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Many stereo correspondence algorithms require rela-

tive camera geometry, as the epipolar constraint is

fundamental to their matching processes. We intend to

build a eye/head camera rig to mount on the mobile

platform COMODE to enhance the abilities of the

TINA system to recover 3D geometry from its

environment. Thus we will need to be able to associ-

ate camera geometry with particular head

configurations. Generic calibration of such a system

would require the ability to compute camera geometry

from arbitrary stereo images. This paper describes a

system which solves this problem using an established

corner detector combined with a robust stereo match-

ing algorithm and a variational solution for the cam-

era geometry.

We wish to develop a stereo eye/head camera

rig which will support similar low level vision com-

petences to primates, these are: foveation, vergence,

saccades and tracking. This head configuration is

currently under construction [Figure 1] and a simula-

tion of the hardware has been used for the work

presented here. We wish to be able to use this head

with the TINA [4] vision system to recover stereo

geometry and generate a 3D representation of the

world. These low level vision competences will

require stereo correspondence of well located image

features. We show here that we can also use these

correspondences to compute the relative camera

geometry necessary to provide epipolar geometry for

other stereo matching algorithms. Identification of

such features can be achieved using an interest opera-

tor similar to that developed by Moravec [3]. The

Plessey group [2] developed this idea further and the

resulting edge and comer detector was used to obtain

structure from motion [1]. Thus it seems natural to

use the Moravec/Plessey comer detector as our start-

ing point.

In order to use comers to generate the neces-

sary camera translation and rotation parameters, we

need to robustly match the sets of comers obtained.

We cannot use the Plessey algorithm here as there

may be substantial translations between views from

two stereo cameras. Also, we cannot make much use

of epipolar constraints as this would require the cam-

era geometry which we are trying to obtain. This is

not a difficult problem to solve provided we only

require a subset of the total number of comers

matched.

Figure 1. The Robot Head.

Estimation of the camera geometry needs to be

robust and unbiased, we would prefer to use the vari-

ational method proposed by Trivedi [8]. However, we

would require in excess of 100 data points to provide

sufficient calibration accuracy, which is large com-

pared to the number found and matched in most

scenes. For this reason we have applied standard sta-

tistical methods for data combination to the resulting

calibration. We have extended this idea further to the

calibration of a moving camera system which moves

on a one dimensional trajectory in a space described

by the calibration parameters.

1 Corner Detection and Matching

The comer detector we use is that suggested by

Harris and Stephens [2] which calculates an interest

operator defined according to an auto-correlation of

local patches of the image.
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where u and v are image coordinates and *w implies

a convolution with a gaussian image mask. Any

function of the eigenvalues a and (3 of the matrix M

will have the property of rotation invariance. What is

found is that the trace of the matrix Tr{M) = a+(3 is

large where there is an edge in the image and the

determinant Det(M) = a(3 is large where there is an

edge or a comer. Thus edges are given when either

a or (3 are large and corners can be identified where

both are large. Corner strength is defined as

Cm = Det(M) - kTr(M)
2

Given 5 or more correspondence points in the two

images it is possible to compute the camera

translation/rotation parameters for the left to right

camera transformation. There are generally an order

of magnitude more corners than this in even a rela-

tively simple image. The comers are matched using a

robust stereo matching algorithm which identifies reli-

able matches [7]. After removal of non-unique

matches there were generally between 20 and 100

matches fewer than 2% of these were incorrect. This

is enough to obtain an estimate of the camera rotation

suitable for epi-polar matching, though generally too

poor to obtain good geometrical accuracy. For this

reason a method of combining the results from suc-

cessive calibrations was required.

2 Camera Calibration

It is possible to formulate the solution for an

arbitrary camera rotation/translation (RT) from two

sets of corresponding vector points in the images JC;

and / , using a variational principle [4]. The small

shifts §*, and 6Y,- needed to move these correspon-

dences in each image, so that they satisfy an estimate

of the transformation, can be approximated to linear

order in an expansion about the current solution

[Appendix 1] giving;

5Y, = -

F-t =

VF, = x'RRT)

VFj=(RT)x,

Where the rotation/translation constraint equation F,

uses the matrix formulation first suggested by

Longuet-Higgins [6], which is a matrix alternative to

writing the vector constraint equation;

i ( = 0)

where t is the translation vector. This follows

directly from the coordinate transformation equation

which is valid for both points in the real world and

image coordinates. The transformation matrix T and

error matrix 5 are given by

T =

0

e4

0

S = 0

0

0

of

0

0

0

where e^e^e^ are the direction cosines ( xyz ) of the

translation between the optical centres of the cameras

in the left camera frame.

Many of the constraints between elements of

the rotation matrix can be imposed in a way that per-

mits a unique reconstruction of the rotation matrix.

This is done by parameterising the rotation matrix R

in terms of Euler parameters (a quaternion representa-

tion [Appendix 2]). The error matrix allows proper

account to be made of the asymetric nature of the x

and y comer location accuracy introduced by the

camera aspect ratio a with ov=aa r The error in the z

direction az is set to zero as per the original imple-

mentation by Trivedi. This is a relatively simple

model for the expected errors on the location of

comers and a more principled one could be used if

known. In our experience all comer locations are

determined with the same accuracy within a factor of

two.

An appropriately weighted sum of the minimum

shifts required for each point to be independently con-

sistent with the current transformation can be formed.

E = ' J '

The transformation matrix which is most consistent

with the position of the observed correspondences can

be obtained. This is done by minimising this sum

with respect to the five free rotation and translation

parameters ex,e2,ez,e^,e6 while at the same time

enforcing the following constraints.

el = 1 - e\ - e\ - e\ = 1 - e
2

5 - e\

Derivative information can be computed for each

correspondence point [Appendix 3]. However, it was

found that minimisation routines which could make

use of this information were not very efficient or

robust when used on this particular minimisation task.

Minimisation is best done using a robust numerical

minimisation routine as for example the simplex

minimisation algorithm of Nelder and Mead (see for

example [5]). This method lends itself to robust sta-
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u'stical methods should the fitted data be found to

have a distribution which is non-normal.

The Trivedi algorithm has no adjustable param-

eters and yields errors in terms of image variables

which can be used to judge the accuracy of the result.

This information combined with knowledge of the

comer detection accuracy allows rogue points to be

iteratively removed from the fitting process.

The number of corners located in a pair of

stereo images may not be sufficient to calibrate the

camera geometry accurately. For this reason we need

to be able to combine the estimates of the calibration

variables e from several images. This can be done

using the covariance matrix [C] (as estimated as in

Appendix 3) as follows

et =

and

J —

Flexibility can be obtained by limiting the size of C,

to that which provides the required calibration accu-

racy. This then allows the calibration to track any

systematic changes in the camera system.

For a system which can be described as a one

dimensional trajectory in a high dimensional space we

can approximate this trajectory locally using linear

interpolation between data points. The calibration

parameters must follow such a trajectory in the case

of our simulated head when we restrict the control

vergence rotation angles to be symetrical. We can

parameterize this curve using one free parameter <j>

the control vergence angle of both cameras obtained

from accurate odometry. Using this parameter it is

possible to interpolate calibration parameters across a

range of camera angles

" - 40e =

where e and e" the camera transformation parameters

at <j>' and 0". These estimates can be concatenated

into one calibration vector g which can be estimated

from successive observations of e at known <j) given

the covariance C using a kalman filter.

with

The intrinsic parameters of the camera system,

focal lengths and image centres are required as input

parameters. These can be determined independendy

using a combination of optical methods and alterna-

tive calibration algorithms [9]. Once determined they

must be assumed to be fixed for our camera rig. The

current implementation ignores radial distortions but

these could easily be incorporated should it become

necessary. The algorithm is independent of the mag-

nitude of interocular separation and only the direction

of translation between the cameras is determined.

This is sufficient for obtaining epipolar geometry suit-

able for stereo matching but the interocular separation

is needed for absolute depth measurements. This

would imply that calibration for our moving head

would be made simpler if the cameras were to rotate

about their optical centre.

3 Results

The Trivedi algorithm was first tested on simu-

lated data. The head was simulated assuming that

when fixating on objects it always adopted symetric

vergence so that the transformation between cameras

would be a function of the verge angle. The parame-

ters used to monitor the resulting calibration accuracy

of the method were the error on the obtained ver-

gence angle and the sum of the squared minimum

shifts required to make the simulated data consistent

with the estimated transformation. The first of these

gives a direct estimate of the limiting accuracy of

depth measurement [Figure 2].
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Figure 2. Percentage depth error on absolute depth

measurement for specific verge angle accuracies. For

relative depth errors simply multiply by two.

Verge error can be estimated using the covariance

matrix and improves as the results from several fits

are combined. For a uniform distribution of n data

points this was found to vary as approximately

(n-5)"1/2. The second parameter is directly related to

the accuracy of the epipolar geometry which was gen-

erally found to less than 0.1 pixels
1
 for n>20. The
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Trivedi algorithm was found to deliver an unbiased

estimate of the true transformation when the correct

intrinsic camera parameters were supplied (see

below). When calibrations were combined (as above)

the resulting accuracy was consistent with that which

would have been determined using the whole data set.

The correct calibration was also recovered fol-

lowing a shift in the simulated camera system [Figure

3] (corresponding to a knock on the real system).

Recovery to a useable estimate was found to be an

exponential function of the number of data points, as

expected. The variation of transformation parameters

e with camera vergence angle was found to be

sufficiently linear to allow calibration over a 15

degree range using the method outlined above. The

results indicate that only twice the number of

correspondences required in the fixed camera method

would be needed to obtain the same accuracy on

reconstructed geometrical data.
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Figure 3. Variation of the optimal estimate of verge

angle with time. 20 new data points were combined

at each time step while the covariance matrix for the

estimate was limited to a size which specified an error

of 0.05 degress (generally requiring '400 data

points). The figure shows how the estimate recovers

after a shift in the camera system.

The performance of the algorithm was also

investigated in the case where incorrect aspect ratios

and image centres were provided. Errors on these

parameters appear to provide the real limit on the

accuracy of obtained stereo data, errors in the image

centres of only 10 pixels can produce systematic

depth errors of as much as 5%. The effects of these

errors are compounded when using the Tsai calibra-

tion algorithm with incorrect intrinsic parameters to

determine the camera focal-lengths and interocular

separation.

The algorithms were used to calibrate the cam-

era geometry with several real scenes, using focal

lengths and interocular separation obtained from the

Tsai algorithm and comer matched correspondences.

The estimate of the vergence measurement accuracy

calculated from the covariance matrix can be seen in

Table 1. The value of %
2 was entirely dominated by

the expected error in the y direction (by two orders of

magnitude) corresponding to a reproduceability in

position of 0.3 pixels. Points which were not con-

sistent with the obtained camera geometry were

excluded iteratively until the %
2
 was observed to be

consistent with the corner location accuracy.

image

boxes

castings

house

tapes

widgets

no. points

104

78

62

48

21

estimated error

verge angle

overall arror

verge angle

15.21

14.21

15.00

15.45

13.54

0.21

0.31

0.21

0.57

0.63

15.21

15.05

14.96

15.23

14.82

0.21

0.16

0.12

0.10

0.09

Table 1. Results from real scenes showing the improv-

ing calibration accuracy with increasing numbers of

data points.

The overall accuracy of the rotation parameters

was found to be in agreement with [4]. The new

algorithm was found to be better than Tsai at deter-

mining the epipolar geometry on the same set of data

points. There was agreement between both methods

within the simulated errors for each process given the

uncertainties on the intrinsic parameters.

4 Conclusion

It has been shown that a subset of robustly

matched corner correspondences can be obtained from

real images suitable for calibration purposes. A gen-

eral purpose calibration algorithm has been demon-

strated which enables optimal combination of calibra-

tion over a sequence of images. The method can be

used to calibrate either fixed or moving head

configurations (with symetric vergence). We believe

that the method should be extendable to asymetric

vergence configurations by interpolating on a plane

defined between three calibration points.

Appendix 1

To obtain the minimum shift 5x; needed to

make the observed data consistent with a constraint F,
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we can use the method of Lagrange. Here we minim-

ise the expression;

E =

.;(/<, + vt.axi +

This can be done analytically as follows;

dE/dSxi = 2Sx[S-
1
 + XiVF = 0

giving

&x, = -\jSVF
T
/2

thus expanding the constraint equation about the point

2F; F
7
 = 0

giving

V2 = r + VFSV'F
T

and hence Sx, and similarly for 5x',.

Appendix 2

The quaternion representation for the rotation of

a coordinate frame can be written as follows

q = (eo,eue2,e3)

where

e0 = cos(8/2) <?t = r0sin(9/2)

and

e2 = r1sm(9/2) e3 = r2sin(9/2)

where r is a vector denning the axis of rotation and 9

is the angle of rotation about that axis. The rotation

matrix is then reparameterised as

R =

2(ele3+eoe2) l^e^-

2(e2e3+eQel)

el-e\-e\+e\

Appendix 3

The elements of the inverse covariance matrix

are defined by

which can be constructed in our case from individual

contributions from each data point i.

where <f is the estimated corner location accuracy

and

the first derivative is given by

dEi/deH =
Ffd<jf/den

At the minimum the second term is found to be three

orders of magnitude smaller than the first, allowing

the second derivatives to be approximated to around

the same accuracy using;

2dFJdendFJdem
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