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Abstract. There is an extensive academic literature that documents
that stocks which have performed well in the past often continue to per-
form well over some holding period - so called momentum. We study the
optimal timing for an asset sale for an agent with a long position in a
momentum trade. The asset price is modelled as a geometric Brownian
motion with a drift that initially exceeds the discount rate, but with the
opposite relation after an unobservable and exponentially distributed
time. The problem of optimal selling of the asset is then formulated as
an optimal stopping problem under incomplete information. Based on
the observations of the asset, the agent wants to detect the unobservable
change point as accurately as possible. Using filtering techniques and
stochastic analysis, we reduce the problem to a one-dimensional optimal
stopping problem, which we solve explicitly. We show also that the opti-
mal boundary at which the investor should liquidate the trade depends
monotonically on the model parameters.

1. Introduction

Momentum is the notion that an asset which has performed well in the
past will continue to do so for some time. Momentum trades may be the
most common asset management strategy, and there is a large literature
about it. The pioneering paper [15] documents that stocks with high recent
performance continue to generate significant positive returns over a 3–12
months holding period. This conclusion was further established in [17], and
[31] found that momentum is present also in international markets. These
papers also show that the momentum effect decays in time to eventually dis-
appear entirely. Having accepted the existence of momentum as a ”stylized
fact” of equity markets, recent academic literature focuses on explaining
the phenomenon; a non-exhaustive list is [2, 4, 5, 7–9, 11–14, 16, 18, 22–
24, 26, 27].

Clearly, one way to benefit from a detected momentum opportunity is
to buy the stock and then liquidate it at some pre-determined future time.
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2 ERIK EKSTRÖM AND CARL LINDBERG

An obvious risk with such a strategy, however, is that the momentum effect
disappears much earlier or much later than the pre-determined liquidation
time.

In this paper, we analyze how to choose optimal liquidation strategies for
momentum trades. More precisely, we seek to maximize the expected profit
from a momentum trade. The expected return of a stock is assumed to be
a constant larger than the discount rate up until some random, and unob-
servable, time θ, at which it drops to a constant smaller than the discount
rate. The assumption that the momentum trend eventually disappears is in
accordance with the consensus in the financial literature, see e.g. [15], [17],
and [31] (for an alternative model for momentum, see [36]). Based on this
model for the expected return, we seek the optimal liquidation time for an
investor with a long position in a momentum trade. Clearly, the investor
wants to hold the position as long as the momentum is present, thereby tak-
ing advantage of the drift exceeding the discount rate. On the other hand,
when the momentum disappears the investor would like to exit the position
to avoid an investment in an asset with an unfavorable drift. However, the
time point θ at which the momentum disappears is not directly observable,
so to exit the position exactly at θ is not possible in general. Instead, the
agent has to make a guess based merely on his observations of the asset price
fluctuations.

We formulate the optimal liquidation problem as an optimal stopping
problem under incomplete information. Applying the filtering techniques
used in the quickest detection problem for a Brownian motion, see [32], we
arrive at an optimal stopping problem under complete information. In addi-
tion to the underlying asset, this problem also involves the Markov process
given by the conditional probability that θ has occurred given the asset
price observations up to current time. Next, using a Girsanov change of
measure and stochastic analysis we reduce the number of spatial dimen-
sions and express the optimal liquidation problem in terms of an auxiliary
one-dimensional optimal stopping problem with an affine pay-off function
for a diffusion. An explicit solution to this auxiliary problem is found by
solving the related free boundary problem involving an ordinary differential
equation. We show that for the auxiliary problem, the optimal stopping
boundary is a constant barrier which depends monotonically on each of the
model parameters. Accordingly, the optimal liquidation strategy for the
momentum trade is to sell the asset the first time t that the conditional
probability that θ ≤ t exceeds a certain level. We also analyze the depen-
dence of the solution on the different model parameters. This is important,
both from a mathematical and from a practical perspective, in order to ob-
tain an understanding of the model sensitivity to changes in the parameter
input and to possible mis-specifications. In particular, we show that the
optimal liquidation level is decreasing in the intensity at which the momen-
tum opportunity disappears, and it is also decreasing with respect to the
volatility of the underlying asset.
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The problem under study in the present paper was also addressed in
[1]. The authors of [1] showed that the optimal liquidation time, for most
parameter choices, coincides with the first hitting time of some level for the
conditional probability that θ has occurred. However, no characterization
of this level or means of calculating it were provided. The same problem
is also discussed in [34]. The authors of [34] write the liquidation problem
as an optimal stopping problem for a two-dimensional Markov process. In
view of the results of these references, the main mathematical contribution
of the current paper is to show that the two-dimensional optimal stopping
problem can be reduced to a one-dimensional problem using the Girsanov
theorem, together with a detailed analysis of the resulting one-dimensional
problem, thereby providing a full solution of the liquidation problem. For
related studies where optimal stopping theory is applied to optimal stock
selling problems, see e.g. [6, 10, 30, 33, 35].

We define the asset price model in Section 2, and the optimal liquidation
problem is set up. Moreover, filtering techniques and the Girsanov theorem
are used to formulate the problem in terms of a one-dimensional auxiliary
optimal stopping problem. In Section 3, the auxiliary optimal stopping prob-
lem is studied, and the optimal stopping time is determined. In Section 4
we study the dependency of the solution on the different model parameters.
Finally, in Section 5 we study a similar case but with an investor who has a
short position in a momentum trade.

2. The Model

We take as given a complete probability space (Ω,F ,P). On this proba-
bility space, let θ be a random variable with distribution P(θ = 0) = π and
P(θ ≥ t|θ > 0) = e−λt. We assume that the intensity λ is positive and that
π belongs to [0, 1).

Next, let W be a Brownian motion which is independent of θ. The asset
price process X is modeled by a geometric Brownian motion with a drift
that drops from µ2 to µ1 at time θ. More precisely,

(1) dXt = µ(t)Xt dt+ σXt dWt

and X0 = x > 0, where

µ(t) = µ2 − (µ2 − µ1)I(t ≥ θ).

Here µ1, µ2 and σ > 0 are constants with µ1 < µ2. Denote by FX =
(FXt )t∈[0,∞) the filtration generated by X, and note that FX is strictly
contained in the filtration generated by X and θ.

Now, let T be the set of (possibly infinite) FX -stopping times. We con-
sider the optimal stopping problem

(2) V = sup
τ∈T

Ee−rτXτ ,
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where the discount rate r ≥ 0 is a given constant. Here (and in all other
similar situations below) we use the convention that e−rτXτ = 0 on the
event {τ =∞}.

Note that if r < µ1 < µ2, then e−rtXt is an FX -submartingale, and
V = ∞ (choose deterministic stopping times τ = t, and let t → ∞). If
r = µ1 < µ2, then e−rtXt is an FX -submartingale and again the supremum
is attained along a sequence of deterministic times (the value V is then
infinite if µ2 ≥ r + λ, and V = πx+ (1− π)xλ/(λ+ r − µ2) if µ2 < r + λ).
Similarly, if µ1 < µ2 ≤ r, then e−rtXt is a supermartingale, V = x, and the
supremum is attained for τ = 0. Therefore, throughout the remainder of
this article, we assume that µ1 < r < µ2.

Remark We emphasize that the supremum in (2) is with respect to FX -
stopping times. This models a situation in which the agent cannot directly
observe the change point θ. Instead he merely observes the asset price
trajectory, and based on these observations he tries to determine an optimal
liquidation strategy.

On the other hand, an agent with complete information about the change
point would choose to liquidate exactly at θ. The expected pay-off for such
an agent would then be

Ee−rθXθ = πx+ (1− π)x

∫ ∞
0

e(µ2−r)tλe−λt dt

=

{
πx+ (1− π)xλ/(λ+ r − µ2) if µ2 < r + λ
∞ if µ2 ≥ r + λ.

Clearly, this value is an upper bound for V .

Remark Another possible interpretation of the liquidation problem de-
scribed above would be that X models the price of an asset bubble. As
long as the bubble lives, the agent clearly wants to keep the asset, but once
the bubble bursts, it is optimal to sell it.

Remark The optimal liquidation problem (2) is also studied in [1]. The
authors of [1] show that the optimal liquidation time is the first passage
time over some unknown level for the a posteriori probability process Π
defined below. However, no characterization of the optimal liquidation level
is obtained.

In [34] a similar problem is studied, but with the difference that the
asset price is modeled by a linear Brownian motion instead of a geometric
Brownian motion. The authors also briefly discuss the case of a geometric
Brownian motion as in (2), and derive a representation in terms of a two-
dimensional optimal stopping problem. One key observation of the present
paper is that, in fact, problem (2) can be reduced to a one-dimensional
optimal stopping problem, and therefore also be solved explicitly.

We define the a posteriori probability process Π by

(3) Πt = P(θ ≤ t|FXt ).
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Note that Π0 = π. It is well-known from filtering theory, compare [32], that
Π satisfies

(4) dΠt = λ(1−Πt) dt− ωΠt(1−Πt) dW̄t,

where

ω = (µ2 − µ1)/σ

and W̄t is a P-Brownian motion with respect to FXt given by

dW̄t =
dXt

σXt
− 1

σ
(Πtµ1 + (1−Πt)µ2) dt(5)

=
1

σ
(µ(t)−Πtµ1 − (1−Πt)µ2) dt+ dWt.

Moreover, in terms of W̄ we have

(6) dXt = (Πtµ1 + (1−Πt)µ2)Xt dt+ σXt dW̄t,

and the filtration generated by W̄ coincides with FX . Furthermore, if

Φt :=
Πt

1−Πt
,

then Φ0 = φ := π/(1− π) and Ito’s formula gives that

dΦt =

(
λ

1−Πt
+ ω2ΠtΦt

)
dt− ωΦt dW̄t.

Next, we note that

Mt := exp

{
−1

2

∫ t

0
(σ + ωΠs)

2 ds+

∫ t

0
(σ + ωΠs) dW̄s

}
is an FX -martingale, and apply a generalized version of Girsanov’s theorem
(Corollary 3.5.2 in [19]) to find the unique probability measure Q such that

Q(A) = E[1AMt],

for A ∈ FXt , 0 ≤ t <∞. Under Q, the new process Z defined by

dZt = −(σ + ωΠt) dt+ dW̄

is a {Q,FX}-Brownian motion. Furthermore,

dΦt = (λ+ (λ− ωσ)Φt) dt− ωΦt dZt.

Our first result shows that the Radon-Nikodym derivative Y can be ex-
pressed conveniently in terms of Φ and X. This important observation is
motivated by results of Klein who showed a similar result in [21] in a setting
with incomplete information about a constant (but random) drift.

Proposition 2.1. Let τ be an FX-stopping time. Then

Ee−rτXτ =
x

1 + φ
EQe(µ2−λ−r)τ (1 + Φτ ).
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Proof. Let ηt = 1/Mt. Then

ηt = exp

{
1

2

∫ t

0
(σ + ωΠt)

2 dt−
∫ t

0
(σ + ωΠt) dW̄t

}
= exp

{
−1

2

∫ t

0
(σ + ωΠt)

2 dt−
∫ t

0
(σ + ωΠt) dZt

}
,

and
dηt
ηt

= −(σu+ ωΠt) dZt.

Moreover,

(7) Ee−rτXτ = EQητe
−rτXτ .

Now, consider the process

Yt =
(1 + Φt)e

(µ2−λ)tx

(1 + φ)Xt
.

Using Ito’s formula, it is straightforward to check that

dYt
Yt

= −(σ + ωΠt) dZt =
dηt
ηt
.

Since Y0 = 1 = η0, it follows that ηt = Yt for all t almost surely. In view of
(7), the result follows. �

It follows from Proposition 2.1 that

(8) V =
x

1 + φ
sup
τ∈T

EQe(µ2−λ−r)τ (1 + Φτ ).

In the next section, we study the optimal stopping problem in the above
form. The implications for the problem (2) are summarized in Corollary 3.4.

3. The auxiliary optimal stopping problem

In this section we study the optimal stopping problem in (8). Thus, on
some probability space, let Φt be a diffusion process satisfying

dΦt = (λ+ (λ− ωσ)Φt) dt− ωΦt dZt,

where Z is a standard Brownian motion. Define

(9) F (y) = sup
τ

Eφe(µ2−λ−r)τ (1 + Φτ ),

where the index indicates that Φ0 = φ, and the supremum is taken over ran-
dom variables that are stopping times with respect to the filtration generated
by Z. Note that V defined in (2) satisfies V = xF (φ)/(1 + φ), compare (8).

The quantity F is infinite if µ2 ≥ λ + r since Φ will reach any positive
level with probability one (choose τ = inf{t : Φt ≥ b} and let b→∞).

We therefore assume throughout this section that µ2 < λ+r. An applica-
tion of Ito’s formula then yields that the drift of the process e(µ2−λ−r)t(1+Φt)



OPTIMAL CLOSING OF A MOMENTUM TRADE 7

is positive if Φt < (µ2 − r)/(r − µ1) and negative if Φt > (µ2 − r)/(r − µ1).
This suggests that the optimal stopping time in (9) is of the form

τB := inf{t ≥ 0 : Φt ≥ B}
for some level B > (µ2 − r)/(r − µ1), compare [37]. Moreover, optimal
stopping theory (see [29]) suggests that the pair (F,B) satisfies the free
boundary problem

(10)


LF + (µ2 − λ− r)F = 0 0 < φ < B
F (φ) = 1 + φ φ ≥ B
F ′(B) = 1
F (0+) <∞

where

(11) LF =
ω2φ2

2
F ′′ + (λ+ (λ− ωσ)φ)F ′.

The ordinary differential equation in (10) has the general solution

(12) F (φ) = Cψ(φ) +Dϕ(φ),

where

(13) ψ(φ) =

∫ ∞
0

e−att(b+γ−3)/2(1 + φt)(γ−b+1)/2 dt

and

ϕ(φ) =

∫ 1/φ

0
eatt(b+γ−3)/2(1− φt)(γ−b+1)/2 dt,

with γ =
√

(b− 1)2 + 4c, a = 2λ/ω2, b = 2
ω ( λω − σ), and c = 2(λ + r −

µ2)/ω2 > 0. (The functions ϕ and ψ can alternatively be expressed in
terms of the confluent hypergeometric functions of the first and second kind,
respectively.)

Lemma 3.1. The function ψ is increasing and convex on (0,∞). The
function ϕ is decreasing and satisfies ϕ(0+) =∞.

Proof. We have

ψ′(φ) =
γ − b+ 1

2

∫ ∞
0

e−att(b+γ−1)/2(1 + φt)(γ−b−1)/2 dt,

which is positive since γ =
√

(b− 1)2 + 4c > b − 1. Hence ψ is increasing.
Moreover,

2ψ′′(φ)

γ − b+ 1
=

(γ − b− 1)

2

∫ ∞
0

e−att(b+γ+1)/2(1 + φt)(γ−b−3)/2 dt.

Now note that µ1 < r implies b < c, which in turn implies that γ > b + 1.
Consequently, ψ is convex.

Similarly,

ϕ′(φ) =
b− 1− γ

2

∫ 1/φ

0
eatt(b+γ−1)/2(1− φt)(γ−b−1)/2dt < 0,
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so ϕ is decreasing. Moreover, for small φ we have

ϕ(φ) =

∫ 1/φ

0
eatt(b+γ−3)/2(1− φt)(γ−b+1)/2 dt

≥ (1−
√
φ)(γ−b+1)/2

∫ 1/
√
φ

0
t(b+γ−3)/2 dt

≥ εφ(1−γ−b)/4,

where ε is some positive constant. Since γ > 1− b, it follows that ϕ(0+) =
∞. �

Remark The function ψ is the unique (up to multiplication with a positive
constant) positive and increasing solution of Lf+(µ2−λ−r)f = 0, compare
pages 18-19 in [3]. Similarly, ϕ is the unique positive and decreasing solution.

Note that the condition F (0+) < ∞ implies that we must have D = 0.
The two boundary conditions at B in (10) then imply that the two remaining
unknowns B and C satisfy {

Cψ(B) = 1 +B
Cψ′(B) = 1.

Using (13) we find that

(14)

{
C
∫∞

0 e−att(b+γ−3)/2(1 +Bt)(γ−b+1)/2 dt = 1 +B

C γ−b+1
2

∫∞
0 e−att(b+γ−1)/2(1 +Bt)(γ−b−1)/2 dt = 1,

and solving for B gives the free boundary equation

2

∫ ∞
0

e−att(b+γ−3)/2(1 +Bt)(γ−b+1)/2 dt =(15)

(γ − b+ 1)(1 +B)

∫ ∞
0

e−att(b+γ−1)/2(1 +Bt)(γ−b−1)/2 dt.

Lemma 3.2. There exists a unique positive solution B to the free boundary
equation (15).

Proof. Define the function g : (0,∞)→ R by

g(x) := 2

∫ ∞
0

e−att(b+γ−3)/2(1 + xt)(γ−b+1)/2 dt(16)

−(γ − b+ 1)(1 + x)

∫ ∞
0

e−att(b+γ−1)/2(1 + xt)(γ−b−1)/2 dt.

Then

g(0+) = 2

∫ ∞
0

e−att(b+γ−3)/2 dt− (γ − b+ 1)

∫ ∞
0

e−att(b+γ−1)/2 dt

= (
4a

b+ γ − 1
− (γ − b+ 1))

∫ ∞
0

e−att(b+γ−1)/2 dt,
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where the last equality follows by integration by parts. Since 4a > 4c =
(γ − b+ 1)(γ + b− 1), it follows that g(0+) > 0. Moreover,

g(x) ∼ −x(γ−b−1)/2(γ − b− 1)

∫ ∞
0

e−attγ−1 dt

for large x. Since γ > b + 1, it follows that g(x) is negative for large x.
Existence of a solution now follows from the continuity of g.

Uniqueness of solutions follows from the fact that

g′(x) = −(γ − b+ 1)(1 + x)

∫ ∞
0

e−att(b+γ+1)/2(1 + xt)(γ−b−3)/2 dt < 0

for all x ∈ (0,∞). �

We next show that the first hitting time of the level B is an optimal
stopping time.

Theorem 3.3. The function F defined in (12) satisfies

F (φ) =

{ 1+B
ψ(B)ψ(φ) φ < B

1 + φ φ ≥ B,
where B is the unique solution to the free boundary equation (15). Moreover,
we have B ≥ (µ2−r)/(r−µ1), and the stopping time τB := inf{t ≥ 0 : Φt ≥
B} is optimal in (12).

Proof. Let B be the unique solution to (15), and define G by

G(φ) :=

{ 1+B
ψ(B)ψ(φ) φ < B

1 + φ φ ≥ B.
Then G(φ) ≥ 1+φ, and G(φ) > 1+φ if and only if φ < B. By (a generalized

version of) Ito’s formula, the process Yt = e(µ2−λ−r)tG(Φt) satisfies

dYt = e(µ2−λ−r)t(µ2 − r + (µ1 − r)Φt)1{Φt>B} dt− e
(µ2−λ−r)tωΦtG

′(Φt) dZt.

Now assume that the solution B to the free boundary equation (15) satisfies
B ≥ (µ2 − r)/(r− µ1) (this is indeed verified below). Then the drift of Y is
negative, and Y is a supermartingale. Moreover, Yt∧τB is a martingale with
a last element.

Now, let τ be a stopping time. An application of the optional sampling
theorem (see Problem 1.3.16 and Theorem 1.3.22 in [19]) yields that

(17) Eφe(µ2−λ−r)τ (1 + Φτ ) ≤ EφYτ ≤ EφY0 = G(φ).

Consequently, F (φ) ≤ G(φ).
Conversely, for τ = τB, the inequalities in (17) are in fact equalities.

Therefore,
F (φ) = sup

τ
EQ
y Yτ ≥ EQ

y YτB = G(φ).

It follows that F (φ) = G(φ).
It remains to show that B ≥ (µ2 − r)/(r− µ1) =: d. To do so, first recall

that, by general optimal stopping theory, see e.g. [20, Theorem D.12], it
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Figure 1. Above: A simulated path of the process Φt for µ1 =
−0.2, µ2 = 0.2, σ = 0.4, r = 0.05, and λ = 3. These parameters
yield B = 1.84 using Equation (15). Below: The stock price Xt for
the same simulation as above. The change point θ and the optimal
stopping time τB are marked with green and red, respectively.

is optimal to stop the first time Φ enters the stopping region {φ ∈ (0,∞) :
F (φ) = 1+φ}. Moreover, points where (L+µ2−λ−r)(1+φ) = µ2−r+(µ1−
r)φ is positive belong to the continuation region {y ∈ (0,∞) : F (φ) > 1+φ}
(this follows by a local argument, see e.g. the remark after Theorem 10.1.12
in [28]). It follows that F satisfies

(18) F (φ) = sup
τ :Φτ≥d

Eφe(µ2−λ−r)τ (1 + Φτ ),

i.e. it suffices to take supremum over stopping times τ such that Φτ ≥ d.
Define the function

Gd(φ) :=

{ 1+d
ψ(d)ψ(φ) φ < d

1 + φ φ ≥ d.

Now, assume that the unique solution B to the free boundary equation sat-
isfies B < d. In that case, the function g in (16) satisfies g(d) < 0. Conse-
quently, the left derivative of Gd at the point d is larger than the right deriv-
ative. In particular, Gd(φ) < 1+φ for some φ < d. It also follows (again, by
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a generalized version of Ito’s formula) that the process e(µ2−λ−r)tGd(Φt) is a

supermartingale, and e(µ2−λ−r)(t∧τd)Gd(Φt∧τd) is a martingale. For stopping
times τ satisfying Φτ ≥ d we therefore obtain

Eφe(µ2−λ−r)τ (1 + Φτ ) = Eφe(µ2−λ−r)τGD(Φτ ) ≤ Gd(φ).

In view of (18), the inequality F (φ) ≤ Gd(φ) follows. However, this is a
contradiction since there exist points with Gd(φ) < 1 + φ, whereas F (φ) ≥
1 + φ everywhere. This finishes the proof. �

Remark A more direct approach to prove that B ≥ (µ2−r)/(r−µ1) would
be to show that g((µ2−r)/(r−µ1)) ≥ 0, where g is defined in (16). However,
we did not find a short argument for this.

The following result is a consequence of Proposition 2.1 and Theorem 3.3.

Corollary 3.4. Let B be the unique positive solution to (15), and φ =
π/(1− π). Then the value V defined in (2) satisfies

V =

{
(1+B)ψ(φ)
(1+φ)ψ(B)x φ < B

x φ ≥ B.

Moreover, the stopping time

τ∗ = inf{t ≥ 0 : Πt ≥ B/(B + 1)}

is optimal in (2).

4. Parameter dependencies

In this section we study the dependence of the optimal liquidation strategy
and the value V on the different parameters of the model.

Theorem 4.1. The value V is decreasing in π, λ and σ. The optimal
liquidation level B is decreasing in λ and σ.

Proof. Recall that φ 7→ F (φ) is convex and satisfies F (φ) = 1+φ for φ ≥ B.
It follows that

(19) (1 + φ)F ′(φ)− F (φ) ≤ 0.

Using the relation V = xF (φ)
1+φ we find that

∂V

∂φ
= x

∂ F (φ)
1+φ

∂φ
=

(1 + φ)F ′(φ)− F (φ)

(1 + φ)2
≤ 0.

Since π = φ/(1 + φ), π is increasing in φ, so V is decreasing also in π.
Next, let λ2 ≥ λ1 > 0 and σ2 ≥ σ1 > 0, and let F1 and F2 be the

corresponding value functions defined by (12). Moreover, let B1 and B2

be the corresponding optimal liquidation levels and let L1 and L2 be the
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corresponding linear operators defined by (11). For y ≤ B2 it follows from
the fact that (L2 + µ− 2− λ2− r)F2 = 0, the convexity of F2 and (19) that

(L1 + µ2 − λ1 − r)F2 =
φ2(µ2 − µ1)2

2
(σ−2

1 − σ
−2
2 )F ′′2

+(λ1 − λ2)((1 + φ)F ′2 − F2) ≥ 0.

If Φ is the process with parameters λ1 and σ1, then

F2(φ) ≤ Eφe(µ2−λ1−r)τB2F2(ΦτB2
) = Eφe(µ2−λ1−r)τB2 (1 + ΦτB2

) ≤ F1(φ).

Note that if φ ≥ B2, then F2(φ) = 1 + φ ≤ F1(φ), so this inequality holds
for all φ. Consequently, F (and hence also V ) is decreasing in λ and in σ.
Since B = inf{φ : F (φ) = 1 +φ}, it also follows that the optimal liquidation
level B is decreasing in λ and in σ. �

1 1.5 2 2.5 3 3.5 4 4.5 5
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5

10

15

20

25
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B

Figure 2. The optimal threshold B as a function of the jump
intensity λ for three different values of the volatility σ. The model
parameters are µ1 = −0.2, µ2 = 0.2 and r = 0.05. Blue: σ = 0.4,
green: σ = 0.35, red: σ = 0.3.

5. Optimal closing of a short position

In this section we consider the opposite situation in which the agent be-
lieves in a small initial drift, and that the small drift is replaced with a larger
drift at a random and unobservable change-point. To trade on this belief,
the agent has a short position in the asset, and he seeks an optimal time to
close the short position. As in the previous case, the optimal closing time
would be precisely at the change-point, but this is in general impossible due
to the change-point being unobservable.
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Let θ be as in the previous sections, let µ1 < r < µ2, and model X by

dXt = µ(t)Xt dt+ σXt dWt,

where the drift now is given by

µ(t) = µ1 + (µ2 − µ1)I(t ≥ θ).
We define

(20) U = inf
τ∈T :τ<∞

Ee−rτXτ .

Note that the infimum is taken over almost surely finite FX -stopping times
(in this way we do not need to define the pay-off for τ = ∞). Define the a
posteriori probability process Π by

Πt = P(θ ≤ t|FXt ),

and let Φt = Πt/(1 − Πt). By the same arguments as in the case of a long
investor, we find that

Ee−rτXτ =
x

1 + φ
EQe(µ2−λ−r)τ (1 + Φτ )

for finite FX -stopping times τ . Here Φ satisfies

dΦt = (λ+ (λ+ ωσ)Φt) dt+ ωΦt dZt,

where Z is a {Q,FX}-Brownian motion. Consequently,

U = xH(φ)/(1 + φ),

where

(21) H(φ) = inf
τ
EQφ e

(µ1−λ−r)τ (1 + Φτ ).

By Ito’s formula, the drift of the process e(µ1−λ−r)t(1 + Φt) is positive if
Φt > (r−µ1)/(µ2− r) and negative if Φt < (r−µ1)/(µ2− r). This suggests
that the optimal stopping time is the first hitting time of the set [A,∞) for
some level A. Moreover, the pair (H,A) should satisfy the free boundary
problem

(22)


LH + (µ1 − λ− r)H = 0 0 < φ < A
H(φ) = 1 + φ φ ≥ A
H ′(A) = 1
H(0+) <∞

where

LH =
ω2φ2

2
H ′′ + (λ+ (λ+ ωσ)φ)H ′.

The differential equation in (22) has the general solution

H(φ) = Cψ(φ) +Dϕ(φ),

where

ψ(φ) =

∫ ∞
0

e−att(b+γ−3)/2(1 + φt)(γ−b+1)/2 dt
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and

ϕ(φ) =

∫ 1/φ

0
eatt(b+γ−3)/2(1− φt)(γ−b+1)/2 dt,

with γ =
√

(b− 1)2 + 4c, a = 2λ/ω2, b = 2
ω ( λω+σ), and c = 2(λ+r−µ1)/ω2.

Using the boundary conditions in (22), we arrive at the free boundary equa-
tion

2

∫ ∞
0

e−att(b+γ−3)/2(1 +At)(γ−b+1)/2 dt =(23)

(γ − b+ 1)(1 +A)

∫ ∞
0

e−att(b+γ−1)/2(1 +At)(γ−b−1)/2 dt.

The following result can then be proved along the same lines as Theo-
rem 3.3 above.

Theorem 5.1. Let A be the unique positive solution to the free boundary
equation (23). Then

H(φ) =

{ 1+A
ψ(A)ψ(φ) φ < A

1 + φ φ ≥ A.

Moreover, the stopping time τA := inf{t ≥ 0 : Φt ≥ A} is optimal in (21).
Furthermore, with ϕ = π/(1− π) we have

U =

{
(1+A)ψ(ϕ)
(1+ϕ)ψ(A)x ϕ < A

x ϕ ≥ A,

and the supremum in (20) is attained for τ∗ := inf{t ≥ 0 : Πt ≥ A/(A+1)}.
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Sweden.


