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Abstract—In the on-demand cloud environment, web appli-
cation providers have the potential to scale virtual resources
up or down to achieve cost-effective outcomes. True elasticity
and cost-effectiveness in the pay-per-use cloud business model,
however, have not yet been achieved. To address this challenge,
we propose a novel cloud resource auto-scaling scheme at the
virtual machine (VM) level for web application providers. The
scheme automatically predicts the number of web requests and
discovers an optimal cloud resource demand with cost-latency
trade-off. Based on this demand, the scheme makes a resource
scaling decision that is up or down or NOP (no operation)
in each time-unit re-allocation. We have implemented the
scheme on the Amazon cloud platform and evaluated it using
three real-world web log datasets. Our experiment results
demonstrate that the proposed scheme achieves resource auto-
scaling with an optimal cost-latency trade-off, as well as low
SLA violations.

Keywords-Cloud computing; Elastic Computing; Resource
prediction; Resource scaling; Web services;

I. INTRODUCTION

The popularity of on-demand cloud service has spurred

the migration of increasing numbers of web applications

to the cloud. One of the most attractive features for cloud

web application providers is the ability to access computing

resource elastically (by scaling up or down) according to

dynamic resource demands. In this scenario, providers only

pay for resources that are consumed at a specific point in

time, which if operated correctly, will result in less cost

and higher quality service than is achievable by hosting

on standard hardware[1]. In a classical case in April 2008,

Animoto, an image-processing web application, experienced

a demand jump from 50 instances to 4000 instances (Ama-

zon EC2 instances) in just three days; following the peak,

traffic fell sharply to a normal level that was well below

the peak [2]. Hence, Animoto only payed for 4000 virtual

instances at peak time and when the peak disappeared, the

unused resources were released. Clearly, elasticity and cost-

effectiveness are two of the key features that ensure cloud

computing will appeal to more customers.

Nevertheless, true elasticity and cost-effectiveness in the

pay-per-use cloud business model have not yet been achieved

completely [3]. The management of allocating cloud re-

source adaptively to on-demand requirements of an applica-

tion, called auto-scaling, can be very challenging. Resource

under-provisioning will unavoidably harm performance and

cause SLAs violations, while resource over-provisioning will

result in resource idle and cost waste. Therefore, the final

objective of an auto-scaling mechanism is to automatically

adjust acquired resources to minimize cost while satisfied

the SLAs.

To address these challenges, we propose a novel scheme

to achieve virtual machine (VM) level auto-scaling of cloud

resources with optimal cost-latency trade-off for the web

application providers. Our proposed scheme strives to al-

locate just enough resources to applications to minimize

resource waste, while avoiding service level agreements

(SLAs) violations without requiring manual intervention.

Three main problems need to be solved to achieve our goal:

(1) to predict correctly how many resources are demanded

in each time-unit of re-allocation; (2) to adaptively adjust

the resource cap based on the predicted resource demands;

(3) to design optimization algorithms to make a trade-off

decision between cost and latency, while meeting the cost

constraints and SLAs on latency metrics.

By leveraging machine learning techniques to analyse

the time series history data of web requests, we discover

the main features that are primarily used to predict the

average number of web requests in a future time-unit (in this

paper, we use a unit of one hour). Considering the predicted

average value as an expectation of the distribution of web

requests that will be allocated to a cloud resource to process

in the coming hour, we model the relationship between

the number of VM instances and the latency (or response

time) by applying a M/M/m model in queueing theory.

The true allocated number of VM instances adds padding to

predicted resource demands. Taking the cloud price model

into account, a multiple optimization model between cost

and latency with constraint conditions is developed.

The main innovations of this paper are summarized as

follows:

(1) From the web application provider’s point of view, to

uncover the features of seasonal time patterns by analysing

the history data of web application requests, for the purpose

of predicting future resource demands;

(2) In each time-unit re-allocation, treat the predicted web



requests as a distribution to allocate resources, instead of

using an average value, to reduce prediction error and SLAs

violations;

(3) For VM-level scaling, considering the waiting time of

web requests to be executed on VMs as a distribution rather

than a fixed value, to model the relationship between latency

and cost by using queueing theory, so that our proposed

scheme can obtain optimized cost-latency trade-off resource

allocation;

(4) Propose a novel resource auto-scaling scheme without

manual intervention by using hybrid methods.

We have implemented the scheme on Amazon AWS and

evaluated it by using three real-world web log datasets. The

experiment results show that the scheme achieves resource

auto-scaling with low prediction errors, as well as optimal

resource allocation with scalar cost-latency trade-off and low

SLA violations.

The remainder of this paper is organized as follows.

In the next section, related works are discussed. Section

III describes the modeling of the system including the

scheme overview and models for addressing the above four

objectives. In Section IV, the experimental evaluation results

are analysed. Finally, our conclusions and future work are

presented.

II. RELATED WORK

This section surveyed related state-of-the-art work in the

field of cloud resource auto-scaling.

There are currently three main approaches for addressing

the auto-scaling problem for application providers (cloud

clients). The first approach is a reactive mechanism, which

does not anticipate the future needs and often refers to

the elasticity rules or threshold-based rules, pre-defined by

application providers. Decisions of scaling-up or scaling-

down are made according to the last values of monitored

variables. Amazon AWS AutoScaling [4] and some cloud

service brokers (RightScale [5], enStratus [6], etc.) offer

rule-based auto-scaling mechanisms to allow users to add

and remove resource at a given time, for example, “run 5

instances from 10:00-20:00 everyday and 1 instances for

other time”. These mechanisms are simple and convenient

when users understand their resource requirements. But it is

hard to complete auto-scale without explicit user’s interven-

tion. In addition, the reactive approach lack of anticipation

may affect the auto-scaling performance to a great extent

when sudden traffic bursts, since it takes several minutes to

instantiate a new VM and a scaling-up action might arrive

too late.

The second approach is a predictive-based method, by

analysing the history data of resource usage and constructing

a mathematical model to anticipate the future resource de-

mand. Consequently the scaling action is done in advance. A

number of work was studied from this view of point. [7][8]

used histogram techniques to predict workload. The history

window values can be in the input of a neural network or a

multiple linear regression equation [9]. In[10], Huang et al.

present a resource prediction model (for CPU and memory

utilization) based on double exponential smoothing, and

compare it with simple mean and weighted moving average.

[11] applied auto-regression to predict the request rate and

found that the history window determines the sensitivity of

the algorithm performance. [12] used a second order ARMA

(auto-regressive moving average) method to predict work-

load. In addition, [13][14] focused on identifying repeated

patterns of the resource demand. [11] proposed using FFT to

identify repeating patterns in resource usage (CPU, memory,

IØand network) and compare it with auto-correlation, auto-

regression and histogram.

The final approach is a hybrid method. [15] proposed

a hybrid scaling technique that utilizes reactive rules for

scaling up and a regression-based approach for scaling

down. In [13], Shen et al. presented an online resource

demand prediction and prediction error handling to achieve

adaptive resource allocation without assuming any prior

knowledge about the applications running inside the cloud.

In addition, control theory has also applied to automate

cloud resource provisioning. It is a mainly reactive method

but also can be used with combining a predictive model.

[16][17][18] applied control theory to achieve adaptive fine-

grained resource allocations based on feedback of service

level objective (SLO) conformity. However, parameters in

such approaches often need to be specified or tuned off-line.

III. SYSTEM MODELING

In this section, we introduce the overview of the proposed

scheme and describe the system model used in this paper.

A. Overview of the Scheme

Our scheme scales the cloud resource up or down (or

NOP) by time-unit re-allocation based on predicted optimal

resource demands. Web application providers can specify

their budgetary constraints and SLA in respect of latency

for their applications. In each time-unit, web application

providers can be notified of the total cost, SLA violations

and re-allocation state (e.g. scaling up or down or NOP) by

using the optimal resource auto-scaling scheme. Notice that

in practical applications, an unpredictable burst of number

of requests will happen as a similar situation as which the

Animoto experienced. To tackle this unpredictable scenario,

this scheme monitors the waiting queue of requests to be

processed in real-time. Once the length of the queue is bigger

than a threshold, the scheme could dynamically append

VMs to process the exceeding number of requests. Figure1

illustrates the overview execution paradigm facilitated by the

scheme.

As shown in Figure 1, the main steps of our scheme are

outlined as follows.

1) to collect request records as the history data;
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Figure 1. Optimal Cloud Resource Auto-scaling Overview.

2) to analyse the history data hourly and predict the

number of requests for the next time-unit (Sub-

section III-B);

3) to discover the optimal number of VMs by utilizing

the Optimization Model (Sub-section III-C);

4) to scale the resource(VMs) up or down or NOP from

a public cloud platform

B. Prediction Model

Because launching a VM instance takes several tens of

seconds to minutes, we propose a predictive-driven resource

scaling approach. As the parameters of a VM underlying

resource, such as CPU, memory, I/O or network bandwidth,

are not necessarily dependent [19], it is not trivial to model

resource demand prediction directly within these parameters

(i.e. resource-level). Our work predicts the web request

distribution in each time-unit. Subsequently, we model the

resource demand based on the predicted web request distri-

bution at a VM-level (that is, by considering the number of

VMs, rather than the number of configuration parameters as

the resource demand quantity).

1) Definition: To predict the number of web requests,

the web request data is generally denoted as a time series

[20]:{X(t); t ∈ T}, where T is an index of the time

fragment, and X(t) is the random variable, representing the

total number of requests that arrive in the t time fragment.

The prediction problem can be defined as follows: given

the current and past observed values (X(t− k), X(t− k +
1), ...X(t − 1), X(t)), predict the future value X(t + p),
where k is the length of the history data used for prediction

and p is the predictive time fragment.

2) Key Features Identification: Considering most online

web requests have a seasonal or periodical behavior to some

extent, we design a novel Linear Regression approach for

prediction by using an auto-correlation function to identify

the key features.

For instance, a mail server usually experiences the highest

web traffic volume every Monday morning, while at mid-

night, web requests drop to a low level; also, the number

of requests will be much higher on weekdays than on

weekends. Many more users may request a mail service on

festivals and holidays than on other days. Therefore, the web

requests behavior pattern can be established and key features

such as hourly, daily, weekly, monthly, seasonally, etc., can

be identified by analysing the history data.

Considering a web requests time series (X(t− k), X(t−
k + 1), ...X(t − 1), X(t)), where X(t) represents the total

requests to arrive during this time fragment t, the web

request in the next time fragment t is related to the web

request volume in previous time fragments, whether there

are two, ten, or hundreds of time fragments. We utilize a

linear model to present their relationship.

X(t) =
N
∑

i=1

wiX(t− i) (1)

where wi is the weight of different related X(t− i), and N
is the number of related time fragments.

Based on equation (1), we can estimate all wi by utilizing

a linear regression method to obtain the prediction model.

If the related time fragments are too many, an overfitting

problem will occur and prediction accuracy may be reduced.

The top key features that mainly determine the predicted

value should be identified. In this work, we apply the auto-

correlation function to identify the key features [21]. For the

request state in each time fragment X(t), its auto-correlation

with another request X(t− i) is calculated by

ρt,t−i =
E{[X(t)− µ][X(t− i)− µ]}

σ(t)σ(t− i)
(2)

For different i, we obtain a vector V = {mean
t

(ρt,t−i)|i ∈

[1, N ]}. We select K elements with top values from the

sorted vector V as the K key correlated features. These

selected elements are composed of a new vector N̄ . For

t′ ∈ [1, N̄ ], the linear regression model can be estimated as

follows:

X(t) =

K
∑

t′=1

wt′X(t′) (3)

3) Modelling the Relationship between Cost and Latency:

To estimate the relationship between web request volume,

cost and latency, we take the following into consideration in

our scheme design: (1) cost (C) prediction depends on the

number (M ) of VMs changing, e.g C=f(m); (2) latency

(L) consists of execution time (Ts) and waiting time for

executing (Tq); (3) the arrivals of requests to be processed

on VMs obey a Poisson distribution with rate λ , and the

executed requests on VMs are also considered as a Poisson

distribution with rate µ. For convenience, each web server is



installed on one VM and all VMs belong to the same type

of instance with the same process capacity. These allocated

VMs come from an infinite cloud-based resource pool.

We employ the queueing theory technique to model

this relationship and we consider the arrival-execution of

requests on VMs as a birth-death process, which is a special

Markov chain [22], as shown in Figure 2.
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Figure 2. Transition Rate for the Web Requests Process on VMs

Due to the allocation of multiple servers (or VMs) in

the scheme, this process of the arrival-execution of requests

on VMs is modeled as M/M/m queueing: the arrivals are

poisson with rate λ (λ = E(X(t)), and each VM has an

independent and identical distribution exponential execution-

time distribution with mean µ . Since the execution-time

of the web request on a given type of VM can be ob-

tained by experiments, the execution-time Ts is known and

µ = 1/E(Ts).
There are m VMs in the system and we allocate one web

request to be processed on each one VM in parallel at every

instant time-point with a constant rate, so that the ”birth”

rate is λn = λ for all n. The rate of request completions

(or ”deaths”) depends on the number of VMs in the system.

If there are m or more requests in the system, then all m
servers must be busy at the instant time-point. Since each

VM processes requests with rate µ, the combined process-

completion rate for the system is (mµ). When there are fewer

than m customers in the system, e.g. i < m, only i of the

m VMs are busy and the combined service-completion rate

for the system is (iµ). Hence µi may be written as

µi =

{

iµ 1 6 i < m,
mµ i > m

(4)

Based on the Markov chain in Figure 2, we obtain the

steady-state probabilities pi

pi =

{

λi

i!µi p0 1 6 i < m,
λi

m(n−m)m!µi
p0 i > m

(5)

To obtain the value of p0, we use the condition that the

probabilities must add to 1 (
∑

∞

i=0 pi = 1).

p0 = (

m−1
∑

i=0

λi

i!µi
+

∞
∑

i=m

λi

m(i−m)m!µi
)−1 (6)

With the steady-state probabilities pi, we can calculate the

expected queue size Lq . Lq equals zero when the request

number i is no more than VM number m, and is equal to

(i − m) when the request number i is more than the VM

number n , and thus,

Lq =
∞
∑

i=m+1

(i−m)pi (7)

Based on Little’s Formula [22] Lq = λTq , where Tq =
E(tq) is the expected length of the waiting time in queue

tq .

Tq =
Lq

λ
= p0(

(λ/µ)m

m!(mu)(1− ( λ
mµ

)2
) (8)

With the expected waiting time Tq , we can calculate the

expected response time (average latency) L by the equation

below:

L(λ, µ,m) = Tq + Ts (9)

C. Optimization Model

1) Objective Function: Recall that the web application

provider’s greatest concern is to maximize profit (e.g. by

minimizing cost) while providing high quality service (e.g.

by minimizing latency) with lower SLA violation. However,

these two factors are in conflict. As in our cloud-based web

system, with the cost demand on the number of allocated

VMs, we can reduce the number of VMs to keep the cost as

low as possible when there are insufficient VMs to process

requests, but the waiting time in the queue will be too long.

To solve this problem, we exploit the cost-latency trade-off

optimization objective function, as follows:

arg min
m,λ,µ

Γ(λ, µ,m) = α∗f(m)+(1−α)∗L(λ, µ,m) (10)

where α ∈ [0, 1] reflects the importance ratio of cost and

latency.

Due to the different scale of the number of VMs and

latency, we can normalize the latency by equation

G = L/T (11)

where T is the latency threshold, which is defined in

SLAs. To normalize the number of VMs, we consider the

equation

C ′ = F (m) =
f(m)− fmax(m)

fmax(m)− fmin(m)
(12)

where f(m), fmax(m) and fmin(m) refer to the VMs cost

per time-unit, the least possible cost per time-unit and the

maximum possible cost per time-unit, respectively. Then, we

derive the following objective function for the optimization.

arg min
m,λ,µ

Γ(λ, µ,m) = α∗F (m)+(1−α)∗G(λ, µ,m) (13)



Based on predicted requests in unit time t ,λ and µ are

given, and the latency function in unit time t can be written

as

Lt(λ, µ,m) = Lt(m) (14)

Considering the need to satisfy web application providers’

cost constraints and SLAs violation in respect of latency, the

final objective function of the cost-latency trade-off in unit

time t is obtained by the following:

argmin
m

Γt(m) = α ∗ Ft(m) + (1− α) ∗Gt(m) (15)

subject to:

∀t : Ct(m) ≤ Ctmax;Pr{Lt(m) > T} 6 K% (16)

where the SLAs violations constraint K is usually defined

as K ∈ [2, 5] for web applications.

Assuming each server could tackle k requests within time

T , the m VMs could tackle mk requests. This means that

the SLA will be satisfied when the queue length is less than

mk, because all requests could be tackled within time T . By

referring to Figure 2, we know that only the previous mk
steady-state can satisfy the SLA, and others will violate the

SLA. So the equation of SLAs violations constraint can be

written by

Pr{Lt(m) 6 T} =
mk
∑

i=0

pi > (1−K%) (17)

2) Solving the Optimization Problem: To minimize the

objective function, we wish to find an optimal number of

VMs m to obtain the cost-latency trade-off values, satisfying

all constraints. Clearly, equation 15 is a complex nonlinear

function and hard to simplify by mathematical methods.

Considering that the number of VMs the web application

provider purchased is limited, we exploit an exhaustive

search algorithm to calculate the Γ with different m, and

to find the lowest Cost and the related m, as shown in

algorithm 1.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the

proposed scheme. We first describe experiment setup and

datasets used in our experiments, followed by the analysis

and discussion of the evaluation results.

A. Experiment Setup and Datasets

We evaluate the performance of the scheme by using three

kinds of real-world datasets. We consider the well-known

AOL 1 and Sogou 2 search log dataset, as well as another

real-world dataset collected by the UTS (The University of

Technology, Sydney) library, to evaluate the performance.

1http://www.infochimps.com/datasets/aol-search-data
2http://www.sogou.com/labs/dl/q-e.html

Algorithm 1 Computing optimal number of VMs

input

λ - arrival rate, µ - process rate per VMs,

α - priority of cost, K - threshold of SLA violation

output

m - optimal number of VMs

1: minV = ∞
2: for (n = 1..N) do

3: lt = L(λ, µ, n); //Equation (9)

4: lt
′ = normalize(lt); //Equation (11)

5: n′ = normalize(n); //Equation (12)

6: newV = α ∗ n′ + (1− α) ∗ lt
′; //Equation (15)

7: if ( (n satisfy constraint(K)) // Equation (17)

&& (newV < minV ) ) then

8: m = n;

9: minV = newV ;

10: end if

11: end for

Because most VMs instances in public clouds are charged

hourly, the time-unit of re-allocation in our work is the hour-

unit. Therefore, we set the length of time fragment as one

hour, and aggregate the number of requests for each hour.

We organize the experiment by steps as follows:

1) investigate how the seasonal characters affect the

selection of features for prediction modeling (Sub-

section IV-B1);

2) evaluate the prediction model through three datasets

(Sub-section IV-B2);

3) visualize the performance of the prediction model

(Sub-section IV-B3);

4) evaluate the allocation performance for the given num-

ber of requests (Sub-section IV-B4);

5) compare our scheme with other approaches (Sub-

section IV-B5).

B. Evaluation and Results

1) Features Selection Evaluation: To measure the sea-

sonal characters, we compare the difference between two

time periods. We represent the number of requests in each

hour as a vector <v1, ..., vi, ...v60>, where vi is the requests

volume within one minute. We consider each vector as a

distribution, and apply the Kullback-Leibler (KL) divergence

to measure the difference between two distribution probabil-

ities.

DKL(P ||Q) =
∑

i

ln(
P (i)

Q(i)
)P (i) (18)

Because the KL divergence is a non-symmetric measure,

we utilize a variant Symmetrizing KL (SKL) divergence

[23] to evaluate as



SDKL(P ||Q) =
DKL(P ||Q) +DKL(Q||P )

2
(19)

By taking the hourly number of requests as an element,

the requests volume in a day can be considered as a 24-

length vector. Each vector is treated as a distribution, and

can be calculated by the SKL divergence with another hourly

vector. Similarly, the hourly vector can be extended to a

weekly or monthly vector. Table I shows the average SKL

divergences on hourly, daily and weekly vectors with three

datasets.

Table I
AVERAGE SKL DIVERGENCE ON DIFFERENT PERIOD VECTOR

Dataset Hour Day Week

AOL 0.0324 0.0283 0.0229
UTSlib 0.0667 0.0302 0.0577
Sogou 0.0054 0.0086 0.0110

For the SKL divergence, 1 represents the greatest dis-

tance and 0 describes the smallest distance. All the SKL

divergences in Table I are small, which demonstrates that

the three datasets have highly seasonal characters and the

number of requests can be predicted by using the history

data.

Before learning the prediction model, we need to select

the key features for the linear regression model. Table II

represents the top 10 correlated features. The results in

Table II show that the request volume in time-unit t is most

correlated to that of the first previous unit-time t− 1.

Table II
TOP 10 CORRELATED LAGS

Period Correlated lag (ordered by correlation descent)

AOL 1,2,3,4,5,145,144,146,6,143
UTSlib 1,2,169,25,168,24,170,145,26,3
Sogou 1,25,2,49,24,26,73,48,50,97

2) Evaluation Methods: We choose several common

measurements for the regression model, such as Root Mean

Squared Error (RMSE), Relative Squared Error (RSE), Mean

Absolute Error (MAE), Relative Absolute Error (RAE), and

coefficient of determination (R2).

RMSE =

√

∑n

i=1(pi − ai)2

n
(20)

RSE =

∑n

i=1(pi − ai)
2

∑n

i=1(āi − ai)2
(21)

MAE =

∑n

i=1 |pi − ai|

n
(22)

RAE =

∑n

i=1 |pi − ai|
∑n

i=1 |āi − ai|
(23)

R2 =

∑n

i=1(pi − p̄i)
2

∑n

i=1(ai − āi)2
(24)

where a is the actual value, p is the predicted value.

We choose 10-fold cross validation as the evaluation

method. Table III shows the performance of the regression

model on three datasets.

Table III
PERFORMANCE OF REGRESSION MODEL

Data Avg Req RMSE RSE MAE RAE R2

AOL 1.6*103 191 0.05 140 0.19 0.98

UTSlib 2.9*104 4582 0.10 3082 0.25 0.96

Sogou 7.6*104 5617 0.02 3555 0.10 0.99

3) Prediction Model Evaluation: In a practical applica-

tion, a padding is added to the predicted value as the cap

(U ) of prediction.

U = (1 + padding) ∗ prediction (25)

We evaluate the prediction accuracy by utilizing the confi-

dence interval Pr(x < U), which represents the probability

that real demands (x) are less than the cap (U ) of the

prediction. To select a good padding value, we measure the

relationship between the padding value and the confidence

interval, as shown in Table IV.

Table IV
THE CONFIDENCE INTERVAL WITH DIFFERENT PADDINGS

Padding (%)
Confidence Interval Pr{x6U}

AOL (%) UTSlib (%) Sogou (%)

5 69.27 68.63 86.84
10 82.96 81.16 95.44
15 91.46 89.67 98.60
20 95.49 94.43 99.30
25 97.57 97.10 99.30
30 98.50 98.17 99.65
35 99.13 99.05 100
40 99.42 99.46 100
45 99.56 99.64 100
50 99.76 99.79 100

Figure 3 shows that our scheme achieves good prediction

on both number of requests and resource demands, and that

the padding value can be dynamically adjusted well in each

time interval.

4) Allocation Evaluation: Our allocation approach is

related to the arrival rate λ (per minute), process rate µ (per

minute), maximal process time T (s), SLA violation ratio

threshold K, and cost priority α. We define r = λ/µ as the

minimal required number of VMs, and consider m as the

optimal number of VMs allocated by our scheme.
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Figure 3. Prediction and Allocation with a Dynamic Cap

With the given µ = 10, T = 60, K = 2% and α = 0.8,

we change the λ from 10 to 300. Figure 4 (a) shows that a

bigger padding (m−r) should be allocated when the number

of requests increases. Meanwhile, Figure 4 (b) shows that

the relative ratio between m and r (i.e.m/r) decreases to

be close to 1, which means the scheme achieves good cost-

effectiveness when the number of requests rises.
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Figure 4. Allocation with Queuing Theory.

5) Performance Evaluation for a Web Application: We

implement our scheme on Amazon AWS with a Web

application. This scheme can rent or lease VM instances

automatically from Amazon EC2. To simplify the problem,

our experiment only considers the cost of VMs with same

type of instances. We simulate the frequency of requests

based on the real datasets, and the process time of requests

obeys Poisson distribution ( 1
µ
= 6 seconds).

We compare our approach (QT) with another three ap-

proaches: PEAK, PEAK(×3/4) and Cap(×2). For Peak

approach, the number of VMs is always allocated based on

the peak value, while PEAK(×3/4) is an approach to reduce

cost by allocating the number of VMs as 3/4 of peak value.

For the CAP(×2) approach, the resource cap is set as two

times of the minimal number of VMs that can satisfy the

predicted the number of requests by considering all requests

that arrived with an average rate.

As Figure 5 and Table V shows, our approach allocates

less resources, while achieving better performance compared

to the PEAK(×3/4) and Cap(×2). Compared to the PEAK,

our approach reduces much less numbers of VMs, although

with slightly higher SLA violation rate.
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Figure 5. Allocation Comparison for Different Methods

Table V
PERFORMANCE COMPARISON FOR DIFFERENT METHODS

Dataset Approach
# Req # VMs Violate Avg Tq

/h /h (avg) (%) /h (s)

AOL

PEAK 1916 13.25 0.03 6.15
PEAK (×3/4) 1916 9.94 0.63 16.15

CAP(×2) 1916 7.33 0.57 15.61
QT 1916 7.21 0.18 9.96

UTSlib

PEAK 2165 21.00 0.02 7.46
PEAK (×3/4) 2165 15.75 0.45 19.15

CAP(×2) 2165 8.25 0.24 13.73
QT 2165 7.75 0.20 11.87

Sogou
PEAK 2954 25.67 0.06 8.32

PEAK (×3/4) 2954 19.23 1.02 26.15
CAP(×2) 2954 10.67 0.76 18.35

QT 2954 9.70 0.54 13.54

V. CONCLUSION & FUTURE WORKS

In this paper, we proposed an optimal VM-level auto-

scaling scheme with cost-latency trade-off. In each re-

allocation time-unit, we predicted the number of requests

based on history data by exploiting machine learning tech-

niques and time series analysis. Considering the predicted

results, we discovered an optimal number of VMs by utiliz-

ing queueing theory and multi-objective optimization. Based

on the optimal VMs demanded to be allocated, the system

makes a decision of scaling up or scaling down or NOP. The

experimental results demonstrate that the proposed scheme



can balance the cost and desired latency. Compared to other

methods, our scheme presents superior price-performance

ratio across three real-world datasets. This research will

potentially accelerate the migration of web applications

to the cloud systems. The consideration of more general

queueing models and other types of VMs (e.g multi-tenant

shared) to extend this work will be conducted in the future.
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