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ABSTRACT

Structured light system calibration has been widely studied over the decades, and a variety of calibration approaches have

been proposed. Among these methods, the flexible method using flat checkerboard is widely adopted. However, there is

a lack of studies on selecting the optimal checker size for high accuracy calibration, whilst it is vital to understanding this

factor. This paper presents a systematic study on how the checker size affects the calibration accuracy for a structured

light system, and provides a general guideline to select the optimal size. For this initial study, 7 different checker sizes are

selected, and experiments demonstrated that the system achieved the best calibration accuracy within a certain range of

checker size.
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1. INTRODUCTION

For any three-dimensional (3D) shape measurement system, its calibration accuracy is one of the key determinant factors

for final measurement accuracy. Thus, improving the calibration accuracy of a structured light system is vital for high

accuracy measurement.

Structured light system calibration has been widely studied over the decades,1–9 and a variety of calibration approaches

have been proposed. Among these methods, the flexible method, proposed by Zhang,10 that uses a flat checkerboard

is widely utilized to calibrate a camera. For Zhang’s method, the intrinsic and extrinsic parameters of the camera are

estimated from the checkerboard images at difference poses. Because the optics of a projection system, especially those

with a digital micromirror device (DMD), is similar to that of a camera system in that both systems contain a lens and an

imaging sensor. In fact, the projector can be treated as an inverse of a camera (i.e., instead of capturing images, it projects

images), the calibration of a projection system should be theoretically the same as that of a camera. However, the difficulty

remains because the projector is not as flexible as a camera since it cannot capture images. Zhang and Huang made it

possible by allowing the projector “capture” images like a camera.11 In this method, by using a phase-shifting technique,

the one-to-one mapping between the projector pixel and the camera pixel is established, therefore, the camera image can

be mapped onto the projector image. By this means, it seems the projector can “capture” images like a camera. Thus, the

calibration of a structured light system becomes a well-studied calibration of a stereo system. Because the projector and

camera calibration are independent (to some extent), the calibration accuracy is significantly improved, and the calibration

speed is drastically increased. Following this work, a number of calibration techniques have been proposed,12–15 but they

are essentially the same in that all of these techniques are to establish the correspondences between the projector and the

camera point by point. Once the system is calibrated, the xyz coordinates can be computed from the “absolute” phase.

Even though the flat checkerboard has been widely implemented for structured light system calibration, there is a lack

of studies on selecting the optimal checker size for high accuracy calibration, whilst it is vital to understanding this factor.

In this research, we will systematically study how the checker size affects the measurement accuracy, and provide a general

guideline to select the optimal size for high accuracy system calibration.

In particular, we will use the approach proposed by Zhang and Huang11 to generate the projector images and follow

its similar calibration procedures. The key to this method is to accurately map the images acquired by the camera to those

of the projector. In other words, the projector images are generated by establishing the one-to-one mapping between these

two sensors. The mapping is established through absolute phase while the absolute phase is obtained by projecting an

additional “centerline” images and detecting the center of lines. Our experiments found that the precision of detecting

the centerlines will affect the accuracy of the projector image generation, that can be verified by projecting the projector

images onto the physical object and find the differences. To alleviate this problem, Li et al. used an optimal wavelength
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selection approach.13 For this approach, because only three wavelengths are used, the fringe noises play a significant role

for accurate projector image generation because the longest-wavelength fringe images must be used.

To further alleviate the problem induced the centerline detection used in Zhang and Huang’s method and the method

adopted by Li et al.,13 we use a digital multiple-wavelength phase-shifting method for our study.16 The advantage of this

digital multiple-wavelength algorithm is that the noise level is comparable to that of a single-wavelength phase-shifting

technique while the absolute phase is obtained pointwise with sub pixel accuracy. Therefore, it significantly reduced the

mapping error caused by the centerline detection or the noise by optimal wavelength selection approach.

As addressed previously, once the camera and the projector images are obtained, the calibration of a structured light

system essentially becomes that of a well-studied stereo system. However, because the camera and the projector are both

digital devices that sample the physical checkerboard at certain spatial resolution, the digital effect should play a big role

on calibration accuracy if a flat checkerboard calibration method is adopted. The corner detection accuracy relies heavily

on the size of the checkerboard, thereby the size of checker squares significantly affects the accuracy of the estimated

parameters. As a result, the calibration accuracy is influenced by the selection of the checker square size. Intuitively, this

is obvious, if there are too few pixels in one checker square, it is very difficult to find the corners accurately because each

pixel represents more percentage of the checker. On the other hand, if the checkers are too large, there are not sufficient

corners to use to know how the image is distorted, thus it is difficult to obtain the lens distortion error accurately. Therefore,

the checkerboard selection is essential to calibrating the structured light system accurately. Experimental results will be

presented to demonstrate the optimal range of checker size to use in order to achieve high accuracy.

Section 2 introduces the principle of the system. Section 3 shows some experimental results, and Sec. 4 summarizes

this paper.

2. PRINCIPLE

2.1 Digital multiple-wavelength phase-shifting algorithm

Phase-shifting algorithms are widely adopted in optical metrology because of their speed and non-surface-contact nature.17

Over the years, a variety of phase shifting algorithms have been proposed, including three-step, four-step, and five-step

algorithms. To avoid the problems caused by a conventional spatial phase unwrapping algorithm, multiple-wavelength

phase-shifting algorithms have been proposed.18–22 For these techniques, the minimum number of three frequencies are

required,22 where at least 9 fringe images have to be used. Multiple-wavelength methods certainly will reduce the measure-

ment speed because more fringe images are required. However, because the calibration only needs to be performed once,

the speed is not a big factor to be considered in this study. To alleviate the problems induced the centerline detection used in

Zhang and Huang’s method, and the three wavelength method adopted by Li et al,13 we use a digital multiple-wavelength

phase-shifting algorithm.16

For a three-step phase-shifting algorithm, only three images are required to compute the phase. In particular, three

fringe images of a three-step phase-shifting algorithm with a phase shift of 2π/3 can be represented as

Ik(x,y) = I′(x,y)+ I′′(x,y)cos

[

2πh(x,y)

λ
+

2kπ

3

]

, (1)

where k = 0, 1, 2, I′(x,y) is the average intensity, I′′(x,y) the intensity modulation, and h(x,y) is the spacial distance. The

phase to be solved for is

φ(x,y) =
2πh(x,y)

λ
. (2)

In general, φ(x,y), ranges from −π to +π by direct calculation of a set of fringe images.17 The real phase, Φ(x,y),
should be continuous as a function of φ(x,y). To obtain the real phase, a conventional phase unwrapping algorithm can be

adopted.23 The phase unwrapping process is essentially to find the integer number m(x,y) for point (x,y) so that

Φ(x,y) = 2πm(x,y)+φ(x,y). (3)

Φ(x,y) represents the true phase (or the unwrapped phase). If only a single fringe stripe is used, because φ(x,y) = Φ(x,y)
and m(x,y)≡ 0, no phase unwrapping is necessary. In this research, we use the wavelengths as λk = Nλk+1), k = 1,2,3, · · · .



(a) (b)

Fig. 1. Calibration image pair for the projector image and the camera image. (a) The camera image; (b) The corresponding projector

image.

Assume the projector has a resolution of W ×H and the fringe stripes are vertical. If we choose λ1 = W , there is no need

for phase unwrapping because the single fringe covers the whole area. That is,

Φ1(x,y) = φ1(x,y). (4)

Here, φ1(x,y) represents the wrapped phase, and Φ1(x,y) is the corresponding unwrapped phase.

Because λk = λk−1/N, we have Φk = NΦk−1. Combining with Eq.(3), we have

mk(x,y) = Round

[

NΦk−1(x,y)

2π
− φk(x,y)

2π

]

, (5)

and

Φk(x,y) = 2πmk(x,y)+φk(x,y). (6)

The multiple-wavelength phase shifting algorithm provides an absolute phase, so the correspondence between the phase

line on the projector and the camera can be uniquely correlated and the one-to-one mapping can be established easily. The

projector image creation based on the mapping will be addressed in the next section.

2.2 Projector image creation

Because the absolute phase is known by utilizing a multiple-wavelength phase-shifting algorithm, the one-to-one mapping

between the camera image and the projector can be established by projecting horizontal fringe stripes and vertical stripes.

For the horizontal fringe stripes, each point (p) on the camera image corresponds to one horizontal line (lh) on the projector

image; for the vertical stripes, the same point (p) on the camera image corresponds to one vertical line (lv)on the projector

image; and the intersection between line lh and lv is a unique point, which is the corresponding projector image point

for point p. If this operation is performed point by point, the projector image can be generated by taking the intensity

information of the camera image for the corresponding point. Figure 1 shows an example of the corresponding images

between the projector image and the camera image.

2.3 System parameter estimation

Because the projector becomes a camera, the model of a projector is the same as that of a camera. The camera model used

in this research is described thoroughly in Reference10 by Zhang. For this model, the camera is described as a pinhole

model, with intrinsic parameters including focal length, principle point, pixel skew factor, and pixel size; and extrinsic

parameters including rotation and translation from the world coordinate system to the camera coordinate system.11 For



(a) (b)

Fig. 2. (a) Photograph of the 3D shape measurement system; (b) Photograph the universal mounting frame to hold calibration board.

a linear model, the relationship between the world coordinate (xw,yw,zw) and the camera image coordinate (u,v) can be

written as

s{u,v,1}T = A[ R, t ]{xw,yw,zw,1}T , (7)

where s is a scale factor. [R, t], called extrinsic parameters matrix, represents the rotation and the translation between world

coordinate system and camera coordinate system. A is camera intrinsic parameters matrix and can be expressed as

A =





α γ u0

0 β v0

0 0 1



 ,

here (u0,v0) is the coordinate of principle point, α and β are focal lengthes along u and v axes of the image plane, and γ is

the parameter that describes the skewness of two image axes. Eq. (7) represents the linear model of the camera. For this

research, we found that the linear model is not sufficient, thus nonlinear compensation is therefore implemented. In this

research, we use the method described in Reference,12 and only consider the nonlinear effect till 4th order radial distortion,

and 2nd tangential distortion.10 Our experiments showed that, this consideration is sufficient to achieve high accuracy

measurement, which will be explained in Sec. 3.

3. EXPERIMENTS

3.1 Calibration system design

The structured light system include the Dell LED projector (M109S), The Imaging Source digital USB CCD camera (DMK

21BU04), and Computar M0814-MP (F1.4) Lens. The projector has a resolution of 858 × 600, with 10,000 hours usage

life time. The brightness of the projector is 50 ANSI Lumens. The projection lens is F/2.0, f = 16.67 mm fixes lens. The

projection distance is 23.6-94.5 inches. The DMD used in this projector is 0.45-inch Type Y chip. The camera resolution

is 640 ×480, with a maximum frame rate of 60 frames/sec. The camera output 8 bit image at full resolution, the pixel size

is 5.6 × 5.6 µm2. Figure 2(a) shows the photograph of the system.

The calibration checkerboard is held by a universal mounting frame, that has six degree of freedom (DOF). As shown in

Figure 2(b). This universal mounting frame allows us to position the checkerboard easily and accurately. The checkerboard

picture is glued on a flat glass surface in a picture frame. The 6-DOF mounting frame has a sliding holder that can hold the

picture frames.

3.2 Experimental procedures

For this research, we used a total of seven different checker sizes, with the dimension 6.23, 10.02, 15.99, 20.03, 23.94,

30.94, 34.98 mm squares. For each checker square size, 30 different poses are imaged. Once all these images are acquired,

the intrinsic parameters of the camera and the projectors are estimated using the Matlab calibration ToolBox and set the



fifth distortion parameters as 0.24 The extrinsic parameters are estimated based on the same pose image for different

checkerboards. A typical calibration results is

Ac =





1473.14109 0 318.58100

0 1478.75600 296.50674

0 0 1



 , (8)

Rc =





0.040603 0.998324 −0.041242

0.997559 −0.038156 0.058487

0.056815 −0.043516 −0.997436



 , (9)

tc = {−122.170542,−134.481918,838.150649}T , (10)

Dc = [−0.09386,0.00000,0.00108,−0.00315,0.00000]. (11)

for the camera, here Dc is the distortion vector that is defined in .24 Similarly, we can obtain projector calibration parameters

Ap =





1539.65117 0 396.04641

0 1661.69004 562.93291

0 0 1



 , (12)

Rp =





0.039962 0.998776 −0.029135

0.998749 −0.040804 −0.028901

−0.030054 −0.027944 −0.999158



 , (13)

t p = {−140.570514,−176.480294,856.234265}T , (14)

Dp = [0.15233,−0.59555,−0.00275,−0.00609,0.00000]. (15)

3.3 Error evaluations

With all these calibration parameters estimated from different checker size, a flat surface is then measured to compare the

measure quality. The measured surface is fitted to an ideal flat plane function ax+by+cz = 1. Once the plane is fitted, the

measurement error can be estimated as follows:

Assume there are N number of measurement points, which can be fitted to a plane function

ax+by+ cz = 1.

For all these given points, we have

AX = b0

where A is a M×3 matrix whose entries are,

Ai0 = xi;

Ai1 = yi;

Ai2 = zi;

X = {a,b,c}T , b0 is a M×1 vector, whose entries are all 1. The least square solution is,

X = (AT A)−1AT b0.

After we obtained the ideal plane, we can get the error map, which is for any given measured point p(x,y,z), which is

d = |n · (p−p0)|

where p the measurement point, p0 is an arbitrary point on the ideal plane, and n = (a,b,c)/
√

a2 +b2 + c2 is the normalized

normal of the ideal plane (As illustrated in Figure 3).

Table 1 summarizes the errors for these checker sizes, and Fig. 4 shows the correlation between the calibration error and

the checker square size. It is obvious that if the checker size is too small, the calibration cannot be performed accurately.
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Fig. 3. Distance from a point to a plane

Table 1. System parameters estimated from different checker boards

Checker Size (mm) 6.23 10.02 15.99 20.03 23.94 30.94 34.98

Camera pixels per checker square 10.79 17.36 25.98 34.71 41.48 52.00 60.61

Projector pixel per checker square 11.83 19.03 28.47 38.04 45.47 57.00 66.43

RMS error (mm) 7.92 1.35 1.19 1.19 1.19 1.35 1.57

This is because the number of pixels per checker square is very too few, the corner detection error will be dominant. For

example, when the checker size reduces to 6.23 mm, with only about 11 pixels for the camera image and 12 pixels for the

projector image, the RMS error is 7.92 mm. From this experiment we can draw the conclusion that in order to do good

calibration, there must be enough camera pixels to represent one checker squares.

When the checker size increases, the calibration error decreases. This is understandable, because the corner detection

error relatively decreases. However, when the checker size increases beyond certain value, the calibration error increases

again. This is mostly caused by the number of points for parameter estimation becoming less and less. The lens distortions

are more and more difficult to be accurately estimated because of the lack of points are used.

The most accurate calibration happens if the checker square size is around 25 mm, when the number of pixels per

checker square is around 35 for camera and 38 for the projector. This experiment demonstrated that indeed there is an

optimal size of checker board to use for a structured system calibration. For our system, the size is around 25 mm.

4. CONCLUSIONS AND FUTURE WORKS

This paper has presented a study on how to choose the optimal checker size for accurate structured light system calibration.

In this study, we will use the approach proposed by Zhang and Huang to generate the projector image and to calibrate

the structured light system. For this method, with the assistance of the camera, the projector can “capture” images like a

camera point by point by adopting a digital multiple-wavelength phase-shifting method. Due to the digital effect of the

camera and the projector, the corner detection accuracy of the software algorithm, the size of checker squares significantly

affects the accuracy of the estimated parameters.We have systematically studied how the checker size affects the measure-

ment accuracy, and have provided a general guideline to select the optimum size for high accuracy system calibration.

Experiments have verified the existence of the optimal checker square size. In the future, we will perform more studies to

narrow down the checker square size difference and to find the systematic correlation between the calibration error and the

checker size.
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[1] Legarda-Sáenz, R., Bothe, T., and Jüptner, W. P., “Accurate procedure for the calibration of a structured light system,”

Opt. Eng. 43(2), pp. 464–471, 2004.

[2] Cuevas, F. J., Servin, M., and Rodriguez-Vera, R., “Depth object recovery using radial basis functions,” Opt. Com-

mun. 163(4), pp. 270–277, 1999.



5 10 15 20 25 30 35
0

2

4

6

8

Checker Size

R
M

S
 e

rr
o

r 
(m

m
)

(a)

5 10 15 20 25 30 35

0.8

1

1.2

1.4

1.6

Checker Size

R
M

S
 e

rr
o

r 
(m

m
)

(b)

Fig. 4. RMS Error over the checker size. (a) All 7 checker sizes; (b) 2-6 checker sizes.

[3] Cuevas, F. J., Servin, M., Stavroudis, O. N., and Rodriguez-Vera, R., “Multi-layer neural networks applied to phase

and depth recovery from fringe patterns,” Opt. Commun. 181(4), pp. 239–259, 2000.

[4] Hu, Q., Huang, P. S., Fu, Q., , and Chiang, F. P., “Calibration of a 3-d shape measurement system,” Opt. Eng. 42(2),

pp. 487–493, 2003.

[5] Fraser, C. S., “Photogrammetric camera component calibration: A review of analytical techniques,” in Calibration and

Orientation of Camera in Computer Vision, Gruen, A. and Huang, T. S., eds., pp. 95–136, Springer-Verlag, (Berlin

Heidelberg), 2001.

[6] Gruen, A. and Beyer, H. A., “System calibration through self-calibration,” in Calibration and Orientation of Camera

in Computer Vision, Gruen, A. and Huang, T. S., eds., pp. 163–194, Springer-Verlag, (Berlin Heidelberg), 2001.
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