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1. Introduction

Anti-trust law and enforcement vary widely over time, across countries and between in-

dustries. For example, as Stocking and Watkins (1946) detail, U.S. anti-trust policy was

relatively permissive in the first part of the 20th century, and industry associations in

which firms shared information and records, allocated market shares and fixed prices, and

exchanged side-payments were commonly observed.1 The recent U.S. policy, by contrast, is

considerably more antagonistic. The U.S. Antitrust Division’s Revised Amnesty Program

(1993) provides incentives for firms to self-report collusive conduct, and this has led to the

prosecution of a number of “hard-core” cartels, often operating in international markets

and characterized by “price fixing, bid-rigging, and market- and customer-allocation agree-

ments” (Griffin (2000)).2 Levinsohn (1995) describes the significant variation in anti-trust

law and enforcement that is found across countries. And significant variation also occurs

within countries and between industries; for example, in many countries (including the

U.S.), the legal stance toward cartels is more tolerant in export industries.

The different manifestations of anti-trust policies naturally affect the organizational

structure of collusive activity. If the anti-trust environment is permissive, then firms may

set up a formal organization, in which they set prices and allocate sales, communicate

about current circumstances, keep records of past experiences and exchange side-payments.

On the other hand, when the anti-trust policy is antagonistic, the organization of collusive

activity may be more secretive and less formal. Firms may avoid direct meetings altogether.

Or they may communicate surreptitiously, in “smoke-filled rooms.” And firms might also

refrain from direct side-payments, which leave a “paper trail.”

The implications of anti-trust policies for collusive conduct are more subtle. In its

perfected form, collusion enables a group of firms to conduct themselves as would a single

firm: prices are set and market-shares are allocated in a manner that maximizes joint

profits. In practice, however, the road to perfection contains obstacles. One important

obstacle is impatience: high prices can be enjoyed only if firms are sufficiently patient that

they resist the temptation to undercut. A further obstacle is that firms naturally possess

private information as to their respective circumstances. At a given time, some firms may

have high costs while others enjoy low costs, due to variations in local conditions, labor

relations, inventory management and so on. The market-share allocation that achieves

productive efficiency then may be feasible only if firms communicate cost information,

and truthful communication may be possible only if higher-cost firms are assured of side-

payments or some future benefit. In broad terms, anti-trust policy affects collusive conduct

by influencing the “instruments” that firms may use when encountering such obstacles.

1 Sophisticated cartels of this kind were found in the steel, aluminum, incandescent electric lamp and
sugar (see Genesove andMullin (1998, 1999)) and shipping (see Deltas, Serfes and Sicotte (1999)) industries.

2 Prominent examples include the lysine, vitamin, graphite electrode, and citric-acid cartels.
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This perspective suggests three questions concerning the optimal collusion of impatient

firms. First, how does the presence of private information among firms affect collusive

profits? In particular, is it possible for privately informed firms to construct a self-enforcing

collusive scheme in which they act as would a single firm and thereby achieve first-best

profits? Second, how does the presence of private information affect collusive conduct?

In particular, when privately informed firms collude, what are the implications for market

prices and shares? Finally, how do anti-trust policies affect collusive profits and conduct? In

particular, what are the consequences of restrictions on communication and side-payments

for collusive profits and conduct?

These are basic questions whose resolution might offer practical insights. For exam-

ple, a theory that answers these questions might provide a lens through which to inter-

pret observed (historic or current) collusive conduct in terms of the surrounding anti-trust

environment. And it also might provide a framework with which to better predict the

consequences of a change in anti-trust policies for collusive conduct. Nevertheless, in the

literature on self-enforcing collusion, these questions are as yet unanswered. Indeed, as we

explain below, even the most basic issues - e. g., how might communication among firms

facilitate collusion? - are poorly understood.

Motivated by these considerations, we develop here a theory of optimal collusion among

privately informed and impatient firms, and we examine how the level and conduct of col-

lusion varies with the anti-trust environment. The modeling framework is easily described.

We consider an infinitely repeated Bertrand game, in which prices are publicly observed

and each firm receives a privately observed, i.i.d. cost shock in each period. We assume

further that demand is inelastic, there are two firms and each firm’s unit-cost realization

is either “high” or “low.” These assumptions simplify our presentation. Our main findings

would emerge as well in a model with finite numbers of firms and cost types.

To understand our findings, it is helpful to recall the theory of the legalized cartel, in

which side-payments can be enforced by binding contracts. As Roberts (1985), Cramton

and Palfrey (1990) and Kihlstrom and Vives (1992) have shown, the central tradeoffs are

then well-captured in a static mechanism design model. An important consideration for

the cartel is that production is allocated efficiently over cartel members, but when firms are

privately informed as to their respective costs of production this requires communication

and transfers. Communication enables firms to establish before production the identity of

the lowest-cost firm, while transfers (from this firm to the other cartel members) ensure

that firms have the incentive to communicate truthfully.

Outside of a legalized cartel, however, the collusive relationship must be self-enforcing,

and anti-trust policies may restrict the manner in which firms interact. Thus, we charac-

terize optimal collusive conduct among privately informed firms that interact repeatedly in

environments that are distinguished on the basis of restrictions on the instruments available
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to the firms. In our base model, we make the following assumptions: (i). firms can commu-

nicate with regard to current cost conditions; and (ii). firms cannot make side-payments

(use “bribes”). We show that optimal collusion involves extensive use of “market-share

favors,” whereby individual firms are treated asymmetrically as a reward or punishment

for past behavior. After studying this model in some detail, we then analyze the way in

which optimal collusion changes as each of the two assumptions is relaxed.

Our modeling approach is to recast our repeated private-information game as a static

mechanism, similar to that analyzed in the legalized-cartel literature. To this end, we

follow Abreu, Pearce and Stacchetti (1990) and Fudenberg, Levine and Maskin (1994) and

observe that Perfect Public Equilibrium (PPE) payoffs for the firms can be factored into two

components: current-period payoffs and (discounted) continuation values. This suggests

that PPE continuation values can play a role like that of side-payments in the legalized-

cartel literature, although transfers are now drawn from a restricted set (namely, the set

of PPE continuation values). In this way, we argue that firms who are prohibited from

making side-payments can still implement a self-enforcing scheme, in which communication

has potential value, where in place of a side-payment from one firm to another, the collusive

mechanism specifies that one firm is favored over another in future play.

While this analogy is instructive, the two approaches have important differences. Sup-

pose that firm 1 draws a low-cost type while firm 2 draws a high-cost type. In the legalized-

cartel model, firm 2 would reveal its cost type and not produce, anticipating that it would

then receive a transfer. In our base model, firm 2 would likewise report its high-cost type,

expecting to receive its “transfer” in the form of a more favorable continuation value. In

turn, this value can be delivered, if firm 2 receives future market-share favors, corresponding

to future cost states in which firm 2’s market share is increased. But here key differences

appear. First, if the required transfer is too large, there may not exist a PPE that yields

the necessary continuation value for firm 2. Second, even if the corresponding PPE value

does exist, when the transfer is achieved through an adjustment in future play, the transfer

may involve an inefficiency: the strategies that achieve this transfer may involve firm 2

enjoying positive market share in some future state in which it alone has high costs.

This second difference directs attention to an interesting feature of our base model.

Future play is burdened with two roles: in a given future period, production must simul-

taneously (i). serve a transfer role, rewarding firms for past revelations of high costs, and

(ii). serve an efficiency role, allocating production as efficiently as possible in the future

period itself. These roles may conflict. We show, however, that no conflict emerges, so long

as firms are sufficiently patient. In particular, our first general finding is as follows: for

the base model, and for a wide range of parameter values, there exists a critical discount

factor that is strictly less than one and above which the cartel can achieve first-best profits

in every period. Intuitively, firms disentangle the two roles for future play, if they limit
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transfer activities to future “ties,” in which both firms are equally efficient. If the discount

factor is sufficiently high, the transfers so achieved are sufficient to ensure truth-telling.

This finding is of broader interest. It generalizes a related finding by Fudenberg, Levine

and Maskin (1994), who consider a family of repeated private-information games and show

that first-best payoffs can be reached in the limit as the discount factor goes to unity. By

contrast, making use of our assumption of a finite number of types, we show that first-best

payoffs can be achieved exactly, by firms that are not infinitely patient, and we offer an

explicit construction of the efficient PPE. To our knowledge, this is the first construction

of a first-best PPE in a repeated private-information game, when players are impatient.3

In addition, this finding raises an important qualification for a common inference that

is drawn in empirical studies of market-share stability. In many studies, such as those of-

fered by Caves and Porter (1978), Eckard (1987) and Telser (1964), an inference of greater

collusive (competitive) conduct accompanies an observation of greater market-share stabil-

ity (instability). Our analysis suggests that this inference may be invalid when colluding

firms have private information. Indeed, when firms achieve first-best profits, a firm’s future

market share tends to be negatively correlated with its current market share.4

We consider next the possibility that firms are less patient. When the firms attempt to

reward firm 2’s honest report of high costs with favored treatment in future ties, a problem

now arises: firm 1 may be unwilling to give up enough market share in the event of ties.

More generally, if the disadvantaged firm’s assigned market share is too low in a particular

cost state, then it may undercut the collusive price and capture the entire market. When

firms are less patient, therefore, productive efficiency today necessitates some inefficiency

in the future. The firms, however, can choose the form that this inefficiency takes. For

example, the collusive scheme may call for pricing inefficiency: the firms may lower prices

when market-share favors are exchanged, in order to diminish the gain from undercutting.

Or the scheme may require productive inefficiency: the disadvantaged firm may provide

some of the transfer by giving up some market share in the state in which it is most efficient.

Finally, in view of the these future inefficiencies, less patient firms may decide to implement

less productive efficiency today (e.g., firm 2 may have positive market share today, even

3 In related contexts, Athey, Bagwell and Sanchirico (1998) and Ayogai (1998) characterize particular
asymmetric PPE, and Athey, Bagwell and Sanchirico (1998) characterize optimal symmetric PPE. The
present paper, by contrast, characterizes optimal PPE. In the macroeconomics literature (e.g., Green
(1987) or Atkeson and Lucas (1992)) on repeated games with private information, the game between a
central planner and a continuum of agents is studied. A few papers (Wang (1994), Cole and Kocherlakota

(1998)) consider small numbers of agents, but the focus is on existence or computational methods.
4 An interesting case study is offered by McMillan (1985), who describes collusion among firms in the

Japanese construction industry. Consistent with our formal analysis, McMillan reports that firms use
future market share favors as a means of providing incentive for honest communication so that greater
productive efficiency can be achieved. Future market share favors are also descriptive of other cartels, such
as the citric acid cartel (Business Week (July 27, 1998)), in which any firm that sold beyond its budget in

a given year purchased from “under-budget” firms in the following year.
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when it alone has high costs), thus reducing the future transfer burden. Among these

possibilities, we argue that pricing inefficiency is the least appealing. Our second general

finding is the following: when firms are less patient, they give up productive efficiency

(today or in the future) before lowering prices.

We next evaluate our two assumptions about the anti-trust environment. We begin with

the role of communication. Our third general finding is that communication introduces po-

tential benefits and costs to colluding firms. The benefit of communication is that it allows

firms to smoothly divide the market on a state-contingent basis. Without communication,

firms can only allocate market share with prices, and this decentralized approach limits

significantly the range of market-sharing plans available. The cost of communication in

our Bertrand model is subtle. Intuitively, when firms do not communicate, a given firm

does not know its opponent’s cost type when it chooses its price. Accordingly, if the op-

ponent’s price varies with cost, then the firm also does not know the exact price that its

opponent will choose. This in turn diminishes the incentive that a firm has to undercut

its prescribed price. Put differently, when firms communicate, the temptation to undercut

may be exacerbated. Building off of this general cost-benefit tradeoff, we establish a num-

ber of specific results. We show that in the absence of communication, there again exists a

discount factor strictly less than one above which first-best profits still can be achieved. For

firms of moderate patience, however, restrictions on communication may diminish collusive

profits. In addition, we show that firms may choose not to communicate in periods with

significant market-share favors, as the absence of communication then serves to diminish

the disadvantaged firm’s incentive to undercut. More generally, we show that impatient

firms may choose to avoid communication in some but not all periods.

To our knowledge, we are the first to identify benefits and costs from communication for

colluding firms.5 Communication offers no benefit in the standard (complete-information,

perfect-monitoring) or public-monitoring (e.g. Green and Porter (1984)) collusion models.

A potential benefit from communication is suggested in the emerging private-monitoring

literature, wherein firms observe private and imperfect signals of past play. As Compte

(1998) and Kandori and Matsushima (1998) explain, communication can then generate

a public history on the basis of which subsequent collusion may be coordinated. But,

as these authors acknowledge, they are unable to characterize optimal collusive conduct

when communication is absent, and so they cannot determine when, or even whether,

communication benefits colluding firms. In comparison, we assume that private information

concerns current circumstances and past play is publicly observable. A public history is

5 A role for communication also arises in the legalized-cartel and information-sharing literatures. In the
basic information-sharing model (Shapiro (1986), Vives (1984)), firms can commit to share information
before the play of a static oligopoly game. As Ziv (1993) shows, without this commitment, truth-telling
incentives can be provided if firms exchange transfers (as in the legalized-cartel literature). Kuhn and

Vives (1994) survey the competitive implications of communication.
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thus generated whether firms communicate or not, and we may examine both cases.

Next, we consider anti-trust environments in which firms may entertain the exchange of

bribes, though these must be self-enforcing and may incur inefficiencies, as through a risk

of detection. Firms can potentially substitute current-period bribes for future market-share

favors. In practice, bribes may be direct, with one firm paying other firms for the right

to produce, or they may be associated with sophisticated and indirect processes.6 Our

fourth general finding is as follows: When detection by anti-trust officials is a concern, so

that bribes are not fully efficient, bribes never fully replace future market-share favors as

a means of transferring utility. Put differently, unless bribes are perfectly efficient, firms

strictly prefer to keep track of history, using non-stationary equilibria that specify a future

advantage to firms that admit high costs.

Our findings suggest that anti-trust policy can have perverse consequences. A recurring

theme is that successfully colluding firms tolerate productive inefficiency before lowering

prices. An antagonistic anti-trust policy, which limits firms’ ability to communicate or

exchange bribes, may thus limit productive efficiency without affecting prices. Such policies

increase consumer welfare, though, if firms are sufficiently impatient that removing these

instruments destroys their ability to collude at high prices. Overall, our findings provide

some formal support for those (Bork (1965, 1966), Sproul (1993)) who are attentive to the

efficiency gains that restraints of trade may afford.

2. The Model

We focus on a stylized model with two firms and two cost types, where firms 1 and 2

produce perfect substitutes and sell to a unit mass of customers with valuation r. Each

firm has possible costs θL and θH and privately observes its realized costs prior to any

pricing decisions. Thus, the state space in any period is denoted Ω = {L,H}×{L,H}, and
we index these states as (j, k) ∈ Ω, where the costs of firms 1 and 2 are given by θ1 = θj
and θ2 = θk in state (j, k). The probability of the cost draw j ∈ {L,H} in any period is
denoted Pr(θi = θj) = ηj , where ηj > 0 and ηL+ ηH = 1; this is independent over time and

across firms. To simplify the exposition of a few of the results, we assume ηL > 1/2.

The Nash equilibrium to the one-shot pricing game (without communication or transfer

6 For example, an “over-budget” firm may compensate an “under-budget” firm, by purchasing the
latter’s output at the end of the budget period. Griffen (2000) reports that “compensation schemes” are
common among international cartels (e.g., the lysine cartel). Or colluding suppliers may hold a “knockout”
auction (among themselves) that determines the firm that is to win the procurement contract, and then
rig the actual bids to ensure that this firm wins with a low bid (see, e.g., McAfee and McMillan (1992)).
Finally, a firm that exceeds its production quota may contribute to a “common fund” while a firm that
falls below its quota is permitted to withdraw from the fund. Common-fund arrangements appeared in the
steel, aluminum and incandescent electric lamp cartels of the early 1900’s (Stocking and Watkins, 1946).

A similar arrangement was also found in the recent Garmet Box case (FTC Dockett 4777).
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possibilities) is a symmetric mixed strategy equilibrium.7 For each firm, the high type

charges price equal to cost (p = θH), while the low type mixes, receiving profit equal to

(θH − θL)ηH , the expected profit from just undercutting the price charged by the high-cost

type. Thus, ex ante expected profit to each firm in this equilibrium is equal to πNE ≡
(θH−θL)ηHηL. This payoff can be contrasted with the first-best level of profit to each firm,

πFB ≡ 1
2
(r −E[min(θ1, θ2)]).

In our basic repeated-game model, firms can meet and communicate their types but

cannot make side-payments. Formally, the firms play the following stage game in each

period: (i) each firm i observes its type θi; (ii) each firm i makes an announcement ai ∈
A ≡ {L,H,N}; (iii) each firm i then selects a price pi and makes a market-share proposal

qi; (iv) for p ≡ (p1, p2) and q ≡ (q1, q2), market shares mi(p,q) are allocated as follows:

if pi > r, then mi(p,q) = 0; if pi < pj ≤ r, then mi(p,q) = 1; and if pi = pj ≤ r, then
mi(p,q) = 1

2
if ai = N , aj = N, or q

i + qj 6= 1, while otherwise mi(p,q) = qi.

We interpret this stage game as describing an environment in which firms meet, make

announcements concerning their respective cost types and then select prices and make

market-share proposals. We allow each firm three possible announcements: a firm may

announce that it has low (L) or high (H) costs, or it may choose to say nothing (N). We

include the latter option, since, while we allow firms to meet and communicate, they are

under no obligation to do so. Our formalization of market-share proposals permits firms

to jointly determine their respective market shares when they set the same price. Since

the market-share proposals follow the firms’ announced cost positions, this formalization

allows equally priced firms to allocate market share in a state-dependent fashion. We do

not permit, however, both firms to produce positive quantities at different prices.8 Beyond

this restriction, the model grants firms considerable flexibility, and in principle they may

mimic a centralized “mechanism” that gathers cost reports and determines prices and

market shares. Our decentralized representation of interaction among firms, however, must

incorporate further constraints that dissuade firms from deviations (e.g., undercutting the

collusive price) that real-world firms might consider, but that would not be possible under

the assumption that a mechanism sets prices.

We now define firm strategies for the stage game. Letting Ωi ≡ {L,H}, the space of
policies from which a firm might choose is given by:

Si = {αi | αi : Ωi → A} × {ρi | ρi : Ωi ×A→ <} × {ϕi | ϕi : Ωi × A→ <}.
A typical policy for firm i is denoted si(θi, aj) = {αi(θi), ρi(θi, aj),ϕi(θi, aj)}, where the

7We consider pure strategy equilibria in the repeated game. This creates no tension, since we emphasize
Pareto optimal equilibria, and in the characterizations we highlight these are pure.

8 We thus rule out the possibility that the firms divide the market (e.g., geographically) and charge
different prices in each segment. While the stage game is somewhat ad hoc, it does offer a simple framework
(e.g., all transactions occur at the same price, so a rationing rule is not needed) within which to allow that

firms may communicate and allocate market share in a state-contingent fashion.
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first component is the announcement function, the second is the pricing function, the third

is the market-share proposal function and aj is firm j’s realized announcement. Further,

letting θ ≡ (θ1, θ2) and a ≡ (a1, a2), we define the following vectors:

α(θ) ≡ (α1(θ1),α2(θ2)); ρ(θ, a) ≡ (ρ1(θ1, a2), ρ2(θ2, a1))

ϕ(θ,a) ≡ (ϕ1(θ1, a2),ϕ2(θ2, a1)); s(θ) ≡ (s1(θ1, a2), s2(θ2, a1))
A policy vector s(θ) determines announcements as well as the price and market-share

proposal responses to these announcements. A policy vector thus determines a path through

the stage game, and we may write stage-game payoffs conditional on a realization of cost

types as πi(s,θ), with expected stage-game payoffs then given as πi (s) = Eθ[π
i(s,θ)].

Consider now the repeated game. The firms meet each period to play the stage game

described above, where each firm has the objective of maximizing its expected discounted

stream of profit, given the common discount factor δ. Upon entering a period of play,

a firm observes only the history of: (i) its own cost draws and policy functions, and (ii)

realized announcements, prices and market-share proposals. Thus, a firm does not observe

rival types or rival policy functions. Following Fudenberg, Levine and Maskin (1994), we

restrict attention to those sequential equilibria in which firms condition only on the history

of realized announcements, prices and market-share proposals and not on their own private

history of types and policy schedules. Such strategies are called public strategies and such

sequential equilibria are called perfect public equilibria (PPE).

Formally, let ht = {at,pt,qt} be the public history of realized prices, announcements
and market-share proposals up to date t. Let Ht be the set of potential histories at period

t. A strategy for firm i in period t is denoted σit : Ht → Si. Let σt be a strategy profile in

period t, and let σ represent a sequence of such strategy profiles, t = 1, ...,∞. Then, given
a history ht, the expected per-period payoff in period t for firm i is π̄

i(σt(ht)). Each strategy

induces a probability distribution over play in each period, resulting in an expected payoff

for firm i, vi(σ) = E[
P∞
t=1 δ

t−1π̄i(σt(ht))], where h1 is the null history.
We assume that after every period firms can observe the realization of some public

randomization device and select continuation equilibria on this basis. This is a common

assumption in the literature, and it convexifies the set of equilibrium continuation values.9

We do not introduce explicit notation for the randomization process.

Following Abreu, Pearce and Stacchetti (1986, 1990), we can now define an operator

T (V ) which yields the set of PPE values, V ∗, as the largest invariant, or “self-generating,”

9 While we believe that this assumption is fairly innocuous, convexity of the set of continuation values
plays an important role in parts of our analysis. In Section 4.2, we discuss conditions under which convexity
obtains without resorting to randomization.
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set. Letting S ≡ S1 × S2 and υ ≡ (υ1, υ2), the operator is defined as follows:
T (V ) = {(u1, u2) : ∃ s ∈ S and υ : A2 ×<4 → co(V ) such that:

for i = 1, 2, ui = π̄i(s) + δEυi(s(θ));

and, for each i and s̃i = (α̃i,ρ̃i, ϕ̃i) ∈ Si,
ui ≥ π̄i(s̃i, sj) + δEυi[s̃i(θi,αj(θj)), sj(θj, α̃i(θi))]}

This operator effectively decomposes equilibrium play into two components: current-period

strategies s ∈ S and continuation values υ drawn from the convex hull of the set V . We

record immediately a useful property of T :

Lemma 1. T maps compact sets to compact sets..

Proof. All of the constraints entail weak inequalities; the feasible set is compact; and

utility and constraint functions are real-valued, continuous and bounded.

This property of T is the critical one for applying the methodology of Abreu, Pearce,

and Stacchetti (1990). In particular, let V0 be compact and contain all feasible, individually

rational payoffs (e.g., V0 = [0, r/(1− δ)]× [0, r/(1− δ)]), and define Vn+1 = T (Vn), n ≥ 0.
Then the definition of T implies that T (Vn) ⊆ Vn. Using this and the fact that Vn is

nonempty for each n (since πNE/(1 − δ) is in every Vn), V
∗ = limn→∞ Vn is a nonempty,

compact set. Following the arguments in Abreu, Pearce, and Stacchetti (1990), V ∗ is the
largest invariant set of T , and thus it is equal to the set of equilibrium values of this game.

To present our findings, we distinguish between two kinds of equilibria. In an infor-

mative PPE, firms employ equilibrium strategies in which they always share their cost

information with one another: for all i ∈ {1, 2} and j ∈ {L,H}, if θi = θj, then αi(θi) = j.

By contrast, in an uninformative PPE, firms are unwilling (or unable) to communicate, and

we capture this by focusing upon equilibria in which firms never share cost information:

for all i ∈ {1, 2} and j ∈ {L,H}, αi(θj) ≡ N . We use the operators T I(V ) and TU(V ), re-
spectively, to capture these additional restrictions on s, where both operators are extended

to include also the repeated-Nash payoffs, uNE ≡ (πNE/(1− δ), πNE/(1− δ)), which derive

from mixed strategies and may be used as an off-equilibrium-path punishment. Informa-

tive and uninformative PPE are of independent interest, and the juxtaposition of these two

classes of PPE highlights the benefits and costs of informative communication for collud-

ing firms. The characterization of such equilibria also contributes to our understanding of

the full PPE set, V ∗, since optimal equilibria of the unrestricted PPE class may involve
informative communication following some histories and not others.

3. The Mechanism Design Approach

In this section, we consider the class of informative PPE and show that the search for the

optimal informative PPE can be recast in terms of a static mechanism design program. In

9



addition, we establish the solution to this program in two benchmark cases.

3.1. Mechanism Notation and Incentive Constraints

The set of informative PPE values, V I , is the largest invariant set of the operator T I ; there-

fore, every utility vector u ∈ V I can be generated by associated current-period strategies
and continuation-value functions, s and υ. When following these strategies, firms report

their cost types truthfully and receive the corresponding prices and market-share alloca-

tions. Our approach in this section is to introduce notation for such state-contingent prices,

market-share allocations and continuation values, and then formalize the corresponding in-

centive constraints that these must satisfy to be implementable as equilibrium play.10

We begin with a general description of the incentive constraints. In an equilibrium of

the repeated game, there are two kinds of deviations. First, a firm with cost type θi may

adopt the policy that the equilibrium specifies when its cost type is instead θi
0 6= θi. Such

an “on-schedule” deviation is not observable, as a deviation, to the rival firm. The equilib-

rium prices, market shares and continuation values therefore must be incentive compatible.

Second, a firm also must not have the incentive to choose a price and market share that

is not assigned to any cost type. Such an “off-schedule” deviation is observable to the

rival firm as a deviation, and a sufficiently patient firm is deterred from a deviation of this

kind if the collusive scheme then calls for a harsh “off-the-equilibrium-path” punishment.

The on-schedule incentive constraints are reminiscent of truth-telling constraints in stan-

dard mechanism design theory, with continuation values playing the role of transfers. The

off-schedule constraints are analogous to type-dependent participation constraints.

To make these analogies precise, we first define state-contingent prices, market shares

and continuation values. In state (j, k), firm i serves qijk customers at price pjk.
11 The

continuation value assigned to firm i in state (j, k) is denoted vijk. Let p, q and v denote

the associated vectors, and let z=(p,q,v) be the “policy vector.” Finally, we use Z(V ) to
denote the set of such vectors that are feasible and consistent with the extensive form game

when continuation values are drawn from the set V :

Z(V ) = {z = (p,q,v) : For all i = 1, 2, (j, k) ∈ Ω, (v1jk, v
2
jk) ∈ co(V ),

pjk ≤ r; qijk ∈ [0, 1] and q1jk + q2jk = 1}.
10 The logic of our approach is analogous to the revelation principle. In our model, however, communi-

cation is an explicit part of the extensive-form game, unlike most standard applications of the revelation
principle (for single-stage games), where the idea that firms “report” their costs to a mechanism is an ab-
straction. We represent each player’s incentive constraints in direct form, where the incentive constraints
protect against deviations at each stage (the communication and pricing stages). See Myerson (1986) for

more discussion of the revelation principle in multi-stage communication games.
11 Our Bertrand model ensures that in any state (j, k) a single transaction price pjk prevails. Firm i

therefore sets this price if it makes positive sales (i.e., if qijk > 0). If firm i makes no sales in state (j, k),

then firm i’s price may differ from pjk, but it cannot be lower.

10



Next, we denote expected market shares and continuation values for each firm, given a

cost realization, by

q̄1j =
X

k∈{L,H}
ηk · q1jk; v̄1j =

X
k∈{L,H}

ηk · v1jk;

and likewise for firm 2. Consider now each firm’s interim current-period payoff as a function

of its announcement, assuming that the opponent announces truthfully and both firms

adhere to the schedule. When firm 1 announces cost type ̂ when the true cost type is j,

interim current-period profits are given by:

Π1(̂, j; z) =
X

k∈{L,H}
ηk · q1̂k · (p̂k − θj).

Adding on continuation values, we write interim and ex ante utilities as

U1(̂, j; z) = Π1(̂, j; z) + δv̄1̂ ; Ū
1(z) =

X
j∈{L,H}

ηj · U1(j, j; z).

These functions are defined analogously for firm 2.

Using this notation, the on-schedule incentive constraints can be easily related. We dis-

tinguish “upward” from “downward” incentive constraints, since typically only the down-

ward constraints are binding:

U i(H,H; z) ≥ U i(L,H; z) (IC-OniD)

U i(L,L; z) ≥ U i(H,L; z) (IC-OniU)

Our next task is to represent the off-schedule incentive constraints. In an informative

PPE, there are two kinds of off-schedule constraints. The first concerns the incentive of

a firm to deviate from the assigned price after communication takes place. If both firms

are assigned a price less than firm 1’s cost, firm 1 might like to price slightly above firm

2, to avoid producing in that state; alternatively, at higher prices, firm 1 might wish to

slightly undercut firm 2’s price and capture the entire market.12 If the following constraint

is satisfied, neither of these deviations is profitable:

δ(v1jk − v1) ≥ max(q2jk(pjk − θj), q
1
jk(θj − pjk)) (IC-Off1Ijk)

where vi = vi(V ) ≡ inf{vi : v ∈ V }.13 As vi is reached only off of the equilibrium path, we

can essentially treat it as a parameter in the analysis. IC-Off2Ijk is defined analogously.

12 Given that unit costs are constant in output, a firm best deviates by claiming all market share or
relinquishing all market share. In either event, a small change in price serves the purpose. We therefore
need not concern ourselves with the possibility that a firm deviates by maintaining the price and adjusting
up or down its proposed market share.
13 We write vi rather than vi(V ) to conserve notation, and we take the off-schedule constraints relative

to the set of values under consideration in a particular context.
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The second kind of off-schedule deviation is an interim deviation. Suppose that the

collusive scheme assigns a lower price in state (L,L) or (L,H) than in (H,H) or (H,L). If

firm 1 draws a low cost, firm 1 might be tempted to report a high cost, in order to induce

firm 2 to price high, so that firm 1 might then undercut firm 2’s high price. Firm 1 might

wish to learn the realization of firm 2’s type before making a final decision to undercut.

Deviations of this kind are dissuaded if:

U1(L,L; z) ≥ X
k∈{L,H}

ηk ·max(q2Hk(pHk − θL) + δv1, q1Hk(pHk − θL) + δv1Hk)

(IC-Off-M1)

where the M is mnemonic for “misrepresentation.” The constraint for firm 2 is defined

analogously. Since a firm gains most from a market-share increase when its costs are low,

it can be verified that if the other on- and off-schedule incentive constraints are satsified,

then the high type never has the incentive to engage in this type of misrepresentation.

Further, if prices are the same in each state (as in many of our characterizations below),

then the other off-schedule constraints render IC-Off-Mi redundant.

3.2. The Repeated Game as a Mechanism

We introduce notation for the feasible set of policy vectors when firms use informative

communication, given an arbitrary set of continuation values V :

FI(V ) = {z = (p,q,v) ∈Z(V ) : For all i = 1, 2, IC-OniD, IC-OniU ,
IC-OffiIjk and IC-Off-Mi hold}.

With this notation in place, we present the following lemma.

Lemma 2. Given a set V ⊂ <2, let

T̃ I(V ) = {(u1, u2) : ∃z = (p,q,v) ∈F I(V ) such that for i = 1, 2, ui = Ū i(z)} ∪ uNE.

Then T̃ I(V ) = T I(V ).

The lemma follows by a comparison of constraints (see Athey and Bagwell (1999) for

details). For the class of informative PPE, Lemma 2 formalizes the relationship between

the repeated game and the mechanism design problem we have just defined. It states

that we can characterize the operator T I as generating the set of all utilities that satisfy

the constraints of a fairly standard mechanism design problem, with the addition of the

unusual restriction (v1jk, v
2
jk) ∈ V. An important consequence of this result is that for any

informative PPE utility vector u, there exists a policy vector (p,q,v) that “implements”

u, in the sense that it satisfies the conditions in the definition of T̃ I(V ).

12



3.3. Benchmark Cases

In this section, we characterize the Pareto frontier of T̃ I(V ) for two examples of sets V .

These examples are motivated by the static mechanism design literature where V is the set

of available monetary transfers. In the first example, V is a line of slope −1; this represents
“budget-balanced” transfers of utility that incur no efficiency loss. In the second example,

we consider sets of the form V = {(v1, v2) : v1, v2 ≤ K}; for such sets, all continuation
values except (K,K) are Pareto inefficient. The cases are illustrated in Figure 1. These

benchmarks allow us to develop some basic intuition, on which we build when we later

consider sets V with more general shapes, such as the convex set illustrated in Figure 2.

To draw most clearly the analogy to the static mechanism design literature, we ignore

the off-schedule incentive constraints in this section. We then refer to the set of constraints

excluding off-schedule incentive constraints as F I
On(V ), and we define:

T̃ IOn(V ) = {(u1, u2) : ∃z = (p,q,v) ∈F I
On(V ) such that for i = 1, 2, u

i = Ū i(z)}.

In discussing schemes, we say that a scheme uses productive efficiency if for every state

(j, k) ∈ Ω, q1LH = q
2
HL = 1. We say that a scheme uses efficient pricing if pjk = r for all

(j, k) ∈ Ω. Similarly, the scheme is characterized by Pareto efficient continuation values

if for every (j, k), there does not exist a continuation value pair (ṽ1, ṽ2) ∈ V that Pareto

dominates (v1jk, v
2
jk).

To begin, we record the following standard lemma:

Lemma 3. Any z satisfying IC-OniD and IC-OniU also satisfies q̄
i
H ≤ q̄iL. If IC-OniD

binds, then

U i(H,H; z) = U i(L,H; z) = U i(L,L; z)− q̄iL(θH − θL). (3.1)

Market-share monotonicity follows since our model satisfies a single-crossing property: the

low-cost type has a higher marginal return to market share. The representation of the

relationship between the interim utilities follows directly and says that the low-cost type

earns an “efficiency rent” of q̄iL(θH − θL) over the high-cost type.

By Lemma 3, when IC-OniD binds for each firm, the ex ante utility for firm i is

Ū i(z) = U i(H,H; z) + ηLq̄
i
L(θH − θL) = Πi(H,H; z) + δv̄iH + ηLq̄

i
L(θH − θL). (3.2)

Among the set of allocation rules where IC-OniD binds, firm i is indifferent between provid-

ing incentives with low prices or low continuation values for its low-cost type. Intuitively,

in contrast to market share, neither the price nor the continuation value interacts directly

with the firm’s type in the firm’s objective function; thus, the cartel has a preference over

low-cost prices and continuation values for which a firm’s on-schedule incentive constraint

binds, only insofar as these instruments generate utility losses or gains for the other firm.
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Lowering price decreases the utility of the other firm. In contrast, when cross-firm transfers

of utility are available, lowering one firm’s continuation value may allow an increase in that

of the other firm. Continuation values are then a superior instrument.

To better highlight some of these themes, we turn now to two special cases. First, we

suppose that the set of feasible continuation values is a line of slope -1.14

Lemma 4. For K ∈ <, suppose that V (K) = {(v1, v2) : v1 + v2 = 2K}. Then, for any
K ≥ 0, the Pareto frontier of T̃ IOn(V (K)) is {(u1, u2) : u1 + u2 = 2πFB + δ2K}, and
this frontier can be implemented with a policy vector (p,q,v) that satisfies the following
properties: productive efficiency, pricing efficiency and Pareto efficient continuation values
(v1jk + v

2
jk = 2K for all j, k); v1HL − v1LH = (r − θH)/δ; IC-OniD binds for each i; and

v1LH < v
1
jj < v

1
HL for j ∈ {L,H}.

As expected, first-best is attained. The downward on-schedule constraints bind, since it

is the low-cost type who has the higher market share, and market share is desirable for both

firms. Thus, the relevant consideration is to dissuade the high-cost type from mimicking

the low-cost type; as lower cost types have a higher marginal benefit to high market share, if

the high-cost type is just indifferent between the high and low announcement, the low-cost

type strictly prefers the low-cost announcement. The optimal mechanism requires transfers

through continuation values that reward a firm for announcing high costs.

Next, we consider a second special case, wherein the firms receive continuation values

from a rectangular set in which each firm receives at most K. The continuation-value

Pareto frontier is then a single point, and efficient continuation-value transfers across firms

are thus unavailable. To state the result, we refer to the following condition:

(r − θH)/(θH − θL) > ηH (3.3)

Lemma 5. Suppose that V (K) = {(v1, v2) : v1, v2 ≤ K}. (i) Suppose that (3.3) holds.
Then, for any K, the Pareto frontier of T̃ IOn(V (K)) is

{(u1, u2) : u1 + u2 = r −E[θ] + δ2K, ui ≥ 0},
and this frontier can be implemented with a policy vector (p,q,v) that satisfies the fol-
lowing properties: pricing efficiency, Pareto efficient continuation values (vijk = K for all
i, j, k) and productive inefficiency with q̄iH = q̄

i
L for i = 1, 2. (ii) Suppose that (3.3) fails.

Then the Pareto frontier of T̃ IOn(V (K)) is given by

{(u1, u2) : u1 + u2 = ηH(r − θH) + ηL(1 + ηH)(θH − θL) + δ2K, ui ≥ 0}.
14 For the public goods problem with private information, d’Aspremont and Gerard-Varet (1979) show

that the first-best can be attained using budget-balanced transfers, when the mechanism must satisfy
incentive compatibility but not participation constraints. In their analysis of “strong” bidding cartels,
where side-payments are allowed, McAfee and McMillan (1992) specialize this result for the case of first-
price auctions, showing that participation constraints can be satisfied. The following result is a two-type
specialization, rephrased to allow for continuation values that sum to a constant other than zero.
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This can be implemented with a policy vector (p,q,v) that satisfies the following properties:
productive efficiency, Pareto efficient continuation values (vijk = K for all i, j, k), pricing
efficiency in state (H,H) (pHH = r) and a price of

ηH
1+ηH

(r − θH) + θH in other states.

Lemma 5 refers to an environment in which the only instruments available (reduced

continuation values, low prices) with which to achieve productive efficiency are wasteful.

When (3.3) holds, so that the profit to the high-cost type is large relative to the efficiency

advantage of the low-cost type, Lemma 5 establishes that the Pareto frontier entails pro-

ductive inefficiency: the loss in profit from either Pareto inefficient continuation values or

inefficient pricing overwhelms any potential productive efficiency gain.

To see the role of (3.3), consider raising productive efficiency by increasing q2HL (and

therefore decreasing q1HL). The subtle aspect of the intuition entails understanding the

effects of this change when prices and continuation values must adjust to maintain the on-

schedule constraints. The change decreases firm 1’s ex ante utility by ηL(r−θH), since firm

1’s high type bears the cost directly and firm 1’s low type must now charge a lower price or

receive a lower continuation value to avoid violating IC-On1D. The change increases firm 2’s

ex ante utility by ηLηH(θH − θL), the higher “efficiency rent” (θH − θL) available to firm 2’s

low-cost type in state (H,L). Then (3.3) guarantees that the cost to firm 1, incurred across

both states (H,L) and (L,L), outweighs the efficiency benefit to firm 2 in state (H,L).

This result introduces a theme that will recur throughout our analysis. There is a “tax”

on productive efficiency: improving productive efficiency tightens on-schedule constraints,

leading to further distortions. If instead (3.3) fails, with a rectangular continuation value

set, it is always possible to achieve the optimal collusive payoffs using the highest available

continuation values and low prices for the low-cost types.15

Whether firms choose to produce efficiently or not, cartel profit is not improved by

moving from V = {(K,K)} to V = {(v1, v2) : v1, v2 ≤ K}. Wasteful continuation values
are not useful for providing incentives. With this observation, Lemma 5 may be related

to other findings for continuum-type models. In their analysis of “weak” bidding cartels,

McAfee and McMillan (1992) show that when transfers are prohibited (V = {(0, 0)}) and
the distribution over types, F (θ), is log-concave, the optimal cartel uses identical bidding

at the seller’s reservation value. This is the bidding cartel analog of pricing efficiency and

productive inefficiency. Athey, Bagwell and Sanchirico (1998) consider collusion among

sellers where V = {(v1, v2) : v1 = v2}. In a repeated game, this corresponds to Symmetric
PPE. They find that wasteful continuation values (“price wars”) are not used, while pricing

efficiency and productive inefficiency obtain when F (θ) is log-concave.16

15 Notice that the pricing scheme outlined in the lemma can be implemented decentrally: each firm
charges a price of r when its own cost is high, and selects a price p̂ when its own cost is low. This allocates
market share efficiently and achieves the price of p̂ in all states except (H,H).
16The continuum- and two-type models may be further related using an N-type model. Let ηn be

the probability of cost type n. Then, the following conditions replace (3.3): (r − θN)ηm − ηN(θm+1 −

15



4. Characterization of Informative PPE

We next characterize the set of informative PPE values. Our analysis builds on the insights

developed in the benchmark cases of Section 3.3. Throughout, we develop analytically some

key findings, and we then illustrate additional subtleties with computational examples.

Before beginning the formal analysis, we outline the central tradeoffs. Suppose the firms

attempt to implement first-best profits. In the first period of the game, a first-best scheme

must implement productive efficiency and pricing efficiency; thus, from the perspective of

current-period profits, high-cost firms are tempted to mis-report their costs in order to

achieve greater market share. To ensure truthful reporting, the agreement therefore must

provide that firm 2 receives future market-share favors from firm 1 following a realization

of the state (L,H). Suppose then that (L,H) is realized in the first period, and consider

the scheme in the second period. In a first-best collusive scheme, productive efficiency is

again required; consequently, if state (L,H) is once more realized, then firm 2 must again

receive zero market share. On the other hand, if the firms experience the same costs in

the second period, then the collusive arrangement may favor firm 2 while simultaneously

delivering first-best profits. This is achieved by giving firm 2 more than 1/2 of the market

in the second period when the (L,L) and (H,H) states are realized. If these market shares

are appropriately chosen, both firms still have the incentive to report truthfully. What

might prevent such a scheme from succeeding? The firms must be sufficiently patient so

that firm 1 is dissuaded from undertaking an off-schedule deviation following a realization

of (L,L), when its assigned market share is low. What if this cannot be accomplished?

Then, asymmetric treatment introduces new inefficiencies. In particular, the scheme may

require low prices, or it may call upon firm 1 to relinquish some market share in period

2 in the (L,H) state, even though it is most efficient, as its temptation to undertake an

off-schedule deviation is low when its assigned market share is high.

Pulling these themes together, we may summarize the central tradeoffs as follows. If

in a given period, the firms seek productive efficiency “today,” then asymmetric treatment

is required “tomorrow.” Productive and pricing efficiency tomorrow, however, can then be

maintained only if the asymmetric treatment is implemented through asymmetric market-

share assignments among equally efficient firms pricing at the reservation value. In turn,

this is possible only if tomorrow the disadvantaged firm is sufficiently patient to endure

its assigned low market share; if not, some inefficiency may be required. In view of these

tradeoffs, a cartel comprised of moderately patient firms may assign market shares today

without achieving full productive efficiency, in order to lessen the future transfer burden

and thus reduce future inefficiency.

θm)
Pm
n=1 ηn > 0 for all m < N ; and (θm+1− θm)

Pm
n=1 ηn/ηm is nondecreasing in m. The first expression

is the analog of (3.3); the second condition is the analog of log-concavity of F (θ). If r > θN , the first

expression is satisfied in the continuum-type limit, when the ηn’s go to zero at a common order.
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In the next two subsections, we derive conditions on the discount factor under which

firms are able to implement a given level of efficiency (such as first-best) in every period of

the game. Subsequently, we explore in greater depth the optimal resolution of the tradeoffs

between current and future efficiency faced by firms of moderate patience.

4.1. A Linear Informative PPE Set With First-Best Profits

In this subsection, we identify a discount factor strictly less than one above which the

cartel can achieve first-best profits in every period. Recall that Section 3.3 analyzes Pareto

optimal schemes for an exogenous set of continuation values. We now confront the endoge-

nous nature of the continuation-value set. Our goal is to establish the existence of a set of

Informative PPE values, where (i). each utility pair yields first-best profits to the cartel,

and (ii). when implementing any point in the set, only other elements of the set are used as

continuation values on the equilibrium path. A “self-generating” set of values supporting

first-best profits must be a line segment with slope −1, together with the “punishment”
value(s) that serve as threats to deter off-schedule deviations.

We attempt to construct such a line segment of equilibrium values, where the endpoints

are denoted (x, y) and (y, x). We focus on finding a policy vector z that implements the

endpoint (x, y) using pricing and productive efficiency and continuation values taken only

from the line segment [(x, y),(y, x)], while satsifying all feasibility and incentive constraints.

If this can be accomplished, then there exists a z0 that exchanges the roles of the two players
and implements (y, x). Any convex combination of (x, y) and (y, x) can be attained using

a convex combination of z and z0.
We proceed in two steps. First, we consider the implementation of the endpoint (x, y)

when off-schedule constraints are ignored. This step can be challenging. If monopoly

profit for a high-cost firm, r − θH , is too large, it may be difficult to achieve the desired

level of profit for firm 1, Ū1(z) = x, while maintaining v1jk ≥ x. Intuitively, firm 1’s

average profit today then must be worse than its per-period profits derived from each of its

continuation values: E[Π1(j, j; z)] ≤ v1jk(1− δ) for each (j, k). Further, firm 1 has incentive

to reveal a high-cost type only if the future looks relatively better after a realization of

(H,L): following the logic of Lemma 4, the on-schedule constraints can be satisfied only if

v1HL− v1LH ≥ (r− θH)/δ. This requirement places additional downward pressure on today’s

expected profit. But productive and pricing efficiency impose a lower bound on today’s

profit. Similarly, if the efficiency-rent term, θH − θL is too small, it can be difficult to

implement Ū2(z) = y while maintaining v2jk ≤ y. Intuitively, firm 2’s average profit today

then must be greater that its per-period profits derived from each of its continuation values.

Recalling (3.2), this is more easily achieved when the efficiency rent θH − θL is large.

This discussion suggests a restriction under which κ ≡ (r − θH)/(θH − θL) is not too
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large. Recalling our assumption ηL > 1/2, we consider the following restriction:
17

η2L > κ(2 ηL − 1). (4.1)

We may verify that (4.1) is satisfied if κ < 1; more generally, it holds if ηL is sufficiently

close to 1/2.18 Under (4.1), and in the absence of off-schedule constraints, we show in the

Appendix that the implementation of (x, y) is feasible if δ exceeds a critical value, δFon,

which is less than unity and defined as follows:

δFon =
κ

η2L + 2κ(1− ηL)
.

The second step is to assume (4.1) and consider restrictions implied by the off-schedule

constraints. Of course, if firms are sufficiently patient, then an off-schedule deviation is

unattractive. But the associated critical discount factor is difficult to compute, since the

exact value depends on the worst punishment available. Fortunately, our qualitative results

do not depend on a closed-form calculation. Instead, we proceed as follows.

First, for any given δ, we let v1(δ) denote the worst equilibrium value for firm 1. From

the folk theorem of Fudenberg, Levine, and Maskin (1994), we know that v1(δ) approaches

0 as δ approaches 1; furthermore, since the repeated play of the static Nash equilibrium

is a feasible punishment, we also know that v1(δ) ≤ πNE/(1 − δ). We thus may define

λI(δ) ∈ [0, 1] by v1(δ) ≡ λI(δ)πNE/(1 − δ), so that λI(δ) gives the fraction of the static

Nash profits that can be sustained, on average, in the worst equilibrium for firm 1. The

function λI(δ) is nonincreasing and satsifies λI(0) = 1 > 0 = λI(1). Second, for any given λ

and associated punishment value λπNE/(1− δ), we solve for the critical discount factor for

supporting first-best profits, denoted dF (λ). The function dF (λ) is nondecreasing, where

dF (0) < 1 and dF (1) are the critical discount factors for implementing first-best profits

when the punishment entails zero and repeated-Nash profits, respectively. The critical

discount factor is thus determined as the fixed point of the equation δ = dF (λI(δ)), and it

must lie in (dF (0), dF (1)).

Consider now the derivation of dF (λ).We seek the smallest δ such that the values (x, y)

can be sustained as an equilibrium, using only values on [(x, y), (y, x)] on the equilibrium

path and λπNE/(1 − δ) as the off-schedule punishment. The program is formalized in

the Appendix. In describing its solution, a subtlety arises: for different parameter values,

17 Our assumption that ηL >
1
2 determines which continuation value, v

1
HH or v1LL, is lower and thus

more likely to drop below x when we try to implement Ū1 = x with v1LH = x and v
1
HL ≤ y. For ηL < 1

2 ,

it can be shown that a different but analogous condition must hold.
18 If (4.1) fails, the firms may not be able to implement exactly first-best profits. But it is possible to

construct self-generating sets composed of three connected line segments, where the interior line segment
has slope −1, and all points on that segment are implemented using productive efficiency. In contrast,
some productive inefficiency is used on the exterior segments. As firms become more patient, the width of
the interior line segment grows, and so first-best can be approximated as δ approaches 1.

18



different constraints bind, and so the formula for dF (λ) changes. Rather than enumerating

all possible cases, we derive an upper bound for dF (λ) that applies for all parameter values.

As we discuss further in the Appendix, to construct this upper bound, we impose that

IC-Off1LL is binding, and we set the punishment at its “softest” level with repeated-Nash

play (i.e., λ = 1). With this, we may report a (conservative) upper bound for the critical

discount factor that suffices for an informative PPE that achieves first-best profits:

δFB = max

Ã
δFon,

ηL + κ(1− ηL)

ηL + κ(1− ηL) + η2Lκ

!
.

Observe that δFB < 1 when (4.1) is satisfied.

Proposition 1. Assume (4.1). Then, for all δ ∈ (δFB, 1], there exist values y > x > 0
such that x+ y = 2πFB/(1− δ), and the set [(x, y), (y, x)] ∪ uNEis a self-generating set of
informative PPE values.

Proposition 1 can be thought of as a generalization of Fudenberg, Levine and Maskin’s

(1994) folk theorem. Instead of resorting to taking the limit as δ → 1, we compute a

discount factor strictly less than one where first-best is achieved. Our result further provides

an explicit characterization of the behavior associated with this first-best arrangement. The

following specific example illustrates how this is accomplished.

4.1.1. Example: Achieving First-Best Collusion

To understand how first-best collusion unfolds over time, consider a particular example,

where r = 2.5, θH = 2, θL = 1 and ηL = .6, so that π
FB = .67.

Consider first the critical discount factors. For these parameter values, we find that

δFon = .66 and δFB = .816. As described above, these bounds are in general conservative.

Given specific parameter values, however, the program defined in the Appendix for dF (λ)

can be readily solved. In the present example, for all λ ∈ [0, 1], dF (λ) is achieved using a
policy vector whereby the following constraints bind: pjk = r for all (j, k) ∈ Ω, q1LH = 1,

q1HL = 0, q1HH = 0, v1HH = x, v1LH = x, v1HL = y, IC-On1D, IC-On2D, and IC-Off1LL.

We find that dF (λ) = 12.5(
√
1087− 216λ − 3)/(108λ − 539), which yields dF (1) = .769

and dF (0) = .695. That is, when the firms use repeated-Nash play as the off-schedule

punishment, first-best profits can be sustained if and only if δ ≥ .769.
Now consider the collusive strategies that support these payoffs. We take δ = .769

and λ = 1, so that the equilibrium we describe is sure to exist; for lower levels of λ, the

qualitative description of play is similar. In implementing a first-best equilibrium, the

history of past play can always be summarized by one of five states, numbered 1 to 5,

where state 1 is best for firm 1 and state 5 is best for firm 2. Figure 3a summarizes the

policy vectors that implement each state (recalling that prices always equal r, and letting

sjk denote the state reached in continuation play following a realization of (j, k)).

19



After the null history, play begins in state 3. In that state, firms are treated symmetri-

cally. The firms implement productive efficiency and share the market otherwise. Following

a realization of (L,H), the firms proceed to state 5, while following a realization of (H,L)

they proceed to state 1. Otherwise, they return to state 3.

Suppose now that the cost types are (L,H) in the first period. The firms proceed

to state 5, where payoffs are asymmetric but productive efficiency is still achieved. The

asymmetries are most pronounced in state (H,H): q1HH = 0, and if (H,H) is realized,

the firms return to state 5 in the next period. The constraint IC-Off1LL binds, and so to

mitigate the incentive to cheat, q1LL = .152; and after the realization of state (L,L), the

firms proceed to a better state for firm 1, state 4. Firm 1 is induced to admit when it draws

a high cost, by the prospect of a future reward: if the cost realizations are (H,L), firm one

receives no market share, but in the next period the firms proceed to state 1.

Observe that the firms never make use of “review” strategies, where they try to infer

the likelihood of a sequence of reported cost draws.19 Because the collusive scheme provides

firms the incentives to report truthfully in each period, the firms are not concerned with

the possibiltity of past misrepresentations. Even after a history where (L,H) is realized

10 periods in a row, firms start period 11 by following the strategies specified in state 5,

without worrying about how long they have been there.

4.1.2. Example: Obstacles to First-Best Collusion

Suppose now that firms are less patient and consider the factors that limit their ability to

sustain first-best profits. In the example above, the limiting factor is that IC-Off1LL binds

when implementing state 5. When firms are less patient, therefore, firm 1 would undercut

the collusive price, charging r − ε, in state 5 when it draws a low cost.

What is to be done when δ is too small to support first-best profits? One possibility is

to reduce productive efficiency in all states. This would yield a line segment of equilibrium

values, where the total profit is less than first-best. But such a solution may be too

drastic. A more profitable equilibrium can be attained if firms are treated symmetrically

and use productive efficiency in the first period, but then use productive inefficiency in the

subsequent asymmetric states. In general, this approach dominates one where the firms

implement asymmetric states by lowering prices.

To be more precise, we return to the parameter values of the last subsection, except

we now take δ = .768. Again, we set λ = 1, noting that the qualitative features of the

solution are maintained under more severe punishments. First, consider constructing an

19 See Radner (1981) for a first-best result for infinitely patient firms that use review strategies in a
“hidden-action” game. Our firms achieve first-best profits, even though they are not infinitely patient.
In addition, when firms are less patient, real inefficiencies may be required to provide incentives, and we
characterize below the optimal manner in which to provide such incentives.
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equilibrium set that is a line segment. To this end, we may impose the binding constraints

described in the last subsection, while setting δ = .768 and now allowing q1LH and q
1
HL to

vary. It is straightforward to calculate that the best equilibrium with these features has

q1LH = .992 and q
1
HL = 0 when implementing the endpoint (x, y), and it yields per-period

expected profits of .66903 for each firm.

Now consider a more sophisticated equilibrium, illustrated in Figure 3b. To simplify

the description of the equilibrium, we allow the firms to randomize among continuation

equilibria, although it is possible to achieve the same payoffs without such randomization

by introducing new states, where q1LL and q
1
HH are chosen appropriately. To denote the

continuation play where the firms proceed to state 2 with probability .83 and to state 4

with probability .17, we write “(2,4), (.83, .17).”

In this equilibrium, productive efficiency is used in states 2, 3, and 4, while productive

inefficiency is used in states 1 and 5. The firms use productive efficiency in state 3, but

then productive inefficiency is used in implementing rewards and punishments following

realizations of either (L,H) or (H,L). Subsequently, productive inefficiency is used in some

periods but not others, depending on history. The sum of firm profits in states 1 and 5

is strictly less (by .004) than the sum of profits in states 2, 3 and 4. Ex ante expected

firm profits in this equilbrium are .66964, higher than those in the simpler equilibrium

described above. This illustrates a theme that we will return to below in our theoretical

characterizations: colluding firms of moderate patience use greater productive efficiency

to implement fairly symmetric equilibrium values, and reduced productive efficiency when

implementing highly asymmetric equilibrium values.

What would happen if, instead of reducing productive efficiency in states 1 and 5, the

firms were to lower p1LL? Reducing p
1
LL allows the firms to further reduce q

1
LL without

violating the off-schedule constraint, and, it relaxes the on-schedule constraints, since the

low-cost type gets lower profits. Continuing with our parametric example, if firms follow

an equilibrium with the same structure as Figure 3b, except they always use productive

efficiency, but reduce prices and q1LL in state 5 (and symmetrically in state 1), the highest

ex ante expected profits per period for each firm that can be supported are .66930,20 lower

than the equilibrium of Figure 3b. Intuitively, lowering q1LH increases profits for firm 2,

while lowering p1LL makes both firms worse off.

20 These profits are computed by solving a system of equations, analogous to the system used to compute
the equilibrium of Figure 3b. Letting the profits in state 5 be (x, y) and those in state 4 be (t, w), the
system imposes productive efficiency in all states, and pricing efficiency except in states 1 and 5. When
implementing states 4 and 5, the following constraints bind: q1HH = 0, v1HH = t, v1LH = x, v1HL = w,

IC-On1D, IC-On2D, and IC-Off1LL.
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4.2. The Shape of the Pareto Frontier

The examples above demonstrate some of the tradeoffs that firms face when they are too

impatient to implement the first best. We now provide more general characterizations of the

informative PPE utility set. We begin by characterizing the shape of the Pareto frontier of

the informative PPE utility set. As discussed at the start of Section 4, when firms attempt

to implement highly asymmetric equilibrium values, the off-schedule incentive constraints

bind and some inefficiency may be required. We thus anticipate that total cartel profits fall

as values become more asymmetric, indicating that the frontier is typically nonlinear. In

the present subsection, we establish conditions under which a subset of the Pareto frontier

of the set of informative PPE values is a line with slope equal to −1. In addition, we
characterize the manner in which the off-schedule constraints determine the boundaries of

this linear subset (as well as the boundaries of the frontier itself).

To begin, we recall our assumption that firms can randomize between continuation

equilibria, which ensures that firms have available a convex set of continuation values at

any point in time. Figure 2 illustrates the general shape of a symmetric, convex set of

continuation values. The set has four “corners,” labelled as North, South, East, and West,

or vN , vS, vE, vW , where vN = (v
1
N , v

2
N ) and likewise for the other corners. Between two

corners, the boundary of the set is monotone. The part of the boundary between vN and vE
is of particular interest to us, since it represents set of Pareto efficient continuation values.

When describing the Pareto frontier of the set of feasible continuation values given a

set V , we use the notation

f(v1jk) =


max{v2jk : (v1jk, v2jk) ∈ co(V )} if v1jk ∈ [v1N , v1E]

v2N if v1jk < v
1
N

−C · (v1jk − v1E) if v1jk > v
1
E

for some large constant C. Of course, convexity of the set V implies concavity of the frontier

f . We define the function f outside the domain of the Pareto frontier in order to simplify

the statement of some of our results about the slope of the frontier.

Given our assumption that firms are symmetric, f(v) + v is maximized at v1 = v1s ,

where f(v1s) = v
1
s . We may thus say that a scheme is characterized by future inefficiency

if v1jk + f(v
1
jk) < 2v1s for some (j, k), so that under some state the continuation values

fail to maximize total cartel future profits. As mentioned above, future inefficiencies are

associated with highly asymmetric values, and represent an efficiency cost that is incurred

when firms attempt to provide incentives with such values. Thus, it is important to identify

conditions under which a subset of the Pareto frontier has slope of −1, so that the firms
may make some use of future market-share favors without efficiency loss.

For the informative PPE set V I , let vIs be the point on the Pareto frontier of V
I that

provides equal utility to both firms. Consider a policy vector that implements vIs , and
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assume that the off-schedule constraints do not bind in states (L,L) and (H,H). Suppose

for simplicity that pricing efficiency is used. By lowering firm 1’s market share in state

(L,L) by ε/ηL and (H,H) by ε/ηH , it is possible to transfer market share from firm 1 to

firm 2 without upsetting any of the on-schedule incentive constraints. This new scheme

is also feasible. While firm 1’s profit is lower, total cartel profit is unchanged, and so the

Pareto frontier has an interval with slope equal to −1.
How can we ensure that the off-schedule constraints do not bind in states (L,L) and

(H,H)? Without loss of generality, when implementing vIs , we may specify that q
1
jj = 1/2

and vjj = v
I
s for j ∈ {L,H}. With this specification in place, and observing that the most

demanding circumstance from the perspective of off-schedule constraints arises in state

(L,L) when pLL = r, we see that it suffices to check the following condition:

(r − θL)/2 < δ(v1Is − v1). (4.2)

Of course, v1Is is endogenously determined. We illustrate a range of discount factors where

(4.2) holds in our computational examples. However, to define a lower bound on v1Is that

depends only on exogenous parameters, we present the following lemma, which describes a

self-generating set of equilibrium values that exists for a range of discount factors.

Lemma 6. There exists a δlin < 1 such that, for all δ > δlin, there exist values y > x > 0
such that the set [(x, y), (y, x)] ∪ uNE is a self-generating set of informative PPE values.
Each utility pair u on the segment can be implemented using a policy vector (p,q,v) such

that pricing efficiency holds, vjk ∈ [(x, y), (y, x)] for each (j, k), and q1LH+q2HL = 1+ δ(κ+η2L)

1+κ−δηH .

For the parameter values used in our examples (r = 2.5, θH = 2, θL = 1 and ηL = .6),

δlin ≈ .7, and at that discount factor q1LH + q2HL ≈ 1.5, less than the first-best value of 2.
More generally, this result establishes a lower bound for v1Is : since the set [(x, y), (y, x)]

described in the lemma must be contained in V I , v1Is must be greater than (x + y)/2 .

Using straightforward computations, if κ > .275, then (4.2) holds for all δ > δlin.21

When (4.2) holds, we have an initial characterization of the Pareto frontier:

Proposition 2. Assume (4.2).
(i) The Pareto frontier of V I has an open interval with slope equal to −1.
(ii) Let (x, y) and (y, x) denote the endpoints of this open interval, and let (p,q,v) imple-
ment (x, y). Then at least one of the following holds: (a) for some j ∈ {L,H}, IC-Off1Ijj
binds; (b) v1jj ≤ x for some j ∈ {L,H}, and either pjj ≤ θj or q

1
jj = 0 for some j ∈ {L,H}.

Part (i) confirms the existence of a subset of the Pareto frontier with slope −1. Part (ii)
then identifies the factors that limit this subset. Formally, when implementing an endpoint

21 The lower bound on κ is calculated when ηL = 1/2. This bound is decreasing in ηL, and so the bound

is relaxed when ηL > 1/2.
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of this subset, either an off-schedule constraint binds, or else the firms run out of market-

share favors and the ability to shift continuation values in the event of ties. In either

case, the firms cannot implement any further transfer of utility away from firm one and

towards firm two without a loss of efficiency. For firms of moderate patience (δ < δFB),

the off-schedule constraints typically bind first.

Next, we observe that the off-schedule constraints also determine the endpoints of the

entire Pareto frontier and that they force the firms to bear inefficiency when implementing

those endpoints.

Proposition 3. Suppose that (p,q,v) implements vIN . (i) If IC-OniU is slack for each i,
then there is either pricing inefficiency, productive inefficiency or both. (ii) If q̄iL > q̄

i
H for

each firm i, at least one of the following holds: (a) for some j ∈ {L,H}, IC-Off1Ijj binds;
(b) v1jj ≤ v1IN for some j ∈ {L,H}, and either pjj ≤ θj or q

1
jj = 0 for some j ∈ {L,H}.

To understand part (i), suppose that the firms implement some equilibrium value while

using productive and pricing efficiency. Firm 1’s off-schedule constraints are then slack in

state (L,H); therefore, so long as the upward on-schedule incentive constraints are slack,22

firm 1 could give up some market share in state (L,H) without violating any incentive

constraints. The feasibility of this utility transfer indicates that the firms originally could

not have been implementing the corner, vIN . Part (ii) is similar to Proposition 2 (ii).

Finally, we consider whether the set of equilibrium values is itself convex. Since payoffs

and constraints are nonlinear in market shares and prices (they depend on q1jk, q
1
jk · pjk and

(1 − q1jk) · pjk), F I(V ) is not generally convex, and V I may not be convex either. When

prices are the same in two distinct equilibria, however, the nonlinearity does not pose a

problem, and the convex combination of two equilibrium values can be implemented using

a convex combination of the two associated policy vectors. In the next subsection, we

analyze conditions under which prices are always equal to the reservation value r when

implementing values on the Pareto frontier of the equilibrium set.

4.3. Pricing and Continuation Value Efficiency

We now consider the implementation of Pareto efficient informative PPE values, and we

establish important circumstances under which the implementation of such values requires

that pricing and continuation-value Pareto efficiency are used. These results indicate that,

even if firms are only moderately patient, when they collude optimally, they often maintain

pricing and continuation-value Pareto efficiency. We explain as well that these properties

imply that the downward on-schedule constraints are typically binding.

22 We observe also that, if IC-OniD binds for firm i, then IC-OniU can bind only if q̄
i
L = q̄

i
H , indicating

productive inefficiency. We discuss below conditions under which IC-OniD binds.
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To begin, we consider the implementation of any Pareto efficient equilibrium value such

that: (i) the off-schedule constraints are slack, and (ii) the Pareto frontier is sufficiently

wide, and the equilibrium value is sufficiently far from the corners of the Pareto frontier, vIN
and vIE, that the firms implement the equilibrium value using continuation values strictly

between vIN and v
I
E. As Proposition 1 indicates, these properties hold when implementing

values in the neighborhood of vIs for discount factors that exceed δFB. However, conditions

(i) and (ii) apply in a wider set of circumstances. In particular, for a range of more moderate

discount factors, there is a set of equilibrium values on the interior of the Pareto frontier

that can be implemented with slack off-schedule constraints (though these constraints bind

in subsequent periods, when implementing values that are sufficiently asymmetric).

Proposition 4. Let (p,q,v) implement a Pareto efficient utility pair in V I . Suppose that
the off-schedule constraints hold with slack, and v1IN < v1jk < v1IE for all (j, k). Then: (i)
continuation values are Pareto efficient, and (ii) prices are efficient.

Part (i) is proved by showing that it is possible to adjust continuation values in pairs

(moving them closer together, farther apart, or increasing both) in ways that do not affect

the incentive constraints, but move the values closer to the Pareto frontier. Part (ii) follows

because it is always possible to raise prices and lower continuation values to keep the firms

indifferent, and we establish in Part (i) that continuation values below the frontier can be

strictly improved upon.

We next establish conditions under which pricing and continuation-value Pareto effi-

ciency are necessary, even when we relax the constraint that the continuation values lie

strictly between the corners of the Pareto frontier.

Proposition 5. Suppose that (3.3) holds. Suppose that (p,q,v) implements a Pareto
efficient utility pair in V I , the off-schedule constraints hold with slack, and further either
(a) both vHH and vLL are on the interior of the line segment on the Pareto frontier of co(V )
with slope equal to −1, or (b) 0 < q1jj < 1 for j ∈ {L,H}. Then: (i) continuation values
are Pareto efficient, and (ii) prices are efficient.

This result generalizes Proposition 4, under additional restrictions. To understand the

restrictions, recall Lemma 5, which establishes that when (3.3) holds and the valuation set

is rectangular, firms increase cartel profit by decreasing productive efficiency and increasing

the efficiency of prices and continuation values.23 As an extension of Lemma 5, this result

implies that when the continuation value frontier is narrow and firms maximize cartel

23 It can be shown that when (3.3) fails, cartel profits are maximized using productive efficiency, even at
the expense of inefficient prices and continuation values. Since both instruments have limited flexibility, we
expect that when implementing asymmetric utility vectors, the firms may use both pricing and continuation-
value inefficiency. We will not pursue this case further here.
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profit, they choose productive inefficiency over inefficient prices and continuation values.24

It further implies that under (4.2), continuation value efficiency and pricing efficiency hold

at the start of the game.

So far, we have considered only the on-schedule constraints. We now make two ob-

servations about the effects of off-schedule constraints on pricing and continuation-value

efficiency. First, off-schedule constraints place downward pressure on the prices of low-cost

firms, in order to reduce the incentive that such firms have to undercut the equilibrium

price; however, we argue below that in some circumstances firms choose to give up pro-

ductive efficiency before lowering price. Second, in establishing continuation-value Pareto

efficiency, we employ arguments in which firms shift profits across states of the world.

When off-schedule constraints bind, the profit of a firm in a particular state of the world

may be constrained, and our characterizations are more limited.

Finally, in Athey and Bagwell (1999), we consider the implications of pricing and

continuation-value Pareto efficiency. Returning to the case in which the off-schedule con-

straints are slack, we find that if a Pareto efficient utility pair u ∈ V I can be implemented
by some policy vector for which pricing and continuation-value Pareto efficiency holds,

then there must exist a policy vector that implements u for which each firm’s downward

on-schedule constraint binds.25 Intuitively, given that the frontier is concave, asymmetric

continuation values are associated with future inefficiency; therefore, unless behavior is

constrained by off-schedule considerations, if asymmetric continuation values are used to

provide incentives for greater productive efficiency, then they should be used to the minimal

extent possible. More generally, this finding confirms that the relevant on-schedule concern

is indeed the incentive of high-cost firms to mimic low-cost firms.

4.4. Productive Efficiency

We establish above conditions under which firms use pricing and continuation-value Pareto

efficiency, when implementing Pareto efficient utilities. We argue now that the case for

productive efficiency is weaker. The key reason is that, when the efficiency frontier is

concave, a tradeoff arises between productive efficiency today and future inefficiency.

To begin, we establish sufficient conditions under which productive efficiency is used.

Our result applies to all points on the Pareto frontier, with no additional restrictions. In

24 When off-schedule incentive constraints are slack, a natural question is whether the Pareto frontier
is itself self-generating. As Proposition 5 Part (i) indicates, for an efficient utility pair, Pareto inefficient
continuation values would be used to transfer utility, only if other mechanisms for transferring utility
were exhausted. When such instruments are exhausted, however, it is conceivable that an optimal cartel
might implement a utility transfer with an inefficient continuation value, particularly in the (L,L) state,
so as to draw utility from a firm while simultaneously relaxing that firm’s downward on-schedule incentive
constraint. We note, though, that this possibility does not arise in any of our computational examples.
25 This statement allows that firms might be indifferent among a range of equally desirable implemen-

tation schemes (as might occur if continuation values lie on a linear segment of the frontier).
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particular, off-schedule constraints may or may not bind. The result generalizes Lemma

4 beyond budget-balanced transfers: since low-cost firms find high market share relatively

more attractive, firms will use asymmetric continuation values to provide incentives for

productive efficiency, if the future inefficiency is not too great.

Proposition 6. Choose any Pareto efficient utility pair in V I and let (p,q,v) be the
policy vector that implements this pair. Then productive efficiency holds in state (L,H)
(i.e., q1LH = 1) if pLH > θH and if there exists ε > 0 such that

1 +∆−ε f(v
1
LH) ≡ 1 + [f(v1LH)− f(v1LH − ε)]/ε < (θH − θL)/(pLH − θL). (4.3)

Productive efficiency holds in state (H,L) (i.e., q1HL = 0) if pHL > θH and if there exists
ε > 0 such that

1 +∆+
ε f(v

1
HL) ≡ 1 + [f(v1HL + ε)− f(v1HL)]/ε > −(θH − θL)/(pHL − θL). (4.4)

As suggested, productive efficiency is used when implementing Pareto efficient utilities,

if the continuation values in the (L,H) and (H,L) states are drawn from regions of the

frontier at which the frontier slope does not depart too greatly from −1. Since (4.2) implies
that the frontier has a linear portion, it then follows that some productive efficiency is used

at the start of the game, when implementing vIs .
26

Proposition 6 provides sufficient but not necessary conditions for productive efficiency.

We now tighten the characterization under the assumptions that the off-schedule constraints

are slack, the upward on-schedule constraints are slack, and utility is transferrable without

efficiency loss (as in conditions (a) and (b) of Proposition 5). For example, under (3.3),

these assumptions imply pricing and continuation-value Pareto efficiency (by Proposition

5); yet, as we now confirm, the case for productive efficiency is weaker.

Proposition 7. Suppose that (p,q,v) implements an equilibrium value u on the Pareto
frontier of V I and either assumption (a) or (b) of Proposition 5 is satisfied. Further,
suppose that the off-schedule constraints and IC-OniU are slack for each i. Finally, select
an equilibrium such that pLH = pHL > θH , q

1
LH = q

2
HL, v

1
LH = v

2
HL, and that no other such

policy vector implements u using a larger q1LH .
27 Then q1LH ∈ (1/2, 1) and q1HL ∈ (0, 1/2) if

26 Under (4.2) a symmetric scheme may be implemented, with qijk = 1/2, pjk = r, and vjk = vIs for
all (j, k). This is a best scheme with no productive efficiency. But by Proposition 2, the interior of the
Pareto frontier then has slope equal to −1. Proposition 6 then implies that the described scheme is Pareto
dominated by an alternative scheme with at least some productive efficiency, implemented using vLH and
vHL (at least weakly) outside the interval of the Pareto frontier with slope −1.
27 To state necessary and sufficient conditions for productive efficiency, we must confront the possibility

that a range of policy vectors implements the same equilibrium values. Then, we focus on equilibria that
satisfy two criteria. First, we select the policy vector with the highest level of productive efficiency. Second,
we focus on schemes that are symmetric across states for which the cost types are unequal. To see that
such a scheme exists, observe that as long as utility is transferrable, the optimal scheme maximizes the sum
of firm profits and transfers utility in states (L,L) and (H,H); the symmetry of the model then implies

the desired symmetry of policy vectors.
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and only if for all ε > 0,

1 +∆+
ε f(v

1
LH) ≤

θH − θL
pLH − θH + ηL(θH − θL)

< 1 +∆−ε f(v
1
LH). (4.5)

Further, q1LH = 1/2 and q1HL = 1/2 if and only if the second inequality holds at v1HL =
v1LH = v

I1
s , while q

1
LH = 1 and q

1
HL = 0 if and only if the second inequality fails.

One implication of this result is that if v1IE − v1IN < (r − θH)/δ (the minimum width

required to implement productive efficiency using pricing and continuation-value Pareto

efficiency), there is productive inefficiency even in the first period of play, when implement-

ing vIs , so long as the off-schedule constraints do not bind. Further, we see that if future

inefficiency is extreme, so that ∆−ε f(v
I1
s ) = 0, the second inequality in (4.5) holds when

pLH = r if and only if (3.3) holds. Thus, we can interpret Proposition 7 as a generalization

of Lemma 5. In general, firms implement some productive efficiency; however, they stop

short of full productive efficiency if the slope of the frontier gets too steep or too flat, and

in particular, if the frontier is too narrow.28

Let us now summarize our characterizations of Pareto efficient collusive schemes for

firms of moderate patience. First, we find that firms are willing to bear a moderate future

inefficiency to gain productive efficiency in the present. Second, when off-schedule con-

straints do not bind, and either the Pareto frontier is wide enough or (3.3) holds, the firms

maintain pricing and continuation-value Pareto efficiency, even at the possible expense of

productive efficiency. Finally, the firms may sacrifice even pricing and continuation-value

Pareto efficiency when they attempt to implement asymmetric equilibrium values, if the

off-schedule incentive constraints directly or indirectly prevent the use of future market-

share favors in the event of ties. Thus, for firms of moderate patience, we expect to start

the game using fairly efficient schemes (at worst, there is some productive inefficiency), but

the schemes may incorporate additional inefficiencies following a series of one or more cost

realizations whereby one firm has lower cost than another.

4.5. Computational Examples

In this subsection, we develop a computational example to illustrate some of the tradeoffs

and themes from Section 4. We begin by offering some remarks about our computational

approach. Motivated by Abreu, Pearce, and Stacchetti (1990), we specify a set V 0 and

then compute V t = T̃ I(V t−1) for t = 1, ..., iterating until the distance between the sets

28 Additional characterizations can be provided. For example, if the upward on-schedule constraints
are slack, then for ε sufficiently small, if ∆−ε f(v1HH) < −1, then q1HH = 1, and if ∆+ε f(v

1
HH) > −1, then

q1HH = 0. In other words, the firms take the market shares to the extreme before incurring future inefficiency
in state (H,H). Also, when off-schedule constraints are slack, f is differentiable, and all continuation
values are interior, Pareto efficient points require f 0(v1LH) · f 0(v1HL) = f 0(v1LL) · f 0(v1HH). Intuitively, the
continuation values are chosen to balance the inefficiencies incurred in each state of the world.
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becomes lower than a given tolerance level (.0001 in our computations). To operationalize

this algorithm, a natural method is to divide each set V t into a grid, and then check which

members of this grid survive to become members of V t+1. This approach is slow, however.

Following Wang (1994), we use a trick which speeds up the computations.29 At the start

of the algorithm, we divide the set [0, r/(1− δ)] into a fixed grid, where we let x denote the

vector of points in this grid. The grid represents the set of feasible continuation values for

firm 2, and these are the only values ever permitted for firm 2. On each iteration of the

algorithm, we compute the set of continuation values for firm 1 that can be sustained for

each element of the grid.

To further ease the computational burden, we impose two restrictions. First, we assume

that firms punish off-schedule deviations by reverting to the static Nash equilibrium. This

restriction does not directly affect the qualitative characterization of the efficiency frontier,

since in the computations firms only leave the efficiency frontier off of the equilibrium

path. Repeating the computations using lower punishments affects only the level of the

discount factor at which different types of equilibria can be supported. Second, we consider

only equilibria where firms use pricing efficiency on the equilibrium path. This restriction

certainly matters for impatient firms, but without it the computation becomes much more

complex. Given the restrictions we have imposed, the equilibrium sets we construct should

be interpreted as lower bounds on the Pareto frontier of equilibria.

Figures 4 and 5 illustrate equilibrium sets for particular parameter values.30 Consider

Figure 4 in relation to Proposition 4. Neither the off-schedule constraints nor the constraints

on the width of the Pareto frontier are binding for the policy vectors that implement

states 9 to 22, and thus our characterizations from Proposition 4 apply for those states.

Continuation-value Pareto efficiency indeed holds: in every state, after every realization of

cost types, the firms move to another state on the Pareto frontier. Given that, the diagram

only labels and represents the Pareto frontier. Similar results hold in Figure 5, where the

conditions of Proposition 5 are satisfied when implementing states 9-17. Observe that the

Pareto frontier is narrow, and the implementation of Pareto efficient utilities is achieved

with continuation values that fall on the corners (following the (L,H) and (H,L) states).

Nevertheless, as Proposition 5 requires, the continuation values are always Pareto efficient.

Now consider productive efficiency in Figure 4. Notice that for a wide range of states (9

29 Wang’s (1994) approach builds on Phelan and Townsend (1991). Recently, Judd and Conklin (1995)
have developed approaches to computation that, if extended to this model, could be more efficient. As our
aim is only to illustrate the theoretical results, we do not pursue this here.
30Observe that the computations yield slightly asymmetric continuation values across the two firms; this

arises as a result of the computational algorithm, which treats one firm’s profit as discrete and the other’s
as continuous. Further, on the region where the continuation value frontier is approximately linear, there
are often many ways to implement a given value; but, due to the discretization of the frontier, the firms
may have a strict preference among alternative collusive schemes giving approximately the same utility.
Thus, behavior sometimes “jumps” drastically among nearby states. This does not qualitatively affect the
computation of the equilibrium set.
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to 22), productive efficiency is (approximately) implemented, as predicted by Proposition

6: at the extreme continuation values (in states (L,H) and (H,L)) associated with these

states, the slope of the frontier is always within the bounds specified in (4.3) and (4.4).

Further, states 9 to 21 use the same extreme continuation values (vLH = 24 and vHL = 3);

due to concavity of the frontier, increasing or decreasing both continuation values would re-

duce total utility across the two firms. Notice also that the firms use productive inefficiency

when implementing the asymmetric values of the Pareto frontier. In particular, states 3

and 24 use productive inefficiency; since these states (or less efficient ones) are reached

with positive probability from every starting point, even the most profitable points on the

Pareto frontier yield less than the first-best profits. This is consistent with Proposition 6:

when implementing state 24, vLH = 26, the corner of the Pareto frontier, and so (4.3) fails,

indicating that productive efficiency is not necessarily optimal.

Now consider Figure 5. Across all but the most extreme states, the overall level of

productive efficiency is approximately the same, with q1LH + q
2
HL approximately equal to

1.57, and incentives for truth-telling are provided in a similar fashion, with the firms going

to state 1 following a realization of (H,L) and to state 20 following a realization of (L,H).

These states correspond to the corners of the frontier, and so the fact that firms achieve

only partial productive efficiency is consistent with Proposition 6. However, consistent with

Proposition 5, the firms do not use continuation-value inefficiency to implement higher levels

of productive efficiency. Finally (and similar to Figure 3b), to implement the extreme states,

somewhat greater productive inefficiency is required. Thus, colluding firms capture some

productive efficiency in the first period of the game, but at the cost of greater inefficiency

in the future. The result is a concave Pareto frontier.

5. Informative v. Uninformative Communication

We now consider the role of communication. We begin by contrasting the case of informa-

tive communication with the opposite possibility, where firms are unable or unwilling to

communicate. Building on this analysis, we then discuss the qualitative features of the set

of unrestricted PPE, where firms choose whether to use informative communicate in any

period as a function of the history of play.

Recall the extensive-form game defined in Section 2. Any communication occurs first

and then firms make pricing decisions and market-share proposals, where the market-share

proposals affect outcomes only when prices are equal. In this game, to capture a situation

in which firms are unable or unwilling to communicate, we simply specify that firms use the

uninformative announcement αi(θi) = N in all states of the world. Recall that following

this announcement, if firms charge the same price, they must share the market.31

31 As we show in Athey and Bagwell (1999), if firms were allowed to withhold quantity in a decen-
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In this context, how are the firms affected by requiring announcements to be uninforma-

tive? This requirement has both a cost and a benefit. The cost is easily understood: in the

absence of informative communication, the set of market-sharing arrangements that can be

implemented is restricted, since state-contingent arrangements are then feasible only when

they are compatible with decentralized decision making. But how severe is this restriction?

In our Bertrand setting, the restriction is less severe than one might expect. For exam-

ple, a simple no-communication scheme sets ρ2(θH) = ρ1(θH) = r and ρ2(θL) = ρ1(θL) =

r−∆. This yields productive efficiency, equal market shares in ties and approximate pric-

ing efficiency (for ∆ > 0 and small). Similarly, by setting ρ2(θH) = r, ρ1(θH) = r − ∆,

ρ2(θL) = r − 2∆ and ρ1(θL) = r − 3∆, the firms may continue to achieve productive and
approximate pricing efficiency, but now firm 1 wins all ties.

Despite these examples, the restriction is real. First, in our Bertrand setting, many

market-sharing arrangements are infeasible without informative communication. For ex-

ample, any arrangement with qijk /∈ {0, .5, 1} requires informative communication. Second,
our Bertrand model understates the actual cost of decentralized behavior, as it abstracts

from a variety of benefits to communication and “advanced planning” that naturally arise

in other models. In the Bertrand model, firms only bear cost for realized market share, and

it is costless to be “prepared” to serve those consumers. Other models, such as Cournot,

would entail much greater costs to decentralization.32 To capture costs of this kind, we

define ∆ ≥ 0 as the minimum price difference that can be perceived by consumers (e.g.

pennies or dollars), so that ∆ > 0 provides a crude means of representing the cost of al-

locating market shares decentrally, through price differences. We interpret ∆ = 0 as an

approximation for the case where ∆ can be arbitrarily small.

The absence of informative communication also has a benefit, once the off-schedule

constraints are considered. When informative communication is absent, each firm must be

dissuaded from deviating after observing its own type, but before knowing the type of the

other firm. In other words, the off-schedule incentive constraints bind at the interim stage.

For example, suppose that an equilibrium specifies q1LL = 1/2, q
1
LH = 1, q

1
HL = 0 and q

1
HH =

1/2. This market-share allocation can be achieved without informative communication. If

the firms communicate, IC-Off1ILL might bind, because after communication, firm 1 knows

that the state is (L,L) and is tempted to cut price slightly and pick up the remaining 1/2

of the market. By contrast, if the firms do not communicate, a low-cost firm 1 is unaware

of firm 2’s cost type, so that its expected market share is ηH+(1−ηH)(1/2) > 1/2, leaving

tralized way, the range of outcomes would expand somewhat, but the qualitative results of this section
would not change. We do continue to allow firms to randomize among continuation equilibria. Formally,
randomization does not require communication.
32 In a Cournot model, without communication colluding firms typically suffer large inefficiencies: a high-

cost firm produces, just in case the opponent is high-cost as well, but this is wasteful if the opponent turns
out to be low cost. In contrast, when the firms can communicate, they are able to select the monopoly
output for the cost type of the firm that actually produces, and other firms refrain from producing.
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less to gain from a deviation. The absence of informative communication can thus promote

cooperation, by preserving uncertainty about opponent play and softening the off-schedule

incentive constraint. Notably, uninformative communication relieves some of the pressure

to give up productive efficiency that is present in an informative PPE, since it becomes

easier to maintain q1LH = 1 and lower q
1
LL without violating the off-schedule constraints.

To formally represent the incentive constraints under uninformative communication,

let pjk = min{ρ1(θj), ρ2(θk)} be the transaction price for state (j, k). The market share
received by firm 1, q1jk, is determined as described in Section 2. Finally, let v

1
jk represent

the continuation value for firm 1 that is induced by the price selections ρ1(θj) and ρ2(θk).

The on-schedule incentive constraints are again represented by IC-OniD and IC-OniU . To

define the off-schedule constraints, it is somewhat easier to refer directly to the decentralized

pricing strategies. For j ∈ {L,H}, IC-Off1Uj is defined as:X
k∈{L,H}

ηk[q
1
jk(pjk − θj) + δv1jk] ≥ max

³
(ρ2(θL)−∆− θj), ηH(ρ

2(θH)−∆− θj), 0
´
+ δv1

while the corresponding constraint for firm 2, IC-Off2Uk , is defined analogously.

For a given continuation-value set V , we now define a function C(p,q,v), where C :

<4+×[0, 1]4×V 4 → {0, 1}.We let C(p,q,v) = 0 if there exist decentralized pricing strategies
(ρ1(·), ρ2(·)) that can induce the specified prices, market shares and continuation values,
while C(p,q,v) = 1 if informative communication is necessary.33 When C(p,q,v) = 1, the

off-schedule constraints defined previously, IC-OffiI and IC-Off-Mi, are appropriate, while

the IC-OffiU constraints are appropriate if C(p,q,v) = 0. The feasible set when firms use

uninformative communication is written:

FU(V ) = {z = (p,q,v) ∈Z(V ) : C(p,q,v) = 0; For all i = 1, 2, j ∈ {L,H},
IC-OniD, IC-OniU and IC-Offi

U
j hold.}

As the off-schedule constraints are different from the case of informative PPE, neither

FU(V ) nor F I(V ) is a subset of the other. The set of uninformative PPE, V U , can then

be characterized as the largest invariant set of the following operator:

T̃U(V ) = {(u1, u2) : ∃z = (p,q,v) ∈FU(V ) such that for i = 1, 2, ui = Ū i(z)} ∪ uNE.

An initial observation is that in an uninformative PPE, even if firms collude at the

reservation price and the off-schedule constraints are slack, the set of feasible policy vectors

FU(V ) is not convex. Thus, the set of equilibrium values may not be convex, so that we rely

more heavily on our assumption that firms can randomize among continuation equilibria.

We now discuss circumstances under which restricting communication might hurt firms

if the off-schedule constraints do not bind. Consider the choice of q1LH . In regions where the

33 Notice that, when C(p,q,v) = 0, continuation values can only be state-contingent to the extent that

the state of the world is revealed by the prices.
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continuation value frontier is too steep or too flat, or if the continuation value frontier is too

narrow, Propositions 6 and 7 establish that the firms implement productive inefficiency. In

such cases, intermediate values of q1LH are optimal, so that the restriction to uninformative

communication may be costly. More formally, observe the tradeoff between productive

efficiency and future inefficiency can be characterized in a manner analogous to Proposition

6. A scheme (p,q,v) where q1LH = 1/2 can be improved upon by a scheme where q̃
1
LH = 1

and ṽ1LH is chosen to satisfy IC-On1D (holding the rest of the scheme fixed), if

1 + [f(v1LH)− f(ṽ1LH)]/(v1LH − ṽ1LH) < (θH − θL)/(pLH − θL).

However, if the frontier is too narrow, or if it eventually becomes too steep, firms sacrifice

productive efficiency even if (4.3) holds so that, were it available, a small increase in q1LH
(holding the market shares in other states fixed) would increase profits. Thus, restricting

communication may lead to greater productive inefficiency.

Circumstances may exist, therefore, under which cartel profits are reduced when firms

are prohibited from informative communication. But is the possibility of such losses elim-

inated when firms are sufficiently patient? We establish next that, even when communi-

cation is prohibited, there exists a critical discount factor strictly less than 1 above which

first-best is attained when ∆ = 0. In particular, the linear self-generating segment con-

structed in Proposition 1 can be implemented without communication, but at a lower

discount factor (provided in the Appendix). The absence of informative communication

is beneficial when implementing the “corner” value of the equilibrium set, (x, y). Since

the firms use productive efficiency, firm 1 has no incentive to deviate in state (L,H); by

contrast, in state (L,L), firm 1 produces less than unity (in the implementation we use,

q1LL = 0), and the off-schedule constraint binds under informative communication. By

refraining from communication, the firms pool the (L,L) off-schedule constraint with the

non-binding (L,H) off-schedule constraint.

Proposition 8. Assume (4.1). Then there exists δNC < 1 such that, for δ ∈ [δNC , 1]
and ∆ = 0, there exists an uninformative PPE that yields first-best profits to the cartel:
(πFB/(1− δ), πFB/(1− δ)) ∈ V U .

Restrictions on communication thus hurt collusive ventures only if firms are moderately

patient or ∆ is large. At the same time, it is important to emphasize that the proof of

Proposition 8 exploits the assumed ability of non-communicating firms to randomize over

continuation play. Absent this ability, for a range of discount factors firms could achieve

first-best profits only if some histories were followed with informative communication.

Finally, consider unrestricted PPE. In each period, the firms first choose whether or

not to use informative communication. If so, they reveal their types and face the IC-OffiI

constraints; otherwise, they choose from a restricted set of market-share and price policies,
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but they face the relaxed IC-OffiU constraints. Formally:34

T̃ (V ) = {(u1, u2) : ∃z = (p,q,v) ∈ {FU(V ) ∪F I(V )} s.t. for i = 1, 2, ui = Ū i(z)} ∪ uNE.

In general, the firms will use communication in order choose a policy vector from F I(V ),

so as to implement market-sharing arrangements that are not available using decentralized

schemes; however, when there is a significant gain from relaxing off-schedule constraints

(e.g., q1LL << q
1
LH) and when the “ideal” market shares are close enough to a scheme that

can be implemented without communication, firms refrain from communicating, choosing

a policy vector from FU(V ). Such “breaks” in communication are especially likely when
firms attempt to implement a very asymmetric utility pair.

So long as (4.1) holds and δ ≥ δFOn is not the limiting factor, for ∆ > 0 there will be a

region of discount factors (which contains [δFB, 1]) such that firms choose to communicate

on the equilibrium path. On the other hand, there will be a lower region of discount factors

where, for ∆ sufficiently small, firms often avoid communication on the equilibrium path,

and collusive profits are equal to first-best profits, less the distortion due to ∆. For this

region, the option to refrain from communication allows strictly higher profits than a purely

informative PPE. The following example illustrates.

5.1. Selective Communication: An Example

For the parameter values from our example, when firms use Nash reversion to punish

off-schedule deviations (λ = 1), we compute δNC = .704, which is less than .769, the

lowest discount factor that supports first-best using informative communication. The dif-

ference in critical discount factors persists for each value of λ. Maintaining λ = 1 and

∆ > 0, firms strictly prefer to communicate in every period when δ ∈[.769,1), but for each
δ ∈ (.704, .769), there is a ∆ small enough such that firms strictly prefer a regime of no

communication on the equilibrium path to a scheme of communication in every period.

However, the firms can do better still by using a strategy of selective communication.

Suppose λ = 1, δ ∈ (.704, .769) and ∆ is small but positive. Then, firms will prefer to com-

municate (saving ∆) when implementing fairly symmetric equilibrium values (for example,

following a realization of (L,L), as in Figure 3a), but will always avoid communication

when implementing asymmetric equilibrium values, for example following realizations of

(L,H) and (H,L). Under this scheme of selective communication, total profits are lower

for asymmetric equilibrium values.

34 Observe that the firms have available the same “worst punishment” irrespective of whether they choose
to communicate on the equilibrium path.
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6. Bribes

In this section, we extend the base model to allow for bribes. The following stage is added

to the extensive form stage game: (v) firm i sends bi ≥ 0 to firm j; firm j receives γbi. The
extended model is called the Bribes model. Communication is not necessary to implement

bribes, since the firms can condition bribes on the market shares realized ex post. How-

ever, to simplify the exposition, we restrict attention to informative communication. The

exogenous parameter γ ∈ [0, 1] describes the inefficiency of the bribe: γ = 1 corresponds
to the use of money without any transaction costs; γ = 0 corresponds to no transfers; and

γ ∈ (0, 1) corresponds to the case where there is some probability that a bribe will be
detected by antitrust authorities, or where firms can only make in-kind transfers that have

some inherent inefficiency.

Formally, the utility function with bribes for firm 1 is denoted:

UB1(̂, j|z, b) = U1(̂, j|z) + X
k∈{L,H}

ηk(γb
2
̂k − b1̂k)

and likewise for firm 2. The on-schedule constraints, denoted IC-OniBU and IC-Oni
B
D, are

redefined using UBi as the interim expected utility function. To represent the off-schedule

constraints, we observe that optimal collusion never requires a state in which both firms

send bribes, since, with γ ≤ 1, the desired net transfer can be achieved most efficiently if
a single bribe is made. Then the off-schedule constraint for firm 1 is35

γb2jk − b1jk + δ(v1jk − v1) ≥ max(q2jk(pjk − θj), q
1
jk(θj − pjk)).

(IC-Off1Bjk)

IC-Off2Bjk is defined analogously; likewise, IC-Off-Mi
B is constructed from IC-Off-Mi in the

natural way. Let F IB(V ) be defined as FI(V ), once the utility functions and constraints
from the base model are replaced with those in the Bribes model. The policy vector is now

(z,b), where z = (p,q,v). Finally, with ex ante utility given as ŪBi(z,b), let

T̃B(V ) = {(u1, u2) : ∃(p,q,v,b) ∈F IB(V ) such that for i = 1, 2, ui = ŪBi(z,b)} ∪ uNE.

We denote the set of PPE values in the Bribes model as V B, which following our previous

arguments is the largest invariant set of T̃B. Let vBs be the point on the Pareto frontier of

V B that gives equal utility to both agents.

We establish first that bribes do not fully replace market-share favors in implementing

Pareto efficient equilibrium values:

35 Notice that when IC-Off1Bjk holds, if firm 1 is assigned to send a bribe to firm 2, it never has the
incentive to withhold the bribe after production takes place. After production, firm 1 wishes to adhere
to the equilibrium play if γb2jk − b1jk + δ(v1jk − v1) ≥ 0, which holds by IC-Off1Bjk. It is more tempting to
deviate from the agreement before production takes place, thereby capturing the market and avoiding the
bribe, than after production, when the firm can only avoid paying the bribe.
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Proposition 9. (i) Suppose that (r − θL)/2 < δ(v1Bs − v1). For all γ < 1, if (p,q,v,b)
implements vBs and uses any productive efficiency (q

1
LH > 1/2), then the associated PPE

is non-stationary. If γ = 1, there exists a non-stationary PPE that implements vBs . (ii)
Assume (4.1). For all γ < (=)1, there exists δB < 1 such that, for all δ ∈ [δB, 1], bribes
are never used (resp. not necessary) along the equilibrium path in the most profitable
equilibria for the firms.

Proof. (i) Under the stated conditions, the frontier has an open interval with slope −1,
and thus it is more efficient to use continuation values rather than inefficient bribes. (ii)

Proposition 1 establishes a critical discount factor beyond which first-best can be attained

without bribes; thus, if bribes are at all inefficient, they are not used.

Intuitively, if the off-schedule constraints do not bind at the symmetric point on the

Pareto frontier of V B, then the frontier has an open interval of slope −1. Thus, it is initially
more efficient to use market-share favors than inefficient bribes. Further, when sufficiently

patient firms can attain first-best without bribes, inefficient bribes are never used.36

Next, we characterize the use of bribes to provide incentives for productive efficiency,

when firms are not patient enough to implement first-best:

Proposition 10. Fix δ and γ, and suppose that (p,q,v,b) implements a Pareto efficient
value u ∈ V B. Suppose that pHL, pLH > θH . If 1 − γ < (θH − θL)/(pLH − θL) and
1− γ < (θH − θL)/(pHL − θL), then the scheme uses productive efficiency.

The proof of this result follows as in Proposition 6, which established that even if the

off-schedule constraints bind, firms use productive efficiency unless the continuation values

are not available or require too much future inefficiency. Figure 6 illustrates how bribes

augment the set of continuation values.

Thus, so long as bribes are suitably efficient, firms use productive efficiency. This anal-

ysis highlights an important theme: the main factor limiting productive efficiency is the

availability of an instrument for efficiently transferring utility. In the absence of bribes,

if firms achieve productive efficiency today, then the utility transfer is effected through

market-share favors tomorrow; furthermore, as Proposition 3 establishes, this utility trans-

fer entails a future inefficiency if in tomorrow’s tied states the off-schedule constraints bind

or the firms run out of market-share favors. When bribes are available, however, firms have

a less-constrained instrument with which to achieve the desired utility transfer. Bribes can

thus enable a substantial improvement in productive efficiency, provided that the direct

inefficiency of bribes, as measured by (1− γ), is sufficiently small.37

36 In a continuum-type model, the Pareto frontier has slope equal to −1 at the Pareto efficient equilibrium
providing equal utility to both firms, if firms are sufficiently patient such that the off-schedule constraints
permit small future market-share favors. Thus, for any γ < 1, even in a continuum-type model, bribes do
not fully replace future market-share favors.
37 In Athey and Bagwell (1999), we consider the use of bribes in Symmetric PPE. If 1 − γ < (θH −

36



These results have two main implications for applied analysis of collusion. First, we

observe that market-share favors are a robust feature of collusive ventures, so long as bribes

are inefficient and individual firm behavior can be tracked over time. Second, our results

have a somewhat perverse policy implication. To the extent that bribes are used, they

increase the productive efficiency of the cartel. For many discount factors and parameter

values, firms can sustain collusion at high prices, and the only issue for the cartel is the

extent to which they can implement productive efficiency. Thus, for many discount factors,

prohibiting bribes reduces welfare. On the other hand, there do exist moderate discount

factors such that prohibiting bribes lowers the collusive profits enough that collusion takes

place only at substantially lower prices. For moderately patient firms, a prohibition on

bribes may raise consumer welfare.

7. Conclusions

¿From a methodological perspective, our analysis offers several contributions. First, our

paper is the first of which we are aware to provide tools for characterizing the optimal

use of market-share favors by impatient firms. Depending on the anti-trust environment,

different instruments are available, and impatient firms may face real tradeoffs among those

instruments. We identify these tradeoffs and explore them both theoretically as well as

using computational examples. Second, we develop the precise connections between static

and dynamic analyses of collusion, making clear the similarities and differences, and laying

the groundwork for treating other repeated-game problems within the mechanism design

framework. Third, our work motivates some new questions for static mechanism design,

and takes some initial steps towards addressing them.38

The results in this paper are motivated by the problem of collusion, but they apply also

in other contexts. At a general level, our model considers interactions between agents — such

as family members, workers in a firm, or politicians — who must repeatedly take actions in

an environment with two main characteristics: first, each agent’s cost or benefit of taking

the action changes from period to period, where the actual change is private information;

and second, there are limits on the agents’ ability to use side-payments. Essentially, the

repeated play of any of the standard multi-agent mechanism design problems (public goods,

auctions, bargaining) fits into the framework, with the additional assumption of restricted

transfers. Private information is easy to motivate. Family members may be privately

θL)/(r − θL) and firms are sufficiently patient, the optimal symmetric collusive scheme is stationary, and
it entails productive efficiency, pricing efficiency and the use of bribes. This scheme can be implemented
without informative communication.
38For example, we examine how restrictions on transfers (for instance, to a convex set) affect optimal

mechanisms. In the literature on collusion, only a limited class of restrictions on transfers have received
attention. See McAfee and McMillan (1992).
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informed about how tired they are on a particular day, and thus how costly it is to perform

household work. Likewise, division heads within a firm may have private information about

the efficiency of access to a resource, and politicians may have private information about

the costs of legislation. The scope for transfers is also often limited: families may share a

common budget, division heads may share a common resource and payments for votes may

be illegal. Social norms may also prohibit monetary transfers.39

In the context of the collusion application, our analysis suggests several directions for

further research. For example, we show that a more antagonistic anti-trust policy may have

perverse welfare effects: successfully colluding firms tolerate productive inefficiency before

lowering prices. This conclusion, however, is perhaps sensitive to our Bertrand model, and it

would be interesting to consider this feature further in a model with differentiated products

or Cournot competition. Additionally, our work suggest new empirical directions. Allow-

ing for a sophisticated cartel design, we find here that optimal collusion is complex, with

considerable market-share instability. By contrast, Athey, Bagwell and Sanchirico (1998)

restrict attention to symmetric equilibria and show that a simple price-fixing agreement

with stable market shares is then optimal for patient firms. In combination, this work may

be useful in providing a theoretical framework with which to interpret the empirical factors

that influence the cartel organizational form.40 As a further example, we note that the

collusion literature does not distinguish well between market-share allocation schemes that

implement productive efficiency and those that do not. For example, bid-rotation schemes

are common in auctions, and Comanor and Schankerman (1975) analyzed all prosecuted

cases of bid rigging over a 50-year period, but they did not distinguish between “standard”

bid rotation schemes and “sophisticated” bid rotation schemes that might achieve produc-

tive efficiency. Further study of the legal testimony may identify those schemes that made

use of market-share favors or bribes to implement productive efficiency.

8. Appendix

Proof of Lemma 4: Imposing pricing efficiency, productive efficiency and Pareto efficient con-
tinuation values (i.e., v1jk + v

2
jk = 2K for all (j, k)), it is straightforward to show that IC-On1D

and IC-On2D respectively bind if and only if

0 = [r − θH ]{ηH(q1HH − 1)− ηLq
1
LL}+ δ{ηH(v1HH − v1LH) + ηL(v

1
HL − v1LL)}, and

0 = −[r − θH ]{ηHq1HH + ηL(1− q1LL)}− δ{ηH(v1HH − v1HL) + ηL(v
1
LH − v1LL)}

39 In a related paper, Holmstrom and Kreps (1996) study the use of “promises” in repeated games. Our
analysis differs from theirs in that we bring together the tools of dynamic programming and mechanism
design to characterize optimal equilibria for firms for a given discount factor, and we explicitly model the
tradeoff between different kinds of side-payments (future favors versus bribes).
40 There is little existing empirical work on the determinants of cartel organizational form. See, however,

the empirical analysis of American shipping cartels that Deltas, Serfes and Sicotte (1999) present. They find

that some cartels used simple price-fixing agreements while other cartels were considerably more complex.
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Adding the constraints yields the necessary condition v1HL−v1LH = (r−θH)/δ, and we may choose
the remaining market shares and continuation values to respect the additional conditions in the
lemma while satisfying each of the above constraints.

Proof of Lemma 5: We posit that IC-OniD binds for all i, and substitute in from (3.1) for
U i(L,L; z). We solve a relaxed program:

max
q2LL,q

2
LH , q

2
HH , q

2
HL∈[0,1]

pLH , pHH , pHL≤r; v̄1H ,v̄2H≤K

X
j∈{L,H}

ηj · q2jH · (pjH − θH) + δv̄2H + ηL · q̄2L(θH − θL)

+λ

 X
k∈{L,H}

ηk · (1− q2Hk) · (pHk − θH) + δv̄1H + ηL · (1−
X

k∈{L,H}
ηkq

2
Lk)(θH − θL)− u1


+ψ1 ·

 X
k∈{L,H}

ηkq
2
Hk −

X
k∈{L,H}

ηkq
2
Lk

+ ψ2 ·
h
q̄2L − q̄2H

i
Let λ be the multiplier on firm 1’s utility constraint, which is non-negative on the Pareto frontier.
The multipliers on the monotonicity constraints are denoted ψi, and these are also non-negative.
By inspection, it is clearly optimal to set pHk = r, pjH = r and v̄iH = K; then, differentiating
with respect to the market-share variables, we get:

∂

∂q2LL
: (1− λ) · η2L(θH − θL)− ψ1ηL + ψ2ηL;

∂

∂q2HH
: (1− λ)[ηH(r − θH)] + ψ1ηH − ψ2ηH

∂

∂q2LH
: ηL(r − θH)− ληLηH(θH − θL)− ψ1ηH − ψ2ηL

∂

∂q2HL
: ηLηH(θH − θL)− ληL(r − θH) + ψ1ηL + ψ2ηH

(i) Notice first that if we maximize the sum of the firms’ utilities (λ = 1), (3.3) implies that unless
ψ1 > 0 or ψ2 > 0, ∂

∂q2
LH

> 0 and ∂
∂q2
HL

< 0, which implies a boundary solution that (as can be

directly verified) is dominated by a symmetric solution with qijk = 1/2 for all (j, k). Now suppose
that we weight the firms evenly (λ = 1) and consider asymmetric solutions. Still, there will be no
productive efficiency unless ψ1 + ψ2 > 0. Suppose that ψ1 > 0 and ψ2 = 0. Then, the objective
is increasing in q2HH and decreasing in q2LL, so we take q

2
HH = 1 and q

2
LL = 0. But then, firm 2’s

monotonicity constraint implies ηH + ηLq
2
LH < ηHq

2
HL, a contradiction.

Thus, we have established that the largest joint utility available to the firms is achieved by
“pooling,” where q̄iL = q̄

i
H , and that allowing for asymmetric allocations of utility will not improve

the sum of utilities. This scheme satisfies all of the constraints in FIOn(V ). So, an upper bound
for the sum of utilities is given by r − E[θ]. Now observe that for any α ∈ [0, 1], we can allocate
α(r − E[θ]) to firm 1 and (1 − α)(r − E[θ]) to firm 2 by simply changing the market shares of
the firms while maintaining q̄iL = q̄

i
H . Since this satisfies the on-schedule constraints, the Pareto

frontier is given as in the statement of the lemma.
(ii) Under the alternative assumption that (3.3) fails, inspection of the program shows that

profits are highest when q2LH = 0 and q2HL = 1. The monotonicity constraints do not bind. At
these values, the relaxed program is independent of pLH and pHL. This scheme can be implemented
by using pricing efficiency in state (H,H) (pHH = r), vijk = K for all i, j, k, and productive
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efficiency. The truth-telling constraints can be satisfied as follows: find p̂ < r to be used by all
low-cost types. With qiLL = q

i
HH = 1/2, truth-telling by a high-cost firm requires:

1

2
ηH(r − θH) = (ηH +

1

2
ηL)(p̂− θH)

yielding the price stated in the lemma. It is now direct to derive the utility frontier.
Proof of Proposition 1: The formal program for determining dF (λ) is given by:

dF (λ) ≡ arg min
δ∈[0,1]

δ

s.t. z ∈ Z(V ); for all i, j, k, IC-OniD and IC-OniU hold;
(x, y) = (Ū1(z), Ū2(z)); x+ y = 2πFB/(1− δ);

x ≤ vijk ≤ y; IC-Offijk holds, letting vi = λπNE/(1− δ).

To determine δFB, which is an upper bound on dF (λ) that holds for all parameter values, we
solve a set of equations. Consider the following system (imposing pricing efficiency, productive
efficiency, and v2jk = 2πFB/(1 − δ) − v1jk for all (j, k)): IC-On1D, IC-On2D, Ū1 = x, Ū2 = y,

v1LH = x, v1HH = x, q1HH = 0, and q1LL = 0. It can be verified that under our assumption that
ηL > 1/2, v

1
LH < v

1
LL. In particular, v1LL− v1LH = 2ηL−1

ηL
· r−θHδ . Since 2ηL−1ηL

∈ (0, 1), this implies
v1LH < v

1
LL < v

1
HL, where the latter inequality follows since the downward on-schedule constraints

imply that v1HL = v
1
LH +

r−θH
δ . It remains to verify that given our solutions to these equations,

v1HL = x+
r−θH

δ < y . We can compute:

y − x = η2L(θH − θL) − (r − θH) (2 ηL − 1)
1− δ

.

This expression is always positive under our restrictions ηL > 1/2 and (4.1). δ
Fon, as stated in

the text, solves y − x =r−θH
δ . It can be verified that y − x>r−θHδ for all δ > δFon.

Consider now the off-schedule constraints. We observe first that IC-Off1ILH is slack, as is IC-
Off-M1. Further, using the implementation described above, IC-Off1IHH implies IC-Off1IHL. We
then substitute in the values for q1jj and v

1
jj computed above, and verify (using tedious algebraic

manipulation) that IC-Off1ILL binds and IC-Off1
I
HH is slack when δ ≥ ηL+κ(1−ηL)

ηL+κ(1−ηL)+η2Lκ
and (4.1)

holds. Finally, since for the endpoints of the interval, we have described a policy vector that
meets all of our constraints and uses as continuation values other values on the same interval, we
can then construct the remainder of the line segment using convex combinations of policy vectors
to implement convex combinations of equilibrium values. This is possible because, when pricing
efficiency is imposed, the constraints and utilities are linear in market shares and continuation
values. Thus, we have constructed a self-generating set of equilibrium values with first-best profits
to the cartel.

Proof of Lemma 6: To implement (x, y), let pjk = r, vLH = vLL = (x, y), vHH = vHL, and

q1HL = q
1
HH = 0. Further, set q

1
LH = q

1
LL =

δ(κ+η2L)
1+κ−δηH . Finally, use the static Nash equilibrium as

the off-schedule threat point. Notice first that IC-On2D and IC-On2U both hold with equality
given these values. Given the specified market shares and off-equilibrium-path threat points, the
v1LH that satisfies IC-Off1ILL and IC-Off1

I
LH is uniquely determined. Next, it can be shown that

IC-On1D holds with these parameter values if and only if v1HL − v1LH = q1LH(r − θH)/δ. Thus,
it remains to verify that this distance is feasible using v1HL ≤ y, where y is determined as firm
2’s profit in this scheme. Given pricing efficiency and the specified level of productive efficiency
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for the cartel, and since all continuation values lie on a line with slope -1 through (x, y) , it is
possible to compute the sum of firm profits at (x, y), K = x+ y, as a function of the exogenous
parameters. Then, since v1LH = x, v

1
HL ≤ y holds if and only if v1LH + (q1LH + q1LL)(r − θH)/(2δ)

≤ K − v1LH . It can be verified that this constraint becomes relaxed as δ increases. Substituting
and solving, the constraint binds for δ = δlin ≡

η2L − κ(κ+ ηH) +
q
(κ(1+ κ)− ηL(ηL + κ))2 + 4κ(1+ κ)(κ2 + η2L(1+ η2L) + κηL(1+ 2ηL))

2(κ2 + η2L + η4L + κηL(1+ 2ηL))

Proof of Proposition 2: (i) The symmetric point of the Pareto frontier of T̃ (V ) can be
implemented with qijj = 1/2 and v

1
jj = v

2
jj. Before beginning, we observe that we can take pjj > θj

without loss of generality. To see why, observe that if θj − pjj > 0, we can raise pjj by ε and
lower vijj by ε/(2δ) until we arrive at p̂jj and v̂jj , where θj = p̂jj , without affecting any utilities
or incentive constraints (since an optimal off-schedule deviation would ensure zero market-share
in state jj). To see that the resulting v̂ijj is feasible, observe that given market share of 1/2, our

assumption that IC-OffiIjj is slack implies that
1
2(θj − pjj) < δ(vijj − vi); since the adjustments

preserve this inequality, the new continuation value v̂ijj must satisfy v̂
i
jj ≥ vi. Since the set of

feasible continuation values is convex and symmetric, it is feasible. Finally, if θj − pjj = 0, we
may employ a similar adjustment, unless vijj = v

i. But in this case (4.2) is violated.
Starting from this point, our approach is to implement an alternative utility pair, with no

efficiency loss, in which Ū1 is decreased and Ū2 is increased. We define two perturbations. In
Perturbation 1, we lower q1HH by ε/((pHH − θL)ηH) and lower q

1
LL by ε/((pLL − θL)ηL). For

each firm i, IC-OniU is unaltered by this perturbation. In Perturbation 2, we lower q1HH by
ε/((pHH − θH)ηH) and lower q

1
LL by ε/((pLL − θH)ηL). For each firm i, this perturbation leaves

unaltered IC-OniD. Both perturbations lower Ū
1 and increase Ū2.

There are several cases to consider. Suppose first that, for a given ψ ∈ {U,D}, IC-Oniψ is
slack for each i. If ψ = U , we use Perturbation 2 to engineer the desired utility transfer without
violating on-schedule incentive constraints. Likewise, if ψ = D, we use Perturbation 1. Next,
we modify the argument for the case where the on-schedule constraints are slack in different
directions. First, take the case where IC-On1D and IC-On2U are slack. If pLL ≤ pHH , we use
Perturbation 1, which relaxes IC-On2D by (pHH−θH)/(pHH−θL)−(pLL−θH)/(pLL−θL), which
is positive by our assumption that pLL ≤ pHH . If pLL ≥ pHH , we use Perturbation 2. This relaxes
IC-On1U by (pHH − θL)/(pHH − θH)− (pLL− θL)/(pLL− θH), which is positive. Similarly, in the
second case, where IC-On1U and IC-On2D are slack, we proceed as follows: if pLL ≤ pHH , we
use Perturbation 2, which relaxes IC-On2U by (pLL− θL)/(pLL− θH)− (pHH − θL)/(pHH − θH),
which is positive; and if pLL ≥ pHH , we use Perturbation 1, which relaxes IC-On1D by (pLL −
θH)/(pLL − θL)− (pHH − θH)/(pHH − θL), which is positive.

(ii) Suppose that (a) and the first part of (b) fail: IC-Off1ILL and IC-Off1
I
HH are slack, and

v1LL > x and v
1
HH > x. Then, lower v1HH by ε/ηH and lower v1LL by ε/ηL, and raise the corre-

sponding values for firm 2 by the same amount (this is possible because v1jj > x and the set of
available continuation values is convex). This does not affect any on-schedule constraints, relaxes
firm 2’s off-schedule constraints, and decreases Ū1 and increases Ū2 with no efficiency loss, con-
tradicting the hypothesis that (x, y) is the end point of the region with slope equal to −1. Now
consider the case where (a) and the second part of (b) fail: IC-Off1ILL and IC-Off1

I
HH are slack,

q1LL > 0 and q1HH > 0, and pjj > θj for each j. We show below in Proposition 6 that under
the assumptions of this proposition, q̄iL > q̄

i
H , which implies that for each i, one of IC-OniD and
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IC-OniU is slack. We may now apply the algorithm used in the proof of Part (i) to implement a
utility pair that yields lower (higher) utility for firm 1 (2), without efficiency loss, contradicting
the hypothesis that (x, y) is the endpoint of a region with slope equal to −1.

Proof of Proposition 3: (i) If each IC-OniU is slack, prices are efficient, and q
1
LH = 1, then

IC-Off1ILH and IC-Off-M1 are slack, and we can decrease q
1
LH and give the market share to firm 2

without violating any on-schedule constraints. But this makes firm 1 worse off and firm 2 better
off, violating the hypothesis that the scheme implements a corner of vIN .

(ii) Suppose that (a) and the first part of (b) fail: IC-Off1ILL and IC-Off1
I
HH are slack, and

v1LL >v
1I
N and v1HH >v

1I
N . Then, for ε1 small enough, there exists an ε2 > 0 such that it is possible

to lower v1HH by ε1/ηH and lower v
1
LL by ε1/ηL, and raise v

2
HH by ε2/ηH and raise v

2
LL by ε2/ηL

(this is possible because the set of available continuation values is convex and by the definition of
vIN as the north corner of the Pareto frontier ). This does not upset any on-schedule constraints,
and makes firm 1 worse off and firm 2 better off. There is potentially an efficiency loss, however.
Next, we consider the case where (a) and the second part of (b) fail. We may then argue as in
the proof of Proposition 2 and arrive at a contradiction.

Proof of Proposition 4: The proof proceeds in a series of lemmas. Part (i) follows by
Lemma 8, and part (ii) follows by Lemma 9

Lemma 7. Consider a scheme (p,q,v). (T1j) If we subtract ηLε from v1jH and add ηHε to

v1jL, Ū
1, IC-On1D and IC-On1U are unaffected. (T2j) If we add ηHε to v

2
Lj and subtract ηLε from

v2Hj , Ū
2, IC-On2D and IC-On2U are unaffected.

Lemma 8. If (p,q,v) satisfies FIOn(V ) and v1N > v1jk > v1E for all (j, k), then if v
2
jk < f(v1jk)

for any (j, k), this scheme is Pareto dominated by another scheme that satisfies FIOn(V ), has all
continuation values on the Pareto frontier of V and uses the same prices.

Proof. Suppose that for some j, v2jH < f(v
1
jH) and v

2
jL < f(v

1
jL). Then, we can hold fixed

firm 1’s continuation values and increase v2jH and v2jL by the same amount without affecting

IC-On2, thus increasing Ū2. Then, suppose that v2jH = f(v1jH) and v
2
jL < f(v1jL). Then, apply

Lemma 7, (T1j), so that neither continuation value is on the frontier. Then, both v2jH and v2jL
can be increased, again increasing Ū2 without affecting Ū1. The other case is analogous.

Lemma 9. Suppose that (p,q,v) implements a Pareto efficient point in T̃ IOn(V ). For all (j, k),
if v1N > v

1
jk > v

1
E , then pjk = r.

Proof. Suppose pjk < r. Then we can increase pjk by ε and decrease v
1
jk and v

2
jk by

1
δ ε without

affecting payoffs or on-schedule IC constraints. Then, we can improve utility by returning the
continuation values to the frontier as in Lemma 8.

Proof of Proposition 5: Lemma 5 establishes that when the continuation value set has
the shape {(u1, u2) : ui ≤ K}, the total cartel profits go down when firms use Pareto inefficient
continuation values or prices. This logic can be applied directly here, observing that we are
maximizing total profits because utility can be transferred across the firms (as in Proposition 2)
under the conditions stated in the proposition.

Proof of Proposition 6: First, suppose q1LH < 1. Add δ
pLH−θL ε to q

1
LH and subtract ε

from v1LH . If vLH is on the Pareto frontier and ∆
−
ε f(v

1
LH) > −1, move v2LH along the frontier of V .

Otherwise, raise v2LH by ε (this is possible by convexity of the set of feasible continuation values,
and since satisfaction of (4.3) implies v1LH> v1N). This does not affect Ū

1. Consider now the
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effect on the interim expected utility of both firms: U1(H,H; z), U1(H,L; z), and U1(L,L; z) are
unchanged; and U1(L,H; z) decreases. U2(L,H; z) and U2(L,L; z) are unchanged. U2(H,H; z)
goes up if −(pLH−θH)/(pLH−θL)−max(−1,∆−ε f(v1LH)) > 0, which when rearranged gives (4.3).
U2(H,L; z) goes down if v2LH increases by no more than ε, which it does by construction. Thus,
all of the on-schedule incentive-compatibility constraints are relaxed. Finally, none of firm 1’s
off-schedule constraints are affected by this shift, and firm 2’s off-schedule constraints are relaxed.
To see the result for q1HL, we perform an analogous trick, subtracting δ

pHL−θH ε from q1HL and

adding ε to v1HL, and noting that satisfaction of (4.4) implies that v
1
HL <v

1
E (recalling that in the

definition of f , we specified a large negative slope for f when v1jk ≥v1E).
Proof of Proposition 7: Under the assumptions of the proposition, utility is fully trans-

ferable across the firms, and we can simply maximize the sum of firm utilities. Doing so leads
to a symmetric scheme across states (L,H) and (H,L), with one firm being favored over another
in states (H,H) and (L,L), if at all. Now imagine lowering q1LH and raising q1HL by ε, and then
adjusting v1LH and v

2
HL upward by ζ until both firms’ downward IC constraints bind again. The

opponents’ continuation values are moved along the frontier. Solving for ζ, we obtain:

1

1− ηL(1−∆+ε f(v1LH))
ε(pLH − θH)

δ
.

It can be shown using algebra that the first inequality in the statement of the proposition is nec-
essary and sufficient for this change to lower total firm profit. The second inequality is necessary
and sufficient for the firms’ joint profit to decrease if we reverse this change.

Proof of Proposition 8: The linear self-generating set of equilibria constructed in the proof
of Proposition 1 implements the endpoints of the segment, (x, y) and (y, x), using schemes that
have market shares q1LH = 1, q

1
jk = 0 for all other (j, k). Consider a scheme whereby firm 1 chooses

ρ1(θH) = r and ρ1(θL) = r − 2∆, and ρ2(θH) = r −∆ and ρ2(θL) = r − 3∆. Using this scheme,
the market shares are assigned appropriately. Further, each firm’s announced price differs by
state, so that continuation values can be contingent purely on prices. Thus, communication is not
required to implement the scheme. Since firms can draw from a convex set of continuation values,
all continuation values in between (x, y) and (y, x) are available to the firms, and the linear set is
self-generating. To compute the critical discount factor, we follow Section 4.1 and parameterize
the worst available punishment using λ to represent the fraction of the static Nash equilibrium
profits that can be sustained as a punishment. Letting κ = (r − θH)/(θH − θL) taking the limit
as ∆ → 0, using the appropriate off-schedule constraints for uninformative communication, and
setting λ = 1, we compute the following bound:

δNC = max

δFon, ηL(2− ηL) +
q
(2− ηL)2η2L + 8κ(κ+ ηL)

4(κ+ ηL)

 .
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Figure 1: Sets of Feasible Continuation Values for Benchmark Cases 
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Figure 2: A convex set of continuation values.  Point a has “future inefficiency,” while 
point b is a Pareto inefficient continuation value. 
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Figure 3a: A equilibrium set which is self-generating (together with the static Nash equilibrium) and 
achieves first-best profits.  Parameters: r=2.5, θH=2, θL=1, Pr(θL)=.6, δ=.769. 

        
  Transitions (States) Player 1 Market Shares 

State. Values (L,L) (L,H) (H,L) (H,H) (L,L) (L,H) (H,L) (H,H) 
1 (.745, .595) 2 5 1 1 0.848 1.000 0.000 1.000 
2 (.718, .622) 2 5 1 1 0.679 1.000 0.000 0.733 
3 (.670, .670) 3 5 1 3 0.500 1.000 0.000 0.500 
4 (.622, .718) 4 5 1 5 0.331 1.000 0.000 0.267 
5 (.595, .745) 4 5 1 5 0.152 1.000 0.000 0.000 
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Figure 3b: An equilibrium set which is self-generating (together with the static Nash equilibrium) and 

achieves close to first-best profits.  Parameters: r=2.5, θH=2, θL=1, Pr(θL)=.6, δ=.769. 
 

  Transitions (States, Probabilities) Player 1 Market Shares 
State Values (L,L) (L,H) (H,L) (H,H) (L,L) (L,H) (H,L) (H,H) 

1 (.742,.590) (2,4)  (.83,.17) (2,4)  (.02,.98) 1 2 0.838 .984 0.000 1.000 
2 (.741, .592) (2,4)  (.82,.18) 4 1 2 0.841 1.000 0.000 1.000 
3 (.667, .667) 3 (4,5)  (.5,.5) (1,2)  (.5,.5) 3 0.500 1.000 0.000 0.500 
4 (.592, .741) (2,4)  (.18,.82) 5 2 4 0.159 1.000 0.000 0.000 
5 (.590, .742) (2,4)  (.17,.83) 5 (2,4) (.98,.02) 4 0.162 1.000 0.016 0.000 



 
 

Figure 4: An equilibrium set which is self-generating (together with the static Nash equilibrium), for firms 
of moderate patience.  Parameter values: r=2.5, θH=2, θL=1, Pr(θL)=.6, δ=.74. 

 
        

 Transitions Player 1 Market Shares 
State/Realiz. (L,L) (L,H) (H,L) (H,H) (L,L) (L,H) (H,L) (H,H) 
1 7 12 2 13 0.649 0.983 0.556 1.000 
2 10 14 3 15 0.700 0.998 0.529 1.000 
3 9 15 1 13 0.675 0.994 0.407 1.000 
4 7 17 3 11 0.648 0.994 0.345 1.000 
5 7 18 1 10 0.641 0.996 0.231 1.000 
6 8 20 2 10 0.659 1.000 0.184 1.000 
7 10 21 1 11 0.691 0.995 0.104 1.000 
8 8 23 1 8 0.660 0.999 0.003 1.000 
9 12 24 3 12 0.733 0.989 0.000 0.995 
10 13 24 3 13 0.704 0.989 0.000 0.926 
11 13 24 3 13 0.652 0.989 0.000 0.847 
12 13 24 3 13 0.600 0.989 0.000 0.769 
13 13 24 3 13 0.548 0.989 0.000 0.691 
14 13 24 3 13 0.495 0.989 0.000 0.612 
15 13 24 3 13 0.443 0.989 0.000 0.534 
16 13 24 3 13 0.391 0.989 0.000 0.456 
17 13 24 3 13 0.339 0.989 0.000 0.377 
18 13 24 3 13 0.286 0.989 0.000 0.299 
19 13 24 3 13 0.234 0.989 0.000 0.221 
20 13 24 3 13 0.182 0.989 0.000 0.142 
21 18 24 3 18 0.246 0.989 0.000 0.110 
22 20 25 5 20 0.271 0.998 0.000 0.057 
23 21 26 8 21 0.288 0.971 0.000 0.022 
24 22 26 11 21 0.305 0.825 0.000 0.037 
25 23 26 14 20 0.323 0.672 0.000 0.012 
26 21 26 18 18 0.286 0.468 0.000 0.110 
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Figure 5: A self-generating equilibrium set.  The discount factor is equal to the critical discount factor for 
supporting the best Symmetric equilibrium (which entails a rigid price of r for all cost types).  Parameter 

values: r=2.5, θH=2, θL=1, Pr(θL)=.6, δ=.707. 
        

 Transitions Player 1 Market Shares 
State/Realiz. (L,L) (L,H) (H,L) (H,H) (L,L) (L,H) (H,L) (H,H) 

1 3 18 1 18 0.529 0.996 0.485 1.000 
2 3 19 1 18 0.518 0.994 0.453 1.000 
3 3 20 1 18 0.511 0.992 0.414 1.000 
4 3 20 1 16 0.527 0.918 0.340 1.000 
5 3 20 1 16 0.516 0.885 0.307 1.000 
6 6 20 1 18 0.553 0.843 0.265 1.000 
7 3 20 1 14 0.521 0.778 0.201 1.000 
8 3 20 1 13 0.524 0.725 0.147 1.000 
9 5 20 1 14 0.550 0.679 0.101 1.000 

10 5 20 1 14 0.539 0.646 0.068 1.000 
11 5 20 1 14 0.528 0.613 0.035 1.000 
12 5 20 1 9 0.518 0.577 0.000 0.850 
13 5 20 1 9 0.485 0.577 0.000 0.800 
14 15 20 1 12 0.592 0.577 0.000 0.591 
15 5 20 1 9 0.420 0.577 0.000 0.701 
16 5 20 1 9 0.387 0.577 0.000 0.652 
17 5 20 1 9 0.354 0.577 0.000 0.603 
18 10 20 1 12 0.391 0.577 0.000 0.520 
19 16 20 1 12 0.442 0.577 0.000 0.319 
20 19 20 4 10 0.479 0.497 0.000 0.202 
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Figure 6: Bribes augment the set of feasible continuation values. 


