
This is the full version of the extended abstract which appears in
Proceedings of the 2002 International Workshop on Practice and Theory in Public Key Cryptography (PKC’2002)
(12 – 14 february 2002, Paris, France) – D. Naccache and P. Paillier Eds. Springer-Verlag, LNCS 2274, pages 17–33.

Optimal Chosen-Ciphertext Secure Encryption of

Arbitrary-Length Messages

Jean-Sébastien Coron1, Helena Handschuh1, Marc Joye2, Pascal Paillier1, David
Pointcheval3, and Christophe Tymen1,3

1 Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France

{jean-sebastien.coron, helena.handschuh, pascal.paillier,

christophe.tymen}@gemplus.com
2 Gemplus Card International

Parc d’Activités de Gémenos, B.P. 100, 13881 Gémenos Cedex, France
marc.joye@gemplus.com − http://www.geocities.com/MarcJoye/

3 École Normale Supérieure, Computer Science Department
45 rue d’Ulm, 75230 Paris Cedex 05, France

david.pointcheval@ens.fr − http://www.di.ens.fr/~pointche/

Abstract. This paper considers arbitrary-length chosen-ciphertext secure asymmetric
encryption, thus addressing what is actually needed for a practical usage of strong
public-key cryptography in the real world. We put forward two generic constructions,
gem-1 and gem-2, which apply to explicit fixed-length weakly secure primitives and
provide a strongly secure (IND-CCA2) public-key encryption scheme for messages of
unfixed length (typically computer files). Our techniques optimally combine a single
call to any one-way trapdoor function with repeated encryptions through some weak
block-cipher (a simple xor is fine) and hash functions of fixed-length input so that
a minimal number of calls to these functions is needed. Our encryption/decryption
throughputs are comparable to the ones of standard methods (asymmetric encryption
of a session key + symmetric encryption with multiple modes). In our case, however, we
formally prove that our designs are secure in the strongest sense and provide complete
security reductions holding in the random oracle model.

Keywords: public-key encryption, hybrid encryption, chosen-ciphertext security, ran-
dom oracle model, generic conversions, arbitrary-length encryption schemes.

1 Introduction

A real-life usage of public-key encryption requires three distinct ideal properties. Secu-
rity is a major concern: a cryptosystem should be secure against any attack of any kind,
should the attack be realistic in the context of use or only theoretical. Performance
has to be risen to upmost levels to guarantee high speed encryption and decryption
rates in communication protocols and real time applications. At last, design simplicity
is desirable to save time and efforts in software or hardware developments, increase
modularity and reusability, and facilitate public understanding and scrutiny.

Designing an encryption scheme which meets these criteria is quite a challenging
work, but methodologies and tools exist, at least for the first property. Our knowledge
of security features inherent to cryptographic objects and of the relations connecting
them has intensively evolved lately, driving us to a growing range of powerful generic
constructions, both simple and provably secure [7, 8, 14, 12]. Among these construc-
tions, Okamoto and Pointcheval’s react [12] is certainly the one that offers most
flexibility: unlike Bellare and Rogaway’s long-lived oaep [5], react applies to any
trapdoor function, i.e., any asymmetric encryption scheme presenting such a weak
level of security as being OW-PCA (see further), to provide a cryptosystem of strongest
level IND-CCA2 in the random oracle model.

c© Springer-Verlag 2002.

2

1.1 Our results

This paper considers arbitrary-length chosen-ciphertext secure (IND-CCA2) asymmetric
encryption schemes, thus addressing what is actually needed for a practical usage of
strong public-key cryptography in the real world. We propose two generic constructions
which apply to fixed-length weakly secure primitives and provide a strongly secure
public-key cryptosystem for messages of unfixed length, such as computers files or
communication streams. In our schemes, the encryption and decryption processes may
start and progress without even knowing the overall input blocklength; they also may
stop at any time. Besides, our designs are one-pass only, meaning that each message
block will be treated exactly once.

Our techniques combine a single call to any one-way trapdoor function with re-
peated encryptions through some weak block-cipher (a simple xor will do) and hash
functions of fixed-length input. Contrarily to previous generic conversions, each mes-
sage block will require only one call to a hash function so that the overall execution
cost for an n-block plaintext is exactly 1 call to the one-way trapdoor encryption,
followed by n calls to the block-cipher and n + 1 (or n + 2) calls to a hash function1.
Besides, the storage of the whole plaintext file in memory is completely unnecessary
and encryption/decryption procedures use a memory buffer of only ∼ 3 blocks, thus
allowing on-the-fly treatments of communication streams. We believe that our schemes
are the first that combine these practical properties simultaneously while keeping total
genericity.

The first construction applies to any OW-PCA probabilistic trapdoor function and
incorporates two extra fields of fixed length in the ciphertext, one at each end. The
second construction we give only works for deterministic OW trapdoor functions but
adds only one extra field at the end of the ciphertext. Our performances are similar
to the ones of standard methods, which usually encrypt some random session key
under an asymmetric scheme and then feed that key into some block-cipher running
under an appropriate multiple mode. In our case, however, we can formally prove that
our designs are secure in the strongest sense IND-CCA2. Indeed, we provide complete
security reductions holding in the random oracle model.

1.2 Outline of the paper

The paper is organized as follows. Section 2 briefly recalls security notions for encryp-
tion schemes in both symmetric and asymmetric settings. We also review Okamoto and
Pointcheval’s plaintext checking attacks in connection with computational gap prob-
lems [13]. Then, Sections 3.1 and 3.2 introduce our new generic conversions, gem-1
and gem-2, whose reduction proofs are given in Appendices B and C. Furthermore,
typical examples of practical usage of these systems are given in Section 4. We conclude
by giving some possible extensions of our work in Section 5.

2 Security notions for encryption schemes

2.1 Asymmetric encryption

We now introduce a few standard notations. An asymmetric encryption scheme is a
triple of algorithms (K, E ,D) where

1 an extra hash call is needed for authenticity.

3

– K is a probabilistic key generation algorithm which returns random pairs of secret
and public keys (sk , pk) depending on the security parameter κ,

– E is a probabilistic encryption algorithm which takes on input a public key pk
and a plaintext m ∈M, runs on a random tape u ∈ U and returns a ciphertext c,

– D is a deterministic decryption algorithm which takes on input a secret key sk ,
a ciphertext c and returns the corresponding plaintext m or the symbol ⊥. We
require that if (sk , pk)← K, then Dsk (Epk (m,u)) = m for all (m,u) ∈M×U .

Adversarial goals.

One-wayness. The first secrecy notion required from an encryption scheme is its
one-wayness, meaning that one should not be able to recover a plaintext given its
encryption. More formally, the scheme is said to be (τ, ε)-OW if for any adversary A
with running time bounded by τ , the probability that A inverts E is less than ε:

Succ
ow(A) = Pr

m
R
←M

u
R
←U

[(sk , pk)← K(1κ) : A(Epk (m,u)) = m] < ε ,

where the probability is taken over the random choices of the adversary.

Semantic security. Formalizing another security criterion that an encryption sche-
me should verify beyond one-wayness, Goldwasser and Micali [10] introduced the
notion of semantic security. Also called indistinguishability of encryptions (or IND

for short), this property captures the idea that an adversary should not be able to
learn any information whatsoever about a plaintext, its length excepted, given its
encryption. More formally, an asymmetric encryption scheme is said to be (τ, ε)-IND

if for any adversary A = (A1,A2) with running time upper-bounded by τ ,

Adv
ind(A) = 2× Pr

b
R
←{0,1}

u
R
←U

[
(sk , pk)← K(1κ), (m0,m1, σ)← A1(pk)
c← Epk (mb, u) : A2(c, σ) = b

]
− 1 < ε ,

where the probability is taken over the random choices of A. The two plaintexts m0

and m1 chosen by the adversary inM have to be of identical length.

Non-malleability. The property of non-malleability (NM), independently proposed
by Dolev, Dwork and Naor [6], supposes that, given the encryption of a plaintext m,
the attacker cannot produce the encryption of a related plaintext m′. Here, rather than
learning some information about m, the adversary will try to output the encryption
of m′. These two properties are related in the sense that non-malleability implies
semantic security for any adversarial model, as pointed out in [6] and [3].

Adversarial models. On the other hand, there exist several types of adversaries,
or attack models. In a chosen-plaintext attack (CPA), the adversary has access to an
encryption oracle, hence to the encryption of any plaintext she wants. Clearly, in the
public-key setting, this scenario cannot be avoided. Naor and Yung [11] considered
non-adaptive chosen-ciphertext attacks (CCA1) (also known as lunchtime or midnight
attacks), wherein the adversary gets, in addition, access to a decryption oracle before
being given the challenge ciphertext. Finally, Rackoff and Simon [15] defined adaptive
chosen-ciphertext attacks (CCA2) as a scenario in which the adversary queries the

4

decryption oracle before and after being challenged; her only restriction here is that
she may not feed the oracle with the challenge ciphertext itself. This is the strongest
known attack scenario.

Various security levels are then defined by pairing each goal (OW, IND or NM)
with an attack model (CPA, CCA1 or CCA2), these two characteristics being considered
separately. Interestingly, it has been shown that IND-CCA2 and NM-CCA2 were strictly
equivalent notions [3]. This level is now considered as standard and referred to as
IND-CCA2 security or chosen-ciphertext security. The security of a cryptosystem is thus
measured as the ability to resist an adversarial goal in a given adversarial model.
Whenever possible, the scheme is proven IND-CCA2 secure by exhibiting a polynomial
reduction: if some adversary can break the IND-CCA2 security of the system, then the
same adversary can be invoked (polynomially many times) to solve some related hard
problem.

2.2 Symmetric encryption schemes

A symmetric encryption scheme with key bit-length k and message bit-length m is a
pair of algorithms (E, D) where

– E is a deterministic encryption algorithm which takes a key k ∈ {0, 1}k and a
plaintext m ∈ {0, 1}m and returns a ciphertext c ∈ {0, 1}m,

– D is a deterministic decryption algorithm which takes a key k ∈ {0, 1}k and a
ciphertext c ∈ {0, 1}m and returns a plaintext m ∈ {0, 1}m. We require that
Dk(Ek(m)) = m for all m ∈ {0, 1}m and k ∈ {0, 1}k.

In this setting, again, various security notions are defined; most are adaptations
from the asymmetric notions. In this work, however, we only need to define indis-
tinguishability. A symmetric encryption scheme is said (τ, ε)-IND if for any adversary
A = (A1,A2) with running time bounded by τ ,

Adv
ind(A) = 2× Pr

k
R
←{0,1}k

b
R
←{0,1}

[(m0,m1, σ)← A1(k), c ← Ek(mb) : A2(c, σ) = b]− 1 < ε ,

where the probability is also taken over the random choices of A. Both plaintexts
m0 and m1 are chosen by the adversary in {0, 1}k. Although other attack scenarios
may be considered, passive attacks are enough for our purposes. Note that this notion
is a very weak requirement. Note also that the one-time pad encryption is perfectly
indistinguishable, i.e., , it is (τ, 0)-IND for any τ .

2.3 Plaintext-checking security

Okamoto and Pointcheval recently introduced an intermediate adversarial model called
plaintext checking attacks [12]. In this model, the adversary has access to a plaintext-
checking oracle Opca which detects plaintext-ciphertext correspondences: the oracle
takes as input a pair (m, c) and tells whether c encrypts m or not. Clearly, this oracle
remains weaker than a decryption oracle because it is generally easier to check the
solution of a problem (scheme inversion here) than to compute it. Obviously in the
case of a deterministic encryption scheme, PCA and CPA are strictly equivalent attack
scenarios. More specifically, any trapdoor permutation is OW-PCA if and only if it is
OW (e.g., RSA).

5

From a complexity viewpoint, breaking a scheme’s OW-PCA-security exactly consists
in breaking its OW-security (i.e., its one-wayness) with the help of an oracle solving
a weaker problem. That kind of problems, i.e., solving P1 with access to OP2 and
P2 ⇐ P1, are called gap problems [13] and define some notion of complexity distance
between problems in a hierarchy.

A typical example is ElGamal encryption, for which breaking OW is equivalent to
CDH and having access to Opca allows to solve DDH trivially (and conversely). OW-

PCA-security is in this case equivalent to the gap problem separating CDH from DDH,
which is called Gap Diffie-Hellman Problem and noted GDH (see [13] for insights).

2.4 Generic conversions

In [5], Bellare and Rogaway proposed oaep, a specific hash-based treatment appli-
cable to any partial-domain [16, 9] one-way trapdoor permutation to provide an IND-

CCA2 secure encryption scheme in the random oracle model [4]. Later, Fujisaki and
Okamoto [7] presented a way to transform, still in the random oracle model, any
IND-PCA trapdoor function into an IND-CCA2 encryption scheme. They improved their
results in [8] where they gave a generic method to convert a one-way trapdoor func-
tion into an IND-CCA2 secure encryption scheme in the random oracle model2. A similar
result was independently discovered by Pointcheval [14]. More recently, Okamoto and
Pointcheval [12] proposed a more efficient generic conversion, called react. Contrarily
to [7, 8, 14], a complete re-encryption is unnecessary in the decryption process of re-
act to ensure IND-CCA2 security, thus yielding a low running time overhead. Besides,
react applies to any trapdoor function i.e., any asymmetric encryption scheme pre-
senting such a weak level of security as being OW-PCA. Until now, however, no generic
conversion has been explicitly defined3 to encrypt messages of variable length based
on fixed-length functions. The next section describes our arbitrary-length generic con-
versions.

3 Arbitrary-length IND-CCA2 encryption

The most popular and usual way of ensuring confidentiality of unfixed-length mes-
sages consists in public-key encrypting a random session key and then encrypting the
message under that session key by the means of a block-cipher used within a suitable
encryption mode. This approach has never been shown secure; in particular, the use
of an IND-CCA2 asymmetric scheme to encrypt the session key is obviously insufficient
to ensure any security whatsoever about the whole construction.

In comparison, our conversions are based on the same primitives, i.e., some asym-
metric scheme Epk and some symmetric scheme Ek. But we additionally use hash
functions to make the session key evolve permanently as the encryption progresses.
Our important result here is that the two cryptosystems we propose are IND-CCA2-
secure provided that Epk is OW-PCA or OW and Ek is indistinguishable. Independently,
they provide different security/performance tradeoffs that we analyze in section 4.

3.1 Relying on a OW-PCA trapdoor function: GEM-1

Our first construction
� 1

pk applies to any OW-PCA probabilistic trapdoor function Epk
and incorporates two extra fields of fixed length in the ciphertext, one at each end.

2 the conversion cost is however quite heavy as a complete re-encryption is needed during decryption.
3 note that [12] considers the case of variable-length encryption without providing any explicit con-

struction for fixed-length functions.

6

To make the security proof easier, we will assume that the message blocklength is
upper-bounded by some very large number nmax which value is discussed in section 4.
The encryption and decryption procedures are as depicted below.

Encryption

Input plaintext (m1, . . . , mn), 1 ≤ n ≤ nmax , random ρ = w‖u.
Output ciphertext (t1, c1, · · · , cn, t2) given by

� 1
pk (m, ρ) = (Epk (w, u)� ��� �

t1

, Ek1
(m1)� ��� �
c1

, Ek2
(m2)� ��� �
c2

, · · · , Ekn
(mn)� ��� �
cn

, F(kn, mn, w)� ��� �
t2

)

where k1 = H1(w, t1), k2 = H2(k1, m1, w), . . . , kn = Hn(kn−1, mn−1, w).

Decryption

Input ciphertext (t1, c1, · · · , cn, t2) with 1 ≤ n ≤ nmax .
Output plaintext (m̂1, · · · , m̂n) or ⊥ according to

� 1
sk (t1, c1, · · · , cn, t2) =

�
m̂1 = Dk̂1

(c1), . . . , m̂n = Dk̂n

(cn) if t2 = F(k̂n, m̂n, ŵ)

⊥ otherwise

where ŵ = Dsk (t1), k̂1 = H1(ŵ, t1) and k̂i = Hi(k̂i−1, m̂i−1, ŵ) for i = 2, n.

ε E E EHHH F1 2 n3 H

m m m

c c c tt

w

1 2 n

1 1 2 n 2

u

Fig. 1. Synopsis of gem-1.

We claim that for any OW-PCA asymmetric encryption Epk and any IND-secure sym-
metric encryption scheme Ek, our converted scheme

� 1
pk [Epk , Ek] is IND-CCA2 in the

random oracle model. To be more precise:

Theorem 1. Suppose there exists an adversary A which distinguishes
� 1

pk [Epk , Ek]
within a time bound τ with advantage ε in less than qF, qH =

∑
i∈〈1,nmax 〉

qHi
, q	 1

sk

oracle calls. Suppose also that Ek is (τ, ν)-indistinguishable. Then there exists an al-
gorithm B which inverts Epk with probability ε′ greater than

ε′ ≥
ε

2
− q	 1

sk

(
1

] t2
+

3

] k

)
− nmax

(
ν

2
+

q 	 1
sk

] k

)
,

with a total number of calls to Opca upper-bounded by qOpca ≤ qF + qH and in time

τB = τ + (q 	 1
sk

+ 1) (qF + qH) · (τpca + O(1)) .

Here,] a denotes the number of all possible values of a (hence] k = 2k).

We refer the reader to the (extensive) reduction proof given in appendix B.

7

3.2 Relying on a OW trapdoor function: GEM-2

Our second construction
� 2

pk only works with a deterministic OW trapdoor function
Epk (such as RSA) but adds only one extra field at the end of the ciphertext. Here
again, we will assume that the message blocklength is upper-bounded by some large
number nmax . The encryption and decryption procedures follow.

Encryption

Input plaintext (m1, . . . , mn), 1 ≤ n ≤ nmax , random r.
Output ciphertext (c1, · · · , cn, t) given by

� 2
pk (m, r) = (Ek1

(m1)� ��� �
c1

, Ek2
(m2)� ��� �
c2

, · · · , Ekn
(mn)� ��� �
cn

, Epk (s‖v)� ��� �
t

)

where

�
k1 = G1(r), ki = Gi(ki−1, mi−1, r) for i = 2, . . . n,

s = F(kn, mn, r), and v = r ⊕ H(s).

Decryption

Input ciphertext (c1, · · · , cn, t) with 1 ≤ n ≤ nmax .
Output plaintext (m̂1, · · · , m̂n) or ⊥ according to

� 2
sk (c1, · · · , cn, t) =

�
m̂1 = Dk̂1

(c1), . . . , m̂n = Dk̂n

(cn) if ŝ = F(k̂n, m̂n, r̂),

⊥ otherwise.

where

�
ŝ‖v̂ = Dsk (t), r̂ = v̂ ⊕ H(ŝ),

k̂1 = G1(r̂), and k̂i = Gi(k̂i−1, m̂i−1, r̂) for i = 2, . . . n.

ε

E E EGGG

F

1 2 n3 G

m m m

c c c

t

r

1 2 n

1 2 n

H

s v

Fig. 2. Synopsis of gem-2.

We claim that for any OW asymmetric encryption Epk and any IND-secure symmetric
encryption scheme Ek, the converted scheme

� 2
pk [Epk , Ek] is IND-CCA2 in the random

oracle model. To be more precise:

Theorem 2. Suppose there exists an adversary A which distinguishes
� 2

pk [Epk , Ek]
within a time bound τ with advantage ε in less than qF, qH, qG =

∑
i∈〈1,nmax 〉

qGi
,

8

q	 2
sk

oracle calls. Suppose also that Ek is (τ, ν)-indistinguishable. Then there exists an

algorithm B which inverts Epk with probability ε′ greater than

ε′ ≥
ε

2
−

qF + qG

] r
− q 	 2

sk
(qF + 1)

(
1

] s
+

1

] r

)
−

q 	 2
sk

] k
− nmax

(
ν

2
+

q 	 2
sk

] k

)
,

within a time bounded by

τB = τ + (q 	 2
sk

+ 1) (qF + qG) qH · (τE + O(1)) ,

where τE denotes the maximum time needed by Epk for a single encryption.

Again, the reader is invited to find the reduction proof in Appendix C for technical
details.

4 Applications

Numerous applications are possible when embodying Epk and Ek. Due to lack of space,
we will only consider the typical case Epk = RSA and Ek = ⊕ (for which ν = 0). The
instantiations of random oracles F, Hi, H and Gi in one scheme or another by hash
functions can be done by setting for instance Hi(·) = SHA(·‖i) where the counter
i ∈ 〈1, nmax 〉 is incremented at each block treatment. Special values of i such as 0 or
−1 may be used to implement F and H.

4.1
�

1

pk [RSA, ⊕]

Corollary 3. The encryption scheme
� 1

pk [RSA,⊕] is IND-CCA2 in the random oracle
model under the RSA assumption.

For concrete security parameters, we suggest to use 1024-bit RSA keys with public
exponent e = � 4 = 216 +1. We set for instance log2] t2 = m = k = 160 (hash functions
F, Hi being derived from SHA-1 using a counter i ∈ 〈1, nmax 〉 like described above),
] w = 2160 and nmax = 232. Assuming that the probability ε′ to invert RSA lies around
ε′ = 2−60, then an attaquer could distinguish

� 1
pk [RSA,⊕] with q 	 1

sk
= 250 decryptions

with advantage no more than ε = 2−58.

From an implementation viewpoint, note that as soon as the RSA encryption has
been done, the encryption procedure may directly output ciphertexts blocks one after
the other without having to wait that all blocks are encrypted to transmit them all
together. This allows on-the-fly encryption of communication streams. Three-tuples
(w, y, k1) may also be computed in advance to let the encryption device or software
deal with hash computations only. The suggested setting allows to replace oracles
H2, . . . ,Hn,F by the compression function (512 7→ 160) of SHA-1, driving us to n + 3
calls to this function since the input of H1 is made of three 512-bit blocks. Another
benefit of our construction is that it requires only a small memory buffer (one field for
the storage of w, one for the current key ki and a third one for mi). Finally, hardware
implementations providing some hash coprocessor may drastically increase our speed
rates.

9

4.2
�

2

pk [RSA, ⊕]

Corollary 4. The encryption scheme
� 2

pk [RSA,⊕] is IND-CCA2 in the random oracle
model under the RSA assumption.

For concrete security bounds, the same suggestions as previously lead to a maximal
advantage of ε = 2−58 if we take log2] s = log2] r = 512, qF = qG = 250 and
nmax = 232.

Here again, any smart implementation allows on-the-fly encryption. The memory
requirements are similar to the one of

� 1
pk . Here too, a coprocessor devoted to hash

computations would increase speed rates.

5 Conclusion

We devised new generic constructions which apply to fixed-length weakly secure prim-
itives and provide a strongly secure (IND-CCA2) public-key encryption scheme for mes-
sages of unfixed length like computer files or communications streams. An open ques-
tion resides in investigating whether simpler and/or faster designs could exist, or
whether the security requirements on the primitives could be shrunk further. Another
challenging topic would be to come up with a construction holding only one addi-
tional field in the ciphertext but still employing a probabilistic encryption Epk as in
� 1

pk . Finally, one could try to include a signature scheme in the encryption process
to simultaneously authenticate the sender’s identity, the plaintext and the ciphertext
itself. Such an extension would ideally lead to fast and secure (according to one-more
decryption attacks) signcryption schemes for arbitrary-length messages.

References

1. Olivier Baudron, David Pointcheval, and Jacques Stern. Extended Notions of Security for Mul-
ticast Public Key Cryptosystems. In Proc. of the 27th ICALP, LNCS 1853, pages 499–511.
Springer-Verlag, Berlin, 2000.

2. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key Encryption in a Multi-User
Setting: Security Proofs and Improvements. In Advances in Cryptology – EUROCRYPT ’00,
LNCS 1807, pages 259–274. Springer-Verlag, Berlin, 2000.

3. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. Full paper (30 pages), February 1999. An extended
abstract appears in H. Krawczyk, ed., Advances in Cryptology – CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 26–45, Springer-Verlag, 1998.

4. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In First ACM Conference on Computer and Communications Security, pages
62–73. ACM Press, 1993.

5. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption. In A. De Santis, editor,
Advances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science,
pages 92–111. Springer-Verlag, 1995.

6. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

7. Eiichiro Fujisaki and Tatsuaki Okamoto. How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In H. Imai and Y. Zheng, editors, Public Key Cryptography, volume 1560 of
Lecture Notes in Computer Science, pages 53–68. Springer-Verlag, 1999.

8. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 537–554. Springer-Verlag, 1999.

9. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA–OAEP is Se-
cure under the RSA Assumption. In Advances in Cryptology – CRYPTO’01, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

10

10. Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

11. Moni Naor and Moti Yung. Public-Key Cryptosystems Provably Secure against Chosen Cipher-
text Attacks. In 22nd ACM Annual Symposium on the Theory of Computing (STOC ’90), pages
427–437. ACM Press, 1990.

12. Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryp-
tosystem Transform. In D. Naccache, editor, RSA 2001 Cryptographers’ Track, volume 2020 of
Lecture Notes in Computer Science, pages 159–175. Springer-Verlag, 2001.

13. Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: a New Class of Problems for the
Security of Cryptographic Schemes. In PKC, volume 1992 of Lecture Notes in Computer Science,
pages 104–118. Springer-Verlag, 2001.

14. David Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In H. Imai and
Y. Zheng, editors, Public Key Cryptography, volume 1751 of Lecture Notes in Computer Science,
pages 129–146. Springer-Verlag, 2000.

15. Charles Rackoff and Daniel R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In J. Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91,
volume 576, pages 433–444. Springer-Verlag, 1992.

16. Victor Shoup. OAEP Reconsidered. In Advances in Cryptology – CRYPTO’01, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

A Preliminary

A.1 Notations

It is useful to introduce some notations. If a is some random variable, then] a denotes
the number all possible values of a. For integers a and b, 〈a, b〉 denotes the set on
integers ranging from a to b. For any predicate R(x), R(∗) will stand for ∃x s.t. R(x).
If O is an oracle to which A has access, we denote by query 7→ response the corre-
spondance O establishes between A’s request query and the value response returned
to A. Hist [O] stands for the set of correspondances established by O as time goes on:
Hist [O] can be seen as a memory which gets updated each time A makes a query to
O. We denote by qO the number of calls A made to O during the simulation.

The relation E1 � E2 indicates that the event E1 takes place before the event E2,
if any of them occurs. In other words, when E1 � E2 is true, if E2 ever happens, then
one knows for sure that E1 happened before. By E1, . . . ,Ep � E′

1, . . . ,E
′
q, we mean of

course that Ei � E′
j stands for all i = 1, p and j = 1, q. We note E1 � E2 the event

which sequentially realizes E1 and then E2. Equivalently, E1 � E2 = E1 � E2 ∧ E2.
Again, E1, . . . ,Ep � E′

1, . . . ,E
′
q, means Ei � E′

j for all i = 1, p and j = 1, q. For
convenience, � � E1 (resp. E1 � �) indicates that the event E1 takes place during the
guess (resp. find) stage of A, � representing the instants when A1 ends and A2 starts
interchangeably.

A.2 Extending indistinguishability to scheme products

Let E
1 and E

2 be two symmetric encryption schemes. We define the scheme product
of E1 and E

2, E = E
1 × E

2 by

Ek(m) = (E1 × E
2)(k1,k2)(m1,m2) = (E1

k1
(m1), E

2
k2

(m2)) ,

where all values stand in their respective sets. Then

Lemma 5. If E1 is (τ, ν1)-IND and E
2 is (τ, ν2)-IND then E is (τ, ν1 + ν2)-IND.

Proof. A proof of that fact will appear in the final version of this paper.

Note that [1] and [2] provide similar results for asymmetric encryption schemes.
By immediate induction of lemma 5, we get that if Ei is (τ, νi)-IND for i ∈ 〈1, n〉, then
E =

∏
i E

i is (τ,
∑

i νi)-IND. In particular, if E is (τ, ν)-IND, then (E)n is (τ, nν)-IND.

11

B Security analysis of GEM-1

B.1 Description of the reduction algorithm

B is given an encryption y = Epk (w̃, ∗), an oracle Opca which checks plaintexts for Epk ,
and an adversary A = (A1,A2) that breaks the IND-CCA2 security of

� 1
pk . The goal

of the reduction B is to retrieve the total knowledge of w̃. Each time the reduction
B needs to check whether a plaintext-ciphertext correspondance holds between y and
w (which we denote y = Epk (w, ∗)), the query (y, w) is implicitly sent to Opca which
returns a boolean value. Wlog, we assume that Opca responds to any of B’s requests
with no error and within a time bound τpca.

Overview of B. B runs A1 and provides a simulation for Hi with i ∈ 〈1, nmax 〉,
F and � 1

sk as described later (find stage). A1 outputs a pair of message sequences
(m0,m1) of identical blocklength n ≤ nmax after a certain time. B then randomly
chooses b ∈ {0, 1} and proceeds to the following operations:

– if there exists (w, y) 7→ k1 ∈ Hist [H1] with y = Epk (w, ∗) then w̃ := w and

k̃1 := k1 (event E1) otherwise k̃1 is set to a random value,
– for i ∈ 〈2, n〉, if there exists (k̃i−1,m

b
i , w) 7→ ki ∈ Hist [Hi] with y = Epk (w, ∗)

then w̃ := w and k̃i := ki (event Ei); otherwise k̃i is set to a random value,
– if there exists (k̃n,mb

n, w) 7→ t2 ∈ Hist [F] with y = Epk (w, ∗) then w̃ := w and
t̃2 := t2 (event EF); otherwise t̃2 is set to a random value.

B then computes c̃i = E�
ki

(mb
i) for i ∈ 〈1, n〉 and builds

c̃ = (y, c̃1, . . . , c̃n, t̃2) .

This challenge is given to A2 which outputs some bit after another certain time (guess
stage). Once finished, B will actually check whether some value w̃ was defined during
the game. If so, w̃ is returned as the inversion of Epk on y. Otherwise, the challenge
y is simply rejected i.e., B sets w̃ := ⊥ and stops. The simulation of random oracles
as well as the simulation of the decryption oracle � 1

sk are detailed hereafter. Wlog,
we assume that all simulated oracles keep tracks of their past queries throughout the
game so that, if a query has been presented before and responded with some recorded
output, then the same output is returned. In the sequel, all probabilities are taken
over the random choices of A and B if not otherwise mentioned.

Simulation of H1. For each new query (w, t1),

(event E′
1) if t1 = y and y = Epk (w, ∗) then H1 sets w̃ := w, returns k̃1 and updates

its history,
(event E′′

1) else if y = Epk (w, ∗) then H1 sets w̃ := w, outputs a random value and
updates its history,

(no event) else H1 outputs a random value and updates its history.

Simulation of H � for i ∈ 〈2, n〉. For each new query (k,m,w),

(event E′
i) if processing guess stage and k = k̃i−1, m = mb

i−1 and y = Epk (w, ∗) then

Hi sets w̃ := w, returns k̃i and updates its history,
(event E′′

i) else if y = Epk (w, ∗) then Hi sets w̃ := w, outputs a random value and
updates its history,

(no event) else Hi outputs a random value and updates its history.

12

Simulation of H � for i ∈ 〈n + 1, nmax〉. For each new query (k,m,w),

(event Ei) if y = Epk (w, ∗) then Hi sets w̃ := w, outputs a random value and updates
its history,

(no event) else Hi outputs a random value and updates its history.

Simulation of F. For each new query (k,m,w),

(event E′
F) if processing guess stage and k = k̃n, m = mb

n and y = Epk (w, ∗) then F
sets w̃ := w, returns t̃2 and updates its history,

(event E′′
F) else if y = Epk (w, ∗) then F sets w̃ := w, outputs a random value and

updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of � 1

sk (plaintext extractor). For each new query (t1, c1, . . . , cd, t2),
� 1

sk first checks (this verification step only stands while the guess phase A2 is running)
that (t1, c1, . . . , cd, t2) 6= (y, c̃1, . . . , c̃n, t̃2) since if this equality holds, the query must
be rejected as A attempts to decrypt its own challenge ciphertext. Then, � 1

sk tries to
find the only (if any) message sequence (m1, . . . ,md) matching the query. To achieve
this, � 1

sk invokes the simulations of the random oracles provided by B as follows:

– search for the unique w ∈ Hist [H1] ∪ . . . ∪ Hist [Hd] ∪ Hist [F] such that t1 =
Epk (w, ∗). If such a w exists,

• query H1 to get k1 = H1(w, t1),

• letting m1 = Dk1(c1), query H2 to get k2 = H2(k1,m1, w),

• letting m2 = Dk2(c2), query H3 to get k3 = H3(k2,m2, w),
...

• letting md−1 = Dkd−1
(cd−1), query Hd to get kd = Hd(kd−1,md−1, w),

• letting md = Dkd
(cd), query F to check if F(kd,md, w) = t2. If the equality

holds, return (m1, . . . ,md); otherwise reject the query (event RJ1).

– if the search for w is unsuccessful, reject the query (event RJ2).

B.2 Soundness of B

Simulation of random oracles.

Soundness of H1. The simulation is perfect.

Soundness of Hi for i ∈ 〈2, n〉. The simulation is perfect.

Soundness of Hi for i ∈ 〈n + 1, nmax 〉. The simulation is perfect.

Soundness of F. The simulation is perfect.

13

Plaintext extraction. The simulation of � 1
sk fails when ⊥ is returned although the

query c = (t1, c1, . . . , cd, t2) is a valid ciphertext. Let w and mi, ki for i ∈ 〈1, d〉 denote
the unique random variables associated to c in this case. Further define

Hd =
⋃

i∈〈1,d〉

Hist [Hi] ∪Hist [F] .

Obviously, c was rejected through event RJ2, because a rejection through RJ1 refutes
the validity of c. Therefore, if � 1

sk is incorrect for c, we must have

(� 1
sk incorrect for c) ∧ (c valid) ⇒ w 6∈ Hd .

We now decompose the failure event into several disjoint cases covering all possible
situations.

Assume (kd 6= k̃n) ∨ (md 6= mb
n) ∨ (w 6= w̃).

Since w 6∈ Hist [F] ⊂ Hd, F(kd,md, w) is a uniformly distributed random value un-
known to A. The fact that c is a valid ciphertext implies that F(kd,md, w) = t2, which
happens with probability

Pr
F

[F(kd,md, w) = t2] =
1

] t2
.

Assume (kd,md, w) = (k̃n,mb
n, w̃) and d > n.

Since w 6∈ Hist [Hd] ⊂ Hd, Hd(kd−1,md−1, w) is a uniformly distributed random value
unknown to A. The fact that c is a valid ciphertext implies that Hd(kd−1,md−1, w) =
kd = k̃n, which happens with probability

Pr
Hd

[
Hd(kd−1,md−1, w) = k̃n

]
=

1

] k
.

Assume w = w̃, d < n and (ki,mi) = (k̃n−d+i,m
b
n−d+i) for i ∈ 〈1, d〉.

If t1 = y, we must have k̃n−d+1 = k1 = H1(w, t1) = H1(w̃, y) = k̃1 and this only
happens with probability

Pr�
k1,

�
kn−d+1

[
k̃1 = k̃n−d+1

]
=

1

] k
.

Now suppose t1 6= y. This imposes H1(w, t1) = k̃n−d+1. Because w = w̃ was never
queried to H1, this situation occurs with probability

Pr
H1

[
H1(w, t1) = k̃n−d+1

]
=

1

] k
.

Assume w = w̃, d = n and (ki,mi) = (k̃i,m
b
i) for i ∈ 〈1, n〉.

Obviously t1 6= y, since otherwise c = c̃. Now we must have k̃1 = k1 = H1(w, t1) =
H1(w̃, t1), which happens with probability

Pr
H1

[
H1(w̃, t1) = k̃1

]
=

1

] k
.

14

Assume w = w̃, d ≤ n and (ki,mi) 6= (k̃n−d+i,m
b
n−d+i) for some i ∈ 〈1, d − 1〉.

Let us consider Hj+1 where j = maxi≤d−1{(ki,mi) 6= (k̃n−d+i,m
b
n−d+i)}. We have

kj+1 = Hj+1(kj ,mj , w) = k̃n−d+j+1, which, because w was never asked to Hj+1,
occurs with probability

Pr
Hj+1

[
Hj+1(kj ,mj , w) = k̃n−d+j+1

]
=

1

] k
.

Conclusion.
Gathering all preceding bounds, we get

Pr
[
c is valid ∧ � 1

sk incorrect for c
]
≤

1

] t2
+

4

] k
+

∑

j<d≤n

1

] k
≤

1

] t2
+

n + 3

] k
,

which, taken over all queries of A2, leads to

Pr
[

� 1
sk incorrect

]
≤ q 	 1

sk

(
1

] t2
+

n + 3

] k

)
.

We further define
.

Pr [·] = Pr
[
· | ¬(� 1

sk incorrect)
]
.

B.3 Reduction cost

Success probability. Let us suppose that A distinguishes
� 1

pk within a time bound
τ with advantage ε in less than qF, qH =

∑
i∈〈1,nmax 〉

qHi
, q 	 1

sk
oracle calls. This means

that
.

Pr [A = b] ≥
1

2
+

ε

2
.

Suppose also that Ek is (τ, ν)-indistinguishable. Assuming that the plaintext extractor
is correctly simulated, if none of the events Ei, E′

i, E′′
i or EF occurs, then A never asked

w̃ to any of the random oracles and so could not learn any information whatsoever
about the keys k̃i under which the mb

i were encrypted in c̃ due to the randomness of the
Hi. By virtue of lemma 5, this upper-limits the information leakage on b by nν, since
A’s running time is bounded by τ . Noting Ewin = EF

∨
i∈〈1,nmax 〉

Ei

∨
i∈〈1,n〉 E′

i ∨ E′′
i ,

this means
.

Pr [A = b | ¬Ewin] ≤
1

2
+

nν

2
.

We then get

1

2
+

ε

2
≤

.

Pr [A = b] ≤
.

Pr [A = b | ¬Ewin] +
.

Pr [Ewin] ≤
1

2
+

nν

2
+

.

Pr [Ewin] ,

wherefrom
.

Pr [Ewin] ≥ (ε− nν)/2. But
.

Pr [B = w̃] =
.

Pr [Ewin] and finally,

Pr [B = w̃] ≥
.

Pr [B = w̃]− Pr
[

� 1
sk incorrect

]

≥
ε− nν

2
− q 	 1

sk

(
1

] t2
+

n + 3

] k

)
.

Since the blocklength n of the message sequences (m0,m1) output by A1 cannot exceed
nmax , B inverts Epk on y with probability greater than

ε

2
− q 	 1

sk

(
1

] t2
+

3

] k

)
− nmax

(
ν

2
+

q 	 1
sk

] k

)
,

i.e., succeeds with non-negligible probability.

15

Total number of calls to Opca. Each simulated oracle Hi (resp. F) makes at most
qHi

(resp. qF) queries to the plaintext-checking oracle. Note that the queries required
by � 1

sk were already asked to Opca by either F or one of the Hi. By keeping tracks of
all queries to Opca, it is easy to see that the total number of calls actually needed by
B is upper-bounded by

qOpca ≤ qF + qH where qH =
∑

i∈〈1,nmax 〉

qHi
.

Total running time. The reduction algorithm runs in time bounded by

τB = τ + (q 	 1
sk

+ 1) (qF + qH) · (τpca + O(1)) .

C Security Analysis of GEM-2

C.1 Description of the reduction algorithm

B is given an encryption y = Epk (w̃) and an adversary A = (A1,A2) that breaks the
IND-CCA2 security of

� 2
pk . The goal of the reduction B is to retrieve the total knowledge

of w̃.

Overview of B. B runs A1 and provides a simulation for Gi with i ∈ 〈1, nmax 〉, F,
H and � 2

sk as described later (find stage). A1 outputs a pair of message sequences
(m0,m1) of identical blocklength n ≤ nmax after a certain time. B then chooses b ∈
{0, 1}, k̃1, . . . , k̃n uniformly at random, computes c̃i = E �

ki
(mb

i) for i ∈ 〈1, n〉 and
builds

c̃ = (c̃1, . . . , c̃n, y) .

This challenge is given to A2 which outputs some bit after another certain time (guess
stage). Once finished, B will actually check whether some value w̃ was defined during
the game. If so, w̃ is returned as the inversion of Epk on y. Otherwise, the challenge
y is simply rejected i.e., B sets w̃ := ⊥ and stops. The simulation of random oracles
as well as the simulation of the decryption oracle � 2

sk are detailed hereafter. Wlog,
we assume that all simulated oracles keep tracks of their past queries throughout the
game so that, if a query has been presented before and responded with some recorded
output, then the same output is returned. In the sequel, all probabilities are taken
over the random choices of A and B if not otherwise mentioned.

Simulation of G1. For each new query r,

(event E1) if processing guess stage and there exists s 7→ h ∈ Hist [H] such that
y = Epk (s‖r ⊕ h) then G1 sets w̃ := s‖r ⊕ h, returns k̃1 and updates its history,

(event E′
1) else if there exists s 7→ h ∈ Hist [H] such that y = Epk (s‖r ⊕ h) then G1

sets w̃ := s‖r ⊕ h, outputs a random value and updates its history,

(no event) else G1 outputs a random value and updates its history.

16

Simulation of G � for i ∈ 〈2, n〉. For each new query (k,m, r),

(event Ei) if processing guess stage and k = k̃i, m = mb
i−1 and there exists s 7→ h ∈

Hist [H] such that y = Epk (s‖r ⊕ h) then Gi sets w̃ := s‖r ⊕ h, returns k̃i and
updates its history,

(event E′
i) else if there exists s 7→ h ∈ Hist [H] such that y = Epk (s‖r ⊕ h) then Gi

sets w̃ := s‖r ⊕ h, outputs a random value and updates its history,

(no event) else Gi outputs a random value and updates its history.

Simulation of G � for i ∈ 〈n + 1, nmax 〉. For each new query (k,m, r),

(event Ei) if there exists s 7→ h ∈ Hist [H] such that y = Epk (s‖r ⊕ h) then Gi sets
w̃ := s‖r ⊕ h, outputs a random value and updates its history,

(no event) else Gi outputs a random value and updates its history.

Simulation of F. For each new query (k,m, r),

(event EF) if processing guess stage and k = k̃n, m = mb
n and there exists s 7→ h ∈

Hist [H] such that y = Epk (s‖r ⊕ h) then F sets w̃ := s‖r ⊕ h, returns s and
updates its history,

(event E′
F) if there exists s 7→ h ∈ Hist [H] such that y = Epk (s‖r ⊕ h) then F sets

w̃ := s‖r ⊕ h, outputs a random value and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of H. For each new query s, H outputs a random value and updates its
history.

Simulation of � 2

sk (plaintext extractor). For each new query (c1, . . . , cd, t), � 2
sk

first checks (this verification step only stands while the guess stage A2 is running) that
(c1, . . . , cd, t) 6= (c̃1, . . . , c̃n, y) since if this equality holds, the query must be rejected
as A attempts to decrypt its own challenge ciphertext. Then, � 2

sk attempts to find
the only (if any) message sequence (m1, . . . ,md) matching the query. To achieve this,
� 2

sk invokes the simulations of the random oracles provided by B as follows:

– search for the unique pair (r, s) such that r ∈ Hist [G1]∪ . . .∪Hist [Gd]∪Hist [F],
s 7→ h ∈ Hist [H] and t = Epk (s‖r ⊕ h). If such a pair exists,

• query G1 to get k1 = G1(r),

• letting m1 = Dk1(c1), query G2 to get k2 = G2(k1,m1, r),

• letting m2 = Dk2(c2), query G3 to get k3 = H3(k2,m2, r),
...

• letting md−1 = Dkd−1
(cd−1), query Gd to get kd = Gd(kd−1,md−1, r),

• letting md = Dkd
(cd), query F to check if F(kd,md, r) = s. If the equality

holds, return (m1, . . . ,md); otherwise reject the query (event RJ1).

– if the search for (r, s) is unsuccessful, reject the query (event RJ2).

17

C.2 Soundness of B

Simulation of random oracles. The plaintext w̃ uniquely defines s̃ and ṽ such that
w̃ = s̃‖ṽ. We note r̃ the random variable ṽ ⊕H(s̃). We denote by

– E �s the event that A queries s̃ to the oracle H,
– EG1 the event that A queries r̃ to G1,

– for i ∈ 〈2, n〉, EGi
the event that A queries (k̃i−1,m

b
i−1, r̃) to Gi,

– EF the event that A queries (k̃n,mb
n, r̃) to F,

– E �r the event that A queries r̃ to any of the oracles F, Gi i.e., EF∨EG1 ∨ . . .∨EGn .

Soundness of Gi for i ∈ 〈1, n〉. The simulation of Gi fails when (k̃i−1,m
b
i−1, r̃),

or r̃ in the case of G1, is queried and answered with some value ki 6= k̃i before
s̃ appears in Hist [H]. More precisely, the simulation is perfect if and only if the
predicate (�,E �s � EGi

) is fulfilled, which yields (Gi incorrect)⇔ ¬(�,E �s � EGi
).

Soundness of Gi for i ∈ 〈n + 1, nmax 〉. The simulation is perfect.

Soundness of F. The simulation of F fails when (k̃n,mb
n, r̃) is queried and answered

with some value s 6= s̃ before s̃ appears in Hist [H]. Here, the simulation runs perfectly
if and only if �,E �s � EF. Hence, (F incorrect)⇔ ¬(�,E �s � EF).

Soundness of H. The simulation is perfect.

Conclusion. Gathering preceding results, using ¬(E1 � E2) = (¬E1∧E2)∨(E2 � E1)
and reorganizing in disjoint events, one gets

incorrect oracle ⇔ ∨i≤n¬(�,E �s � EGi
) ∨ ¬(�,E �s � EF)

⇔ ¬(�,E �s � (∨i∈〈1,n〉EGi
∨ EF))

⇔ ¬(�,E �s � E �r)
⇔ (� � E �r) ∧ ¬(E �s � E �r) ∨ (E �r � �) ,

wherefrom

Pr [incorrect oracle] = Pr [(� � E �r) ∧ ¬(E �s � E �r)] + Pr [E �r � �]

≤ Pr [� � E �r | ¬(E �s � E �r)] + Pr [E �r � �] .

Since A1 does not have access to y and because y has a uniform distribution, r̃ is a
uniformly distributed random variable throughout the find stage. Hence

Pr [E �r � �] ≤
q1
F +

∑
i≤n q1

Gi

] r
,

where q1
O is the number of calls to oracles O ∈ {G1, . . . ,Gn,F} that A1 made during

the find stage. Now, throughout the guess stage, A2 cannot gain any information
about r̃ = ṽ ⊕H(s̃) without knowing H(s̃) i.e., without submitting s̃ to H. Hence,

Pr [� � E �r | ¬(E �s � E �r)] ≤
q2
F +

∑
i≤n q2

Gi

] r
.

18

Finally, the probability that an error occurs while B simulates the oracles F, G1, . . . ,Gn

is upper-bounded by

Pr [incorrect oracle] ≤
qF +

∑
i≤n qGi

] r
.

We further define
.

Pr [·] = Pr [· | ¬(incorrect oracle)].

Plaintext extraction. Assume that all random oracles are perfectly simulated through-
out the game. The simulation of � 2

sk fails when ⊥ is returned although the query
c = (c1, . . . , cd, t) is a valid ciphertext. Let r, s, v and mi, ki for i ∈ 〈1, d〉 denote the
unique random variables associated to c in this case. Further define

Gd =
⋃

i∈〈1,d〉

Hist [Gi] ∪Hist [F] .

Obviously, c was rejected through event RJ2, because a rejection through RJ1 refutes
the validity of c. Therefore, if � 2

sk is incorrect for c, we must have

(� 2
sk incorrect for c) ∧ (c valid) ⇒ r 6∈ Gd ∨ s 6∈ Hist [H] .

We now decompose the failure event into several disjoint cases covering all possible
situations.

Assume (kd,md, r) 6= (k̃n,mb
n, r̃) and r 6∈ Gd.

Since r 6∈ Hist [F] ⊂ Hd, F(kd,md, r) is a uniformly distributed random value un-
known to A. The fact that c is a valid ciphertext implies that F(kd,md, r) = s, which
happens with probability

.

Pr
F

[F(kd,md, r) = s] =
1

] s
.

Assume (kd,md, r) 6= (k̃n,mb
n, r̃) and r ∈ Hist [F] ∧ s 6∈ Hist [H].

Suppose that s 6= s̃. Since s 6∈ Hist [H], H(s) is a uniformly distributed random value
unknown to A. The validity of c implies that (kd,md, v⊕H(s)) 7→ s ∈ Hist [F], which
happens with probability

.

Pr
H

[(kd,md, v ⊕H(s)) 7→ s ∈ Hist [F]] ≤
qF

] r
.

Now assume s = s̃. In this case, we must have (kd,md, r) 7→ s̃ ∈ Hist [F] which occurs
with probability

.

Pr
F

[(kd,md, r) 7→ s̃ ∈ Hist [F]] ≤
qF

] s
.

Assume (kd,md, r) = (k̃n,mb
n, r̃) and s 6= s̃.

This is absurd since s = F(kd,md, r) = F(k̃n,mb
n, r̃) = s̃.

Assume (kd,md, r, s) = (k̃n,mb
n, r̃, s̃) and s̃ 6∈ Hist [H].

Since c is a valid ciphertext, we must have r = v ⊕H(s) i.e., H(s̃) = r̃ ⊕ v. Because s̃
was never given to H, this happens with probability

.

Pr
H

[H(s̃) = r̃ ⊕ v] =
1

] r
.

From now on, we suppose that r = r̃, s = s̃, s̃ 7→ r̃⊕ ṽ ∈ Hist [H] (so that t = y) and
r̃ 6∈ Gd.

19

Assume (kd,md) = (k̃n,mb
n) and d > n.

Since r 6∈ Hist [Gd], Gd(kd−1,md−1, r) is a uniformly distributed random value un-
known to A. The fact that c is a valid ciphertext implies that Gd(kd−1,md−1, r) =
kd = k̃n, which happens with probability

.

Pr
Gd

[
Gd(kd−1,md−1, r) = k̃n

]
=

1

] k
.

Assume d ≤ n and (ki,mi) = (k̃n−d+i,m
b
n−d+i) for i ∈ 〈1, d〉.

The case d = n leads to the absurd equality c = c̃. Suppose d < n. Considering G1, we
must have k̃n−d+1 = k1 = H1(r) = H1(r̃) = k̃1 and this only happens with probability

.

Pr�
k1,

�
kn−d+1

[
k̃1 = k̃n−d+1

]
=

1

] k
.

Assume d ≤ n and (ki,mi) 6= (k̃n−d+i,m
b
n−d+i) for some i ∈ 〈1, d − 1〉.

Let us consider Gj+1 where j = maxi≤d−1{(ki,mi) 6= (k̃n−d+i,m
b
n−d+i)}. We have

kj+1 = Gj+1(kj ,mj , r̃) = k̃n−d+j+1, which, because r̃ was never asked to Hj+1, occurs
with probability

.

Pr
Gj+1

[
Gj+1(kj ,mj , r̃) = k̃n−d+j+1

]
=

1

] k
.

Conclusion.
Gathering all preceding bounds, we get

.

Pr
[
c is valid ∧ � 2

sk incorrect for c
]
≤ (qF + 1)

(
1

] s
+

1

] r

)
+

1

] k
+

∑

j<d≤n

1

] k

≤ (qF + 1)

(
1

] s
+

1

] r

)
+

n + 1

] k
,

which, taken over all queries of A2, leads to

Pr
[

� 2
sk incorrect

]
≤ q	 2

sk

(
(qF + 1)

(
1

] s
+

1

] r

)
+

n + 1

] k

)
.

We have

Pr [B incorrect] = Pr [incorrect oracle] + Pr
[

� 2
sk incorrect ∧ ¬(incorrect oracle)

]

≤ Pr [incorrect oracle] + Pr
[

� 2
sk incorrect | ¬(incorrect oracle)

]

≤
qF +

∑
i qGi

] r
+ q 	 2

sk

(
(qF + 1)

(
1

] s
+

1

] r

)
+

n + 1

] k

)
.

We further define
..

Pr [·] = Pr [· | ¬(B incorrect)].

C.3 Reduction cost

Success probability. Let us suppose that A distinguishes
� 2

pk within a time bound
τ with advantage ε in less than qF, qH, qG =

∑
i∈〈1,nmax 〉

qGi
, q 	 2

sk
oracle calls. This

means that
..

Pr [A = b] ≥
1

2
+

ε

2
.

20

Suppose also that Ek is (τ, ν)-indistinguishable. Assuming that the random oracles
and the plaintext extractor are perfectly simulated, if none of the events Ei, E′

i or EF

occurs, then A never asked r̃ to any of the random oracles and so could not learn
any information whatsoever about the keys k̃i under which the mb

i were encrypted
in c̃ due to the randomness of the Gi. By virtue of lemma 5, this upper-limits the
information leakage on b by nν, since A’s running time is bounded by τ . Noting
Ewin = EF

∨
i∈〈1,nmax 〉

Ei

∨
i∈〈1,n〉 E′

i, this means

..

Pr [A = b | ¬Ewin] ≤
1

2
+

nν

2
.

We then get

1

2
+

ε

2
≤

..

Pr [A = b] ≤
..

Pr [A = b | ¬Ewin] +
..

Pr [Ewin] ≤
1

2
+

nν

2
+

..

Pr [Ewin] ,

wherefrom
..

Pr [Ewin] ≥ (ε− nν)/2. But
..

Pr [B = w̃] =
..

Pr [Ewin] and finally,

Pr [B = w̃] ≥
..

Pr [B = w̃]− Pr
[

� 2
sk incorrect

]

≥
ε− nν

2
−

qF +
∑

i qGi

] r
− q 	 2

sk

(
(qF + 1)

(
1

] s
+

1

] r

)
+

n + 1

] k

)
.

Since the blocklength n of the message sequences (m0,m1) output by A1 cannot exceed
nmax , B inverts Epk on y with probability greater than

ε

2
−

qF + qG

] r
− q	 2

sk
(qF + 1)

(
1

] s
+

1

] r

)
−

q	 2
sk

] k
− nmax

(
ν

2
+

q 	 2
sk

] k

)
,

i.e., succeeds with non-negligible probability.

Total running time. The reduction algorithm runs in time bounded by

τB = τ + (q 	 2
sk

+ 1) (qF + qG) qH · (τE + O(1)) ,

where τE denotes the maximum time needed by Epk for a single encryption.

