Tmax = 40◦C and

the current limit is set to Imax = 15A. The time discretization

is set to δt = 30s. Also, we define the minimum local side

reaction overpotential in the negative electrode as

ηmin
sr (t) = inf

x
(ηsr(x, t)). (33)

Figure 1 presents simulation results for charging the battery

at different ambient temperatures. The minimum charging

time at Tamb = 25◦C and Tamb = 10◦C is calculated as 14

minutes and 20 minutes, respectively. The optimal charging
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Fig. 1. Simulation results with the optimal current profile obtained by solving Problem 1 with Tamb = 25◦C (left) and Tamb = 10◦C (right). Note
that the time-optimal charging profile for both ambient temperatures consists of several arcs described by active inequality constraints. After the charging
process, we set I(t) = 0 and let the battery relax to the final equilibrium state.

profile obtained at Tamb = 25◦C consists of two arcs, both

determined by inequality constraints of Problem 1. During

the first 5 minutes of the charging process the current is

limited by (23). The rest of the charging profile is determined

such that the constraint (28) is not violated, i.e. the battery

is kept at a constant temperature. Note that, in this case, the

optimal current profile is discontinuous at the intersection of

the constraints (23) and (28). Furthermore, at Tamb = 25◦C

the kinetics of the battery are fast enough such that constraint

(29) is not active during the whole charging process.

As depicted in Fig. 1, the optimal charging profile at

Tamb = 10◦C consists of three arcs. The first and the third

arc are determined by (29). During charging, the increased

temperature leads to faster kinetics and a lower impedance

of the battery. The lower impedance allows higher currents

to be passed and, for a very brief period, constraint (23)

becomes active.

In both charging scenarios the optimal current profile

satisfies (24), as can be seen in the SOC subplot in Fig. 1.

Note that the transient voltage in both charging scenarios is

for a prolonged time higher than Vf . However, after charging

is stopped, the voltage relaxes to the desired equilibrium Vf .

The numerical solution of Problem 1, although it reveals

some interesting features, is impractical for online implemen-

tation, since the computational time for obtaining the optimal

charging profile on a 1.8GHz PC is several hours. Further-

more, disturbances will degrade the performance of the open-

loop solution, possibly causing constraint violations. In the

next section we introduce a feedback algorithm that approx-

imates the open-loop solution while being computationally

feasible for real-time control.

III. CLOSED-LOOP CHARGING STRATEGY

Based on the numerical solutions of Problem 1 presented

in the previous section, we now propose an algorithm to

approximate the solution of the optimal control problem.

The time-optimal solution is given such that, at all time, the

maximum current, which does not violate any constraints,

is applied to the battery. Based on this observation, we

propose a simple one-step predictive controller. The optimal

current profile is approximated in time by a piece-wise

constant profile for each time interval δt. At each time instant

we calculate from model predictions the maximum current,

which does not violate the constraints (23), (29), and (28).

Then we apply this current to the battery and move forward

in time. Since the time interval δt might be smaller than the

total time needed to transfer the charge, we need to abandon

the equality constraint (24). Instead of (24), we reformulate

this constraint in terms of the desired final SOC as

SOC−(t) ≤ SOC−
Vf
, ∀ t. (34)

The algorithm described above fits perfectly in the NMPC

scheme [13], where we set the prediction horizon to δt. Since

we want to maximize the current applied to the cell, in the

proposed NMPC scheme the following open-loop optimal

control problem is solved at each time step

Problem 2 : min
I(t)

∫ t+δt

t

−I(τ)dτ (35)

subject to: model equations (1) − (9), (11) − (20)

input constraints (23)

state constraints (28), (29), (34).

Note that feedback is introduced in the NMPC scheme by

the new initial conditions (11) at each time step. Since we

approximate the current by a single constant, Problem 2 is

much easier to solve, and in general we obtain a solution in

less than 1 second. It is worth mentioning that in this work

we assume all states as measurable. The output feedback

NMPC problem using a modified version of the observer

presented in [9] for providing the NMPC with the full state

information is under investigation by the authors.
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Fig. 2. Simulation results applying the NMPC scheme with Tamb = 25◦C (left) and Tamb = 10◦C (right). Note that the current profile only differs for
the last step in the NMPC scheme from the time-optimal solution obtained by solving Problem 1 (see Fig. (1)). Beginning from the last non-zero current
value, the remaining current profile is due to the SOC constraint (34).

Figure 2 presents simulation results with the NMPC

scheme for charging the battery at 25◦C and 10◦C ambient

temperature. For comparison with the open-loop solution,

we set the prediction horizon to δt = 30s. As can be seen in

Fig. 2, the charging profile obtained by the NMPC is almost

identical with the open-loop solution of Problem 1 in Fig.

1. The obtained charging profiles differ only at the end of

the charging process, where the charging current amplitude

in the NMPC scheme is determined such that the final SOC

constraint (34) is not violated. Note that, when charging with

the proposed NMPC scheme, a zero current is generated once

the final SOC is reached, since any positive charging current

would violate the constraint (34).

IV. STANDARD CHARGING METHOD

The most widely used method for charging Li-ion batteries

is the constant current - constant voltage (CC/CV) method

[2]. As the name of the method already reveals, in this

algorithm the battery is charged in CC mode with a constant

current until an upper, predefined voltage limit Vcut. At this

point, the controller is switched to CV mode with the upper

voltage limit as setpoint. The charging process is terminated

either after a predefined time in CV mode, or when the

charging current in CV mode drops to values smaller than a

predefined value Icut. Note that while charging in CV mode

I(t) → 0 for t → ∞. Hence, the smaller Icut is chosen, the

longer the charging time will be.

In order to compare the CC/CV method with the minimum

time charging method we set Vcut = Vf . Also, we choose

Icut to be 0.35A which corresponds to a C/10 current;

see [1] for details on C-rate. Although the typical current

amplitude in CC mode is C/3, some manufacturers allow

their batteries to be charged at rates as high as 1C, which

for our design corresponds to 3.5A. The current in CC mode

is a compromise between faster charging and minimizing

aging. Since we have full information on internal states of

our battery, we can choose an aggressive charging current in

CC mode, which does not violate the proposed constraints.

For illustration purposes we also present simulation results

with slightly higher charging currents in CC mode. While

a higher CC current indeed reduces the total charging time,

we show that the constraints are violated in such situations.

Figure 3 presents simulation results with the CC/CV

method for different scenarios. The total charging time at

Tamb = 25◦C with CC currents of 13A and 15A is 29 minutes

and 27 minutes, respectively. Note that, while charging with

15A is only 2 minutes faster, the temperature constraint is

violated for more than 6 minutes during the charging process.

At such aggressive charging currents, the battery reaches the

upper cut-off voltage Vcut relatively fast, and the controller

is for most of the time in CV mode. Also, since the charging

process is stopped when the current in CV mode becomes

smaller than Icut, the charging of the battery is incomplete,

i.e. the relaxed voltage of the cell is smaller than Vf since

the final SOC is not reached. In Fig. 3 we also present results

of the CC/CV method at Tamb = 10◦C. The charging time at

10◦C with CC currents of 6A and 9A is 50 minutes and 43

minutes respectively. Notice that, for the 9A CC current, the

side reaction constraint (29) is violated for almost 3 minutes,

which damages the battery and is potentially unsafe.

Compared with the time optimal solution of 14 minutes at

Tamb = 25◦C and 20 minutes at Tamb = 10◦C presented in

the previous sections, the CC/CV method needs more than

double the time to charge the battery even if very aggressive

charging currents in CC mode are utilized. Note that, since

the CC currents are fixed, these currents will eventually

violate the constraints after the cell starts to deteriorate [1].

It is worth mentioning, that there are many different flavors

of the CC/CV method, where, for example, Vcut > Vf and

Icut is larger. As can be seen in Fig. 3, the CC mode at Tamb

= 10◦C with a 6A CC current is already longer than the

complete charging process using the time-optimal charging

profile. A more aggressive Vcut cannot decrease the total
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Fig. 3. Simulation results using the CC/CV method with Tamb = 25◦C (left) and Tamb = 10◦C (right). At Tamb = 25◦C a CC current of 13A charges
the battery in 29 minutes, while a larger CC current of 15A charges the battery in 27 minutes but violates the temperature constraint (28). At Tamb = 10◦C
a CC current of 6A charges the battery in 50 minutes, while a larger CC current of 9A charges the battery in 40 minutes but violates the side reaction
constraint (29). Note that, since Icut > 0, the charging is incomplete, as can be seen by a relaxed voltage value less than Vcut.

charging time significantly, since a smaller CC current needs

to be chosen, such that (29) is not violated.

Regardless of all drawbacks, the CC/CV method is nev-

ertheless the standard charging method because of its sim-

plicity. The main advantage is that no model information

is needed to charge the battery. Furthermore, the CC control

and the CV control can be realized with very simple circuits,

keeping the costs of the charger to a minimum.

V. CONCLUSIONS

In this work we presented in detail the optimal control

problem for charging a battery in minimum time. Given

the complexity of the electrochemical model of the battery,

we focused on the numerical investigation of the optimal

control problem. We have shown that the optimal charging

profile is described by several arcs, where different inequality

constraints describing the problem are active. Based on

these observations, we propose a one-step model predictive

controller which is able to recover the open-loop minimum

time solution. The proposed state-feedback NMPC scheme

is computationally less prohibitive and feasible for real-time

control. The time-optimal charging profiles are compared

with the standard CC/CV method for charging Li-ion bat-

teries. While the CC/CV method is very simple to realize

in hardware, this method is far from being optimal. Further-

more, considering aging of the battery, the CC currents are

in general chosen very conservative, such that safety can be

guaranteed during the life-time of the battery.

As part of our research work, we are currently investi-

gating the output-feedback NMPC scheme for the optimal

utilization of batteries. Since the performance of the NMPC

scheme strongly depends on the quality of the underlying

model, a separate parameter estimation is needed to account

for parameter changes due to aging of the battery. Along with

state and parameter estimation schemes, work is centered

around the experimental validation and the robustness of the

algorithms utilized in advanced battery management systems.
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