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Abstract.  Cutting and packing problems arise in many fields of applications and theory. 
When dealing with irregular objects, an important subproblem is the identification of the optimal 
clustering of two objects. Within this paper we consider a container (rectangle, circle, convex 
polygon) of variable sizes and two irregular objects bounded by circular arcs and/or line 
segments, that can be continuously translated and rotated. In addition minimal allowable 
distances between objects and between each object and the frontier of a container, may be 
imposed. The objects should be arranged within a container such that a given objective will reach 
its minimal value. We consider a polynomial function as the objective, which depends on the 
variable parameters associated with the objects and the container. The paper presents a universal 
mathematical model and a solution strategy which are based on the concept of phi-functions and 
provide new benchmark instances of finding the containing region that has either minimal area, 
perimeter or homothetic coefficient of a given container, as well as finding the convex polygonal 
hull (or its approximation) of a pair of objects.  

Key words: minimum containment ⋅ irregular shapes⋅ cutting and packing ⋅ mathematical 

modeling ⋅  optimisation. 

1. Introduction  

Cutting and packing problems, also called placement or allocation problems, are 

interesting theoretically and have many important applications. Applications in industry include 

dye-cutting in the engineering sector, parts nesting for shipbuilding, marker layout in the 

garment industry, glass cutting for windows and leather cutting for shoes, furniture and other 

goods. It is well known that even the one-dimensional version of the problem of finding the 

optimal usage of a given resource, the classical knapsack problem, belongs to the class of NP-

hard optimisation problems. For this reason, most of the work related to cutting and packing 

problems employ heuristic approaches. Nevertheless, the development of exact solution methods 
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is an important task to broaden the range of optimal solvable cases. 

One of the successful concepts in the case of irregular objects, which lends itselft to exact 

approaches, is phi-functions  [6],  [10]. Using this approach leads, in general, to multi-extremal 

non-linear optimisation problems. Phi-functions permit the modelling of continuous object 

rotations, non-overlapping, containment and distance constraints. The concept allows the 

computation of high quality local optima, and in some cases, the global optimum. 

In this paper, we address the problem of determining the minimum size container to 

house two irregular objects and use the concept of phi-functions to achieve this aim. A tool to 

solve this problem is useful in cutting and packing for the input minismisation (minimum waste) 

problem and the output maximisation (knapsack) problem. In detail, we will investigate the 

following two-dimensional problem:   

Optimal clustering problem. Given two (irregular) objects bounded by circular arcs 

and/or straight line segments where free continuous rotations of the objects are permitted, find 

the minimal sizes of a given containing region (rectangle, circle, or convex polygon) according 

to a given objective (a polynomial function) and placement parameters of two objects such that 

the objects are placed completely inside the containing region without overlap and taking in to 

account allowable distances between objects. We consider a number of frequently occurring 

objectives, i.e. minimum area, perimeter, and homothetic coefficient (scaling parameter of an 

equilateral K sided polygon) of a given container. 

The containment problem is useful in the design of cutting and packing solution 

approaches in a number of ways. Some applications have constraints on the cutting process that 

are naturally dealt with by using a containment approach. Han et al. [18] decribe the cutting of 

irregular glass shapes for conservatories. Due to the guillotine cutting requirement, pieces are 

clustered into rectangles first, and then the rectangles are arranged on the stock sheets. 

Approaches designed for packing of rectangles and boxes is more common in the literature than 

irregular objects. One reason for this arises from the fact that stronger optimality criterion, or 

bounds, are available in contrast to cases of arbitrary shaped objects. The containment problem 

allows these approaches to be exploited for irregular shapes. Finally, placement heuristics that 

employ hole filling are commonly acknowledged as effective. However, this has not been 

efficiently implemented with irregular shapes as yet. The containment problem is equivalent to 

hole filling where the hole defines the size of the container, which is compared with the derived 
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minimal sizes of the containing region (according to the obtained value of its homothetic 

coefficient). 

The contributions of the paper are many as follows: 1) we deal with an accurate 

representation of objects bounded by circular arcs and/or line segments (irregular objects) 

without first generating a polygonal approximation; 2) we allow continuous simultaneous 

translations and rotations of the objects; 3) we construct a universal mathematical model of the 

problem taking into account allowable distances (in the form of a non-smooth optimisation 

problem) using radical free phi-functions and adjusted phi-functions. Also our mathematical 

model can accommodate any polynomial objective function; 4) we formulate the optimal 

clustering problem with a wide range of applicable problems including minimal containment of a 

pair given shapes in a rectangle, circle or convex hull, which supports applications in packing 

irregular objects, glass cutting non-rectangular pieces,  selecting or designing containers, and 

hole filling; 5) we propose the concept of the phi-tree based on the max-min structure of phi-

functions and define the number of terminal nodes of each of the basic phi-trees; 6) we construct 

a solution tree for the optimal clustering problem and give an estimation of the maximum 

number of terminal nodes of the solution tree; 7) we propose two efficient algorithms in order to 

solve the optimal clustering problems based on  the solution tree; 8) we present a new set of 

challenging benchmark instances. 

The paper is organized as follows. In the next section, we give an overview of related 

work. In Section 3, we describe the phi-functions concept for containing regions with variable 

metrical characteristics and placement objects with variable placement parameters. In Section 4, 

we use phi-functions for constructing a mathematical model of the optimal clustering problem 

and present six basic realisations of the model. The general solution strategy, which involves the 

concept of phi-tree and the construction of the solution tree, and two solution algorithms is given 

in Section 5. We provide some computational results, illustrated with pictures, in Section 6, and 

finish with some concluding remarks in Section 7.  

 

2. Related work 
The literature on two dimensional irregular packing problems is large and it is not 

possible to comprehensively review here. It is common for cutting and packing papers to indicate 
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the problem type according to the typology presented in [28]. However in this paper, we deal 

with a sub-problem of the irregular packing problem. The sub-problem applies to both input 

minimisation and output maximisation, and is not specific to the number of large objects 

available. Hence, we have not classified this problem by this typology. In the following we 

identify some of the relevant papers to this work. 

Solution approaches to irregular nesting problems are reviewed by [5, 14]. A tutorial 

covering the core geometric methodologies currently applied by researchers in cutting and 

packing of irregular shapes is presented by  [4]. Tools of mathematical modeling of arbitrary 

object packing problems are given by [6, 10, 11]. Complexity investigations for cutting and 

packing problems can be found in [7, 9, 12, 20] . 

Among the plurality of two-dimensional cutting and packing problems the open 

dimension problem (ODP) is the most common when packing irregular objects. In the ODP, a 

given set of objects must be placed feasibly within a strip of given fixed width W  while 

minimizing the height H  needed. A packing pattern is  feasible if all objects are contained 

completely within the rectangle W H×  and do not overlap each other. In this case, the objective 

to minimize H is equivalent to minimizing the perimeter. This does not remain true if the width 

W  is also variable and the total area has to be minimized, then the objective becomes non-linear.  

There is a short list of publications which deal with irregular shapes without polygonal 

approximations. Packing problems with irregular objects of fixed orientation, whose frontier can 

be described by a sequence of line- and arc-segments, are tackled in [8] using the line and arc 

no-fit polygon. That paper extends the heuristic orbital sliding method of calculating no-fit 

polygons to enable it to handle arcs and then shows the resultant no-fit polygons being utilised 

successfully on the two-dimensional irregular packing problem.   

Several publications address the  containment problem. One problem type is as follows: 

Does a set of given objects (or a single object) fit feasibly within a given containing region? 

Rotation of objects may or may not be permitted. The single polygon-containment problem 

where rotation of the polygon is allowed has been studied in  [2, 15, 21]. Two-and three-polygon 

problems are considered in [3, 16]. 

In  [22, 25] the translational containment of multiple polygons within another polygon is 

investigated, whereas the more general case, also allowing rotations, is considered in [23, 24, 

19]. In  [26] the authors offer an approximation algorithm of the Minkowski sum for objects 
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bounded by line segments and circular arcs. Authors of [15] use a mathematical programming 

formulation/model to solve the following containment problem: Given a convex polygon Q  and 

a simple polygon P , can P  be translated and/or rotated such that P  fits within Q ? This method 

is used in an algorithm to place small (polygonal) items into (polygonal) holes obtained after 

placing larger items.  

The  minimal-area convex enclosure problem consists of finding the relative position of 

two simple polygons such that the area of their convex enclosure is minimized. It is investigated 

in  [17]. The technique searches along the envelope (or no-fit polygon). Authors of [13] consider 

the problem of circumscribing a convex polygon by a polygon of fewer sides with minimal 

increase in area. 

Most of the approaches dealing with the interaction of two (or a few) objects are used in 

placement algorithms for larger instances as local decision rules. Some of the earliest approaches 

to irregular packing problems used the strategy of first clustering pieces within easier to handle 

shapes, for example [1]. However, such approaches lost popularity as computational speed and 

methodology improvements facilitated the direct packing of irregular objects. There are recent 

examples where the cutting process requires the initial clustering, for example, guillotine cuts 

described in [18]. Further, the more sucessful placement heuristics use hole filling strategies that 

is the equivalent of  the containment problem described here. 

 

 3. The concept of phi-functions 

 

Cutting and packing problems involving irregular shapes require the modelling of 

interaction of two objects with respect to containment, overlap constraints and allowable 

distances. In this section we describe the core phi-function concepts including the definition of a 

phi-object, describing a placement objects and a containing regions, identify the interactions 

between objects. Finally we describe the containment and non-overlapping constraints taking 

into account allowable distances using phi-functions.  

3.1. Placement objects. We assume that any placement object T  (an object which 

has to be placed into a container) considered here, is a two-dimensional one-connected phi-object 

[6], where a phi-object is a canonically closed point set 2T R⊂  *( = ( ) = ( ( ))T cl T cl int T  having 
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the same homothopic type as its interior.  

Each one-connected phi-object T  is given by an ordered collection of frontier elements 

1 2, , ..., nl l l , (in counter clockwise order). Each element il  is given by tuple ( , , , , )
i ii i i c cx y r x y  

if il  is an arc or by tuple ( , , )i i ix y r  if il  is a line segment, where ( , )i ix y  and 1 1( , )i ix y+ +  are 

the end points of il , ( , )
i ic cx y  is the centre point of an arc. Each il  is a line segment, if 0ir = ; 

il  is a "convex" arc, if 0ir > ; il  is a "concave" arc, if 0ir <  (assume 1 1 1 1( , ) ( , )i ix y x y+ + =  for 

i n= ). We call the components of the tuples, which describe elements 1 2, , ..., nl l l , the metrical 

characteristics of  placement object T .  

Given the ordered collection of line segments and circular arcs, we apply the 

decomposition algorithm given in [10] to obtain a set of basic objects that describe the object. 

Authors of [10]  show that each phi-object, T, bounded by line segments and circular 

arcs, may be decomposed into n basic objects of four types, including convex polygons ( K ), 

circular segments ( D ), hats ( H ) and horns (V ).We denote a class of basic objects by ℜ . In 

terms each basic object is the intersection of primitive objects (half-planes, circles and circular 

holes). Illustrations of primitive and basic objects are given in Appendix A.  

Thus, we represent placement object T in the form 

1
=

n
j

j
T T

=
  with jT ∈ℜ .                                                         (1) 

Example. Let us consider two objects A and B given in Figure 1a. These can be 

decomposed into basic objects according to formula (1), so we have A H K=  , B D V=  ,  

, , ,V D H K ∈ℜ , = = 2A Bn n , see Figure 1b.  

 
                                                   (a)                                               (b) 
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Fig. 1. a) Objects A and B, b) Decomposition of A and B into basic objects  

 

Each placement object may be described in an analytical form. It follows from (1) that 

object T  is a union of basic objects jT , = 1, ,j n . Further, each basic object jT  is an 

intersection of primitive objects jkT , 1, ..., jk n=  (see Appendix A). Thus, 
1 1

jnn
kj

j k
T T

= =
=  1 . We 

define 2= { : ( ) 0}j jT t R f t∈ ≤ , with 
=1, ,

( ) = ( )maxj jk
k n j

f t f t


,  = 1, , ,j n   where ( )jkf t  is an 

infinitely differentiable function associated with primitive object Tjk, being a circle, the 

complement to a circle and a half-plane. We take the maximum of ( )jkf t , 1, ..., jk n= , because 

object jT  is defined by an intersection of primitive objects. Thus, if 
=1, ,

( ) 0max jk
k n j

f t ≤


 then 

( ) 0jkf t ≤  for all 1, ..., jk n= . It follows that since T  is a union of basic objects jT , and we 

take 
=1, ,

( )min j
j n

f t


, so each placement object can be represented in the form 

2

=1, ,
= { : ( ) 0}min j

j n
T t R f t∈ ≤


, i.e. 2

=1, , =1, ,
{ : 0}maxmin jk

j n k n j
T t R f= ∈ ≤

 
. Appendix B 

provides and example of an object description. 

The location and orientation of a placement object T  is defined by a variable vector of its 

placement parameters ( , , )T T Tx y θ . The translation of object T  by vector 2= ( , )T T Tv x y R∈  

and the rotation of T  (with respect to its reference point) by angle [0, 2 )Tθ ∈ π  is defined by 

2( , , ) = { : = ( ) , (0, 0, 0)}T T T T TT x y t R t v M t t Tθ ∈ + θ ∀ ∈∀ ∀ , where (0, 0, 0)T  denotes the non-

translated and non-rotated object T , where ( )TM θ  is given by 
cos sin

( ) =
sin cos

T T
T

T T
M

θ θ 
θ  − θ θ 

. 

We assume here that placement objects have fixed metrical characteristics and variable 

placement parameters ( , , )T T Tx y θ .  

3.2. Containing regions. We consider the following containing regions shown in 

figure 2: a) a circle of variable radius r: 2 2= {( , ) : }C x y x y r+ ≤ ,  b) an axis-parallel rectangle: 
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= {( , ) : 0 , 0 }R x y x a y b≤ ≤ ≤ ≤  where variables a and b are the horizontal and vertical 

dimensions respectively, c) a convex polygon K : K is given by its variable sides ie , 1, ...,i m= , 

where each side 1[ , ]i i ie v v +=  of variable length it  is defined by two variable vertices 

( , )i i iv x y=  and 1 1 1( , )i i iv x y+ + += , 1 cosi i i ix x t θ+ = + ⋅ , 1 sini i i iy y t θ+ = + ⋅ , and d) a regular  

convex polygon with equal sides and homothetic coefficient α. Each side ie  may be given by 

variable vector ( , , , )i i i ix y tθ ; Kα  is given by its verticies ( , )i i iv x yα α α= , 1, ...,i m= , where 

α  is a variable homothetic coefficient and ix  and iy  are constant (see Figure 2d), subject to for 

original polygon 1α = .  

 
Fig. 2 Containing region Ω  of variable vector p: (a) circle of variable radius, (b) rectangle of 

variable sides, (c) convex m-polygon of variable vertices, (d) convex polygon of variable 
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homothetic coefficient  

Containing region Ω  have fixed pacement parameters (0, 0, 0)  and variable metrical 

characteristics p  defined above. Hereinafter, we denote a containing region  ( )pΩ = Ω .    
 

3.3. Description of relationships between objects. In order to feasibly place 

two objects within a containing region, we need an analytical description of the relationships 

between a pair of objects A  and B . We  employ the phi-function technique for this. Phi-

functions allow us to distinguish the following three cases: A and B are intersecting so that A and 

B  have common interior points; A and B  do not intersect, i. e. A and B  do not have common 

points; A and B  are in contact, i. e. A and B  have only common frontier points. By definition, 

the phi-function of A and B is everywhere defined and continuous function that possesses the 

following characteristics: 0A BΦ >  if A B = ∅1 ; 0A BΦ =  if int intA B = ∅1  and 

frA frB ≠ ∅1 ; 0A BΦ <  if int intA B ≠ ∅1 , where int A , frA  is the interior and the frontier 

of object A. We employ phi-functions for the description of the contaiment relationship A B⊆  

as follows: * 0
AB

Φ ≥ , where * 2 \ intB R B= . See [6],  [10]  for definitions and basic features 

of phi-functions. According to equation (1), let   

1
=

An

i
i

A A
=
 , 

1
=

Bn

j
j

B B
=
  and ,i jA B ∈ℜ .                                         (2) 

A phi-function that characterises the non-overlapping of the pair of arbitrary shaped 

objects A  and B  and has the form  

= min{ , = 1, 2, ..., , = 1, 2, ..., },AB ij A Bi n j nΦ Φ                                    (3) 

where ijΦ  denotes a basic phi-function for the pair of objects ,i jA B ∈ℜ . The complete 

class of basic phi-functions is given in  [11] . 

Thus, in terms of phi-functions we describe non-overlapping constraint in the form: 

0ABΦ ≥  and containment constraint in the form: * 0,
AΩ

Φ ≥ ( * 0
BΩ

Φ ≥ ). 

For objects A and B given in Figure 1, based on (2) and (3), we have  

non-overlapping constraint: 0ABΦ ≥ , where = min{ , , , },AB VH VK DH DKΦ Φ Φ Φ Φ  

VHΦ , VKΦ , DHΦ , DKΦ  are phi-functions for basic objects. 
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containment constraint : * 0,
AΩ

Φ ≥ ( * 0
BΩ

Φ ≥ ), where * 2= \ intRΩ Ω , Ω  is a 

circular, a rectangular or a convex polygonal region and * * *= min{ , },
A V DΩ Ω Ω

Φ Φ Φ  

* * *= min{ , }
B K HΩ Ω Ω

Φ Φ Φ ,  * *, ,
V DΩ Ω

Φ Φ * ,
HΩ

Φ   *KΩ
Φ  are basic phi-functions. It should 

be noted that *AΩ
Φ  for KΩ ≡  with variable verticies we consider in the form: 

*AΩ
Φ =min{

kP AΦ , 1,...,k m= }, where 
kP AΦ  is phi-function for half-plane kP  and object  A . 

We take into account distance constraints replacing phi-functions in non-overlapping and 

containment constraints with adjusted phi-functions. By definition an adjusted phi-function of A  

and B  is an everywhere defined continuous function Φ
 AB , such that 0Φ >

 AB , if dist(A,B) ρ> , 

0Φ =
 AB , if dist(A,B) ρ= , 0Φ <

 AB , if dist(A,B) ρ< , where ρ  is the minimum allowable 

distance between objects A and B.  Here, dist(A,B) =
,

min ( , )
a A b B

d a b
∈ ∈

and ( , )d a b  is the Euclidean 

distance between two points a and b in 2R . In particular, we have dist(A,B) ρ≥  ⇔  0Φ ≥
 AB . 

 

4. Mathematical model  
 

In terms of phi-functions we can formulate the optimal clustering problem as a constrained 

optimisation problem:  
*( ) = min{ ( ) : },F u F u u W∈                                                      (4) 

 

{
* *

: 0, 0, 0, 0}σ λΩ Ω= ∈ Φ ≥ Φ ≥ Φ ≥ ≥
  A B ABW u R ,                                    (5) 

where ( )F u  is a polynomial function, ( , , )A Bu p u u Rσ= ∈  is a vector of variables, Rσ  

is Euclidean space of σ  dimension, p  is a vector of variable metrical characteristics of Ω , 

( , ) ( , , , , , )A B A A A B B Bu u x y x yθ θ=  is vector of variable placement parameters of objects A  and 

B , W  denotes the corresponding set of feasible solutions (the solution space), Φ
 AB  is an 

adjusted phi-function for objects A and B taking into account a given minimal allowable distance 

ρ  between the objects, 
*ΩΦ

 A  is an adjusted phi-function for objects A and *Ω , 
*ΩΦ

 B  is an 
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adjusted phi-function for objects B and *Ω  taking into account a given minimal allowable 

distances 'ρ  between each object and the frontier of Ω , 0λ ≥  involves a system of additional 

restrictions on the metrical variables p that ensures the validity of the shape of a container (for 

instance, 0r >  for a circle, , 0a b >  for a rectangle, homothetic coefficient 0α >  for convex 

polygon). It should be noted that if 0ρ =  and ' 0ρ = , then we use the original phi-function 

instead of the adjusted phi-functions in (5).  

We consider six realizations of problem (4)-(5), denoted by P1,.., P6, with respect to the shape of 

the containing region Ω  and the form of the objective function ( )F u :  

P1: RΩ ≡ , 1( ) =F u a b⋅  (area of R): 

( , , , )A Bu a b u u Rσ= ∈ , 

8σ =  (for rotatable A and B), 6σ =  (for non-rotatable  A and B),  

0λ ≥  means: 0, 0a b> > ; 

P2: RΩ ≡  , 2( ) =F u a b+  (half-perimeter of R): 

( , , , )A Bu a b u u Rσ= ∈ , 

8σ =  (for rotatable  A and B), 6σ =  (for non-rotatable  A and B),  

0λ ≥  means: 0, 0a b> > ; 

P3: CΩ ≡  , 3( ) =F u r  (radius of C): 

( , , )A Bu r u u Rσ= ∈ , 

7σ =  (for rotatable A and B), 5σ =  (for non-rotatable  A and B),  

0λ ≥  means: 0r > ; 

P4: KΩ ≡ , 4
1

( )
m

i
i

F u t
=

= ∑   (perimeter of K): 

1 1 1 1( , , , , ..., , , , , , )m m m m A Bu x y t x y t u u Rσθ θ= ∈ , 

4 6mσ = +  (for rotatable A and B), 4 4mσ = +  (for non-rotatable A and B),  

 0λ ≥  means: 1 cos 0i i i ix x t θ+ − − ⋅ = , 1 sin 0i i i iy y t θ+ − − ⋅ = , 

1 1( ) cos ( ) sin 0i i i i i ix x y yθ θ+ +− ⋅ + − ⋅ ≥ , s.t. 1 1m + ≡ , 0it ≥ , 
1

0
m

i
i

t
=

>∑ ;  
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P5: KΩ ≡ , 5 1 1
1

( ) ( )
m

i i i i
i

F u x y y x+ +
=

= −∑  s.t. 1 1m + ≡ , (doubled area of K): 

1 1 1 1( , , , , ..., , , , , , )m m m m A Bu x y t x y t u u Rσθ θ= ∈ , 

4 6mσ = +  (for rotatable  A and B), 4 4mσ = +  (for non-rotatable  A and B),  

0λ ≥  means: 1 cos 0i i i ix x t θ+ − − ⋅ = , 1 sin 0i i i iy y t θ+ − − ⋅ = , 

1 1( ) cos ( ) sin 0i i i i i ix x y yθ θ+ +− ⋅ + − ⋅ ≥ , s.t 1 1m + ≡ , 0it ≥ , 
1

0
m

i
i

t
=

>∑ ;  

P6: ( KΩ ≡ α ), 6( ) =F u α  (homothetic coefficient of K): 

( , , )A Bu u u Rσα= ∈ , 

7σ =  (for rotatable objects A and B), 5σ =  (for non-rotatable objects A and B),  

0λ ≥  means: 0α > . 

Remark. We may include additional restrictions on variables in 0λ ≥ . For instance, to fix 

any variable of  vector ( , , )A Bu p u u=  or give allowable rotation ranges for ,A Bθ θ .   

It is clear that, W ≠ ∅ , since F  is bounded from below, hence problems (4)-(5) are 

always solvable. The objectives we consider here are linear { 2 3 4 6, , ,F F F F } or quadratic 

{ 1 5,F F }. The phi-functions in (5) are composed of min - and max -combinations of linear 

and\or non-linear functions including sin - and cos -terms [11]. System 0λ ≥ , involves linear 

and\or non-linear functions including sin - and cos -terms. As a result, the set W  of feasible 

solutions is non-convex, leading to many local extrema. Hence, the optimal clustering problem  

(4)-(5) is a nonsmooth optimisation problem. 

 

5. General solution strategy 

The formulaton given in (4) and (5) is a non-smooth optimisation problem and so can not 

be solved directly. In this section we describe a branching tree structure to define  the feasible 

region by a set of sub-regions and, using these sub-regions, solution strategies to find the local 

and global extrema. 

 

5.1 The solution tree 
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Let us consider phi-functions ABΦ  , *AΩ
Φ  and *BΩ

Φ  which take part in describing the 

feasible region W (solution space)  in mathematical model (4)-(5). Here A and B are composed 

objects given by 
1

=
An

t
t

A A
=
 , 

1
=

Bn

l
l

B B
=
 , ,t lA B ∈ℜ  according to (2). 

Let * *{ , , }
t l t l

k A B A BΩ Ω
Φ ∈ Φ Φ Φ  be a basic phi-function, 1, .2, ..,k n= , 

A B A Bn n n n n= ⋅ + + , 1, .2, .., At n= , 1, .2, .., Bl n= ,  where A Bn n⋅  is the number of basic phi-

functions 
t lA BΦ  in phi-function ABΦ  ; An + Bn  is the number of basic phi-functions *

tA Ω
Φ  

and *
lB Ω

Φ  in phi-functions  *AΩ
Φ  and *BΩ

Φ .  

By construction [10] each basic phi-function kΦ  may be given in the form: 

1,.., 1,.., 1,...,
max max min

kk k i

k k
k i ij

i i j J
f f

= η = η =
Φ = = , 

where  k
ijf  are infinitely-differentiable functions. Since 

1,...,
min 0

k
i

k
ij

j J
f

=
≥  is equivalent to 

0k
ijf ≥  for all j , and 

1,..,
max 0

k

k
i

i
f

= η
≥  means at least one of the inequalities, say 

0
0k

if ≥  has to 

be fulfilled, each of these terms can be considered as a system of (in general non-linear) 

inequalities. This can be solved using a branching scheme.  

For each inequality 0kΦ ≥  we may construct a tree, called a basic phi-tree and noted by 

kℑ  and kη  means the number of terminal nodes of  the basic phi-tree. Each terminal node of 

kℑ  corresponds to a system of inequalities 0k
if ≥ , 1, 2,..., ki η= .  

The solution tree ℑ  describes feasible region W  of problem (4)-(5) and is constructed as 

follows, see Figure 3.  

The tree root corresponds to inequality system 0λ ≥ .  

On the first level of ℑ  we have 1τ = 1η  of nodes, where 1η  is the number of terminal 

nodes of basic phi-tree 1ℑ  describing 1 0Φ ≥ , where 
1

1
1

1,..,
max i

i
f

η=
Φ = , 

1
1 1

1,...,
min

i
i ij

j J
f f

=
= . To each 

node there corresponds a system of inequalities
1
10, 0ifλ ≥ ≥ .  
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On the second level of ℑ  to each node of the first level we add 2η  terminal nodes of  

basic phi-tree 2ℑ  describing 2 0Φ ≥ , where 
2

2
2

1,..,
max i

i
f

η=
Φ = , 

2
2 2

1,...,
min

i
i ij

j J
f f

=
= , i.e. the 

number of nodes of the second level of ℑ   becomes 2 1 2τ η η= ⋅ .To each node there corresponds 

a system of inequalities 
1 2
1 20, 0, 0i if fλ ≥ ≥ ≥ . 

On the k-level of ℑ   to each  node of the (k-1)-level  level of ℑ  we add ηk  terminal 

nodes of  basic phi-tree kℑ  describing 0Φ ≥k , 
1,..,
max

k

k
k i

i
f

η=
Φ = , 

1,...,
min

k
i

k k
i ij

j J
f f

=
= , i.e. the 

number of nodes of the k-level of ℑ   becomes 1 2 ...k kτ η η η= ⋅ ⋅ ⋅  .To each node there 

corresponds a system of inequalities 
1 2
1 20, 0, 0, ...., 0

k
k

i i if f fλ ≥ ≥ ≥ ≥ . 

Note that nτ = 1 2 1...η η η η−⋅ ⋅ ⋅ ⋅n n =η , where η  is the number of terminal nodes of the 

solution tree ℑ  .    

Now we may present a feasible region W  of problem (4)-(5) as a union of subregions 

, = 1, 2, ...,sW s η  [9]. Each sW  corresponds to s-th terminal node of ℑ  and therefore sW  is 

determined by a system of inequalities 0, 0, 1, ...,
k
k

sf k nλ ≥ ≥ = .  

 
Fig. 3 Forming inequality systems which describe subsets , = 1, 2, ...,sW s η   
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Since 
1

= s
s

W W
η

=
  we may reduce the nonsmooth optimisation problem (4)-(5) to the 

following problem for = ( , , )A Bu p u u : 

 

 * *( ) = min{ ( ), = 1, , }sF u F u s η , (6) 

where 

 *( ) = min ( )sF u F u  s.t. su W∈ , (7) 

Clearly, the global optimum solution can be obtained and proved by inspecting and 

exactly solving all of the subproblems defined in (7) .  

Subproblems (7) are in general non-linear mathematical programming problems and they 

may be solved by standard local optimisation techniques (e.g. interior point method, feasible 

direction method). In particular, problems P2 and P6, which are subproblems of (7), are linear 

optimisation problems when A and B are polygons with allowable minimal distances of zero and 

continuous rotations of A and B are not allowed. In these cases we can apply LP methods and can 

derive proved optimal solutions. 

5.2.  Evaluation of the number of terminal nodes of branching tree ℑ  . The 

number η  of terminal nodes of the solution tree ℑ  depends on the number 'η  of terminal nodes 

of  phi-tree  ABℑ  for 0ABΦ ≥ , and the number ''η  of the terminal nodes of  phi-tree *AΩ
ℑ  for 

* 0AΩΦ ≥ , * 0BΩΦ ≥ . Since,   
1

An
i

i
A A

=
=  , 

1

Bn
j

j
B B

=
=  , iA ∈ℜ , jB ∈ℜ   according to (2) and, 

therefore, phi-functions ABΦ ,  *AΩ
Φ , *BΩ

Φ  may be given in the form: 

min{ , 1, ..., , 1, ..., }AB ij A Bi n j nΦ = Φ = = = min{ , 1, ..., }k A Bk n nΦ = ⋅ , 

* *min{ , 1, 2, ..., }
i

AA A
i n

Ω Ω
Φ = Φ = , * *min{ , 1, 2, ..., }

j
BB B

j n
Ω Ω

Φ = Φ = . 

We denote: '
A Bn n n= ⋅  and '' max{ , }A B An n n n= = , and the upper estimation of the number 

of terminal nodes of  ABℑ  and *AΩ
ℑ  by '*η  and ''*η  respectively, which we derive below.  

The upper estimation *η  of the number of terminal nodes of the solution tree ℑ  for problem 
(6)-(7) arises from all combinations of the terminal nodes of ABℑ , *AΩ

ℑ  and *BΩ
ℑ , and is 

defined as  
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*η  = '* ''* 2( ) ( )η η⋅  .                                                (8) 
The number of terminal nodes for  ABℑ  and *AΩ

ℑ  respectively are 
' ' ' '

1 2 '... nη η η η= ⋅ ⋅ ⋅ ,  '' '' '' ' '
1 2 ''... nη η η η= ⋅ ⋅ ⋅ ,                                   (9) 

Based on (9), we have  

 '*η =
'' '(max{ , 1, 2, ..., })n

k k nη = ,  ''*η =
'''' ''(max{ , 1, 2, ..., })n

k k nη = . (10) 
                                      

For constructing the solution space of problem (6)-(7) we use the basic phi-functions, which is 

a complete class of phi-functions for all pairs of basic objects of { , , , }K D H Vℜ = : phi-functions 

for non-overlapping constraints t{ , 1, 2, ...,10}AB tΦ ∈ Φ = , A∈ℜ , B∈ℜ , and phi-functions 

for containment constraints * { , 1, 2, ..., 4}pA
p

Ω
Φ ∈ Φ = , A∈ℜ . 

Then estimations (10) are reduced to 

  '*η =
''(max{ , 1, 2, ...,10})n

t tη = , ''*η =
''''(max{ , 1, 2, ..., 4})n

p pη = . (11) 

  Table 1 and 2 define the upper estimations ' , 1, 2, ...,10t tη = ,  and '' , 1, 2, ..., 4p pη = , 

respectively, according to the formulas of the basic phi-functions given in [11]. We note that in 

tables 1 and 2 notations ,A Bm m  mean the numbers of sides of convex polygons 

,A BK A K B⊂ ⊂ . 

Table 1. Estimations of the number of terminal nodes for phi-tree  ABℑ   

A\B V  H  D  BK  
V  '

1η =385    

H  '
2η =197 '

3η =28   

D  '
4η =45 '

5η =35 '
6η =19  

AK  '
7η = 22(2 6 7)A Am m+ +  '

8η = 2 5Am +  '
9η =3( 1)Am +  '

10η = A Bm m+  
 
Table 2. Estimations of the number of terminal nodes for phi-tree *AΩ

ℑ  
*Ω \A V  H  D  K  

R∗  ''
1Rη =12 ''

2Rη =1 ''
3Rη =12 ''

4Rη =1 

C∗  ''
1Cη =2 ''

2Cη =1 ''
3Cη =2 ''

4Cη =1 

K ∗  ''
1Kη 2m m= −  ''

2Kη =1 ''
3Kη 2m m= −  ''

4Kη =1 
Based on relations (8) - (11) and tables 1 and 2, we obtain 
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*
Rη =

''212 n ⋅
'' ' '

1 7 10(max{ , , })nη η η ,                                       (12) 
*
Cη =

''22 n ⋅
'' ' '

1 7 10(max{ , , })nη η η , 

*
Kη =

''2 2( ) nm m− ⋅
'' ' '

1 7 10(max{ , , })nη η η . 
 

The increase in the number of terminal nodes of the solution tree shows that the optimal 

clustering problem is NP-hard, and in most cases to consider all subregions Ws and, therefore, to 

obtain proved optimal solution  is an unrealistic task . 

 

5.3 Example of the solution tree. In this subsection we provide an example of a 

solution tree for problem P3 considering two circular segments and a containing circle. 

Let Ω  be a circular container of radius r . We consider two objects: 1=A D  and 2=B D , 

where iD  are circular segments given as =i i iD T C1 , where iC  are circles, iT  are appropriate 

triangles with two tangent sides to iC , {1, 2}i∈ .  Center points iO  of the circles are poles of 

iD , {1, 2}i∈ . Appendix C explains the rationale for this composition to derive a circular 

segment.  

The mathematical model (4)-(5) can be written in the form  

min . .r s t u W∈ ,                                                 (13) 

 
2

7
*1

= { : 0, 0, 0, , = 1, 2}
iD D D C iW u R r r r i∈ Φ ≥ Φ ≥ > ≤ , 

 where 7
1 1 1 2 2 2= ( , , , , , , )u r x y x y Rθ θ ∈ .  

 In order to reduce problem (13) to problem (6)-(7) we need to construct an inequality 

systems describing  subregions sW , = 1, 2,s   ...,η .  

Let us now consider inequality 
1 2

0D DΦ ≥ . Since 1 1 1=D T C1  and 2 2 2=D T C1   we 

have  

 
1 2 1 2 1 2

= max{ , },D D D T D CΦ Φ Φ  (14) 

 where 
1 2 1 2 1 2

= max{ , },D T T T C TΦ Φ Φ  
1 2 2 1 1 2

= max{ , }.D C C T C CΦ Φ Φ   

 Consequently, we consider phi-functions of basic objects 
1 2C CΦ , 

1 2T TΦ , 
1 2C TΦ , 

2 1C TΦ  and  given in [10, 11].  
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Before we give explicit forms of the phi-functions we remind the reader that each point 

∀ ∀( , ) (0,0,0)x y A∈  in the eigen coordinate system of A is transformed into point ( , )x y  given a 

translation of (xA, yA) and rotated by angle Aθ  as follows:  

∀ ∀ ∀ ∀cos sin , sin cosA A A A A Ax x y x y x y yθ θ θ θ= ⋅ + ⋅ + = − ⋅ + ⋅ + . 

Each straight line � � � ∀ � �2 22{( , ) 0, 1}L x y R x yα β γ α β= ∈ + + = + =  is transformed into straight 

line 2{( , ) 0}L x y R x yα β γ= ∈ + + = , where � �cos sinA Aα α θ β θ= ⋅ + ⋅ , 

� �sin cosA Aβ α θ β θ= − ⋅ + ⋅ , ∀
A Ax yγ γ α β= − ⋅ − ⋅  , Aθ  is rotation parameter, ( , )A Ax y  is 

translation vector A. 

Let ( ', ')i ix y , = 1, 2, 3i , be the vertices of 1T , and ( ' , ' )j jx y′ ′ , = 1, 2, 3j , those of 2T , 

and 1 = {( , ) : 0, = 1, 2, 3}iT x y iϕ ≤ , 2 = {( , ) : 0, = 1, 2, 3},jT x y iy ≤  = ' ' 'i i i ix yϕ α + β + γ , 

= ' ' 'j j j jx y′ ′ ′y α + β + γ .  

The phi-function for 1T  and 2T  is defined as follows: 

1 2 1 3 1 31 3 1 3
= max{max min , max min },T T ij ji

j ii j≤ ≤ ≤ ≤≤ ≤ ≤ ≤
Φ ϕ y                                (15) 

where = ' ' ' ' 'ij i j i j ix y′ ′ϕ α + β + γ , = ' ' ' ' 'ji j i j i jx y′ ′ ′y α + β + γ  . 

 The phi-function for two circles iC  of radii ir  and center points ( , )C Ci i
x y , = 1, 2,i  is  

 2 2 2
1 21 2 1 2 1 2

( ) ( ) ( ) .C C C C C Cx x y y r rΦ = φ = − + − − +  (16) 

 The phi-functions 
21C TΦ  and 

12C TΦ  are defined by  

 = max{ , min{ , }, = 1, 2, 3},CT i i i iΦ χ ω y  (17) 

 where 2 2= {( , ) : 0, = 1, = 1, 2, 3}i i i i iT x y x y iα +β + γ ≤ α + β  is a triangle, C  is a circle 

of radii Cr  and center points ( , )C Cx y , 

= ,i i C i C i Cx y rχ α + β + γ −  

2 2 2= ( ) ( )i C i C i Cx x y y rω − + − − , 

1 1 1 1= ( )( ) ( )( ) ( )i i i C i i i C i C i i i ix x y y r− − − −y β −β − − α − α − + α β − α β . 

We below apply notations ' ' ', ,i i iχ ω y  for 
21C TΦ  and '' '' '', ,i i iχ ω y  for 

12C TΦ .   
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In order to ensure iD ⊂ Ω  we set ir r≤ , = 1, 2i , here, since this simplifies the containment 

constraints, and define phi-functions *
iC D

Φ  for = 1, 2i  in the form:  

*
1,2

min
i

i ijC D j
g g

=
Φ = = ,  2 2 2

ij ij ijg r x y= − − , = 1, 2i ,                        (18) 

where ( ijx , ijy ), = 1, 2j , are  end points of the base of iD . 

Given the above phi-functions, we can now construct the branching tree ℑ   for problem 

(13) based on phi-trees (denoted by ABℑ , *AΩ
ℑ  and *BΩ

ℑ ) for 
1 2

0D DΦ ≥ , 
1 * 0D CΦ ≥  and 

2 * 0D CΦ ≥ . 

First consider phi-tree ABℑ  for 
1 2

0D DΦ ≥ . Let 11υ  denote the root node, and 1,i k
ij
−υ  

denote the j -th node of the i -th level of the tree ( 1,i k
ij
−υ  is an offspring of the k -th node of the 

( 1i − )-th level of the tree), then the phi-tree for 
1 2

0D DΦ ≥ , taking into account relations (14)-

(18), has the following form: 

level 1: 11υ  ↔  
1 2

0D DΦ ≥  

level 2: 11
21υ  ↔  

21
0D TΦ ≥ , 11

22υ  ↔  
21

0D CΦ ≥  

level 3: 21
31υ  ↔  

21
0T TΦ ≥ , 21

32υ  ↔  
21

0C TΦ ≥ , 22
33υ  ↔  

21
0T CΦ ≥ , 22

34υ  ↔  
1 2

0C CΦ ≥  

level 4: 31 31
41 1 42 2{ 0, = 1, 2, 3, { 0, = 1, 2, 3,j jj jυ ↔ ϕ ≥ υ ↔ ϕ ≥  31

43 3{ 0, = 1, 2, 3j jυ ↔ ϕ ≥ , 

31
43 3{ 0, = 1, 2, 3j jυ ↔ ϕ ≥ , 31 31

44 1 45 2{ 0, = 1, 2, 3, { 0, = 1, 2, 3,i ii iυ ↔ y ≥ υ ↔ y ≥  

31
46 3{ 0, = 1, 2, 3,i iυ ↔ y ≥ 32 32 32

47 1 48 2 49 3{ ' 0, { ' 0, { ' 0,υ ↔ χ ≥ υ ↔ χ ≥ υ ↔ χ ≥  

32
4,10 1 1{ ' 0, ' 0,υ ↔ ω ≥ y ≥ 32 32

4,11 2 2 4,12 3 3{ ' 0, ' 0, { ' 0, ' 0,υ ↔ ω ≥ y ≥ υ ↔ ω ≥ y ≥  

33 33
4,13 1 4,14 2{ ' 0, { ' 0,′ ′υ ↔ χ ≥ υ ↔ χ ≥ 33

4,15 3{ ' 0,′υ ↔ χ ≥ 33
4,16 1 1{ ' 0, ' 0,′ ′υ ↔ ω ≥ y ≥  

33
4,17 2 2{ ' 0, ' 0′ ′υ ↔ ω ≥ y ≥ , 33

4,18 3 3{ ' 0, ' 0,′ ′υ ↔ ω ≥ y ≥ 34
4,19 { 0υ ↔ φ ≥ . 

Thus, the number of terminal nodes, ABη , of the phi-tree ABℑ  for 
1 2

0D DΦ ≥  is equal 

to 19. For each terminal node kυ , = 1, ...,19k , there corresponds a system of inequalities. The 
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diagram of the phi-tree ABℑ  for 
1 2

0D DΦ ≥  is given in Appendix D. 

Phi-tree *AΩ
ℑ  for 

1 * 0D CΦ ≥  consists of only one node corresponding to the system of 

inequalities 11 120, 0g g≥ ≥ . The same is true for phi-tree *BΩ
ℑ  for 

2 * 0D CΦ ≥  and the system 

of inequalities 21 220, 0,g g≥ ≥  where ijg  is given in (18). Therefore * 1
A

η
Ω

=  and * 1
B

η
Ω

= . 

Solution tree ℑ  for problem (13) describes the system of inequalities   

2 *1
0, 0, 0, 0, = 1, 2

iD D D C ir r r iΦ ≥ Φ ≥ > − + ≥ , and involves phi-trees ABℑ , *AΩ
ℑ  and 

*BΩ
ℑ . Hence, the terminal nodes of ℑ  is the to system of inequalities for each terminal node of 

ABℑ  combined with: 1) the system of inequalities 0, 0, = 1, 2ir r r i> − + ≥ ; 2) one of  

inequality system of the last level of *AΩ
ℑ ; 3) one of inequality system of the last level of 

*BΩ
ℑ . 

 Thus, the number of terminal nodes η  = * * 19 1 1 19AB A B
η η η

Ω Ω
⋅ ⋅ = ⋅ ⋅ = .  

For example, we form the inequlity system corresponding to the 19-th terminal node of ℑ  by 

adding to inequality system 0φ ≥   (the system corresponds to node 34
4,19υ  of ABℑ ) the 

following inequality systems: 1) 0, 0, = 1, 2ir r r i> − + ≥ ; 2) 11 120, 0g g≥ ≥ ; 3) 

21 220, 0g g≥ ≥ . 

Finally, we obtain the system of inequalities 0,φ ≥  0,r > 1 0,r r− + ≥ 2 0,r r− + ≥  

11 0,g ≥ 12 0,g ≥  21 0,g ≥  22 0g ≥ , which describes sub-region 19W  in (7). 

5.4 Solution algorithms.  
In order to solve the optimal custering problems defined in Section 4, we propose two 

algorithms. The first requires a comprehensive search for local extrema on all subregions and 

provides the global extremum provided each subproblem (7) can be solved optimally. The 

second is considerably faster and only searches one highly promising starting point, hence is 

only locally optimal. In order to search for local minima of subproblems (7) we use IPOPT (see 

[26]) that only guarantees a local optimum for non-linear programming problems. 

Algorithm 1. The algorithm is based on the branching scheme described above and 

generates the inequality systems that describe sW W⊂  from (7), using the solution tree ℑ . 
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Algorithm 1 employs an accelerated search (branching scheme) of the inequality systems 

corresponding to nodes 
k

k
sv , 1, ...,k ks η= , 1, ...,k n=  of ℑ .  In order to discard unpromising 

nodes at the k -level of the search tree ℑ  we apply cut rules. The rules use the incompatibility of 

systems and the upper bound value of the objective function.  

First we find an upper estimation 0F  of our objective function ( )F u . Then we perform 

an exhaustive search of nodes 
1

1
1 1, 1, ...,sv s η= , of the first level of ℑ  (see Figure 3) sequentially 

and solve optimisation problems corresponding to node 
1

1
sv  in the form: 

1 1
1 1( ) = min{ ( ) : },s sF u F u u V∗ ∈ {1 1

1 1: 0, 0}s sV u R fσ λ= ∈ ≥ ≥ . 

If 
1
1
sV ≠ ∅  and 

1
1 0( )sF u F∗ < , then we consider sequentially each offspring 

2
2
sv , 

2 21,...,s η= , of  node 
1

1
sv  and solve optimisation problems corresponding to node 

2
2
sv  in the 

form:  
2 2

2 2( ) = min{ ( ) : },s sF u F u u V∗ ∈ {2 1 2
2 1 2: 0 : 0, 0}s s sV u R f fσ λ= ∈ ≥ ≥ ≥ . 

Otherwise we cut node 
1

1
sv . 

If 
2
2

sV ≠ ∅  and 
2

2 0( )sF u F∗ < , then we consider sequentially each offspring 
3

3
sv , 

3 31,...,s η= , of  node 
2

2
sv   and  solve appropriate optimisation problems corresponding to node 

3
3
sv by analogy of previous step, otherwise we cut node 

2
2
sv  and so on .  

On the last level of ℑ  we solve an optimisation problem corresponding to node 
n

n
sv  

( ) = min{ ( ) : },
n n

n n
s s sF u F u u W V∗ ∈ = { 1 2

1 2: 0, 0, ..., 0, 0}
n n
n n

s ss sV u R f f fσ λ= ∈ ≥ ≥ ≥ ≥ . If 

n
n

sV ≠ ∅  and 0( )
n

n
sF u F∗ < , then we set 0 ( )

n
n
sF F u ∗=  and take point 

n
n
su ∗  as the best solution. 

The complexity of Algorithm 1 depends on the number η η≤


 of nonlinear optimisation 

problems which have to be solved and the complexity of applying a nonlinear optimisation 

method, ( ( )O η ). Algorithm 1 is applicable only for "simple" objects, since the number of 

terminal nodes of the search tree ℑ  increases rapidly with the numbers An  and Bn  of basic 

objects which form A and B. 

 Algorithm 2. This algorithm finds good solutions with reasonable computation times that 
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do not increase significantly with the complexity of the objects. In order to obtain a good starting 

solution 0u W∈  the algorithm employs a fast and effective heuristic given in [10]. The heuristic 

is based on searching for an approximate solution of problem (4)-(5) provided that the placement 

parameters of objects A and B take discrete values. Then the algorithm applies IPOPT [27] to 

search for local minima. Below we give a description of the algorithm. 

Let us define function * *( ) min{ , , , }AB A B
u λ

Ω Ω
Λ = Φ Φ Φ . Our aim is to extract from 0( ) 0uΛ ≥  

an inequality system, which describes subregion sW W⊂ , such that 0
su W∈ .  

We form the subregion sW  as follows. We realise an exhaustive search of nodes 1
1, 1, ...,sv s η= , 

of the first level of ℑ  (see Figure 3) sequentially and search for the number 1s  such that 

1 1
1 0 1 0 1 0 1 0 1 0

1 2( ) ( ) max{ ( ), ( ), ..., ( )}sf u f u f u f u f uη= = . Then we realise an exhaustive search of 

offsprings 2
sv , 21,...,s η= , of node 

1
1
sv  and search for the number 2s  such that 

2 1
2 0 2 0 2 0 2 0 2 0

1 2( ) ( ) max{ ( ), ( ), ..., ( )}sf u f u f u f u f uη= = . And so on. 

On the n-th level of our solution tree ℑ  we realise an exhaustive search of nodes , 1, ...,n
s nv s η=  

which are offsprings of node 
1

1
n

n
sv
−
−  and search for the number ns  such that 

0 0 0 0 0
1 2( ) ( ) max{ ( ), ( ), ..., ( )}

n n
n n n n n

sf u f u f u f u f uη= = . Then we form inequality system 

which corresponds to s-th terminal node of our solution tree ℑ  in the form: 

{ 1 2
1 2: 0, 0, ..., 0, 0}

n
n

s s s sW u R f f fσ λ= ∈ ≥ ≥ ≥ ≥ . To each sequence of numbers 

1 2, ,..., ,...,k ns s s s  there corresponds the number s  which is derived by formula: 

* *
1*

11
*

( 1) , 1,..., 1

,

n

k k i k
i k

k k

s s s if k n
s s

s s if k n

η +
= +

 = − ⋅ + = −= = 
 = =

∏
. 

Finally, we solve problem min ( )
su W

F u
∈

 starting from point 0u . The complexity of Algorithm 2 

depends on the number n of basic phi-functions forming the solution space and the complexity of 

a single application of a nonlinear optimisation method, ( ( )A BO n n⋅ ). 

In conclusion, our approach is able to find the global minimum for problems P1 and P6 for non-
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rotable objects using Algorithm 1, since in the case each problem (7) becomes a linear problem 

and a good approximation to the global minimum of problems P1-P6 for the general case using 

Algorithm 1 or using Algorithm 2.  

 

6. Computational experiments  

The results include a number of examples to demonstrate the effectiveness of the 

methodology. In all cases the input data of the example has been provided in Appendix E. 

Example 1.1 is the proved global optimum since all the sub-problems defined by (7) are linear 

and Algorithm 1 performs an exhaustive search. All other examples are non-linear optimisation 

problems. For local optimisation, our programs use IPOPT (https://projects.coin-or.org/Ipopt). 

Example 5a and Example 9 are examples of global optimum proved by known global solutions. 

All input and output data considered in the following examples can be download from 

http://www.math.tu-dresden.de/~capad/. We use computer AMD Athlon 64 X2 5200+.  

Example 1. We consider two triangles A  and B  and problem P2. The task is to find the 

enclosing rectangle of minimal perimeter, i.e. ( ) =F u a b+ .  

 Example 1.1. Non-rotatable case. In this example we demonstrate the approach for 

computing the global solution. We use Algorithm 1 to relise model (6)-(7). Figure 4 shows the 

optimal arrangments of A  and B  which coorespond to six local minima of problem (4)-(5) 

arising from the solution tree. Since all subproblems (7)  are linear, we can find the global 

minima *( )F u  of  problem (6)-(7). In Figure 4, each solution point *su  is the global minimum 

of subproblem (5), 1, , 6s =  . Solution * 4*u u=  is the point of the global minimum of problem 

(4)-(5). * 1* 2* 3* 4* 4*( ) min{ ( ), ( ), ( ), ( )} ( ) 7.6667.F u F u F u F u F u F u= = =  Running time is 

0.06 sec.  

Example 1.2. Continuous rotations are allowed, *( )F u a b= + = 6.3640. Running time is 0.109 

sec, see Figure 5a. We use Algorithm 1 to relise model (6)-(7). 

Example 1.3.  Discrete rotations are allowed.  We solve problem (6)-(7) for each object 

orientation according to the rotation step. We use Algorithm 1. *( )F u a b= + = 7.0000, see 

Figure 5b.   Running time is 0.72 sec, see Figure 5a. 

 

https://projects.coin-or.org/Ipopt
http://www.math.tu-dresden.de/~capad/
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Fig. 4 Arrangments of A and B of Example 1.1, corresponding to points *
su ,  1, , 6s =   

                 
                             (a)                                                           (b) 

Fig. 5 Arrangment of polygons A and B corresponding to point *u : a) with continuous 

rotations, Example 1.2, b) with discrete rotations, Example 1.3. 

Example 2. We consider two irregular objects A  and B, see Figure 6. We use Algorithm 2. 

A 

B 

A 

B 
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Example 2.1 Clustering of objects A  and B  into a rectangle R , we believe this optimal but not 

proved, problem P1, see Figure 6a, * * *( ) = 23.2253F u a b⋅ = . Running time is 0.431 sec.  

Example 2.2 Clustering of objects A  and B  into a circle C, we believe this optimal but not 

proved,  problem P3, see Figure 6b, * *( ) = = 3.2599F u r . Running time is 0.387 sec. 

Example 2.3 Clustering of objects A  and B  into a rectangle R  taking into account minimal 

allowable distance ρ =0.6, we believe this optimal but not proved, problem P1, see Figure 6c, 

* * *( ) = 27.685F u a b⋅ = . Running time is 0.4067sec.  

                    
                                 (a)                                                             (b) 

 

                   
                  (c)                                            (d)                                          (e) 

Fig.6. Arrangement of objects A and B as described in Example 2: a) minimal enclosing 

rectangle, b) minimal enclosing circle, c) minimal enclosing rectangle taking into account 

distance constraints, d) minimal enclosing m-polygon, e) minimum homothetic coefficient 

Example 2.4 Polygonal approximation to the minimal convex hull of objects A  and B , problem 

A 

B 

B 

A 

B 

A 

A B 

A 

B 
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P5, Figure 6d, * *( ) = = 42.6835F u S . Running time is 0.589 sec.  

 Example 2.5 Clustering of objects A  and B  into a convex pentagon KΩ ≡ α  of minimal 

homothetic coefficient, we believe this optimal but not proved, problem P6, see Figure 6e, 
* *( ) = = 0.5259F u α . Running time is 0.401 sec.  

Example 3. We consider two irregular objects A  and B , see Figure 7. We use Algorithm 2. 

Example 3.1 . Clustering of objects A and B in a circle of minimal radius, we believe this 

optimal but not proved, problem P3, see Figure 7a,  F(u*)=8.5826.Running time is 0.531 sec. 

Example 3.2.  Clustering of objects A and B in a circle of minimal radius with allowable 

distance 0.3ρ = , we believe this optimal but not proved, problem P3, see Figure 7b, 

F(u*)=r*=11.3709. Running time is 1.235 sec. 

Example 3.3. Clustering of objects A and B  in a convex polygon of minimal area,  we believe 

this optimal but not proved, problem P5,  see Figure 7c,  F(u*)=S*= 439.8638. Running time is 

5.06 sec.  

 
                            (a)                                         (b)                                               (c) 

Fig 7. Minimal enclosing container of objects A and B  as described in Example 3: a) circle, 

without distance constraints , b)  circle, with distance constraints, c) convex m-polygon  

 

Exanple 4. We consider two irregular objects A  and B , see Figure 8. We use Algorithm 2. 

Example 4.1 Clustering of objects A and B in a circle of minimal radius we believe this optimal 

but not proved, problem P3, see Figure 8a,  F(u*)=17.7674. Running time is 5.031 sec. 

Example 4.2 Clustering of objects A and B in a rectangle of minimal area, we believe this 

optimal but not proved, problem P1,  see Figure 8b, F(u*)=1121.6867. Running time is 2.938 

B 

A A 

B 
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sec. 

Example 4.3 Clustering of objects A and B in a convex m-polygon, we believe this optimal but 

not proved, problem P5,  see Figure 8c,  F(u*)=1736.6091. Running time is 10.375 sec. 

     
                            (a)                                         (b)                                               (c) 

Fig 8. Minimal enclosing regions for objects A and B of Example 4: a) rectangle, b) 

circle, c)  convex m-polygon 

Example 5. The convex hull of two convex polygons A  and B , the optimal solution, problem 

P5, see Figure 9a, F(u*) =387.5215. Running time is 5.14 sec. We use Algorithm 1. 

Example 6. The convex hull for two rotated objects A and B, we believe this optimal but not 

proved  problem P5, see Figure 9b, F(u*) =51.0228. Running time is 0.484 sec. We use 

Algorithm 2. 

                    
                               (a)                                                  (b)   

Fig. 9 The convex hull for objects A and B: (a) two convex polygons, Example 5, (b) two non-

convex objects, Example 6.  

 Example 7. An approximation of the convex hull for two convex polygons considering minimal 

 allowable distance 0.2ρ =  between objects A and B, as well as, between the frontier of Ω  and 

B 

A 

B 

A 

B 

A 

A 

B 
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 each object, problem P5, see Figure 10. We consider polygons A and B, given in Appendix 

 E, for Example 1. F(u*) =11.3211. Running time is 0.283 sec. We use Algorithm 2. 

                                    
Fig.10. An approximation of the m-polygonal convex hull for two convex polygons of Example1 

 

 Example 8. An approximation of the convex hull for two non-convex objects, see Figure 11. We 

 use Algorithm 2. 

Example 8. 1. An approximation of the convex hull of minimal area for two non-convex objects, 

we believe this optimal but not proved, problem P5, see Figure 11a, F(u*) =373.5249. Running 

time is 0.562 sec. 

Example 8. 2. An approximation of the convex hull of minimal perimeter for two non-convex 

objects, which looks like the optimal, problem P4, see Figure11b, F(u*) =55.0508 . Running time 

is 0.5710 sec. 

        
                                (a)                                                           (b) 

Fig 11. An approximation of the m-polygonal convex hull for two non-convex objects of 

Example 8: (a) area of the convex hull  (b) perimeter of the convex hull  

Example 9. Containment of two convex polygons A  and B  into the given polygonal container K 

taken from [16]. We consider the containment problem as problem P6, assuming that  KΩ ≡ α . 

We say that the problem is solved, if * 1α ≤ . In the example we got the global minimum:     

F(u*) = *α =1, see Figure 12. We use Algorithm 1. Running time is 0.95 sec.  

Ω

A 
B 

A 
B 

B 

A 
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A

BK

 
Fig. 12 Containment of two polygons A and B into container K of Example 9 with respect to 
point of the global minimum * * * *( , , )A Bu u uλ=  

 

7. Conclusions  
In the paper a basic approach is presented to handle placement problems with irregular shapes, 

whose frontiers formed by circular-arc and/or line segments. We investigated the problem of enclosing 

two such objects by a rectangle or circle or convex polygon of minimal area or perimeter or homothetic 

coefficient by means of phi-function technique. The solution methodology can be applied to a wide 

range of problems in cutting and packing. The extension of the approach to the case of more than two 

objects, the problem of filling holes of arbitrary shapes and other forms of objectve functions is onging 

work for the near future publication.  
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Appendix A: Primitive and basic objects 

 
Fig. A. (a)  3 types of primitive objects (b) 4 types of basic objects 

 

Appendix B: Description of irregular objects in an analytical form 

We define phi-object T , given in Figure B, as follows: 1 2=T T T , where 1T  is a circle 

of radius 1r , T2 =T211 T221 T23,  where T21  and T23 are half-planes, T22 is the complement to the 

interior of a circle of radius 2r  with center point 22 22( , )x y . Primitive objects 1T , T21, T22, T23 

are defined as follows: 2
1 1{ : ( ) 0}T t R f t= ∈ ≤ , 2 2 2

1 11 1( ) = ( ) = t tf t f t x y r+ − , 

2
21 21{ : ( ) 0}T t R f t= ∈ ≤ , 21( ) = t tf t x y′ ′ ′α + β + γ , 2

22 22{ : ( ) 0}T t R f t= ∈ ≤ , 

2 2 2
22 22 22 2( ) = ( ) ( )t tf t x x y y r− − − − + , 2

23 23{ : ( ) 0}T t R f t= ∈ ≤ , 23( ) = t tf t x y′′ ′′ ′′α + β + γ .  

Now we may conclude, that 2
2 2{ : ( ) 0}T t R f t= ∈ ≤ , where 

2 21 22 23( ) = max{ ( ), ( ), ( )}f t f t f t f t . Thus, 2{ : ( ) 0}T t R f t= ∈ ≤ , where 

1 2( ) = min{ ( ), ( )}f t f t f t .  Note, that 2int { : ( ) 0}T t R f t= ∈ < , 2{ : ( ) 0}frT t R f t= ∈ = . 
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Fig. B. Definition of object T  

 

Appendix C: Definition of circular segment D  for deriving phi-functions   
Given =A P C1  and =B K  convex polygon, where P  is a half-plane and C  is a circle. 

We arrange A  and B  as it is shown in Figure Ca. One can see that P K∩ ≠ ∅  (resulting in 

< 0)PKΦ  and C K∩ ≠ ∅  (resulting in < 0)CKΦ , while =A K∩ ∅  (meaning that ABΦ  

should be positive). Therefore, max{ , }AB RK C K∗Φ ≠ Φ Φ . If we take =A T C1 , where T  is a 

triangle with two tangent sides to circle C  (see Figure Cb), then we have 

= max{ , }AB TK CKΦ Φ Φ . 

 
                 (a)                                                           (b) 

Fig. C. Definition of circular segment D  for deriving phi-functions: (a) D  is an 

intersection of circle C and half-plane P,  (b) D  is an intersection of circle C and triangle T   
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Appendix D: Phi-tree diagram 

 

 
Fig. D. Diagram of phi-tree for 

1 2
0D DΦ ≥  
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APPENDIX E: Input and output data for examples 
 
Example_1.  
INPUT DATA 

OBJECT A EX_1 
Al = (2, -1, 0, 0, 2, 0, -2, 0, 0)  

OBJECT B EX_1 
Bl = (0, 0, 0, 3, 2, 0, 0, 2, 0)  

Example_1 OUTPUT DATA 
 Example 1.1. * * * * * * *

1 1 2 2= ( , , , , , )u a b x y x y = (4.0, 3.6667, 2.0, 1.0, 0.0 , 1.6667) . 

 Example 1.2. * * * * * * * * *
1 1 1 2 2 2= ( , , , , , , , )u a b x y x yθ θ = (3.5355, 2.8284, 2.1213, 1.4142, 2.3562, 

0.0791, 0.7591, 6.3087) 
Example  1.3. Rotation step is 30  , 
 * * * * * * * * *

1 1 1 2 2 2= ( , , , , , , , )u a b x y x yθ θ = (4.0, 3.0, 2.0, 1.0, 0.0, 2.0, 3.0, 1.5708) 
Example_2. INPUT DATA 

OBJECT A EX_2 
Al = (-1.605, -2.125, -2.693, 0.829, -3.278, 1.892, -0.804, 0, 2.039, 1.369, 0, -0.2372, 2.0661, 0) 

OBJECT B EX_2 
Bl = (2.022, -1.281, 1.843, 1.1539, 0.3449, 0.708, 2.133, 12.743, 7.836, -8.429, -2.934, -1.619, -

3.632, -0.276, -4.0936). 
Example_2. OUTPUT DATA 

Example 2.1. 
* * * * * * * * *

1 1 1 2 2 2= ( , , , , , , , )u a b x y x yθ θ = (6.0977, 3.8089, 4.1637, 2.9426, 1.2554, 2.8937,  
1.2500, -2.3398)  
 Example 2.2.  

* * * * * * * *
1 1 1 2 2 2= ( , , , , , , )u r x y x yθ θ = (3.2599, -0.2514, 1.4905, -5.4582,-0.1020, -0.7134,  

-9.01344)  
Example 2.3.  

* * * * * * * * *
1 1 1 2 2 2= ( , , , , , , , )u a b x y x yθ θ = (4.4249, 6.2566, 0.8663, 4.3227, 5.9678, 3.1659, 2.8858, 

2.3858)  
Example 2.4. m=11, * * * * * * * * * * * * * * *

1 1 1 1 11 11 11 11= ( , , , , ..., , , , , , , , , , )A A A B B Bu x y t x y t x y x yθ θ θ θ =(3.7724, 
0.0000, 2.3683, 0.8404, 3.1711, -0.5870, 2.8165, 0.8404, 2.3747, -0.8554, -3.0185, 0.8404, 
1.5408, -0.7522, -2.5702, 0.8404, 0.8339, -0.2977, -2.1220, 1.1793, 0.2163, 0.70686, -1.6199, 
4.4084, 0.0000, 5.1099, -0.0673, 3.5617, 3.5537, 5.3494, 0.5327, 0.0000, 3.5537, 5.3494, 
1.3184, 1.3214, 3.8837, 4.0698, 1.5251, 2.6428, 4.0045, 1.4298, 1.7318, 1.4485, 0.9580 , 3.2641, 
5.9187, 2.7233, 2.1026, 2.3254)  
Example 2.5.  
Pentagon  K  is given by a vector of coordinates of its vertices: 
 (7.0190, 1.4637, 1.8053, 7.2809, -5.3382, 4.1200, -4.5396 -3.6507, 3.0977, -5.2924) 
m=5, * * * * * * * *= ( , , , , , , )A A A B B Bu x y x yα θ θ = ( 0.5259 , 1.6035, 1.1955, 8.1947, -0.3486, -0.0779, 
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10.8685) 
Example_3 INPUT DATA 

OBJECT A EX_3 
Al = ( 4.326, 6.395, -1.433, 2.914, 6.639, 1.56, 6.169, -2.405, 3.738, 7.189, 1.333, 7.212, 1.507, -

0.143, 6.908, -0.553, 8.358, 3.78, 3.226, 8.266, 2.139, 4.645, -1.335, 1.574, 3.436, 0.749, 2.385, -
41.479, 26.033, 35.267,  -4.337, 7.015, 0.69, -4.999, 6.826, -4.974, 6.137, -11.293, -10.967, -
3.435, -1.594, 2.865, -2.1027, -3.484, 1.944, -1.523, 1.186, -3.278, -1.925, 4.439, -4.36, 2.245, 
18.437, -17.211, -10.975, -8.242, 5.133, -19.365, -19.496, -10.626, -3.431, 0.187, -0.727, -4.157, 
0.218, -4.551, -0.393, -6.038, -1.879, 5.022, -6.914, 1.689, 1.485, -8.213, 0.971, -9.274, 2.01, -
1.738, -8.923, 0.308, -8.055, -1.197, 7.273, -2.074, 2.942) 
OBJECT B EX_3 

Bl = (2.493, 6.764, 1.771, 2.143, 5.028, 0.38, 5.191, -4.788, 1.364, 0.506, 4.149, 4.399, -1.876, 
2.274, 4.368, 1.795, 2.554, 10.681, -0.594, -7.857, -1.702, 2.767, 8.905, 2.509, 10.614, 4.229, 
1.877, -0.496, 4.671, 1.651, 4.781, 1.167, -16.555, 1.111, 17.31, -1.293, 0.931, 0.944, -1.623, 
0.047, -1.214, -0.804, -10.767, 1.31, -11.271, 3.834, -0.804, -1.324, 3.524, -2.091, 3.361, -3.405, 
-40.094, 8.293, 36.385, -2.239, -2.301, 0.723, -2.193, -3.023, -2.003, -3.72, -4.687, -1.968, -
8.407, 1.231, -4.981, -2.155, -0.867, -5.474, 0.837, -6.794, -1.946, -0.701, -5.602, -2.239, -6.794, 
1.103, -3.112, -7.469, -3.423, -8.528, 7.762, 0.541, -1.854, 2.0200 -9.4743 8.4740 -0.1576 -
1.2849). 

  Example 3. OUTPUT DATA 
Example 3.1. * * * * * * * *

1 1 1 2 2 2= ( , , , , , , )u r x y x yθ θ  = (8.5826, 2.6036, 4.1595, -1.9849, 1.1292, -
0.5965 -4.4319) 
Example 3.2. * * * * * * * *

1 1 1 2 2 2= ( , , , , , , )u r x y x yθ θ = (5.6452, 4.7846, -1.3617, -1.1846, -3.5867, -
3.6332)  
Example 3.3.  
m=24, * * * * * * * * * * * * * * *

1 1 1 1 24 24 24 24= ( , , , , ..., , , , , , , , , , )A A A B B Bu x y t x y t x y x yθ θ θ θ = (-5.3369, -8.5664, -
2.6532, 2.4302, -7.4829, -7.4261, -2.3683, 2.4302, -9.2220, -5.7287, -2.0835, 2.4302, -10.4141, -
3.6120, -1.7987, 2.4302, -10.9631, -1.2436, -1.5138, 2.4302, -10.8247, 1.1826, -1.2290, 2.4302, 
-10.0101, 3.4722, -0.9441, 1.2151, -9.2975, 4.4564, -0.8760, 0.9460, -8.6918, 5.1831, -0.6335, 
1.8920, -7.1669, 6.3030, -0.3909, 1.8920, -5.4177, 7.0239, -0.2271, 1.3731, -4.0798, 7.3330, 
0.0182, 4.0874, 0.00688, 7.2587, 0.3034, 2.2215, 2.1269, 6.5950, 0.6065, 2.2215, 3.9522, 
5.3288, 0.9096, 2.2215, 5.3164, 3.5755, 1.2127, 2.2215, 6.0950, 1.4949, 1.5158, 2.22150, 
6.2171, -0.7232, 1.8189, 2.2215, 5.6716, -2.8767, 2.1220, 2.2215, 4.5081, -4.7695, 2.3619, 
4.8634, 1.0496, -8.1884, 2.6565, 0.5084, 0.5998, -8.4255, 2.7755, 1.2151, -0.5346, -8.8605, 
3.0603, 2.4302, -2.9569, -9.0577, -2.9380, 2.4302, 2.1774, 1.4609, 4.9044, -1.7436, -1.6084, 
2.4573) 

Example_4 INPUT DATA 
OBJECT A EX_4 

Al = (0.916, -3.2835, -2.1141, -1.1925, -3.4331, -3.1599, -4.2069, 1.5176, -4.5722, -4.7624, -
6.0118, -5.243, -1.9194, -7.8323, -5.8509, -9.7247, -5.5302, 6.5362, -16.1691, -4.4383, -10.9427, 
-0.5133, 0.531, -11.3672, -0.8321, -11.8691, -0.6587, 6.4935, -5.7318, -2.7797, -11.614, -5.5302, 
-10.3158, -20.9587, -9.8998, -10.6432, -9.9873, 1.0287, -9.8552, -10.6486, -9.5622, -11.6347, 
12.1386, -19.1497, -4.1899, -7.9948, -8.9767, -0.8426, -7.1675, -9.1368, -6.3926, -8.8058, 1.509, 
-5.0049, -8.213, -3.5952, -8.7513, -2.7401, -1.0353, -9.7286, -0.3511, -7.0753, -2.5557, 0.6609, -
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9.4221, 2.6318, -7.7951, 3.383, 5.924, -7.0167, 5.1053 ,-3.7343, -2.0191, 5.7366, -1.8164, 
4.5707, -0.1679, 5.8141, -0.784, 2.0974, 4.2101, 5.0745, 2.1588, 2.3558, 3.9691, 2.1899, 6.1215, 
-0.8636, 2.1236, 6.9825, 1.721, 7.7466, 1.7119, 0.9229, 9.2611, 0.7867, 10.9676,-1.2333, 
0.6886,12.1970,1.1388,13.3452,2.0740, 1.8957, 15.2761, 3.2381, 16.8571, 2.0329, 1.9223, 
15.3074, -0.0714, 15.7046 -0.8439,-0.8991,15.8695,-1.5973,15.3956,1.5839,-2.9079, 14.5062, -
3.3626, 12.9889, -1.2291, -3.7155, 11.8116, -2.5921, 11.3130,-1.0093,-3.5146, 11.7225, -4.2379, 
11.0185, 0.9691, -4.9323, 10.3426, -4.8298, 9.3789, -1.7325, -4.6465, 7.6562, -4.5749, 5.9252, 
2.3942, -4.4760, 3.5330, -4.0691, 1.1736, -3.8135, -3.4210, -2.5844, -0.6502, 0.0357, -5.8961, -
4.9343, -4.0153) 
OBJECT B EX_4 

Bl = (-3.9051, 15.6754, 3.6105, -6.3238, 12.9949, -5.4522, 9.4912, -1.7667, -4.4782, 8.0172, -
5.7334, 6.7739, -7.4716, -6.5223, 14.2038, -8.5183, 7.0037, -5.0616, -13.3461, 5.4831, -8.3588, 
4.6188, 6.9000, -2.9414, 0.3454, -9.7608, -0.7063, 4.6404, -11.0770, 3.7435, -6.4367, 3.7287, 
1.0321, -5.8343, 4.5668, -4.8427, 4.8531, -1.5625, -3.2958, 4.6331, -1.7954, 4.1972, 0.9511, -
1.0711, 3.5808, -0.7171, 2.6980, -8.0493, 2.2783, -4.7732, 9.5968, -8.1244, -4.6532, 5.3660, -
6.1871, 1.0175, -7.8433, 1.0906, -0.0017, -8.2314, -1.0922, -8.2181, -3.8299, -4.9218, -8.1712, -
3.1081, -11.5444, -3.3853, -4.7112, -8.5628, -8.0775, -8.9208, 1.1200, -9.1913, -9.0393, -
10.2810, -8.7803, -1.2462, -11.4934, -8.4921, -11.2655, -9.7173, 1.8333, -10.9302, -11.5197, -
10.6091, -13.3247, -4.1852, -9.8762, -17.4452, -5.9678, -15.9483, 2.5006, -3.6327, -15.0539, -
1.7485, -16.6979, -71.089, 51.8177, -63.4345 1.6738 -13.0436 -2.7890, 3.6411, -15.0206, 
5.9870, -13.5121, 1.6693, 7.3910, -12.6092, 9.0343, -12.9031, -12.2743, 21.1169, -15.0634, 
13.7224, -5.2665, 3.2491, 11.7650, -2.6732, 13.2536, 0.2149, -4.2809, 15.2149, 4.0201, 11.5659, 
6.2586, 1.4523, 10.3279, 7.0180, 10.1594, 8.4605, -7.0745, 9.3387, 15.4872, 4.3461, 10.4751, 
0.7968, 3.7838, 9.9105, 3.1741, 9.3975, -1.5498, 1.9882, 8.3997, 1.4863, 9.866, 2.0727, 0.8151, 
11.8271, 2.8459, 11.4121, -1.7315, 4.5423, 11.0654, 5.2837, 12.6302, 0.8337, 5.6407, 13.3836, 
6.4089, 13.7077, 4.1508, 2.5845, 12.0942, 1.6738, 16.1439, -20.4365, -2.8097, 36.0825) 

    Example 4. OUTPUT DATA 
Example 4.1. * * * * * * * *

1 1 1 2 2 2= ( , , , , , , )u r x y x yθ θ  = (17.7674, -1.2785, 5.0441, -2.7258, -0.2362, -
2.6272, 1.8515) 
Example 4.2. * * * * * * * * *

1 1 1 2 2 2= ( , , , , , , , )u a b x y x yθ θ =(32.8975, 34.0964, 22.0452, 19.8732, 4.7927, 
15.1417, 16.3673, 3.0874)  
Example 4.3. u*= * * * * * * * * * *

1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ , m=22, where 

 * * * * * * * *
1 1 1 1( , , , , ..., , , , )m m m mx y t x y tθ θ = (32.1154, -1.3741, 2.4936, 9.2842, 24.7132, -6.9780, 2.6752, 

0.2644, 24.4770, -7.0969, 2.8567, 10.1271, 14.7581, -9.9431, 3.0798, 0.7279, 14.0316, -9.9880, 
-2.9803, 0.7279, 13.3131, -9.8711, -2.7572, 0.7279, 12.6384, -9.5981, -2.5341, 11.4076, 3.2719, 
-3.0864, -2.17501, 0.6059, 2.9277, -2.5878, -1.8159, 12.0635, 0.0000, 9.1151, -1.4215, 0.9994, 
0.14867, 10.1034, -1.0270, 14.4742, 7.6372, 22.4899, -0.6472, 1.3006, 8.6747, 23.2741, -0.2674, 
1.3006, 9.9291, 23.6177, 0.1125, 16.8834, 26.7059, 21.7236, 0.5216, 0.4268, 27.0760, 21.5110, 
0.9306, 11.0851, 33.6978, 12.6210, 1.0337, 0.8197, 34.1172, 11.9168, 1.3810, 1.1366, 34.3316, 
10.8006, 1.6580, 9.9226, 33.4677, 0.9157, 1.8892, 0.9642, 33.1660, 0.0000, 2.1204, 0.9641, 
32.6624,-0.82219,2.3517,0.7771), * *( , )A Bu u =(14.6660,12.1616, 3.334, 17.4147, 4.9045, 1.6176). 

Example 5. INPUT DATA 
OBJECT A EX_5 
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Al =(-7.2662, 1.5935, 0, -5.9413, -6.8803, 0, -3.2915, -8.7340, 0, 2.3109, -10.6633, 0 6.7020, -
10.6633, 0) 
OBJECT B EX_5 

Bl =(-1.443, -4.819, 0. 2.67, -1.107, 0. 2.089,7 4.41, -4.991, -2.885, 3.884, 0.83, 0.55, 0, -1.443, 
2.605, -5.001, -4.7927, -1.107, 8 0.11, -0.12, -5.0, -2.885, 3.884, -2.879, -1.116, 0. 0.21, -1.116, -
5.0, -4.7927, -1.109) 
           Example 5. OUTPUT DATA  
m=10, u*= * * * * * * * * * *

1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ =(10.0238, -2.2864, 3.0242, 3.2338, 
6.8123, -2.6651, -2.4537, 8.5767, 0.186, 2.7804, -1.5931, 8.3482, 0, 11.1266, -0.9437, 9.1846, 
5.3899, 18.5634, -0.2207, 15.5024, 20.5161, 21.9577, 1.463, 7.9482, 21.3712, 14.0556, 1.8004, 
11.4346, 18.7688, 2.9211, 2.4138, 0.0001, 18.7688, 2.921, 2.4138, 4.391, 15.4903, 0, 2.7454, 
5.925, 6.6713, 6.4244, 5.5554, 6.6713, 6.4244, 5.5554) 
 Example 6. INPUT DATA 
OBJECT A EX_6 

Al =(-1.4427, -4.8186, 0, 2.6700, -1.1068, 0, 2.089, 4.4005, -1, 0.830000, 0.5500, 0, -1.4427, 
2.6050, 0, -0.1100, -0.1100, -1, -2.8787, -1.1163, -1, 0.2100, -1.1163, 0, -1.4427, -4.8186, -1) 
OBJECT B EX_6 
 Bl =(-1.4427, -4.8186, 0, 2.6700, -1.1068, 0, 2.0887, 4.4005, -1, 0.8300, 0.5500, 0, -1.4427, 
2.6050, 0, -0.1100, -0.1100, -1, -2.8787, -1.1163, -1, 0.2100, -1.1163, 0, -1.4427, -4.8186, -1) 
 Example 6. OUTPUT DATA 
m=6, u*= * * * * * * * * * *

1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ = (0.0889, 5.3038, -1.5932, 3.9616, 0, 
9.2643, 0.3428, 5.5377, 5.2157, 7.4031, 1.2794, 5.5372, 6.8065, 2.099, 1.5484, 3.9615, 6.896, -
1.8612, -2.7988, 5.5379, 1.6797, 0, -1.8622, 5.5372, 3.0618, 5.4759, 5.1604, 3.8337, 1.9273, 
2.019) 
 Example 7.   
INPUT DATA 

0.2ρ =  is allowable distance between polygons A and B (see input data of example 1). 
OUTPUT DATA 
m=16, u*= * * * * * * * * * *

1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ  = (5.3365, -0.1823, 2.5860, 2.9023, 
2.8708, -1.7132, 2.7833, 0.2494, 2.6372, -1.8006, 3.0773, 0.0592, 2.5782, -1.8045, 3.3713, 
2.0522, 0.5799, -1.3371, -2.6874, 0.045, 0.5394, -1.3173, -2.463, 0.0451, 0.5043, -1.289, -
2.2386, 0.0451, 0.4764, -1.2536, -2.0142, 0.045, 0.4571, -1.2129, -1.7898, 0.045, 0.4473, -1.169, 
-1.5655, 0.0451, 0.4475, -1.1239, -1.341, 3.1296, 1.1603, 1.9235, -0.3583, 0.3955, 1.5307, 
2.0621, 0.4747, 4.2656, 5.3246, 0.1123, 1.0025, 0.1081, 5.3827, 0.0212, 1.5303, 0.1081, 5.3871, 
-0.0868, 2.0581, 0.1081, 3.2376, 0.4146, 3.3713, 2.5949, -1.6030, 17.5085) 
 Example 8. INPUT DATA 
OBJECT A EX_8  and OBJECT B EX_8  

Al = Bl =( 2.0, 7.0, 0, -4.0, -3.0, 0, 0, -5.0, -2.5, 1.5, -3.0,  3.0, -5.0, 0, 11.0, 0, -8.0623, 10.0, 8.0) 
  Example 8.  OUTPUT DATA 

Example 8.1. m=6, u*= * * * * * * * * * *
1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ = (20.2289, -2.57832, 1.4978 

4.4721, 20.5550, -7.0386, 3.1454, 11.6619, 8.8932, -6.9943, -2.4381, 11.6619, 0.0000, 0.5497, -
0.7467, 11.4018, 8.3684, 8.2938, 0.6766, 13.2450, 18.6952, 0.0000, 1.0342, 3.0000, 15.9317, -
5.1345, 4.1758, 6.5824, -2.5603, 4.8755)   
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Example 8.2. m=8, u*= * * * * * * * * * *
1 1 1 1( , , , , ..., , , , , , )m m m m A Bx y t x y t u uθ θ  = ( 0, 4.4189, -0.3471, 

10.6193, 9.9858, 8.0318, 0.3941, 9.4340, 18.696, 4.4093, 0.9527, 3, 20.435, 1.9643, 1.4164, 
4.4721, 21.123, -2.4546, 2.794, 10.6193, 11.1372, -6.0674, -2.7475, 9.434, 2.4264, -2.445, -
2.1889, 3, 0.688, 0, -1.7252, 4.4721, 16.3601, -0.9331, 4.0943, 4.7629, 2.8974, 0.9527) 
 Example 9. INPUT DATA 
Polygonal container  K  is given by a vector of coordinates of its vertices: 
K: (0, 0, 19, 0, 30, 12, 18, 30) 
OBJECT A EX_9 

Al =(30.5, 16, 0, 11.5, 16, 0, 0.5, 4, 0, 18.5, -4, 0) 
OBJECT B EX_9 
 Bl =(10, 29.3333, 0, 22, 11.3333, 0, 28, 21.3333, 0) 
OUTPUT DATA 

* * * *( , , )A Bu u uα= =(1.0, 30.5, 16.0, -3.141593, 40.0, 41.333334, -9.4247779602)  
 


