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Abstract — The number of strands to minimize loss in
a litz-wire transformer winding is determined. With

fine stranding, the ac resistance factor decreases, but

dc resistance increases because insulation occupies
more of the window area. A power law to model in-

sulation thickness is combined with standard analysis

of proximity-effect losses.

I. INTRODUCTION

A salient difficulty in designing high-frequency in-

ductors and transformers is eddy-current effects in

windings. These effects include skin-effect losses and

proximity-effect losses. Both effects can be controlled

by the use of conductors made up of multiple, in-

dividually insulated strands, twisted or woven to-

gether. Sometimes the term lit.z wire is reserved for

conductors constructed according to a carefully pre-

scribed pattern, and strands simply twisted together

are called bunched wire. We will use the term lat.z
wire for any insulated grouped strands, but will dis-

cuss the effect of different constructions.

This paper addresses the choice of the degree of

stranding in litz wire for a transformer winding.

The number of turns and the winding cross-sectional

area are assumed to be fixed. The maximum cross-

sectional area of each turn is thus fixed, and as the

number of strands is increased, the cross-sectional

area of each strand must be decreased. This typically

leads to a reduction in eddy-current losses. However,

as the number of strands increases, the fraction of the

window area that is filled with copper decreases and

the fraction filled with insulation increases. This re-

sults in an increase in dc resistance. Eventually, the

eddy-current losses are made small enough that the

increasing dc resistance offsets any further improve-

ments in eddy-current loss, and the losses start to in-

crease. Thus, there is an optimal number of strands

that results in minimum loss. This paper presents

a method of finding that optimum, using standard

methods of estimating the eddy-current losses.

Optimizations on magnetics design may be done
to minimize volume, loss, cost, weight, temperature

rise, or some combination of these factors. For ex-

ample, in the design of magnetic components for a

solar-powered race vehicle [1] (the original impetus
for this work) an optimal compromise between loss

and weight is important. Although we will explicitly

minimize only winding loss, the results are compat-

ible with and useful for any minimization of total

loss (including core loss), temperature rise, volume

or weight. This is because the only design change

considered is a change in the degree of stranding,

preserving the overall diameter per turn and over-

all window area usage. This does not affect core

loss or volume, and has only a negligible effect on

weight. However, the degree of stranding does signif-

icantly affect cost. Although we have not attempted

to quantify or optimize this, additional results pre-

sented in Section V are useful for cost-constrained

designs.

The analysis of eddy-current losses used here does

not differ substantially from previous work [2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13] ([10] gives a useful review).

Although different descriptions can be used, most

calculations are fundamentally equivalent to one of

three analyses. The most rigorous approach uses an

exact calculation of losses in a cylindrical conductor

with a known current, subjected to a uniform exter-

nal field, combined with an expression for the field as

a function of one-dimensional position in the winding

area [12]. Perhaps the most commonly cited analy-

sis [11] uses “equivalent” rectangular conductors to

approximate round wires, and then proceeds with an

exact one-dimensional solution. Finally, one may use

only the first terms of a series expansion of these so-

lutions, e.g. [9].

All of these methods give similar results for strands

that are small compared to the skin depth [12]. (See

Appendix B for a discussion of one minor discrep-

ancy. ) The solutions for optimal stranding result in

strand diameters much smaller than a skin depth.

In this region the distinctions between the various

methods evaporate, and the simplest analysis is ad-

equate. More rigorous analysis (e.g. [12] ) is impor-

tant when strands are not small compared to a skin

depth. In this case, losses are reduced relative to

what is predicted by the analysis used here, due to

the self-shielding effect of the conductor.

Previous work, such as [2, 3, 4] has addressed op-

timal wire diameter for single-strand windings. The

approach in [2, 3, 4] is also applicable for lit z-wire
windings in the case that the number of strands is

fixed, and the strand diameter for lowest loss is de-

sired. As discussed in Section V, this can be use-
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ful for cost-sensitive applications, if the number of

strands is the determining factor in cost, and the

maximum cost is constrained. However, this will, in

general, lead to higher-loss designs than are possible

using the optimal number of strands.

II. SKIN EFFECT, PROXIMITY EFFECT, AND LITZ

~lRl%

Skin effect is the tendency for high-frequency cur-

rents to flow on the surface of a conductor. Prox-

imity effect is the tendency for current to flow in

other undesirable patterns—loops or concentrated

distributions—due to the presence of magnetic fields

generated by nearby conductors. In transformers and

inductors, proximity-effect losses typically dominate

over skin-effect losses. In litz-wire windings, proxim-

ity effect may be further divided into internal prox-

imity effect (the effect of other currents within the

bundle) and external proximity effect (the effect of

current in other bundles) [14, 15]. However, the dis-

tinction is useful only as a form of bookkeeping. The

actual losses in one strand of a litz bundle are simply

a result of the total external field, due to the currents

in all the other strands present. Another approach to

calculating the loss in a litz winding is to look at it as

a single winding, made up of nN turns of the strand

wire, each with current i/n flowing in it, where n is

the number of strands, N is the number of turns of

litz wire, and i is current flowing in the overall litz

bundle. The loss in the litz winding will be the same

as in the equivalent single-strand winding as long as

the currents flowing in all the strands are equal [16].

Other methods of calculating loss in litz wire also

assume equal current in all strands [14, 12, 17].

The objective of twisting or weaving litz wire, as

opposed to just grouping fine conductors together, is

to ensure that the strand currents are equal. Sim-

ple twisted bunched-conductor wire can accomplish

this adequately in situations where proximity effect

would be the only significant problem with solid

wire. Where skin effect would also be a problem,

more complex Iitz constructions can be used to en-

sure equal strand currents. Thus, in a well-designed

construction, strand currents are very close to equal.

However, our results remain valid even when sim-

ple twisting results in significant skin effect at the

litz-bundle level. This is because the the bundle-

level skin-effect loss is independent of the number

of strands, and is orthogonal [15] to the strand-level

eddy-current losses.

We represent winding losses by

where FT is a factor relating dc resistance to an ac re-

sist ante which accounts for all winding losses, given a

sinusoidal current with rms amplitude l=C. As shown

in Appendix A, we can approximate F. by

Fr=l+
7r2w2p~N2n2d~k

768p.b;
(2)

where w is the radian frequency of a sinusoidal cur-

rent, n is the number of strands, N is the number

of turns, de is the diameter of the copper in each

strand, pc is the resistivit y of the copper conductor,

bc is the breadth of the window area of the core,

and k is a factor accounting for field distribution in

multi-winding transformers, normally equal to one

(see Appendix A). For waveforms with a dc compo-

nent, and for some non-sinusoidal waveforms, it is

possible to derive a single equivalent frequency that

may be used in this analysis (Appendix C). In an

inductor, the field in the winding area depends on

the gapping configuration, and this anal ysis is not

directly applicable.

The analysis described here considers the strands

of all litz bundles to be uniformly distributed in the

window, as they would be in a single winding using

Nn turns of wire the diameter of the litz strands. In

fact, the strands are arranged in more or less circu-

lar bundles. In this sense, the analysis of [15] may

be more accurate, but this difference has very little

effect on the results. The most important difference

between the model used here and the model in [15]

is the greater accuracy of [15] for strands that are

large compared to a skin depth. The simpler model

is used because it is accurate for the small strand di-

ameters that are found to be optimal, and because its

simplicity facilitates finding those optimal diameters.

Other models (such as [14] and the similar analysis

in [17]) also model large strand diameters and circu-

lar bundle configurations accurately, but they fully

calculate only internal, and not external, proximity

effect, and so are not useful for the present purposes.

III. DC RESISTANCE FACTORS

The fraction of the window area occupied by cop-

per in a litz-wire winding will be less than it could

be with a solid-wire winding. This leads to higher dc

resistance than that of a solid wire of the same out-

side diameter. A cross section of lit z wire is shown

in Fig. 1, with the various contributions to cross sec-

tional area marked. In addition to the factors shown

in this diagram, the twist of the lit z wire also in-

creases the dc resist ante. In order to find the optimal

number of strands for a litz winding, it is necessary

to quantify how the factors affecting dc resistance

vary as a function of the number of strands.

Serving

Typically litz bundles are wrapped with textile to

protect the thin insulation of the individual strands.

This serving adds about 0.06 mm (2.5 roil) to the

diameter of the bundle. For a given number of turns

filling a bobbin, or a section of a bobbin, the outside

diameter of the litz wire must be fixed. The area de-

voted to serving will then also be fixed, independent

of the number of strands.

Strand packing

Simply twisted litz wire comprises a group of
strands bunched and twisted into a bundle. More

complex constructions begin with this step, and
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Fig. 1. Cross sectional area of a Iitz-wire winding, showing

how area is allocated. Area allocated to anything
other than copper increases the resistance in a

space-limited winding.

then proceed with grouping and twisting the sub-

bundles into higher-level bundles. Particular num-

bers of strands (one, seven, nineteen, thirty-seven,

etc.) pack neatly into concentric circular arrange-

ments. However, with large numbers of strands (e.g.,

> 19), and/or very fine strands (e.g., 44-50 AWG),

it is difficult to precisely control the configuration,

and the practical packing factor becomes an aver-

age number relatively independent of the number of

strands. Since the optimal strand diameter is t ypi-

cally much smaller than a skin depth, but the lowest-

level bundle can be near a skin depth in diameter,

in most cases we can assume that there is a large

number of strands in the innermost bundle. Thus,

this packing factor is independent of the number of

strands.

Bundle packing and filler

The way the strands are divided into bundles and

sub-bundles is chosen based on considerations includ-

ing skin-effect losses, flexibility of the overall bun-

dle, resistance to unraveling, and packing density. In

some cases, a nonconducting filler material may be

used in the center of a bundle in place of a wire or
wire bundle that would, in that position, carry no

current because of skin effect.

A typical configuration chosen to avoid significant

skin-effect losses should have a carefully designed and

potentially complex construction at the large-scale

level where bundle diameters are large compared to

a skin depth. However, because the optimal strand

diameter will be small compared to a skin depth, a

simple many-strand twisted bundle may be used at

the lowest level. If the overall number of strands is

increased, the number of strands in each of these low-

level bundles should be increased, but the diameter

of each low-level bundle should not be changed, nor

should the way they are combined into the higher-

level construction be affected. Thus, for our pur-

poses, the bundle packing factor is independent of

the number of strands.

Turn packing

The way turns are packed into the overall winding

is primarily a function of winding technique, and it

Fig. 2. The cross section of strands becomes elliptical when
the bundle is twisted. In this extreme case of lay

(length per twist) equal to 4.7 times the bundle
diameter, a total of six strands fit where seven would

have fit, untwisted.

is assumed not to vary as a function of the stranding.

However, note that loosely twisted litz wires can de-

form as the winding is constructed, allowing tighter

packing. Another option providing tight turn pack-

ing is rectangular-cross-sect ion lit z wire. In add it ion

to its turn-packing advantage, it has tighter strand

and bundle packing, as a result of the mechanical

compacting process that forms it into a rectangular

cross section.

Twist

The distance traveled by a strand is greater in a

twisted bundle than it would be if the strands simply

went straight, and so the resist ante is greater. An ad-

ditional effect arises from the fact that a cross section

perpendicular to the bundle cuts slightly obliquely

across each strand. Thus, the cross section of each

strand is slight 1y elliptical. This reduces the number
of strands that fit in a given area, and so effectively

increases the resistance. An extreme case of this is

illustrated in Fig. 2. The choice of the pitch of the

twist (’lay’, or length per twist) is not ordinarily af-

fected by the number of strands in the lowest-level

bundle, and so, for the purpose of finding the op-

timal number of strands, we can again assume it is

constant.

Strand insulation area

Thinner magnet wire has thinner insulation. How-

ever, the thickness of the insulation is not in direct

proportion to the wire diameter. Thinner wire has

copper in a smaller fraction of the overall cross sec-

tional area, and insulation in a larger fraction.

C)f all of the de-resistance factors considered, this

is the only one that varies with the size or number of

strands used at the lowest level of the construction.

Thus, quantifying this effect on dc resistance gives a

good approximation of the total variation in dc resis-

t ante as a function of the size or number of strands.

The other factors can be lumped into an overall dc

resistance multiplying factor which is a constant for

the present purposes.

One approach to quantifying the relationship be-

tween the insulation area and strand diameter would

be to store tables in computers, and use them to find

the optimal strand diameter by calculating the losses

for different strand diameters until the optimum was

found, similar to [6], However, an analytical descrip-

tion of the variation of insulation thickness with wire
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Fig. 3. Insulation build (twice the insulation thickness) for

American Wire Gauge (AWG) single-build magnet

wire. The dashed curve is the minimum build
according to the equation provided by [18]. The

lower ‘staircase’ curve is the tabulated data provided

by [18] for minimum build. The points marked by ‘x’

are nominal build from a wire manufacturer’s
catalog, obtained by subtracting tabulated nominal

overall diameter and subtracting the exact
theoretical nominal wire diameter. The

apprOximatiOn described by (4) comes closest to
these points.

size can facilitate an analytical solution for the opti-

mal number of strands.

An equation describing magnet wire insulation

thickness is provided by [18]:

AWG
loglol? =x-m (3)

where B is the minimum insulation build in roils

(10-3 in, 1 mil = 25.4 pm), X = 0.518 for single-

build insulation and X = 0.818 for heavy (dou-

ble) build, and A WG is the American Wire Gauge

number 1. However, this only applies to wire sizes
between 14 and about 30 AWG. For smaller wire

sizes, it does not correlate with the tabulated data

in [18] (Fig. 3). For wire in the range of 30 to 60

AWG, we find a better fit to manufacturers’ tabu-

lated nominal insulation build by using

(4)

where dt is the overall diameter, including the in-

sulation thickness, dc is the diameter of the copper

only, and dr is an arbitrarily defined reference diam-

eter, used to make the constants a and ,L?unitless.

The parameters used for single-build insulation wire

were ~ = 0.97 and a = 1.12 for dr chosen to be the

diameter of AWG 40 wire (0.079 mm). For heavy-

build insulation, ,B = 0.94 and a = 1.24. Note that

although (4) provides an accurate approximation for

wire in the range of 30 to 60 AWG, its asymptotic

1The American wire gauge defines nominal wire diameter

in inches as d = 0.0050 (92) (36-AWGJ /39.

behavior for large strand diameters is pathological.

Insulation thickness goes to zero around 6 AWG, and

is negative for larger strands.

IV. NUMBER OF STRANDS FOR MINIMUM Loss

For a full bobbin, the outside diameter of the com-

plete litz bundle is,

rFPbbh
dtl . —

N’
(5)

where bb is the breadth of the bobbin, h is the height

allocated for the particular winding under consid-

eration, N is the number of turns in that winding,

and FP is a turn-packing factor for turns in the wind-

ing, expressed relative to perfect square packing (For

FP = 1, the litz bundle would occupy n/4 of the win-

dow area).

Assuming a factor FIP accounting for serving area,

bundle packing, any filler area, strand packing, and

the effect of twist on diameter, we can find the out-

side diameter of a single strand

(6)

where n is the number of strands in the overall litz

bundle.

The diameter of the copper in a single strand can

then be written using (4).

We now define a total resistance factor F:,

F; = FdcFr =
ac resistance of litz-wire winding

dc resistance of single-strand winding’

(8)
where F& is the ratio of dc resistance of the litz wire

to the dc resistance of a single strand winding, using

wire with the same diameter as the litz-wire bundle.

Using (6) and (7), we can show

Combining (2), (8), and (9) results in

(9)

where

#N’w’p;d:-6fp~- 61@(FPFlPbbh/N) 3ffik
-y=

768p:b:
(11)

Equation (10) can now be minimized with respect to

n to find the optimal number of strands,

‘0”= ((2JK’W(3’P-2’’12)
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Fig. 4. Total resistance factor, F:, as a function of number
of strands (solid line) for the example discussed in

the text at 375 kHz. Also shown are the ac
resistance factor F, (dashed) and the dc resistance

factor Fdc (dotted). The minimum total resistance
factor is at the point where increases in Fdc balance

decreases in F, with increasing number of strands.

This will give non-integral numbers of strands; the

nearest integral number of strands can be chosen to

minimize ac resist ante.

V. DESIGN EXAMPLES AND SUB-OPTIMAL

STRANDING

For a design example, we used a 14-turn wind-

ing on an RM5 size ferrite core. The breadth of the

bobbin is 4.93 mm, and the breadth of the core win-

dow 6.3 mm. A height of 1.09 mm is allocated to

this winding. Based on an experimental hand-wound

packing factor FP = 0.85, and litz packing factor

F/P = 0.66, unserved, plus a 32 pm (1,25 roil) thick

layer of serving, the above calculation indicates that,

for a frequency of 375 kHz, 130 strands of number

48 wire gives minimum ac resist ante, with a total

resist ante factor of F; = 2.35, ac resistance factor

F. = 1.03, and a dc resistance factor FdC= 2.29.
Fig. 4 shows the total calculated resistance fac-

tor and its components as a function of number of

strands. The figure and the numbers confirm the in-

tuition that, because /3 is close to one and the dc re-

sistance increases only very slowly, the decrease in re-

sistance using finer strands outweighs the decreased

cross sectional area until the ac resistance factor is

brought very close to one. Note that although the
factor Fdc is large, only a factor of 1.18 is due to the

change in wire insulation thickness. The remaining

factor of 1.95 is due to the the dc resistance factors

that do not vary with number of strands, such as

serving area and strand packing.

The optimization leads to choosing a large num-

ber of fine strands, which will often mean a high

cost, and will sometimes require finer strands than

are commercially available, From Fig, 4, one can see

that a decrease from the optimum of 130 to about 50

Resistance Factor at i MHz
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Fig. 5. Total resistance factor, F;, as a function of number
of strands for the example discussed in the text at 1
MHz. The solid line indicates resistance factor for a

full bobbin. The dashed line shows the lower
resistance that is possible by choosing the strand
diameter for minimum loss, with the number of

strands fixed. Where this optimal diameter results in

a full bobbin, the two curves are tangent. For larger
numbers of strands, the optimal strand diameter,

shown as a dotted line, would over-fill the bobbin,

and so is not possible.

strands entails only a small increase in ac resist ante.

Consideration of the cost trade-off for a particular

application becomes necessary.

Given a sub-optimal number of strands, chosen to

reduce costs, a full bobbin may no longer be best.

The problem of choosing the optimal strand diameter

for a fixed number of strands has been addressed by

many authors, though usually just for a single strand

[2, 3, 4, 9]. This analysis can be adapted for more

than one strand by simply using the product of the

number of turns and the number of strands Nn in

place of the number of turns N. The result that

FroPt = 1.5 [2, 3, 4, 9] holds, and

( 384p:b:

)

1/6

doPt = (13)
n2u2p~N2n2 “

In many practical cases, cost is a stronger function

of the number of strands than of the diameter of the

strands. In the range of about 42-46 AWG the ad-

ditional manufacturing cost of smaller wire approxi-

mately offsets the reduced material cost. Thus, de-

signs using the diameter given by (13) often approx-

imate the minimum ac resist ante for a given cost.

Fig. 5 shows total resistance factor as a function of

the number of strands for the same example design,

but at 1 MHz, where the optimal stranding is a diffi-

cult and expensive 792 strands of AWG 56 wire, and

so analysis of alternatives is more important. The

solid line is for a full bobbin, and the dashed line is

for the same number of strands, but with the diam-

eter chosen for minimum losses, rather than to fill

the bobbin. Where the two lines meet, the optimal

0-7803-3843-X/97/$10.00 (c) 1997 IEEE



Fig. 6. Contour lines of total resistance factor, F;, as a

function of number of strands and diameter of
strands, for the example discussed in the text at

1 MHz. The diagonal dashed line indicates a full

bobbin. The valley at the upper right is the
minimum loss, The minimum loss without

over-filling the bobbin is marked by an ‘x’. Contour
lines are logarithmically spaced.

diameter just fills the bobbin. Beyond that point it

would not fit, and the line is shown dotted,

The example can be understood more completely

by examining contour lines of total resistance factor

F; * a function of both strand diameter and number
of strands (Fig. 6). The minimum resistance is in

the valley at the upper right (a large number of fine

strands). To fit on the bobbin, designs must be below

the dashed diagonal line. Minimum loss designs for

a fixed number of strands can be found by drawing

a horizontal line for the desired number of strands,

and finding the point tangent to cent our lines.

One could also consider a constraint for minimum
wire diameter. Many manufacturers cannot provide

litz wire using strands finer than 48 or 50 AWG. On

Fig. 6, the minimum resistance for 50 AWG strand-

ing is with a full bobbin, but for 40 AWG wire, the

minimum ac resistance can be seen to occur with

fewer than the maximum number of strands. This

situation can be analyzed by considering (2) with all

parameters fixed except for the number of strands,

such that

F,=l+~n2 (14)

where < is a constant obtained by equating (2) and

(14). The total resistance factor is then

F; = FdC1. (l+<n2)/n (15)

where Fdcl is the dc resistance factor with a full bob-

bin, for the fixed strand diameter. The value of n
that minimizes this expression is n = ~, such

that Fr = 2. This will be the optimal number of

strands, given a fixed minimum strand diameter, un-
less this is too many strands to fit in the available

window area.

1.7 -

~1,6 -
*

z-
815 -

L

:1.4 -
%

w

7
$! 1,3 -

0

<1.2
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1.1 -

,.,o~ 1000
Frequency [kHz]

1,35
t 1

Fig. 7. Experimental ac resistance factor, Fr, as a function

of frequency. Top graph is for Iitz wire with 50

strands of 44 AWG wire; bottom graph is 130
strands of 48 AWG wire. Both are in the example

transformer described in the text. Total measured
resistance factor in the transformer is marked with

stars. Measured skin effect in a straight piece of litz
wire is marked with ‘x ‘s. The difference, equal to

proximity-effect losses, is marked with circles. These

correspond closely to the predicted proximity-effect

losses (solid line).

VI. EXPERIMENTAL RESULTS

The designs specified in the preceding section were

constructed with two types of litz wire: 130 strands

of 48 AWG and 50 strands of 44 AWG. The pri-

mary and secondary windings were made from a sin-

gle length of lit z wire, wound on the bobbin in op-

posite directions. This is magnetically equivalent to

having a shorted secondary, but it reduces potential

problems with interconnect resist ante. In order to

evaluate skin effect in the absence of external prox-

imity effect litz wire was also measured outside of a

winding. The resistance was measured with an HP

4284A LCR meter, using a custom built test jig for

low impedance measurements. The measurements

are shown in Fig. 7.

Although the overall Iitz-wire diameter was small

enough to limit bundle-level skin-effect losses to a

0-7803-3843-X/97/$10.00 (c) 1997 IEEE



few percent, the fine strands in the optimal solu-

tion also limit proximity-effect losses to similar lev-

els. Fortunately, the losses are orthogonal [15], and

the measured skin effect losses (for a Iitz wire out-

side of the winding) can be subtracted from the

measured losses in the transformer in order to iso-

late proximity-effect losses. When this is done, the

proximity-effect losses predicted by (2) match the

measured proximity-effect losses very closely.

Because the exact construction of one of the sam-

ples was not known, the expected bundle skin effect

could not be predicted accurately. However, the 50-

strand bundle of 44 AWG wire was believed to be

simply twisted. It exhibited considerably lower loss

than would be expected on this basis, indicating that

there may be some more complex transposition of

the strands, even if the manufacturing process did

not deliberately int reduce this construction. W bile

these effects merit further experiments, the experi-

ments reported here confirm the validity of the model

used in our optimization.

VII. CONCLUSION

The number of strands for a minimum-loss litz-

wire winding may be found by evaluating the tradeoff

between proximity-effect losses and dc resistance. Of

the factors leading to increased dc resistance in a litz-

wire winding, only the space allocated to strand insu-

lation varies significantly with the number of strands

in a well designed construction. A power law can be

used to model insulation thickness in the region of

interest. Combining this with standard models for

eddy-current loss results in an analytic solution for

the optimal number of strands. The simplest model

for loss, using only the first terms of a series expan-

sion can be used since good designs use strands that

are small compared to a skin depth. Experimental

results correlate well with the simple model.

Stranding for minimum loss may lead to many
strands of fine wire and thus excessive expense. Min-

imum loss designs constrained by minimum strand

size or maximum number of strands have also been

derived.

VIII. ACKNOWLEDGMENTS

Thanks to New England Electric Wire Corporation for litz
wire samples and to Magnetics Division of Spang and Co. for
ferrite core samples.

APPENDIX

A. Loss CALCULATION

The expression for F, used here may be derived by first
calculating loss in a conducting cylinder in a uniform field,
with the assumption that the field remains constant inside
the conductor, equivalent to the assumption that the diame-
ter is small compared to a skin depth. This results in power

dissipation P in a wire of length 1

P=
TW2 lB2 d:

128P. ‘
(16)

where B is the peak flux density. This is equal to the first term

of an expansion of the exact Bessel-function solution [19],

Combining this with the assumption of a trapezoidal field
distribution results in (2). For configurations in which the
field is not zero at one edge of the winding, a factor k =

(1 – q3)/(1 – V)3 is used to account for the resulting change
in losses, where 9 = Bm,~/B~az [9].

B. COMPARISON WITH EXPANSION OF DOWELL

SOLUTION

Equation (2) is similar to the expression for the first terms
of a series expansion of the exact one-dimension solution,

F,=l+
5p2–1 ~
—* ,

45
(17)

where p is the number of layers and + is the ratio of effective

conductor thickness to skin depth. For a large number of

layers (equivalent to the assumption, above, of a trapezoidal

field distribution), this reduces to Fr = 1 + $+4. The usual
expression for + is

(18)

where Fl = Nlbeq/bb, heq and beq are the height and breadth

of an “equivalent” rectangular conductor, and N~ is the num-
ber of turns ~er laver. Based on eaual cross sectional area..“
beq = heq = fi dc. This results in

(19)

where hb is the height of the bobbin area allocated to this

winding. The number of layers is p = ~-. Substitut-

ing these expressions for p and @ into the simplified version of

(17), and using 6 = ~-, we obtain

F. =1+
T3 W2p: N2 nz d: k

3. 768p.b~ ‘
(20)

the same as (2), except for the substitution of bb for b=, and
the addition of a factor of T/3. This discrepancy can be ex-
plained by comparing (16) to the equivalent expression for a

rectangular conductor

W2!B2S4
P=—.

24P,
(21)

where s is the side of a square conductor. Equating these
two, we obtain s = (3n/16)’/4d.. Thus, it appears that
using an equivalent square conductor with sides equal to
s = (3x/16 )114dc would be a more accurate approximation
than the equal area approximation that is usually used [11].

C. NON-SINUSOIDAL CURRENT WAVEFORMS

Non-sinusoidal current waveforms can be treated by Fourier
analysis. The current waveform is decomposed into Fourier
components, the loss for each component is calculated, and

the loss components are summed to get the total loss:

co

(22)
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where 13 is the rms amplitude of the Fourier component at

frequency W3. From (2) it can be seen that

F?.(w) = 1 + (F~(wl) – 1):.

Defining Fr-tot by P = I~ot_rm, Fr_totRdc leads to

(23)

(F,(wl) – l)~;o l;$

Fr_~o~ = 1 +
I&_rm~

(24)

This can also be written as

L&ff
F-. ,m. = 1+ (FR(WI) – l)—.

w?

where

(25)

(26)

One may calculate this effective frequency for a non-sinusoidal

current waveform and use it for analysis of litz-wire losses,
or for other eddy-current loss calculations. Note that this

applies tO wavefOrms with dc plus sinusoidal or non-sinusoidal
ac components. The results will be accurate as long as the
skin depth for the highest important frequency is not small

compared to the strand diameter.

A triangular current waveform with zero dc component re-
sults in an effective frequency of 1. 103wI, where W1 is the
fundamental frequency. Once the effective frequency of a pure
ac waveform has been calculated, the effective frequency with

a dc component can be calculated by a re-application of (26):

(27)

Finding Fourier coefficients and then summing the infinite

series in (26) can be tedious. A shortcut, suggested but not
fleshed out in [4], can be derived by noting that

~ I:w; = pm{;qt)}]’ (28)

j=o

so that
Rikfs{+qt)}

Weff =
Itot-,ms “

(29)

The primary limitation of effective-frequency analysis is

that it does not work for waveforms with more substantial har-

monic content. For instance, the series in (26) does not con-
verge for a square wave. SimilarIy, the derivative of a square

wave in (29) results in an infinite rms value. A Bessel-function-

based description of loss may be necessary. However, in prac-
tice leakage inductance prevents an inductive component from

having perfectly square current waveforms. A square wave
with finite-slope edges leads to a finite value of wef f. If the
skin depth for this effective frequency is not small compared to
the strand diameter, the simple analysis of loss in (2) will still
give accurate results, and the analysis of litz-wire stranding
given here is still accurate.
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