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Abstract—For several major applications of data analysis, objects are often not represented as feature vectors in a vector space, but

rather by a matrix gathering pairwise proximities. Such pairwise data often violates metricity and, therefore, cannot be naturally

embedded in a vector space. Concerning the problem of unsupervised structure detection or clustering, in this paper, a new

embedding method for pairwise data into Euclidean vector spaces is introduced. We show that all clustering methods, which are

invariant under additive shifts of the pairwise proximities, can be reformulated as grouping problems in Euclidian spaces. The most

prominent property of this constant shift embedding framework is the complete preservation of the cluster structure in the embedding

space. Restating pairwise clustering problems in vector spaces has several important consequences, such as the statistical description

of the clusters by way of cluster prototypes, the generic extension of the grouping procedure to a discriminative prediction rule, and the

applicability of standard preprocessing methods like denoising or dimensionality reduction.

Index Terms—Clustering, pairwise proximity data, cost function, embedding, MDS.

�

1 INTRODUCTION

MODERN data mining poses several major challenges to
experimental scientists. Beside the inherent difficulty

of interpretation and validation of, e.g., unsupervised
methods, data arises in a variety of forms which require
appropriate treatment. For several major applications, data
is often not available as feature vectors in a vector space. For
instance, genomics typically produce data represented as
strings from some alphabet, psychology yields sets of
similarity judgments, yet other fields like social sciences
measure so-called preference data. The missing vector space
representation precludes the use of well established
clustering or classification techniques such as Principal
Component Analysis [1] or Support Vector Machines [2].

Nonvectorial data sets as such are difficult to handle and,
for data mining purposes, we need to relate them to some
mathematical concept. A common approach is to replace
the initial data by a collection of real numbers representing
some “comparison” among the elements of the data set.
This can be straightforward, as for similarity judgments, or
highly nontrivial as for string data, where the similarity
score may be derived by a complex alignment algorithm.
This procedure yields a matrix gathering the pairwise
relations between the original objects, which may be the
starting point of intelligent data analysis, see, e.g., [3] for an
example of such a procedure in the field of image retrieval.
We like to stress here that such a matrix is by no means
naturally related to the common viewpoint of objects being
embedded in some “well-behaved” space with a vector
space structure. In particular, for pairwise data, there is no

well-established denoising method. In applications like
string matching, however, noise reduction is an important
issue. Many alignment algorithms produce noisy data,
which, when fed to some clustering algorithm, typically
yield poor results.

In this contribution, we therefore study properties of
embedding strategies in the context of clustering. We will
proceed as follows: We begin with a short overview of
proximity-based data grouping and, then, we focus on
reformulating such problems with vectorial data represen-
tations. For the class of pairwise clustering methods that are
related to minimizing a shift-invariant cost function, our
main contribution is a novel embedding strategy, which we
call constant shift embedding. A surprising property of this
embedding is the complete preservation of group structure.
The original nonmetric pairwise clustering problem can be
restated as a grouping problem over points in a vector
space, yielding identical assignments of objects to clusters.
Using the constant-shift embedding principle, we then
demonstrate the equivalence between the pairwise clustering
cost function and the classical k-means grouping criterion in
the embedding space.

2 PROXIMITY-BASED CLUSTERING

Unsupervised grouping or clustering aims at extracting
hidden structure from data [4]. The term data refers to both
a set of objects and a set of corresponding object
representations resulting from some physical measurement
process. Different types of object representations are
possible, the two most common of which are vectorial data
and pairwise proximity data. In the first case, a set of n objects
is represented as n points in a d-dimensional vector space,
whereas in the second case, we are given a n� n pairwise
proximity matrix.

The problem of grouping vectorial data has been widely
studied in the literature, and many clustering algorithms
have been proposed [4], [5]. One of the most popular
methods is k-means clustering. It derives a set of k prototype
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vectors which quantize the data set with minimal quantiza-
tion error.

Partitioning proximity data is considered a much harder
problem since the inherent structure is hidden in n2 pairwise
relations. This datatype, however, is abundant in many
applications such as molecular biology, psychology, lin-
guistics, etc. In general, the proximities can violate the
requirements of a distance measure, i.e., they may be
nonsymmetric and negative and the triangle inequality does
not necessarily hold. Thus, a loss-free embedding into a
vector space is not possible, so that grouping problems of
this kind cannot directly be transformed into vectorial
problems by means of classical embedding strategies.

Presumingly, the most popular classical embedding
method for nonmetric data is Multidimensional Scaling
(MDS) (see, e.g., [6] for a recent overview), where one seeks
a low-dimensional representation of data such that the
distortion of the pairwise dissimilarities Dij is minimal with
respect to some cost function. One widely used cost
function is the SSTRESS criterion, [7]:

J ¼
Xn
i;j¼1

!ij

�
d2ij �D2

ij

�2
; ð1Þ

where dij ¼ kxi � xjk are the transformed distances in low-
dimensional space, and !ij are weights. Typically, these
weights read:

!ij ¼
1

nðn� 1ÞD2
ij

; !ij ¼
1P

k;l D
2
kl

; or !ij ¼
1

Dij

P
k;l Dkl

:

ð2Þ

The choice in (2) relates to the minimization of relative,
absolute, or intermediate error (see, e.g., [4]).

The problem with this MDS approach, however, is that
clustering the embedded data-vectors, in general, yields
partitionings different from those obtained by directly
solving the pairwise problem. Even worse, by guaranteeing
low (but nonzero) distortions of the proximities, it is still
unclear how the object assignments are affected by the
embedding.

Among several methods for clustering proximity-based
data, in the following, we will focus on those techniques
that explicitly minimize a certain cost function. This subset
of clustering methods includes, e.g., graph-theoretic ap-
proaches like several variations of Cut criteria [8], and
several methods derived from an axiomatization of pair-
wise cost functions in [9]. From a theoretical viewpoint,
cost-based clustering methods are interesting insofar as
many properties of the grouping solutions can be derived
by analyzing invariance properties of the cost function.

Among the class of cost-based criteria, the main focus of
this work concerns those cost functions which are invariant
under constant additive shifts of the pairwise dissimila-
rities. For this subset of clustering criteria, we show that
there always exists a set of vectorial data representations
such that the grouping problem can be equivalently
restated in terms of Euclidian distances between these
vectors. A special cost function of this kind is the pairwise
clustering cost function. It is of particular interest since it
combines the properties of additivity, scale and shift
invariance, and statistical robustness, see [9]. In [10], this
grouping problem is stated as a combinatorial optimization

problem which is optimized in a deterministic annealing

framework after applying a mean-field approximation.
According to the Theorem 3, we can always find a

vectorial data representation such that the optimal parti-
tioning with respect to the pairwise cost function is identical
to k-means partitioning in the embedding space. This
property demonstrates that the embedding method is
optimal with respect to to distortions of the data partition.
This distortion preserving embedding has to be contrasted
with alternative, in our view not consistent, approaches that
are optimal with respect to some a priori chosen MDS
distortion measure.

Formulating pairwise clustering as a k-means problem

yields several advantages, both of theoretical and technical

nature: 1) the availability of prototype vectors defines a

generic rule for using the learned partitioning in a

predictive sense, 2) we can apply standard noise- and

dimensionality-reduction methods in order to separate the

“signal” part of the data from underlying “noise,” and

3) fast and efficient local search heuristics for optimizing the

clustering cost functional often work much better in low-

dimensional embedding spaces.

2.1 The Pairwise Clustering Cost Function

The modeling idea behind the Pairwise Clustering cost
function is to minimize the sum of pairwise intracluster
distances, emphasizing compact clusters. Optimizing a
compactness criterion is certainly a very intuitive meta-
principle for exploratory data analysis. It should be noticed,
however, that other such metaprinciples have been pro-
posed, such as separation measures, mixed compactness/
separation measures, or connectivity measures. We will
discuss the relation of Pairwise Clustering to some of these
methods in Section 5.

In order to formalize Pairwise Clustering, we define

for each object a binary assignment variable that indicates

its cluster membership. Let these variables be summar-

ized in the ðn� kÞ binary stochastic assignment matrix

M 2 f0; 1gn�k :
Pk

�¼1 Mi� ¼ 1. Given a ðn� nÞ dissimilarity

matrix D, the Pairwise Clustering cost function reads:

Hpc ¼ 1

2

Xk
�¼1

Pn
i¼1

Pn
j¼1 Mi�Mj�DijPn
l¼1 Ml�

: ð3Þ

The optimal assignments M̂M are obtained by minimizing
Hpc. The minimization itself is an NP hard problem [11],
and some approximation heuristics have been proposed: In
[10], a mean field annealing framework has been presented
(see the discussion in Section 4 of this work for some
comments and new results on annealing). In [9], it has been
shown that the time-honored Ward’s method can be viewed
as a hierarchical approximation of Hpc.

2.2 A Special Case: k-Means Clustering

For the special case of squared Euclidean distances between

vectors fxigni¼1; xi 2 IRd, it is well-known that Hpc is

identical to the classical k-means cost function, see [4]. We

now briefly review this relationship. The k-means cost

function is defined as
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Hkm ¼
Xk
�¼1

Xn
i¼1

Mi�kxi � y�k2: ð4Þ

It measures the sum of squared intracluster distances to the

prototype vectors

y� :¼
Pn

i¼1 Mi�xi

n�
; ð5Þ

where n� :¼
Pn

l¼1 Ml� denotes the number of objects in

cluster �. Hkm can be written in a pairwise fashion by

exploiting a simple algebraic identity for squared Euclidian

distances:

kxi � y�k2 ¼
1

n�

Xn
j¼1

Mj�kxi � xjk2 �
1

2n2
�

Xn
j¼1

Xn
l¼1

Mj�Ml�kxj � xlk2;Xn
i¼1

Mi�kxi � y�k2 ¼
1

2n�

Xn
j¼1

Xn
l¼1

Mj�Ml�kxj � xlk2:

ð6Þ

Substituting the latter identity into (4), we obtain

Hkm ¼ 1

2

Xk
�¼1

Pn
i¼1

Pn
j¼1 Mi�Mj�kxi � xjk2Pn

l¼1 Ml�
¼ Hpc: ð7Þ

From this viewpoint, k-means clustering can be interpreted

as a method for minimizing the sum of squared pairwise

intracluster distances Dij ¼ kxi � xjk2. The reader should

notice, however, that in the general case of arbitrary

dissimilarities Dij, a direct algebraic retransformation of

Hpc into Hkm is not possible. Despite this fact, we will show

in the remainder of this paper that it is still possible to

obtain the optimal assignment variables M̂M with respect to

HpcðMÞ by minimizing a suitably transformed k-means

problem. The key ingredient will be the shift invariance

property of the Pairwise Clustering cost function described

in the following section.

2.3 Invariances of Pairwise Clustering

The pairwise clustering cost function has two important

invariance properties:

1. Hpc is invariant under symmetrizing transforma-
tions

~DDij ¼
1

2
ðDij þDjiÞ ) ~HH ¼ H: ð8Þ

2. Hpc is invariant (up to a constant) under additive
shifts of the off-diagonal elements of the dissimilarity
matrix:

~DDij ¼ Dij þ d0ð1� �ijÞ )
~HH ¼ H þ ð1=2Þ � ðn� kÞd0 ¼ H þ const:

ð9Þ

Note that the optimal assignments of objects to

clusters are not influenced by adding a constant to

the cost function, i.e., M̂Mð ~DDÞ ¼ M̂MðDÞ.

3 CONSTANT SHIFT EMBEDDING

In Section 2, we have introduced the cost function Hpc as

a special instance of pairwise clustering problems. Due to

the shift-invariance property (9), the partitioning of the

data set (i.e., the assignments of a set of n objects to

k clusters) is not affected by a constant additive shift on

the off-diagonal elements of the pairwise dissimilarity

matrix D ¼ ðDijÞ 2 IRn�n. In the remainder of this paper,

we will consider general dissimilarity matrices D, re-

stricted only by the constraint that all self-dissimilarities

are zero, i.e., that D has zero diagonal elements. We show

that, by exploiting the above shift invariance, we can

always embed such data into a Euclidean space without

influencing the cluster structure. An off-diagonal shifted

dissimilarity matrix reads

~DD ¼ Dþ do
�
ene

>
n � In

�
; ð10Þ

where en ¼ ð1; 1; . . . 1Þ> is an n-vector of ones and In the
n� n identity matrix. In other words, (10) describes a
constant additive shift ~DDij ¼ Dij þ do for all i 6¼ j.

Before developing the main theory, we have to introduce

the notion of a centralized matrix. Let P be an ðn� nÞ matrix

and let Q ¼ In � 1
n ene

>
n . Q is the projection matrix on the

orthogonal complement of en. Define the centralized P by:

Pc ¼ QPQ: ð11Þ

A centralized matrix has row and column-sum equal to

zero, which can easily be seen by looking at the components

of Pc

Pc
ij ¼ Pij �

1

n

Xn
k¼1

Pik �
1

n

Xn
k¼1

Pkj þ
1

n2

Xn
k;l¼1

Pkl: ð12Þ

Let us now consider only symmetric dissimilarity matrices.
Note that, for the clustering criterion Hpc, this requirement
imposes no restrictions on the general applicability, since
Hpc is invariant under symmetrizing transformations, see
(8). Given such a symmetric and zero-diagonal matrix D, let
us decompose it the following way by introducing a new
matrix S:

Dij ¼ Sii þ Sjj � 2Sij: ð13Þ

It is clear that this decomposition is not unique unless we

specify the diagonal elements of S. Let SSD denote the

equivalence class of all S yielding the same D. In particular,

we note, by simple algebra, that for every matrix S 2 SSD,

the centered version is contained in SSD. Moreover, the

following lemma states that for all members S 2 SSD, the

centralized version Sc is identical and uniquely defined by

the given matrix D.

Lemma 1. For any symmetric and zero-diagonal matrix D, the

following holds:

Sc ¼ � 1

2
Dc; with Dc ¼ QDQ:

Proof. Substituting (13) into the definition (12) of the

centralized Sc yields
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Sc
ij ¼ � 1

2

�
ðDij � Sii � SjjÞ �

1

n

Xn
k¼1

ðDik � Sii � SkkÞ �
1

n

Xn
k¼1

ðDkj � Skk � SjjÞ þ 1

n2

Xn
k;l¼1

ðDkl � Skk � SllÞ
�

¼ � 1

2
Dij �

1

n

Xn
k¼1

Dik �
1

n

Xn
k¼1

Dkj þ
1

n2

Xn
k;l¼1

Dkl

" #
¼� 1

2
Dc

ij:

ut

The matrix Sc is a particularly interesting member of SSD,
since the following theorem holds.

Theorem 1. D derives from a squared Euclidian distance, i.e.,
Dij ¼ kxi � xjk2, if and only if Sc is positive semidefinite.

Proof. [12] referring to [13]. tu

For general dissimilarities, Sc will be indefinite. By shifting
its diagonal elements, however, we can transform it into a
positive semidefinite matrix: The following lemma states
that, for any matrix A, a positive semidefinite matrix ~AA can
be derived by subtracting the smallest eigenvalue from all
of its diagonal elements.

Lemma 2. Let ~AA ¼ A� �nðAÞIn, where �nð�Þ is the minimal
eigenvalue of its argument. Then, ~AA is positive semidefinite.

Proof. Due to the diagonal shift, the smallest eigenvalue
becomes zero. tu

We can now summarize the above results, cf. Fig. 1: Given a
matrix D, there exists a unique matrix Sc by Lemma 1. If Sc

is not positive semidefinite, Lemma 2 states that, by
subtracting �nðScÞ from its diagonal elements, we obtain a
positive semidefinite ~SS. Returning to (13) with our fixed
matrix Sc, such a diagonal shift of Sc corresponds to an off-
diagonal shift of the dissimilarities

~DDij ¼ ~SSii þ ~SSjj � 2 ~SSij , ~DD ¼ D� 2�nðScÞ
�
ene

>
n � In

�
:

ð15Þ

In other words, if we were given ~DD instead of our original
D, then ~SS would be a positive semidefinite member of the
equivalence class SS ~DD of matrices fulfilling the decomposi-
tion ~DDij ¼ ~SSii þ ~SSjj � 2 ~SSij. Theorem 1 then tells us that this
off-diagonally shifted matrix ~DD derives from a squared
Euclidean distance. Since every positive semidefinite matrix

is a dot product—(or gram)—matrix in some vector space,
there exists a matrix X of vectors such that ~SS ¼ XX>. The
matrix ~DD then contains squared Euclidean distances
between these vectors. We can now insert ~DD into our
clustering procedure (which is assumed shift-invariant),
and we will obtain the same partition of the objects as if we
had clustered the original matrix D. Contrary to directly
using D, however, the matrix ~DD now contains squared
Euclidean distances between a set of vectors fxigni¼1. So far,
we have only shown the existence of these vectors. In
Section 3.1, we will present how these vectors can be
computed explicitly.

In principle, the above derivation holds true not only for
the centralized matrix Sc, but for any member S of the of the
equivalence class SSD. Some of these members, however,
will eventually have very large negative eigenvalues, which
means that we would have to add a very large constant to
all off-diagonal entries of D. For numerical reasons, we
want to avoid these problems, which leads us to the
question of the minimal necessary shift. The next theorem
states that our above choice of using Sc is optimal in this
sense:

Theorem 2 (Minimal shift) [6]. Do ¼ �2�nðScÞ is the
minimal constant such that ~DD ¼ DþDo

�
ene

>
n � In

�
derive

from squared Euclidian distance.

Proof.A proof is given in [6]. It also follows from Theorem 1
and Lemma 2. tu

3.1 Reconstructing the Embedded Vectors

Given a general dissimilarity matrixD, in the last section, we
have shown how to obtain a shifted matrix ~DD which derives
from squared Euclidean distances between points fxigni¼1 in
some vector space. This property of ~DD impies that the
corresponding matrix ~SSc is positive semidefinite and, thus, a
dot productmatrix ~SSc ¼ XX>. According to Lemma 1, ~SSc can
be calculated as ~SSc ¼ � 1

2
~DDc. The following algorithm1

describes how the vectors fxigni¼1 can be recovered by an
eigenvalue decomposition of ~SSc.

1. Calculate the centralized dot product matrix ~SSc ¼
� 1

2Q
~DDQ from the matrix of squared Euclidean

distances ~DD.
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2. Express ~SSc in its eigenbasis: ~SSc ¼ V�V >, where V ¼
ðv1; . . . vnÞ contains the eigenvectors vi and � ¼
diagð�1; . . . �nÞ is a diagonal matrix of eigenvalues
�1 � � � � � �p > �pþ1 ¼ 0 ¼ � � � ¼ �n. Notice that, due
to the centralization which introduces a linear
dependency between all vectors, at least one
eigenvalue equals zero, i.e., p � n� 1.

3. Calculate the n� p map matrix

Xp ¼ Vpð�pÞ1=2; with Vp ¼ ðv1; . . . vpÞ and
�p ¼ diagð�1; . . . �pÞ:

ð16Þ

The rows of Xp contain the vectors fxigni¼1 in
p dimensional space, whose mutual distances are
given by ~DD.

So far, we have discussed an exact reconstruction of the

structure preserving vectors in the embedding space. While

this has both important theoretical and practical conse-

quences (see Section 4), in many applications, we would like

to insert some preprocessing step in our clustering

procedure. A typical example of this kind would be the

suppression of noise. When focusing on noise reduction, we

are interested in some sort of approximative reconstructions

of the exact vectors. The reader should notice that, given the

vectorial representations fxigni¼1 in a Euclidean space, the

issue of separating the “noisy” part of the data from the

“signal” part can be handled within a well-defined frame-

work. On the contrary, in the original pairwise setting

without a common vector-space structure, to our knowl-

edge, there exist no general purpose denoising methods.

For instance, it is not clear how to define a global noise

model that specifies the amount of noise by which each

single object is corrupted. The semantics of a generative

model which is responsible for the “signal” part is also

unclear.
In Principal Component Analysis (PCA), one usually

assumes that the directions corresponding to small eigen-
values contain the noise [15]. We can thus obtain a
representation in a space of reduced dimension (with the
well-defined error of PCA reconstruction) when choosing
t < p dimensions in step 3 of the above algorithm:
Xt ¼ Vtð�tÞ1=2, where Vt consists of the first t column
vectors of V and �t is the top t� t submatrix of �. The
vectors in IRt then differ the least from the vectors in IRp in

the sense of quadratic error. This means that the embedded
vectors are the best least squares error approximation to the
optimal vectors which preserve the group structure. The
mathematical tractability of error constitutes the main
difference to directly decomposing Sc (i.e., without shifting)
and projecting onto a subset of eigenvectors with positive
eigenvalue, a method which is usually called classical scaling
or “lossy” PCA. In the latter case, there exist no optimal
vectors (in the sense of structure preservation), since only
the positive eigenvalues can be used for deriving a vector
representation. For classical scaling, it is thus unclear what
“objects” are approximated and with what error. The
processing pipeline of both the loss-free vector reconstruc-
tion and the PCA approximation is depicted in Fig. 2.

It should be noticed, however, that given the exactly
reconstructed vectors in IRp, we can also apply any other
standard method for dimensionality reduction or visualiza-
tion, such as projection pursuit [16], locally linear embedding
(LLE) [17], Isomap [18], or Selforganizing maps [19]. The latter
methods can also be viewed as approximations of the
optimal structure preserving vectors, employing, however,
an approximation criterion different from the squared error
as in the case of the above PCA framework.

3.2 Predicting the Cluster Membership of New Data

First, notice that, due to the eigenvalue equation ~SScVp ¼ Vp�p,
we can rewrite (16) in the form:

Xp ¼ ~SScVpð�pÞ�1=2: ð17Þ

Consider now the situation where we are given m new
objects and the corresponding m� n matrix of pairwise
dissimilarities Dnew

ij between these new objects and all
n original objects. In order to predict the cluster member-
ship of the new objects, we first have to project them into
the Euclidean space spanned by the eigenvectors Vp of the
centered dot product matrix ~SSc. Then, we assign each new
object to the cluster with the closest centroid. For the
projection itself, two steps are required:

1. Compute the matrix Snew defined by

Dnew
ij ¼ Snew

ii þ ~SSc
jj � 2Snew

ij : ð18Þ

Similar to the situation in (13), we still have the
problem of ambiguities due to the freedom of
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choosing Snew
ii . This problem, however, is automati-

cally overcome by reexpressing the matrix Snew in the

centered coordinate system:2

ðSnewÞcij ¼ Snew
ij � 1

n

Xn
k¼1

Snew
ik � 1

n

Xn
k¼1

~SSc
kj þ

1

n2

Xn
k;l¼1

~SSc
kl:

ð19Þ

Substituting (18) into the above equation and noticing

that ~DD and ~SSc are connected by ~DDij ¼ ~SSc
ii þ ~SSc

jj � 2 ~SSc
ij,

we can restate ðSnewÞc solely in terms ofDnew and ~DD:

ðSnewÞcij ¼ � 1

2

"
Dnew

ij � 1

n

Xn
k¼1

Dnew
ik � 1

n

Xn
k¼1

~DDkj

þ 1

n2

Xn
k;l¼1

~DDkl

#
ð20Þ

, ðSnewÞc ¼ � 1

2

"
DnewðIn �

1

n
ene

>
n Þ �

1

n
eme

>
n

~DDðIn �
1

n
ene

>
n Þ
#
: ð21Þ

2. Project the objects represented by ðSnewÞc into the
coordinate system spanned by the eigenvectors Vp

of the matrix ~SSc:

Xnew
p ¼ ðSnewÞc Vpð�pÞ�1=2: ð22Þ

The whole process flow for predicting the cluster member-

ship of new objects is summarized in Fig. 3.

4 A k-Means FORMULATION FOR PAIRWISE

CLUSTERING

It is well-known that, for the special case of squared
Euclidean distances, the Pairwise cost function and the
k-means cost function can be transformed into each other by
using a simple algebraic identity, cf. Section 2.2. With the
results of the last section, we are now able to prove that a
similar relationship between both cost functions holds in
the general setting.

Theorem 3. Given an arbitrary ðn� nÞ dissimilarity matrix D
with zero self-dissimilarities, there exists a transformed matrix
~DD such that

1. The matrix ~DD can be interpreted as a matrix of squared
Euclidian distances between a set of vectors fxigni¼1

with dimensionality dimðxiÞ � n� 1.
2. The original pairwise clustering problem defined by the

cost function HpcðDÞ is equivalent to the k-means
problem with cost function Hkm in this vector space,
i.e., the optimal cluster assignment variables M̂Mi� are
identical in both problems: M̂MpcðDÞ ¼ M̂Mkmð ~DDÞ.

Proof.

1. Let ~DD be the symmetrized and off-diagonal
shifted version of D:

Dsym :¼ 1

2
ðDþD>Þ ð23Þ

Sc :¼ ¼ � 1

2
QDsymQ ¼ � 1

2
Dc

sym ; ðcf: Lemma 1Þ ð24Þ
~DD :¼ Dsym � 2�nðScÞ

�
ene

>
n � In

�
; ðcf: ð15ÞÞ: ð25Þ

According to Section 3 and the theorems therein,

there exists a set of vectors fxigni¼1 with dimension-

ality dimðxiÞ � n� 1 such that ~DD contains squared

Euclidean distances between these vectors.
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2. Formally, this is the same centering mechanism for new objects as in
the kernel PCA algorithm, see [14].

Fig. 3. Prediction (schematic): From the preceeding clustering step, we are given the squared Euclidean distances ~DD, the centered dot-product

matrix ~SSc ¼ � 1
2
~DDc, its eigenvectors & -values Vp; �p, and the cluster centroids fy�gk�¼1. Prediction step 1: decomposing Dnew and reexpressing the

matrix Snew in the centered coordinate system of ~SSc. Step 2: projecting the new objects on the eigenvectors Vp of ~SS
c. Step 3: assigning objects to the

cluster with the closest centroid vector y� .



2. Since ~DD represents squared Euclidean distances,
(7) implies that the Pairwise Clustering cost
function is identical to the k-means function:
Hpcð ~DDÞ ¼ Hkmð ~DDÞ. According to the invariance
properties (8) and (9), the optimal assignments
fM̂Mi�g of objects to clusters are not influenced by
the transformations (23) and (25) of D into ~DD, i.e.,
M̂MðDÞ ¼ M̂Mð ~DDÞ. tu

The above theorem has several important consequences.

Interpretation and representation. Rewriting Pairwise
Clustering as a k-means problem naturally introduces
the notion of cluster centroids or cluster representants.

Prediction. The cluster prototypes define a generic predic-
tion rule for new objects.

Data preprocessing and denoising. The vectorial represen-
tation of the objects allows us to apply standard
preprocessing and denoising methods. Note that the
usual semantics of “signal” and “noise” is closely related
to some sort of generative model in a vector space.

Optimization. Minimizing the Pairwise Clustering cost
function is an NP-hard problem. The associated k-means
problemwith loss-free reconstructed vectors has the same
complexity since the dimensionality of the vectors grows
with n, see [20]. Thus, for handling real-word problems, in
both cases, efficient approximation algorithms/schemes
are necessary. In [10], it has beenproposed to optimizeHpc

byway of deterministic annealing. Since annealingmethods
are not in the main focus of this paper, we only mention
that deterministic annealing is feasible only for factorial
Gibbs distributions [9]. For HpcðDÞ, this constraint
requires the use of a mean-field approximation. Applying
Theorem 3, however, we are able to anneal the shifted
k-means cost function Hkmð ~DDÞ, for which the mean-field
approximation becomes exact. For details on annealing
and mean-field approximations, the interested reader is
referred to [10], [21].
If one decides to insert a denoising/dimensionality-

reduction step into the clustering procedure, this will
usually not only speed up the computations, but it will
also “robustify” optimization heuristics for the k-means
problem. For instance, applying PCA approximations

according to Section 3.1, the energy landscape typically
will be smoothed out, which makes local search heuristics
(such as the classical iterative k-means algorithm) less
sensitive to being trapped in local minima.

4.1 A Demo Application: Clustering of Protein
Sequences

In this experiment with globin sequences, we present a

worked-through example of combining constant-shift em-

bedding, low-dimensional approximations, model selection,

and clustering in the embedding space. From the SWISS-

PROT and TrEMBL databases [22], we extracted all of the

approximate 1,200 sequences annotated as “globins” or as

“globin-like.” The heuristic FASTA scoring method [23] was

used for computingpairwise alignment scoreswhich, in turn,

were length-corrected (a Bayesian approach for correcting

local alignments, following [24]) andnormalized to the length

of the alignment. From the pair-scores Sij, we derived

dissimilarities by setting Dij ¼ Sii þ Sjj � 2Sij.
3 The eigen-

value spectrum of the centered matrix Sc shows some highly

negative entries, indicating that the dissimilarities do not

derive from squared Euclidean distances. By way of the

constant shift embeddingprocedure, however, the sequences

are represented as points in a vector spacewithout distorting

the grouping solution.
Given these vectors, we are left with two problems:

1) choosing an appropriate denoising mechanism and

2) minimizing the k-means cost function for different values

of k and selecting the “optimal” number of clusters k. In the

following, we present details for both the model selection

procedure and the final clustering results.

Denoising. Fig. 4a shows the 25 leading eigenvalues of the

centered matrix Sc. The eigenvalue curve suggests that

there are only very few dominating directions in the

embedding space. We thus decided to discard all but the

first 10 leading eigenvectors. Since, in this control

experiment, we have access to the ground-truth labels,

we are able to test this hypothesis about “signal” and
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Fig. 4. Clustering of globin proteins. (a) Leading eigenvalues of the centered matrix Sc. (b) Instability of the partition versus the number of clusters k.

3. Note that other transformations (e.g., of the form D0
ij ¼ expð�SijÞ) may

be applied as well. Our experimental results, however, favor the above
choice.



“noise.” The plotted denoised and original distance

matrices in Fig. 5 indicate that the space spanned by

the first ten eigenvectors in deed accentuates the main

structure of the protein (sub)families.

Optimization and model selection. For minimizing the

k-means functional in the embedding space, a determi-

nistic annealing method was applied. Concerning the

selection of the “correct” number of clusters, we used the

concept of cluster stability which has been introduced in

[25] and refined in [26]. The main idea is to draw

resamples from the data set and then to compare the

inferred data-partitions across these resamples. The

variations of the partitions are transformed into an

instability index, which is normalized such that a random

procedure yields instability 1, and a perfect correspon-

dence between solutions yields instability 0. Fig. 4b

depicts the estimated instability for different numbers of

clusters. The bars show the standard deviations esti-

mated in the resampling procedure. The most stable

solution partitions the data into three clusters, and two

another distinct local minima occur for k ¼ 5 and k ¼ 9.

Clustering results. For the solutionswith k ¼ 3 and k ¼ 9, we

have plotted the corresponding distancematrices in Fig. 5.

In Figs. 5a and 5b we have also depicted the “true” group

membership of the proteins, as annotated in the SWISS-

PROT database. The groups are: Plant (plant globins),

HB-� (hemoglobin-�), MYG (myoglobin), HB-� (hemo-

globin-�), andGLB (other globins, e.g., globin I-IVor insect

globins). The column marked Prelim indicates “prelimin-

ary” sequences fromtheTrEMBLdatabasewithmissingor

uncertain annotations. It is obvious that the automatically

found solutions divide the sequences into biologically

meaningful groups: the 3-cluster solution separates both

hemoglobin-� and hemoglobin-� from the rest. The 9-

cluster solutiondefines a refinementof these groups, in the

following sense: the �-hemoglobins are split into two

subgroups (cluster no. 3 and no. 7), the hemoglobin-�

cluster is split into three clusters, both themyoglobins and

the plant globins are now contained in individual clusters,

and the other globins are also separated into two

subclusters (the first of which nowmainly contains insect

globins). It is interesting to notice that successively

increasing the number of clusters automatically leads to

a natural hierarchical representation of the group struc-

ture, which has not been introduced by the algorithm as a

modeling bias.

Comparison with MDS. From a theoretical viewpoint, the

constant shift embedding principle has one major advan-

tage over classical MDS embedding: For shift-invariant

clustering cost functions, CSE yields cluster preserving

embeddings in n� 1 dimensional vector spaces while, to

ourknowledge, forMDS,no suchguarantees are available.

Taking a practical perspective, however, one might be

interested in differences between CSE and MDS in low-

dimensional embedding spaces. Designing experiments

which allows “fair” comparisons of this kind, however, is

difficult, since both the CSE method (different reduction

methods like PCA, LLE, etc.) and MDS (different cost

functions, choice of weights, etc.) can be varied in several

ways. Nevertheless, we conclude this section with a

comparison of k-means clustering results in two dimen-

sions, once directly embedded using MDS (SSTRESS cost

function, relativeweights), and the second time embedded

withCSEandPCA. In theupper left panel of Fig. 6 the two-

dimensional MDS embedding of the above data set is

depicted. The different point symbols refer to the SWISS-

PROT labels. Given these two-dimensional data set, we

then minimized the k-means clustering cost function with

k ¼ 3, leading to the labels shown in the lower left panel. It

is interesting tonote that the typical “ringartifacts”ofMDS

embeddingproduce elongated structureswhich cannot be

recovered by the compactness-based k-means clustering

criterion. In the case of CSE with succeeding PCA

embedding, the situation looks very different: The em-

bedded data clearly show three relatively compact groups

(upper right panel): one corresponds to hemoglobin-�
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Fig. 5. Distance matrices for the embedded clustering problems, permuted with respect to cluster labels. (a) k ¼ 3, (b) k ¼ 9, and (c) original

dissimilarities (without denoising, plotted in the permutation of the k ¼ 9 solution).



proteins, another tohemoglobin-�proteins; the thirdone is

amixtureof theotherprotein families.These threecompact

groups are perfectly recovered in the 3-means solution

(lower right panel).

5 RELATIONS TO GRAPH-THEORETIC CLUSTERING

METHODS

In this section, we discuss the relations between graph-

theoretic grouping principles and the constant shift embed-

ding method for pairwise clustering. As the main result, we

show that both the Averaged Association and the Averaged

Cut cost function are shift-invariant. With this invariance

property, the Averaged Association principle turns out to be

equivalent to the k-means clustering algorithm in the

embedding space. Using the same strategy, we show that

Averaged Cut is equivalent to the pairwise separation cost

function. The latter can also be stated in terms of Euclidian

distances between embedded vectors. For the Normalized

Cut method; on the other hand, the constant-shift embed-

ding method is not applicable. In the case of balanced

partitions with similar structure among all clusters, how-

ever, the differences between Averaged Association, Averaged

Cut, and Normalized Cut become vanishingly small. In such

situations, all three methods can be reasonably well

approximated by k-means.

A graph G ¼ ðV ;EÞ can be partitioned into disjoint sets

A�; � ¼ 1; . . . ; k by removing edges:
Sk

�¼1 A
� = V ; A� \

A� = ; for � 6¼ �. Following [8], we define the dissimilarity

between the sets A� and V �A� by the total weight of the

edges that have been removed

cutðA�; V �A�Þ ¼
X

u2A�;v2ðV�A�Þ
wðu; vÞ; ð26Þ

where the weight on each edge, wðu; vÞ, is a function of the

similarity between nodes u and v. We further introduce a

measure of association between two sets, assocðA;BÞ, as the
total connection from nodes in set A to the nodes in set B. It

follows immediately that both measures are connected by

the formula

cutðA�; V �A�Þ ¼ assocðA�; V Þ � assocðA�;A�Þ: ð27Þ

We further denote by W the similarity (weight) matrix with

unit self-similarities: Wii ¼ 1; 8i ¼ 1; . . . ; n. Based on this

similarity matrix, we define a dissimilarity matrix by
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Fig. 6. Comparison of clustering results in two dimensions. Upper row: embedded proteins with original SWISS-PROT labels, lower row: data with

inferred 3-means labels. (a) MDS (SSTRESS, local weights), (b) CSE with PCA embedding.



D :¼ ene
>
n �W , with en ¼ ð1; . . . 1Þ> as before. (ene

>
n is the

ðn� nÞ matrix of ones.) Together with the notation of the

binary assignment variables Mi� and the definition

n� :¼ jA� j, we can write the association measure in the form

assocðA�;A�Þ¼
Xn
i¼1

Mi�

Xn
j¼1

Mj�Wij ¼
Xn
i¼1

Mi�

Xn
j¼1

Mj�ð1�DijÞ

¼ n2
� �

Xn
i¼1

Mi�

Xn
j¼1

Mj�Dij:

ð28Þ

For two sets, A [B ¼ V , A \B ¼ ;, in [8], the Averaged

Association cost function has been defined as

AvAssoc ¼ assocðA;AÞ
jAj þ assocðB;BÞ

jBj : ð29Þ

It can be easily extended for a k-partitioning problem:

AvAssock ¼
Xk
�¼1

assocðA�;A�Þ
n�

: ð30Þ

Inserting ðD :¼ ene
>
n �WÞ and (28), we see that maximizing

the averaged association is equivalent to minimizing the

Pairwise Clustering cost function Hpc:

AvAssockðWÞ ¼
Xk
�¼1

assocðA�;A�Þ
n�

¼ n� 2Hpcðene>n �W Þ:

ð31Þ

According to Theorem 3, it is always guaranteed that the

(possibly shifted) matrix Sc :¼ � 1
2D

c is a positive semide-

finite dot-product matrix which can be used to embed the

data into a Euclidian space. In this space, the problem of

minimizing the pairwise clustering function reduces to a

standard k-means problem.
The Averaged Cut cost function, cf. [8], is defined as

AvCutk ¼
Xk
�¼1

cut

ðA�; V �A�Þn�

¼
Xk
�¼1

assocðA�; V Þ � assocðA�;A�Þ
n�

:

ð32Þ

In the following, we will show that AvCut is equivalent to

the Pairwise Separation cost function Hps (in [9], this cost

function is denoted by Hps1a):

Hps ¼ �
Xk
�¼1

Xn
i¼1

Mi�
1

k� 1

X
�6¼�

Pn
j¼1 Mj�DijPn
j¼1 Mj�

¼ � 1

k� 1

Xk
�¼1

1

n�

Xn
i¼1

Mi�

Xn
j¼1

Dij � 2Hpc

" #
:

ð33Þ

With (31) and the identity

assocðA�; V Þ ¼
Xn
i¼1

Mi�

Xn
j¼1

Wij ¼ nn� �
Xn
i¼1

Mi�

Xn
j¼1

Dij;

ð34Þ

AvCut can be reformulated in terms of Hps:

AvCutk ¼
Xk
�¼1

assocðA�; V Þ
n�

� nþ 2Hpc ð35Þ

¼ kn�
Xk
�¼1

1

n�

Xn
i¼1

Mi�

Xn
j¼1

Dij � nþ 2Hpc ð36Þ

¼ ðk� 1Þnþ ðk� 1ÞHps: ð37Þ

Minimizing the averaged cut cost function based on the
affinity matrix W is thus equivalent to minimizing Hps with
distances D :¼ ene

>
n �W . Note that the separation measure

Hps has the same shift-invariance property as its compact-
ness counterpart Hpc:

Hps Dþ d0ð1� �ijÞ
� �

¼ Hps þ Const: ð38Þ

We can thus directly apply the constant-shift embedding
framework of Section 3.

The Normalized Cut cost function, cf. [8], is an inter-
mediate grouping criterion that combines both the com-
pactness and separation principle. The k-cluster version is
defined as

Ncutk ¼
Xk
�¼1

cutðA�; V �A�Þ
assocðA�; V Þ ¼ k�

Xk
�¼1

assocðA�;A�Þ
assocðA�; V Þ : ð39Þ

Rewriting this in terms of distances D ¼ ene
>
n �W , we

arrive at

Ncutk ¼ k�
Xk
�¼1

n� � ð1=n�Þ
Pn

i¼1 Mi�

Pn
j¼1 Mj�Dij

n� ð1=n�Þ
Pn

i¼1 Mi�

Pn
j¼1 Dij

" #
: ð40Þ

Contrary to AvAssoc and AvCut, the Ncut cost function is
not shift invariant. For nonmetric (dis)similarities, it is thus
not possible to apply the constant-shift embedding trick to
obtain a grouping problem in a vector space. However, for
the special case of balanced partitionings, n� ¼ n=k 8�, and
similar distribution of intracluster distances among all
groups, all the row-sums of the distance matrix tend to be
similar. Assuming

Pn
j¼1 Dij ¼ const and substituting this

into (36) or (40), respectively, we see that in this special case,
both the AvCutk and the Ncutk criteria become equivalent to
the AvAssock criterion and, hence, equivalent to theHpc cost
function. This equivalence means that, for clustering
problems with similar group structure and balanced
partitions, large differences between the models will
become vanishingly small. The somewhat surprising results
of a large-scale comparison study of graph partitioning
algorithms for image segmentation tasks in [27] are in our
view explained by this analysis.

6 CONCLUSION

We have introduced an optimal embedding procedure for
pairwise clustering by means of constant shift embedding
(CSE). For the class of shift-invariant clustering methods, it
optimizes a fundamentally different criterion compared to
classical embedding approaches based on MDS. The most
prominent property of CSE is the complete preservation of
the group structure in the embedding space. For MDS
methods, on the other hand, such a preservation can only be
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guaranteed in the special (and rather uninteresting) case of
zero distortions (“stress”) of the pairwise dissimilarities. For
nonzero distortions, to our knowledge, no bounds on
structural distortions are known.

The possibility of restating a pairwise grouping problem
in a vector-space has important theoretical consequences.
For instance, we are able to statistically describe the clusters
by defining cluster prototypes in the embedding space and
by measuring the variance in each of the clusters. These
prototypes, in turn, define a generic rule for extending the
grouping solution to a predictive discrimination rule for
estimating the cluster membership of new objects. Con-
cerning the problem of finding efficient optimization
algorithms for minimizing clustering cost functions, the
shown equivalence of Pairwise Clustering and k-means
shed light on the probabilistic structure of the solution
space: The problem of minimizing Hpc belongs to the class
of combinatorial optimization problems for which the
classical mean-field approximation becomes exact. There are
also a couple of practical consequences of CSE: A common
vector-space representation renders the data accessible to
standard dimensionality and noise-reduction methods
which lack a clear meaning for pairwise data. Such
preprocessing methods, however, have to be chosen care-
fully, depending on the requirements and/or the prior
knowledge available for each special application. For the
task of clustering the globin proteins, it turned out that a
classical PCA denoising worked surprisingly well. A
comparison with the known family structure of these
proteins revealed that the low-dimensional PCA embed-
ding space accentuated the relevant structure while
suppressing the alignment noise. It should be noticed,
however, that in general unsupervised situations, such
high-level domain knowledge may be hardly available. In
these situations, one should rely on general statistical
descriptors such as the form of the eigenvalue spectrum
of the covariance matrix.

Despite the fact that “wrong” preprocessing methods
clearly have the potential to distort the cluster structure
(which we naturally want to preserve), the CSE frame-
work at least tells us that these distortions are not caused
by the general restrictions of a vector space. We know
that there always exists a Euclidean space which contains
the optimal structure preserving vectors, which means
that there might be hope to find more suitable low-
dimensional approximations.
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