
Optimal Checkpointing for Time-Stepping
Procedures in ADOL-C�

Andreas Kowarz and Andrea Walther

Institute of Scientific Computing, Technische Universität Dresden,
01062 Dresden, Germany

{Andreas.Kowarz, Andrea.Walther}@tu-dresden.de

Abstract. Using the basic reverse mode of automatic differentiation,
the memory needed for the computation of discrete adjoints is propor-
tional to the number of operations performed. This behavior is frequently
not acceptable, especially for large-scale problems that involve a kind of
time-stepping procedure. Therefore, we integrate a checkpointing mecha-
nism into ADOL-C, a tool for the automatic differentiation of C and C++
programs. This checkpointing procedure is optimal for a given number
of checkpoints in the sense that it yields the minimal number of recom-
putations. The resulting effects on the run-time behavior are illustrated
by means of the derivative computation for an ODE-based optimization
problem.

1 Introduction

The reverse mode of automatic differentiation (AD) provides an efficient method
to compute discrete adjoint information. For example, the operation count for
computing the gradient of a scalar-valued function is only a small multiple of
the operation count needed to evaluate the function [3]. However, the memory
needed by the reverse mode in its basic form is proportional to the operation
count of the function evaluation. For real-world problems this fact may lead to
an unacceptable memory requirement. For that reason, several checkpointing
approaches have been developed.

If the considered function evaluation has no specific structure, one may allow
the user of an AD-tool to place checkpoints somewhere during the function
evaluation to reduce the overall memory requirement. This simple approach is
provided for example by the AD-tool TAF [1]. As alternative, one may exploit the
call graph structure of the function evaluation to place checkpoints at the entries
of specific subroutines. This so-called joint reversal, see, e.g., [3], then leads to a
reduction of the memory requirement. The subroutine-oriented checkpointing is
used for example by the AD-tools Tapenade [8] and OpenAD [11]. As soon as one
can exploit additional information about the structure of the function evaluation,
an appropriate adapted checkpointing strategy can be used. This is in particular
the case if a time-stepping procedure is contained in the function evaluation
allowing the usage of a time-stepping oriented checkpointing. If the number of
� Partially supported by the DFG grant WA 1607/2-1.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 541–549, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

542 A. Kowarz and A. Walther

time steps l is known a priori and the computational costs of the time steps
are almost constant, one very popular checkpointing strategy is to distribute
the checkpoints equidistantly over the time interval. However, it was shown in
[12] that this approach is not optimal. A more advanced but still not optimal
approach is the binary checkpointing used for example in [10]. However, optimal
checkpointing schedules can be computed in advance to achieve an optimal, i.e.
minimal, run time increase for a given number of checkpoints [2, 5]. In this paper,
we present the usage of the optimal, also called binomial, checkpointing within
the AD-tool ADOL-C [4] to obtain a drastic decrease in the memory requirement
by taping only one instead of l time steps. For the considered numerical example
the memory reduction leads even to an overall run-time reduction due to the
reduced access cost for the required memory. Hence, we face for the first time
the situation where checkpointing leads to a decrease in run-time despite the fact
that a considerable amount of intermediate information has to be recomputed.

The structure of this paper is the following: In Sect. 2, we present the adapted
implementation of ADOL-C to employ the time-stepping oriented checkpoint-
ing. This includes a description of the modified internal function representation
based on nested taping. Subsequently, the derivative computation exploiting
binomial checkpointing is illustrated. This section ends with a short introduc-
tion to the usage of the new checkpointing facility. Section 3 discusses possible
run-time effects using as example the derivative computation for an ODE-based
optimization problem. Finally, a conclusion and an outlook are given in Sect. 4.

2 Optimal Checkpointing in ADOL-C

The AD-tool ADOL-C uses operator overloading for the automatic differentia-
tion of function evaluations y = F (x) written in C or C++. For this purpose,
the new class adouble is introduced by ADOL-C. The user has to declare the
independent variables x and all quantities that directly or indirectly depend on
them of type adouble. Other variables that do not depend on the independent
variables but enter, for example, as parameters, may remain one of the passive
types double, float, or int. During the function evaluation with adouble variables,
ADOL-C stores for each operation the corresponding operator and the variables
that are involved into a data structure called tape. Once, the tape, i.e., the in-
ternal representation is generated, the required derivatives are calculated on the
basis of the internal function representation using the elemental differentiation
rules. Due to the described approach, the derivative calculations involve a pos-
sibly substantial but always predictable amount of data that is accessed strictly
sequentially. The size of the much smaller randomly accessed memory can be
precalculated using information on the tape.

However, this approach may lead to the storage of a significant amount of
redundant information if the function evaluation contains a time-stepping pro-
cedure. To overcome this difficulty, the next version of ADOL-C will provide a
checkpointing facility based on the binomial checkpointing procedure revolve [5].
To exploit this additional functionality, the number l of time steps in the time-
stepping part must be known before this iterative process starts. Furthermore,

Optimal Checkpointing for Time-Stepping Procedures in ADOL-C 543

the user has to provide the number c of checkpoints that can be stored in an
internal data structure of ADOL-C. As shown in [5], the applied checkpointing
strategy is optimal if the computational costs of the time steps are identical or
almost identical. Nevertheless, numerical tests presented for example in [7] show
that the checkpointing procedure provided by revolve also yields surprisingly
good results for varying computational costs of the time steps. Therefore, it is
also feasible to use the provided checkpointing possibility in these cases.

To apply the checkpointing routine revolve inside of ADOL-C, the generation
of the internal representation, i.e. the taping mechanism, as well as the derivative
evaluation have to be adapted as described in the next paragraphs.

Generating the Internal Function Representation: Nested Taping

For illustrating the modified taping mechanism, we assume that the function
evaluation y = F (x) consists of three parts: A start up calculation G, the time-
stepping procedure H , and a final calculation evaluating for example a target
function J , i.e., y = J ◦ H ◦ G(x) with

u = G(x), v = H(u), y = J(v)

and the evaluation of H(u) is given by

u1 = H̃(u), . . . , ui = H̃(ui−1), . . . , ul = H̃(ul−1), v = ul .

The corresponding consequences for the tape generation using the “basic”
taping approach as implemented in ADOL-C so far are shown in the left part
of Fig. 1. As can be seen, the iterative process is completely unrolled due to

tape generation

︸ ︷︷ ︸

u=G(x)
︸ ︷︷ ︸

v=H(u)
︸ ︷︷ ︸

y=J(v)

tape generation

Basic taping process Advanced taping process

Fig. 1. Different taping approaches

the taping process. That is, the tape contains an internal representation of each
time step. Hence, the overall tape comprises a serious amount of redundant
information as illustrated by the light gray rectangles in Fig. 1.

To overcome the repeated storage of essentially the same information, recently
we incorporated a nested taping mechanism into ADOL-C as illustrated on the
right-hand side of Fig. 1. This new capability allows the encapsulation of the
time-stepping procedure such that only the last time step ul = H̃(ul−1) is taped
as one representative of the time steps. This is illustrated by the white rectan-
gles where only the function is evaluated but no taping is performed. Only the

544 A. Kowarz and A. Walther

last time step is taped as illustrated by the light gray rectangle. Additionally, a
function pointer to the evaluation procedure H̃ is stored for a possibly necessary
retaping during the derivative calculation as explained below. Furthermore, c
checkpoints are distributed by revolve. It is important to note that the overall
tape size is drastically reduced due to the advanced taping strategy. For the
implementation of this nested taping we introduced a so-called “differentiating
context” that enables ADOL-C to handle different internal function representa-
tions during the taping procedure and the derivative calculation. This approach
allows the generation of a new tape inside the overall tape, where the coupling
of the different tapes is based on the external differentiated function concept
presented at the AD2004 conference.

Computing the Derivative Information

Applying the reverse mode of AD to the function y = F (x) consists of three
steps: First the discrete adjoint v̄ = J̄(v, ȳ) of J(v) is calculated, then the dis-
crete adjoint ū = H̄(u, v̄) of H(u), and finally the discrete adjoint x̄ = Ḡ(x, ū)
of G. The computation of v̄ and x̄ is straightforward and implemented in the
current version of ADOL-C. The situation changes completely for the compu-
tation of ū due to the usage of a checkpointing approach for the time-stepping
procedure and the resulting nested taping. For calculating the discrete adjoint ū
of the time-stepping part, the routine revolve is used to steer the reverse mode
differentiation as illustrated in Fig. 2. For this purpose, the nested taping in com-

derivative generation

optimal checkpointing based
on revolve

switching the differentiation
context

︸ ︷︷ ︸

x̄=Ḡ(x,ū)

︸ ︷︷ ︸

ū=H̄(u,v̄)

︸ ︷︷ ︸

v̄=J̄(v,ȳ)

Fig. 2. Derivative computation using a checkpointing procedure

bination with the two “differentiating contexts” for the overall function F and
the time-stepping part are exploited. This allows a switching from the derivative
calculation for F to the more involved derivative computation for the time-
stepping procedure based on a checkpointing strategy for the subfunction H . In
the ideal case, the adjoint computation for H consists only of recomputations
of intermediate states ui and derivative computations based on the internal
representation of one time step according to the reversal schedule provided by
revolve for the given number c of checkpoints. This approach yields in the case
of constant computational costs for all time steps a minimal run-time for the

Optimal Checkpointing for Time-Stepping Procedures in ADOL-C 545

checkpointing approach. If the control flow changes during the time step evalua-
tion due to a change of an adouble value, a “retaping” of the time-step function
H̃ is automatically initiated for a corresponding update of the internal represen-
tation. Further information on the validity of tapes can be found in subsection
2.6 of the ADOL-C manual. Alternatively, an additional flag set by the user to
the value 1 causes the retaping of each time step to take changes of non-adouble
values into account.

The next version of ADOL-C will provide this checkpointing capability also
for higher derivative computations and the vector mode although probably the
most common usage will be the computation of gradient information using the
scalar reverse mode of AD.

Interface of the Checkpointing Facility

Written under the objective of a lean and concise interface, the checkpointing
routines of ADOL-C need only very limited information. The user must pro-
vide two routines as implementation of the time-stepping function H̃ with the
signatures

int time step function(int n, adouble *u);
int time step function(int n, double *u);

where the function names can be chosen by the user as long as the names are
unique. Furthermore, it is assumed that the result vector of one time step iter-
ation overwrites the argument vector of the same time step. Therefore, no copy
operations are required to prepare the next time step.

At first, the adouble version of the time step function has to be registered using
the C or C++ interface, respectively.

C: CpInfos *cpInfos = reg timestep fct(ADOLC TimeStepFunction);
C++: CP Context cpc(ADOLC TimeStepFunction);

Using either cpInfos or cpc and the appropriate interface the user has to provide
the remaining checkpointing information:

– a pointer to the double version of the time step routine,
– the number of time steps l,
– the number of checkpoints c,
– the tape number to be used internally for the nested taping,
– the dimension of the argument vector u,
– a pointer to the argument vector storing the initial value of u and
– a pointer to the result vector storing the final value v of the time integration.

In addition a flag for enforcing the retaping of every timestep might be set. Then,
the nested taping and the derivative calculation using binomial checkpointing is
initiated by calling the ADOL-C function

C: info = checkpointing(cpInfos);
C++: info = cpc.checkpointing();

546 A. Kowarz and A. Walther

at the corresponding point of the function evaluation during the taping pro-
cess. Subsequently, ADOL-C computes derivative information using the optimal
checkpointing strategy provided by revolve internally, i.e., completely hidden
from the user.

3 Numerical Example

The numerical example that serves to illustrate the run-time effects of the check-
pointing procedure is an industrial robot as depicted in Figure 3 that has to

q3

q3

q2

90◦ + q2 − q3

Fig. 3. Industrial robot ABB IRB 6400

perform a fast turn-around maneu-
ver. We denote by q = (q1, q2, q3)
the angular coordinates of the
robot’s joints, q1 referring to the
angle between the base and the
two-arm system. The robot is con-
trolled via three control functions
u1 through u3, denoting the respec-
tive angular momentum applied to
the joints (from bottom to top) by
electrical motors. The control prob-
lem under consideration is to min-
imize the energy-related objective

J(q, u) =
∫ tf

0
[u1(t)2 + u2(t)2 + u3(t)2] dt

where the final time tf is given. The robot’s dynamics obeys a system of three
differential equations of second order:

M(q) q̈ = v(q, q̇) + w(q) + τfriction(q̇) + τreset(q) + u

where M(q) is a 3×3 symmetric positive definite matrix containing moments of
inertia, called a generalized mass matrix. The vector v is composed of centrifugal
and Coriolis force entries, and w contains the gravitational influence. Finally, we
allow for forces induced by dry friction and reset forces by means of τfriction
and τreset, respectively. The complete equations of motion can be found in [9].
The robot’s task to perform a turn-around maneuver is expressed by means
of initial and terminal conditions as well as control constraints [6]. However, for
illustrating the run-time effects of the checkpointing facility integrated in ADOL-
C we consider only the gradient computation of J(q, u) with respect to u.

To compute an approximation of the trajectory x, we apply for the integra-
tion the standard Runge-Kutta method of order 4 resulting in about 800 lines
of code. The integration and derivative computations were computed using an
AMD Athlon64 3200+ (512 kB L2-cache) and 1GB main memory. The resulting
averaged run-times in seconds for one gradient computation are shown in Fig. 4,
where the run-time required for the derivative computation without checkpoint-
ing, i.e., the basic approach (BA), is illustrated by a dotted line. The run-time

Optimal Checkpointing for Time-Stepping Procedures in ADOL-C 547

10
1

0.04

0.05

0.06

0.07

0.08

0.09

number of checkpoints

ru
n

tim
e

in
 s

ec
l = 100

CP
BA

10
1

10
2

0.55

0.6

0.65

0.7

0.75

0.8

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 500

CP
BA

10
1

10
2

2

2.5

3

3.5

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 1000

CP
BA

10
1

10
2

100

150

200

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 5000

CP
BA

Fig. 4. Comparison of run-times for l = 100, 500, 1000, 5000

needed by the checkpointing approach (CP) using c = 2, 4, 8, 16, 32, 64(, 128, 256)
checkpoints is given by the solid line. To illustrate the corresponding savings in
memory requirement, Table 1 shows the tape sizes for the basic approach as well
as the tape and checkpoint sizes required by the checkpointing version. The tape
size for the later varies since the number of independents is a multiple of the
number of time steps l due to the distributed control u. One basic checkpointing
assumption, i.e., the more checkpoints are used the less runtime the execution
needs, is clearly depicted by case l = 1000 in Fig. 4. The smaller runtime for
the basic approach completes the setting. However, the more interesting cases
from this example are l = 100 and l = 5000, respectively. In these situations a
smaller runtime was achieved even though checkpointing was used. These results
are effected by an insight well known, i.e., computing from a level of the mem-
ory hierarchy that offers cheaper access cost may result in a significant smaller
runtime. In the mentioned cases of the robot example the computation could

Table 1. Memory requirements for l = 100, 500, 1000, 5000

time steps l 100 500 1000 5000
without checkpointing

tape size (Byte) 4.388.720 32.741.979 92.484.730 1.542.488.152
with checkpointing

tape size (Byte) 79.367 237.367 434.867 2.014.912
checkpoint size (Byte) 11.440 56.240 112.240 560.240

548 A. Kowarz and A. Walther

be redirected from the main memory mainly into the L2-cache of the processor
(l = 100) and from at least partially hard disk access completely into the main
memory (l = 5000). The last case from Fig. 4 (l = 500) depicts a situation where
only the tape and a small number of the most recent checkpoints can be kept
within the L2-cache. A well chosen ratio between l and c in this case causes a sig-
nificantly smaller recomputation rate and results in a decreased overall runtime,
making the checkpointing once more preferable.

4 Conclusion and Outlook

In this paper, we present a new nested taping approach incorporated into the
AD-tool ADOL-C. This new strategy allows a compressed internal representa-
tion for time stepping procedures in combination with a checkpointing approach
for the derivative calculation. In addition to the drastic decrease in memory
requirement due to the nested taping, the new capability may even lead to a re-
duction of the overall run-time for such cases where the reduced memory access
costs compensate the required recomputations.

We plan to employ the nested taping also for an efficient differentiation of fix-
point iterations, where the computation of gradient information can be based
only on the last iteration performed during the function evaluation. Hence, also
in this situation a complete unrolling and hence the storage of the full internal
representation can be avoided. Therefore, also in these situations the applicabil-
ity of ADOL-C will be extended.

References

1. Giering, R., Kaminski, T.: Recipes for Adjoint Code Construction. ACM Trans.
Math. Software, 24 (1998) 437–474.

2. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optim. Methods Softw., 1 (1992) 35–54.

3. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, 2000.

4. Griewank, A., Juedes, D., Utke. J.: ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++. ACM Trans. Math. Software, 22
(1996) 131–167.

5. Griewank, A., Walther, A.: Revolve: An implementation of checkpointing for the
reverse or adjoint mode of computational differentiation. ACM Trans. Math. Soft-
ware, 26 (2000) 19–45.

6. R. Griesse, A. Walther.: Parametric sensitivities for optimal control problems using
automatic differentiation. Optimal Control Applications and Methods, Vol. 24, pp.
297–314 (2003).

7. Hinze, M., Sternberg, J.: A-Revolve: An adaptive memory and run-time-reduced
procedure for calculating adjoints; with an application to the instationary Navier-
Stokes system. Optim. Methods Softw., 20 (2005) 645–663.

8. Hascoët, L., Pascual, V.: Tapenade 2.1 user’s guide. Tech. rep. 300, INRIA, 2004.
9. Knauer, M., Büskens, C.,: Real-Time Trajectory Planning of the Industrial Robot

IRB6400. PAMM. 3, 2003, 515–516.

Optimal Checkpointing for Time-Stepping Procedures in ADOL-C 549

10. Kubota, K.: A Fortran 77 preprocessor for reverse mode automatic differentiation
with recursive checkpointing. Optim. Methods Softw., 10 (1998) 319–335.

11. Naumann, U., Utke, J., Lyons, A., Fagan, M.: Control Flow Reversal for Adjoint
Code Generation. Proceed. of SCAM 2004, IEEE Computer Society (2004) 55–64.

12. Walther, A., Griewank, A.: Advantages of binomial checkpointing for memory-
reduced adjoint calculations. In: Feistauer, M., et al., (eds.): Numerical mathemat-
ics and advanced applications, Proc. ENUMATH 2003, Springer (2004) 834–843.

	Introduction
	Optimal Checkpointing in ADOL-C
	Numerical Example
	Conclusion and Outlook

