
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:3111–3134

https://doi.org/10.1007/s40747-021-00449-z

ORIGINAL ARTICLE

Optimal components selection based on fuzzy-intra coupling density
for component-based software systems under build-or-buy scheme

Samira Kalantari1 · Homayun Motameni1 · Ebrahim Akbari1 · Mohsen Rabbani2

Received: 12 November 2020 / Accepted: 6 May 2021 / Published online: 28 August 2021

© The Author(s) 2021

Abstract

Component-Based Software Engineering (CBSE) is an approach to building and developing software systems based on

software components. In component-based software systems, there are various software components, including Commercial

off the Shelf (COTS) and in-house components. Software developers can build their desired software component as in-house

or COTS. The problem of deciding optimally between COTS and in-house components is one of the major challenges of

software developers, which is known as the component selection problem. This can be resolved by evaluating the criteria

for optimality in component selection and then solving the component selection problem by optimization techniques. In

this paper, an attempt was made to optimize the component selection problem through the multi-objective optimization by

maximizing the Fuzzy-Intra Coupling Density (Fuzzy-ICD) and functionality as objective functions, and also taking into

account budget, delivery time, reliability, and Fuzzy-ICD as constraints of multi-objective problems. Fuzzy ICD is a more

accurate criterion to calculate the relationship between Cohesion and Coupling of components, which is obtained through

the fuzzy computing of each of them, based on the Meyers classification. Thus, after a two-criterion optimization model

formulation, this optimization problem was solved by fuzzy multi objectives approach. Finally, the proposed method was

evaluated by performing the case study of financial-accounting system. Comparison of the results showed that the proposed

method could select optimal components with maximum functionality and Fuzzy-ICD and fewer rates of time and Budget

(0.29, 0.43, 1.1 s, and 88$ were the improved rates of functionality, Fuzzy-ICD, time, and budget, respectively).

Keywords Multi-objective optimization · Fuzzy intra coupling density · Component-based System · Build and buy ·

Coupling · Cohesion

Introduction

With the progressive development of software in recent

years, software development has become more complex; to

overcome this complexity, a lot of cost and time is needed.

An acceptable and reasonable solution is reusability of soft-

ware systems. Component-Based Software Engineering

(CBSE) is an approach to building and development of soft-

ware systems based on existing software components [1–3].

These software systems, which have the maximum use of

reusable materials, are called Component-Based Software

Systems (CBSS) [2]. CBSSs cause the efficiency of software

development in terms of demanding lower cost, reducing

the time to market, improving maintainability, increasing

reliability, and improving other quality parameters [2, 3].

With the development of CBSE, various software com-

ponents have been presented by many software developer

organizations. These components are called Commercial off

the shelf (COTS). The components of COTS help software

developers to select a software component from among a

set of alternative software components available in the mar-

ket [4–6]. Thus, software developers can either build their

desired software components as in-house or buy them as

COTS (i.e., the build-or-buy strategy) [2].

These two different strategies have advantages and disad-

vantages that software developers should be aware of. Com-

ponents of COTS are often built by independent teams of

developers in different languages, and applicable to different

platforms with less complexity; then, they are available as

 * Homayun Motameni
 motameni@iausari.ac.ir

1 Department of Computer Engineering, Sari Branch, Islamic
Azad University, Sari, Iran

2 Department of Applied Mathematics, Sari Branch, Islamic
Azad University, Sari, Iran

http://orcid.org/0000-0003-1309-6569
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00449-z&domain=pdf

3112 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

standard components in the market. The advantages of this

type of components are the existence of different versions

of a COTS product, design diversity, diversity of data, and

the diversity of executive environment which are available

in the market by different manufacturers. On the other hand,

these products have some disadvantages, including issues

with security, consistency, integrity and interoperability,

procurement and licensing, etc. However, the customiza-

tion of the components of in-house development makes it

compatible with the system, reliability, and support. Unlike

the components of COTS, components of in-house prolong

the time of supplying the software product to the market [2].

Thus, always there is a discussion on whether to build-or-

buy software components.

To overcome this problem, software researchers evaluate

in-house and COTS software components based on some

criteria to finally decide what components they should

build and what components they should buy. These criteria

include [7]:

• Financial perspective (COTS cost, maintenance cost,

upgrading cost, etc.)

• Technical perspective (reliability, safety, performance,

requirements, quality, etc.)

• Business perspective (COTS vendor recognition, COTS

vendor properties, Historical records, etc.)

• Legal perspective (type of contract, license agreement,

escrow, etc.).

Thus, the problem of selecting the optimal component has

been recognized as an optimization problem.

In addition to the above mentioned criteria, it should be

noted that the efficiency of the component-based software

system significantly depends on the system architecture;

coupling and cohesion have a major role in reducing the

complexity associated with the design and determining the

quality of a software system in terms of reliability, maintain-

ability, and accessibility [2, 8]. Cohesion as an intra modules

property refers to the amount of communication that the

components within a module have with each other (operating

power of a module). On the other hand, coupling as an inter-

modules property refers to the amount of the communica-

tion of a module with other modules (dependency between

two or more modules) [9, 10]. Thus, for an optimal soft-

ware component selection, the interactions of components

within the modules (cohesion) need to be maximum, while

the interactions between the modules (coupling) need to be

minimum. Software designs with high cohesion and low

coupling will create independent modules that offer some

advantages, including easier development, reduced complex-

ity, facilitated maintenance and modifications, reduced error

rate, increased reusability, parallel development, and simple

implementation [10, 11]. Intra Coupling Density (ICD) is a

measure used to describe the relationship between coupling

and cohesion of modules [2, 12, 13].

Various optimization problems have been applied by dif-

ferent researchers to the selection of the optimum compo-

nent in a component-based software system based on the

build-or-buy strategy, which will be discussed in the next

section.

In this paper, the multi-objective optimization problem

is addressed to carry out the optimal component selection

through the build-or-buy strategy for CBSS. Fuzzy ICD and

functionality are considered as two-objective functions in

this problem. A multi-objective optimization problem was

formulated in this study by maximizing the Fuzzy-Intra

Coupling Density (Fuzzy-ICD) and functionality, and also

taking into account budget, delivery time, reliability, and

Fuzzy-ICD as constraints of multi objectives problems.

Fuzzy ICD is a more accurate criterion for calculating the

relationship between cohesion and coupling of components

(which is obtained through the fuzzy computing of each

of them based on the Mayers classification). Since, fuzzy

approach used as an effective tool for quickly obtaining a

good compromised solution in these scenario [8], after the

two-objective optimization model is formulated for optimum

software component selection to build or buy in CBSS, the

formulated optimization problem will be solved by fuzzy

multi-objective approach.

In the following, the main contributions of this paper are

summarized:

1. Considering the application of the fuzzy measurement

of coupling and cohesion to the problem of component

selection: the efficiency of component-based software

system depends greatly on the system architecture;

coupling and cohesion have a major role in software

nonfunctional requirements and reducing software com-

plexity. Therefore, it is necessary to calculate them accu-

rately.

2. Applying Fuzzy-ICD to one of the objective functions

in multi-objective component selection optimization:

accurate calculation of ICD as a criterion for calculat-

ing the relationship between coherence and connection

of parts in the software plays a major role in developing

a qualitative evaluation criterion in software.

3. Formulation of multi-objective optimization appli-

cable to optimal software component selection: the

multi-objective optimization problem is formulated by

maximizing the Fuzzy-ICD and functionality and also

taking into account the factors such as budget, deliv-

ery time, reliability, and Fuzzy-ICD as constraints. The

formulated bi-objective optimization model for optimal

software components selection in the build-or-buy strat-

egy in CBSS will be solved by a fuzzy multi-objective

approach.

3113Complex & Intelligent Systems (2021) 7:3111–3134

1 3

4. Evaluating the proposed formulation of multi-objective

component selection optimization by applying it to case

study of financial-accounting system used by authors in

[2].

The rest of the paper is organized as follows: in “Related

Work”, first, the existing literature regarding the software

component selection in CBSS is reviewed, and then existing

measurement methods of coupling and cohesion are inves-

tigated. In “Fuzzy Method for Calculation of Coupling and

Cohesion”, the proposed method of fuzzy computing of

cohesion and coupling is described. Then, the “Selecting

the Optimal Software Components with Multi-objective

Optimization Approach” reports the process of optimal

choice of components in the form of a series of hypotheses

and problem formulation and discusses the optimization

problem solution. Next, the case study used in this article

is introduced in “Case Study”. In section “The Result”, the

proposed method is evaluated, and finally, in seventh section,

the conclusion of the article is stated.

Related work

In section “Selection methods optimized software compo-

nents”, the other studies related to the optimal choice of

software components are reviewed; then, in “Calculation

Methods of Coupling and Cohesion”, the studies conducted

in relation to measurement are discussed.

Optimization methods of software components
selection

In a general classification, the methods of selecting the

optimal components in component-based software sys-

tems include the methods based on the Weighted scoring

method, the methods based on Analytical Hierarchical Pro-

cess (AHP), the methods based on artificial intelligence, and

the methods based on optimization [14, 15].

Figure 1 represents a classification of component selec-

tion methods proposed in literature by researchers working

in this field.

In these methods, the representations related to the avail-

able characteristics for the optimal selection of components

are presented in the form of feature vector, XML Scheme,

Requirement document templates, and Graph format.

Weighted scoring method

The Weighted scoring method (WSM) is one of the old-

est methods in the selection of components and software

packages. In cases where the issue of Multi-Criteria Deci-

sion Making (MCDM) exists for n number of candidate

components and m criteria, manual weighting method will

be applied [14]. The method proposed by Collier et al. in

[16] uses weighting method to select the optimal software

components.

This method, although, is simple and implementable, but

if the customer needs change at the last minute, the score for

each component changes according to the evaluation criteria,

and it should be updated before the final calculation. As the

process of weighting is manual, it is considered duplication

and process is complicated [17].

Analytical hierarchical process

The Analytical hierarchical process (AHP) is a technique

applicable to selection-related problems with several cri-

teria. A lot of studies have been carried out by software

developers to choose the optimal components based on AHP

[4, 7, 18, 19]. Mitta et al. [19] considered reusability as an

important criterion in selecting the components. They used

the technique of AHP and ranked the criteria for reusability

to select and evaluate the components of COTS. In another

study, Garg et al. [4] applied the ranking based on fuzzy

distance to the AHP technique to select COTS components

on the Database Management System (DBMS). Despite the

widespread application of AHP to both quantitative and

Fig. 1 Classification of component selection methods

3114 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

qualitative parameters, its disadvantages are its lack of flex-

ibility to changes of optimization criteria, uncertain ranking,

and the lack of time optimization that is due to pairwise

comparisons in the AHP method [14].

Artificial intelligence-based methods

The methods such as neural network, Decision Tree, fuzzy

classifier, deductive method, and collective intelligence are

a number of methods working based on artificial intelli-

gence. In this category, a technique for training AI classifiers

described to assist in the selection of software components

for development projects. Researchers believe that when

using AI, we are able to represent dependencies between

attributes, overcoming some of the limitations of existing

aggregation-based approaches to CS [1]. Maxville et al.

[20] used neural networks and Decision Tree for optimal

selection of components. They prepared the ideal profile

data of the needed components in both training and testing

categories and in the form of XML. In the neural network,

they used the back propagation algorithm in the weka. The

Decision Tree creates a tree by a combination of data collec-

tion and their classification. After that, the data group was

pruned to create a control decision tree. In their research,

they concluded that the Decision Tree (C4.5) provided better

results than the neural network.

In addition, Jadhav et al. [21] offered a deductive method

based on a combination of Rule Base Reasoning (RBR) and

Case Base Reasoning (CBR). The RBR and CBR methods

are two fundamental techniques of Knowledge Base System

(KBS). In RBR, the ideal needs of the user are collected in

the form of feature value, and to assess the decision-making

criteria, simple if–then-else rules are used. In CBR, the ideal

needs of the user are compared in the form of candidate soft-

ware packages. The candidate packets are saved as "cases"

in the case-based system. The collection of system results in

the selection of replacement components is ranked based on

similarity. This similarity identifies the software component

that responds to the system ideal needs. Hybrid Knowledge

Base System (HKBS), compared to the AHP and WSM

methods, is more efficient because it offers the computa-

tional efficiency, ease of problem-solving, knowledge reuse,

compatibility, and evaluation of the results.

The fuzzy method is used by decision makers to evalu-

ate alternative components easily and directly using lan-

guage requirements [22]. The authors in [23] used the fuzzy

method to avoid ambiguity that human decision-making

processes may suffer from when using AHP and WSM.

In [24], an algorithm was proposed based on the collec-

tive intelligence of ants and the left footprint of pheromone

to select optimal software components. To choose the opti-

mal software components, they considered both positive and

negative feedbacks in the characteristic evaluation of the

components. In their model, the positive feedback increases

the amount of pheromone, whereas the negative feedback

evaporates the pheromone. Finally, after enough repetition,

the component with the highest pheromone is selected as the

optimal component.

Optimization-based methods

The structure of the CS (Component selection) problem is

more similar to the multi-part problem due to the involve-

ment of different (and sometimes contradictory) criteria.

Optimization-based methods have shown higher efficiency

in solving these problems. The CS problem is transformed

to an optimization problem that essentially looks for maxi-

mum/minimum values in one or more fitness functions.

Optimization-based methods can be include single and

multi-objective optimization, mathematical optimization

and evolutionary algorithm.

Generally, optimization-based methods are divided

into two categories: single-objective optimization and

Fig. 2 The used representation in component selection researches

Table 1 Statistical results for main criteria in related research

NP Number of papers, NC Number of criteria, MPP Mean percent for
papers, MPC Mean percent for criteria

Criteria NP NC MPP MPC

Cost 23 1 17.70 17.70

Reliability 12 1 9.23 9.23

Number of components 9 1 6.92 6.92

Delivery time 6 1 4.60 4.60

Functionality 6 1 4.60 4.60

Number of modules in the software 5 1 3.85 3.85

Number of provided interfaces 5 1 3.85 3.85

Number of alternative COTS available 5 1 3.85 3.85

Coupling 3 1 2.30 2.30

Other 56 32 43.10 1.34

Total 130 41 100 –

3115Complex & Intelligent Systems (2021) 7:3111–3134

1 3

multi-objective optimization methods. In the former, an

objective function with some constraints is formulated to

choose the optimal components. This function can be one of

the parameters of cost, reliability, delivery time, quality, etc.

Optimization problem is finding the answer or answers from

among a set of possible options (with respect the constraints

of the problem) with the aim of optimizing the criterion or

criteria of the problem. The multi-objective optimization

problem is a branch of MCDM problem. On the other hand,

the multi-objective optimization problem is originated from

real-world situations where a decision maker faces a set of

objectives with multiple contradictory criteria. In these types

of problems, unlike the single-objective optimization, differ-

ent solutions can be taken into consideration [2].

In one of the first studies related to the optimal choice of

components with the use of single-objective function, Ber-

man et al. [25] formulated the optimization problem. Their

objective function was maximizing the reliability. And

the constraint of their optimization was cost criterion that

needed to be limited to a certain threshold value.

Cortellessa et al. [26] used the cost minimization as an

objective function with reliability and delivery time con-

straints in the optimal choice of components in the build-

or-buy frameworks in software architecture.

Kwong et al. [13] considered the maximum of relation-

ships within the modules and minimum of relationships

between modules as parameter ICD and used functionality as

the objective function of the problem. Since multi-objective

optimization is complex and difficult to solve, they adopted

the weighting method for each of the objective functions (as

expressed in Eq. (1)) to be able to convert multi-objective

problem to single-objective problem and to solve it simply.

Thus, with separate solution of the objective functions of

functionality and ICD in minimizing and maximizing states,

the values Fmin, Fmax, Emin, and Emax are calculated respec-

tively. According to the obtained values and weighting of

functionality and ICD, the objective function of the optimi-

zation problem is defined as below:

Since the optimization is an NP-Complete problem [13],

the authors in [13] used genetic algorithm to select the opti-

mal components.

Gupta et al. [27] used the multi-objective optimiza-

tion with the aim of increasing the quality, reducing the

cost, increasing the reliability, and reducing the size and

the time of delivery, and they discussed the constraints of

time and consistency in the formulation of their proposed

system. Then, they used the fuzzy approach to solve the

multi-objective optimization problem, continued according

to the principle of maximizing of Bellman-zadeh [28], and

(1)max wf

F − F
min

F
max

− F
min

+ wl

E − E
min

E
max

− E
min

formulated the problem using the fuzzy membership func-

tions suggested for solving the problem of multi-objective

optimization.

Jung et al. [29] used two model of formulation in the opti-

mal choice of components. In the first one, they built their

issue with the objective function of quality and budget con-

straint. In the optimization process, they used the weighted

value for the objective function of quality. They formulated

the second model like the first one with only one differ-

ence: they added the compatibility between the components

in their optimal choice to the constraints of the problem. In

a similar study, Shen et al. [30] selected the optimal com-

ponents by the objective function of quality weighted on

budget constraint with the difference that they analyzed the

budget constraint with the use of the fuzzy system.

According to Indumati et al. [8], a component-based

software system uses a top-down approach. Based on this

approach, at the first step, the operational needs are iden-

tified, then at the second step, the number and nature of

software modules are determined. Finally, at the third step,

the selection of the optimal components for each module is

formulated. They considered the maximization of the ICD

and reliability as the objective function, and the threshold

on the ICD, reliability, cost, and time as the constraints. The

authors mentioned above, despite their similar peer articles,

solved the optimization problem as a nonlinear optimization

problem.

Likewise, in [31], the authors examined the optimal

choice of components, in a fault-tolerance modular software

system. They considered simultaneously the maximization

of the system reliability and minimization of the cost as an

objective function. They used this method only to choose

between the components of COTS. In another experiment,

Table 2 The structure of the
first matrix to calculate coupling
by the method proposed in [42]

Compo-
nent/Ele-
ment

E1 E2 … En

C1 d11 d12 d1n

C2 d21 d22 d2n

…

Cm dm1 dm2 dmn

Table 3 The structure of the second matrix to calculate coupling by
the method proposed in [42]

Component C1 C2 … Cn

C1 C11 C12 C1m

C2 C21 C22 C2m

…

Cm Cm1 Cm2 Cmm

3116 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

they considered the cost as the objective function, and relia-

bility as the constraint. Finally, they concluded that by using

multi-objective function with the aim of minimizing the cost

and maximizing the reliability, and by using the technique

of goal programming, favorable optimization results can be

achieved.

Jha et al. [32] used the parameters of ICD, functional-

ity, budget, and quality as the objective function to choose

the optimal component in a component-based software sys-

tem. Thus, they considered the objective functions of ICD,

quality, and functionality as maximization and the objec-

tive function of budget as minimization in solving the opti-

mization problem. Then, they used fuzzy multi-objective

approach to solve their optimization problem. In another

study [2], the optimal choice of components in modular soft-

ware system with fuzzy two-criterion optimization model

and under the build-or-buy scheme was formulated. This

model of optimization attempts to increase the objective

functions of ICD and functionality and, at the same time,

takes into account the constraints of budget, reliability, and

delivery time.

Also according to [50, 51], multi-objective evolutionary

algorithms (MOEA) are artificial intelligence optimiza-

tion problems that decompose multi-objective optimization

problems into a set of simple optimization sub-problems

and solve them in a common manner. This method plays a

key role in tradeoffs between diversity and convergence in

MOEA.

Statistical analysis result of related work

Although much research has been done on WSM, AHP, AI,

and optimization-based methods, literature consists of some

other methods such as semantic-based methods and cluster-

based methods that are presented in the selection of com-

ponents problem. The Ontology-based method proposed by

Yesad and Boufaida in [33] is an example of methods based

on different semantic and theories. Furthermore, in [34],

Vescan et al. used fuzzy clustering algorithms.

Research shows that the use of the feature vector has been

a popular approach among the researchers working in this

field. The increase in the use of the feature vector is due

to the greater use of feature vectors in Objective Optimi-

zation-based methods. However, it can be said that multi-

objective optimization is still the best option for solving the

optimal selection of components. As a result, the current

paper focuses on multi-objective optimization. As can be

observed in Fig. 2, the representation based on the feature

vector with 69.7% has been the most used item among the

papers reviewed by the authors in [1].

It is important to know what feature(s) of a component is

the most important feature in optimizing components selec-

tion. To achieve this goal, researchers used Hundred Doller

(100$) test in [35, 36]. First, they selected the most impor-

tant features from a list. Then they chose their priority using

the 100$ test. The results showed that cost was the most

important feature for component selection.

By analyzing the results of approximately 40 criteria

that could be examined in CS in [1], the statistical results

of Table 1 were obtained. In these statistical results, nine

types of the most popular practical criteria in CS have been

evaluated.

As can be seen in Table 1, from the 130 papers reviewed

with 41 evaluation criteria in the field of Component selec-

tion (CS), the cost criterion with 17.70% is the most popular

criterion in the optimal selection of components.

Table 4 Parameters used in the coupling formula

Aji Bji

Content coupling (j,i) Method and variable from i that j has access to them Methods and variables that j has access to them, methods j,
variables j

Common coupling (j,i) Common methods and variables from i that j has access
to them

Common methods and variable that j has access to them,
methods j, variables j

Control coupling (j,i) The number of control variable in i that j can change them The number of control variable that j can change them

Stamp coupling (j,i) i’s methods and variables (data) that are send to j i’s methods and variables (data) that sent to j, methods j,
variables j

Data coupling (j,i) i’s methods and variables (data) that are send to j and j
needs them

Methods and variables that j needs them, methods j, vari-
ables j

Table 5 Coupling is computed in the system through data fuzzifica-
tion

Parameters Type Data Linguistic variables

Content Input [0 1] Low, medium, high

Common Input [0 1] Low, medium, high

Control Input [0 1] Low, medium, high

Stamp Input [0 1] Low, medium, high

Data Input [0 1] Low, medium, high

Total Output [0 1] v-low, medium low,
high, v-high

3117Complex & Intelligent Systems (2021) 7:3111–3134

1 3

It should be noted that there is not always a consensus

among researchers and large and small organizations on the

optimal selection of these components.

It will be interesting to know that there is a disagreement

among large and small organizations in criterion of cost. In

this sense, large organizations with higher and more com-

plete products often give priority to cost [1].

Calculation methods of coupling and cohesion

CBO, RFC, CF, OCM, CCM and DAC are Metrics for

Object-Oriented Design (MOOD) coupling's metrics sum-

marized by the authors in [37, 38, 49]. CBO (Coupling

between Object Classes) shows how many classes cou-

ple together and identifies the amount of coupling. RFC

(Response for Class) as a response set includes all methods

in a class and other calling classes from the same class

(we will consider the concept of coupling when a class

is available in another class; at least some parts of this

class are called by another one). CF (Coupling factor) can

be calculated by Eq. (2) and it indicates the number of

coupled class pairs divided by the total number of class

pairs. Finally, DAC (Data abstraction coupling) equals the

number of class features (methods and variables) that other

classes use as their data.

LCOM, LCOM3, RLCOM, MC, LMCC, LCC and

TCC are metrics that calculate cohesion [37–39, 47, 48].

LCOM (Lack of cohesion in methods) indicates the num-

ber of non-similar method pairs in a class (similarity of

the methods means that all methods in a class have one or

(2)CF =

number of coupled class pairs

total number of class pairs

more similar and common features). LCOM3 is the num-

ber of component connections in a graph, which use graph

model; the vertex is the method and the edge is the link

between methods. According to Eqs. (3) and (4), RLCOM

and TCC (Tight class cohesion) are the number of non-

similar method pairs and the number of similar method

pairs, respectively, on the total number of method pairs

in the class.

In [40], Felton and Melton presented a metric that uses

the Myers classification (Eq. 5) to measure coupling;

where N is the number of connection of x and y, and i

denotes the level of the Myers model (i = 5, 4, 3, 2, 1, or 0

respectively represents content, common, control, stamp,

data coupling, and no coupling).

Gui [41] proposed a metric in which the equation of

group D is used (Eq. 6) to measure coupling.

In this equation, M is the method, V signifies the vari-

ables, MVj is the set of methods and variables called by Cj

class, and MVij denotes the set of methods and variables in Ci

class and will be called by Cj class (MVj = UMVij). Since the

denominator is equivalent to ||MV
i
|
| +

|
|Vi

|
| +

|
|Mi

|
| , the amount

of coupling is calculated in range of 0 ≤ CoupD (i, j) ≤ 1 .

In other words, this standardization caused Group D to be

independent of class size. We also used Eq. (7) to measure

coupling indirectly as follows:

When a transitive relation is established between mod-

ules, indirect coupling occurs in the cases where several

couplings are in indirect paths. According to Eq. (7), a path

with the most coupling is used to calculate coupling (Eq. 8).

(3)RLCOM =

number of non-similar method pairs

total number of method pairs in the class

(4)TCC =

number of similar method pairs

total number of method pairs in the class

(5)C(x, y) = i + n∕(n + 1)

(6)CoupD =

|
|
|
MVij

|
|
|

|
|MVi

|
| +

|
|Vi

|
| +

|
|Mi

|
|

(7)

CoupT (i, j, p) =
∏

es,t∈p
CoupD (s, t)

=
∏

es,t∈p

|
|
|
MVij

|
|
|

||MVi
|| + ||Vi

|| + ||Mi
||

(8)Coup (i, j) = CoupT (i, j, pmax(i, j))

Fig. 3 Membership function of input parameters

Fig. 4 Total coupling output membership function

3118 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Thus, to calculate coupling in a system (Total coupling),

Eqs. (9) and (10) were used as follow:

where m is the number of classes in the system.

Gui in [41] also proposed a method to measure Cohesion

(Jaccard measure in Eq. (11)) in which Vi ∩ Vj is a similar

variable in i and j methods.

Therefore, Gui presented Eqs. (12) and (13) to calculate

cohesion indirectly as follow:

Considering m and n, i.e., the number of methods and the

number of classes, respectively, Eqs. (14) and (15) show

cohesion directly and indirectly in the class, respectively,

and Eqs. (16) and (17) show cohesion in the system directly

and indirectly, respectively.

(9)WTcoup =

∑m

i,j=1
Coup (i, j)

m2 − m

(10)WTcoup =

∑m

i,j=1
CoupD (i, j)

m2 − m

(11)simD(i, j) =
|
|
|
|
|

Vi ∩ Vj

Vi ∪ Vj

|
|
|
|
|

(12)

simT(i, j, p) =
∏

es,t∈p
simD(s, t)

=
∏

es,t∈p

|||
||

Vi ∩ Vj

Vi ∪ Vj

|
|
|
|
|

(13)simT(i, j) = simT(i, j, p
max

(i, j))

In [42], a method is proposed, which calculates two

matrixes to determine the amount of coupling. The first matrix

uses data of elements of each component and does not consider

connections among them (Table 2).

Then, the second matrix uses the first matrix and is deter-

mined by the amount of coupling between software compo-

nents, which is calculated using Eq. (18) (Table 3).

where �
k
 and a

i
 are determined by:

(14)classCohT =

∑m

i,j=1
sim(i, j)

m2 − m

(15)classCohD =

∑m

i,j=1
simD(i, j)

m2 − m

(16)WTCoh =

∑n

j=2
classCohTj

n

(17)WICoh =

∑n

j=2
classCohDj

n

(18)Cij =
(

∑n

k=1
dik × djk × �k

)

∕ai

ai =

n
∑

j=1

dij and �k =

m
∑

j=1

djk

Table 6 Cohesion parameters

Type of cohesion Ai Bi

Logical cohesion Variables from i,j that have the same function Total number of variable i

Temporal cohesion Variables from i,j that have the same function
and perform simultaneously

The number of variable i that have the same function with j

Procedural cohesion Variables from i,j that connect with a control
variable

The numbers of i and j that are connected together

Communicational cohesion Variables from i that are connected with j
through a control variable and work on the
same data set

Variables from i that are connected with j through a control
variable

Sequential cohesion Variables from i that are connected with j
through a control variable and work on the
same data set and are connected together by a
regular control flow

Variables from i that are connected with j through a control
variable and work on the same data set

Functional cohesion Variables from i that are connected with j
through a control variable and work on the
same data set and are connected together by a
regular control flow and do the same work

Variables from i that are connected with j through a control
variable and work on the same data set and are connect
together by a regular control flow

3119Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Fuzzy method for calculation of coupling
and cohesion

Determining the amount of coupling

Coupling is computed based on communication between

modules. As low coupling is required to design software

with high quality and to reduce complexity, establishing

this communication as a more accurate measurement is

necessary.

Several couplings exist in the software system. If we con-

sider and compute every coupling, coupling can be com-

puted more accurately, and this means that more details are

studied. In this paper, to compute coupling, the Myers clas-

sification is used. In this classification, coupling includes:

Content, Common, Control, Stamp, and Data. In the follow-

ing, all of them will be defined briefly [37, 39, 43].

• Content coupling: it occurs when modules can correct

and change internal data directly. A module refers to

another module and can be accessed without restriction.

• Common coupling: couplings communicate each other

through data sharing. Modules have access only to

common data or common blocks (global data can be

addressed and accessed).

• Control coupling: in this method, a module sends a con-

trol variable to another module and in this way, they can

communicate with each other. It is done by setting a con-

trol flag (or control variable) (a module sends a request

to another module through the control flag).

• Stamp coupling: a variable type of record as a parameter

is sent by the first module, and the second module uses

only a subset of that record. A module sends data more

than the other module's need and only some parts of that

data will be used.

• Data coupling: a module sends data to another one con-

sidering its needs. All data must be homogeneous.

The methods of computing coupling in [41] are gen-

eral and without considering the type of coupling they are

used. The proposed method for computing coupling in this

paper computes any type of coupling through changing the

parameters in Eq. (19):

As Eq. (8) is in the range of 0–1, the proposed equation

is also standard and is in the range of 0–1 (Table 4).

By classifying input and output parameters, total cou-

pling is obtained by fuzzy structure (Table 5).

The fuzzy inference system used in the current study is

fuzzy Mamdani. It is a simple rule-based method that can

(19)coupling =

∑m

i,j=1
coup(i, j)

m2 − m
=

∑m

i,j=1

Aij

Bi

m2 − m

be computed through If….Then…. and without complex

computing.

Input data was inserted into the fuzzy system and it pro-

duced considered output through fuzzy inference (Mam-

dani inference). The inference is of a set of rules that is

embedded in the fuzzy system. Figures 3 and 4 show the

graphs of the membership function of inputs and outputs

in this computing system, respectively.

Determining the cohesion

Since cohesion is defined based on internal communica-

tion between modules, it can be computed in many ways.

According to coupling classification, the Myers method pre-

sents a different classification for cohesion. To offer a more

accurate method this classification is used.

Myers classified cohesion into six types: Logical, Tem-

poral, Procedural, Communicational, Sequential and Func-

tional [37, 43], which are defined briefly as follow:

• Logical cohesion: elements that have the same operation

are considered as the same method.

• Temporal cohesion: elements that have the same opera-

tion are placed in a method and they operate simultane-

ously.

• Procedural cohesion: elements from a method are con-

nected together through some control flows.

• Communicational cohesion: it covers the elements that

have procedural cohesion and work on the same data set.

• Sequential cohesion: the elements of a method that have

communicational cohesion and are connected together

by regular control flow have sequential cohesion.

• Functional cohesion: the elements of a method that have

a sequential cohesion and also have the same work or the

same goal are said to have functional cohesion.

In methods previously presented in literature, the types

of cohesion have been ignored and cohesion has been com-

puted in a system generally. Therefore, this study attempts

to expand formula 14 and 16 presented in [41] and consider

all types of cohesion on final cohesion according to formula

20 and 21 (similar to coupling computation) according to

Table 6.

where m is the method in the class, and n is the number of

classes in the system.

(20)classcoh =

∑m

i,j=1
sim(i, j)

m2 − m
=

∑m

i,j=1

Aij

Bi

m2 − m

(21)cohesion =

∑n

j=1
classcoh j

n

3120 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

By classifying input and output parameters, the total

cohesion is obtained using the fuzzy structure (Table 7).

In fuzzy computing of coupling, to compute cohesion, the

Mamdani is used. The data identified in Table 4 are placed

in the fuzzy system and the outputs are specified through the

Mamdani inference. In Figs. 1 and 2, the graphs of member-

ship function for cohesion inputs and an output are presented

based on the coupling method.

Selecting the optimal software components
with multi‑objective optimization approach

In this section, after presenting the notations in Table 8,

the assumptions considered for the optimization problem

of components selection are addressed. Then, based on the

assumptions, the optimization problem is formulated. In the

formulation process, the proposed method of fuzzy comput-

ing of Cohesion and Coupling in the ICD equation is used.

Then, the formulated problem is solved with the help of

fuzzy multi-objective approach.

Table 8 summarizes the notations that are used in the rest

of this article.

The assumptions of the optimization problem

In this study, a number of assumptions for component-based

software system have been considered some of which are

according to the assumptions presented in [2]:

• CBSS is developed using the modular approach.

• The number of modules for software system is limited.

• Each module is a logical collection of several developed

independent components. And the number of the com-

ponents is limited.

• It is assumed that at least one component of each module

in COTS or in-house exists to choose.

• The threshold values for ICD, reliability, budget, and

time of delivery are set by decision makers.

• If the component is in-house, its cost is equivalent to the

cost of development. Otherwise, it is equivalent to the

purchase price of a COTS component.

• The cost of an in-house component can be determined by

using the basic parameters of the process.

• Different COTS components are available with differ-

ent costs, reliability levels, degrees of functionality, and

delivery times.

• Different in-house components are available with differ-

ent functionality degrees, costs of unitary development,

estimated development times, average times, and times

to test a component.

• Needless repetition is not allowed for a given instance; it

means that exactly one software instance is supposed to

be chosen for the ith COTS component.

• Interaction data for components is exactly same for all

modules, regardless of the occurred selection. Interaction

associated is set by the software developers.

• The amount of interactions and relationships between

the components in this article, unlike that presented in

[2], has been amended; thus, the amount of interactions

of Cn with Cm and the amount of interactions of Cm with

Cn is not necessarily always equal. For example, in the

inheritance relationship available between Cn and Cm, if

Cn is parent and Cm is child, Cm has complete access to

information of Cn. Thus, it has the highest degree of com-

munication. While Cn as the parent may have no access to

all the information of Cm (i.e., the amount of interactions

lower than the amount of interactions of the child with

father). The improved amount of interactions between the

components is shown in section “Case Study” (Table 11).

Formulation of optimization problem based
on fuzzy computing of ICD

The overview of the proposed method of component selec-

tion with multi-objective optimization is shown in Fig. 5.

The proposed method follows a sequential process as pre-

sented below in the optimal choice of software components:

1. The first objective function—Fuzzy-Intra Coupling Den-

sity (Fuzzy-ICD): the stages of this calculation are as

follow:

▪ Determining the type of coupling in the software system

according to the Mayers Model (Data, Stamp, Control,

Common, and Content);

▪ Computing the type of the Myers Model coupling using

the following relation

Table 7 Cohesion is computed in the software system through data
fuzzification

Parameters Type Data Linguistic variables

Logical Input [0 1] Low, medium, high

Temporal Input [0 1] Low, medium, high

Procedural Input [0 1] Low, medium, high

Communicational Input [0 1] Low, medium, high

Sequential Input [0 1] Low, medium, high

Functional Input [0 1] Low, medium, high

Total cohesion Output [0 1] v-low, low,
medium, high,
v-high

3121Complex & Intelligent Systems (2021) 7:3111–3134

1 3

▪ Computing the total coupling based on the Fuzzy Logic;

▪ Determining the type of cohesion in CBSS based on the

Mayers Model (Logical, Temporal, Procedural, Com-

municational, Sequential, Functional);

coupling =

∑m

i,j=1
coup(i, j)

m2 − m
=

∑m

i,j=1

Aji

Bi

m2 − m

▪ Computing the type of the Myers Model cohesion based

on the following relation:

▪ class_coh =

∑m
i,j=1

sim(i,j)

m2−m
=

∑m
i,j=1

Aij

Bij

m2−m
 and cohesion =

∑n

i=1
class_coh

n

▪ Computing the total Cohesion based on the Fuzzy Logic;

▪ Computing ICD from the total coupling and total cohe-

sion CBSS:

FuzzyICD = cohesion∕(Cohesion + Coupling);

Table 8 A summary of the notations used in this paper

Notation Description

M The number of software modules

N The number of available software components for modules

Vij The number of samples available for the i-th component of the j-th module i = 1,2 , …, N; j = 1, 2, …, M

Sij i-th software component of the j-th software module, scij = scij′ = sc for all j, j′ = 1, 2, …, M s.t

Si i-th component of the software

SCi i-th component of COTS i = 1, 2, …, N;

SBi i-th component of build i = 1, 2, …, N;

mj j-th software module j = 1, 2, …, M;

rii′ The number of interactions between the components of Si and Si' i, i' = 1, 2, …, N; since the coupling and cohesion are Non-direc-
tional rii′ = ri′i

fij The real numbers are in the range of 0–1, which depicts the rate of performance (function) SBi of mj module for component of build
i = 1, 2, …, N; j = 1, 2, …, M;

fijk The real numbers are in the range of 0–1, which depicts the rate of performance (function) k-th component of SCi (i-th component of
COTS) of mj module for Cots component

i = 1, 2, …, N; j = 1, 2, …, M;

H ICDj threshold value for each module, which needs to be set by decision makers

Cij The cost of the i-th component available for the j-th module for component of build

Cijk The cost of the k-th sample of the i-th component available for the j-th module for COTS component

N tot
ij

The total number of tests performed on the i-th component of the j-th module for the production of in-house

Nsuc
ij

The total number of successful tests performed on the i-th component of the j-th module for the production of in-house

�ijk The failure probability of a demand of the k-th sample of the i-th COTS component of the j-th module

�ij The probability that a component of in-house, during a given run, is without failure and the number of Nsuc
ij

 of test run successfully

qij The average of the number of error of the i-th component of the j-th module

�ij The probability that an individual run of a software fails on the selected test of a particular input distribution

�ij Not much chance of failure in the i-th component of the j-th module

Rj Reliability of the j-th module

dijk The delivery time of the k-th sample of the i-th component available for the j-th module of COTS component

tij The development time of the i-th component developed of the j-th module of component of build

�ij The average of execution time required to run a test for the i-th component of the j-th module

B The maximum of limited budget set by decision makers

Ti The maximum of given threshold on the delivery time of the i-th component

xijk If the k-th sample of the i-th component of COTS for mj is selected, it is equal to one, otherwise it is zero;
Binary variable (1, 0)

yij If SBi (the i-th component of build) for mj is selected (the j-th module), it is equal to one, otherwise it is zero;
Binary variable (1, 0)

zij If SBi (the i-th component) for mj is selected (the j-th module), it is equal to one, otherwise it is zero;
Binary variable (1, 0)

3122 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

2. The second objective function—functionality

3. The constraints of optimization problem

▪ Threshold on ICD constraint

▪ Building decision versus buying decision

▪ Budget constraint

▪ Delivery time constraint

▪ The reliability of in-house components

▪ Threshold on the reliability constraint

4. Solving the optimization problem using the fuzzy multi-

objective approach

In the following, each of the above cases is reviewed. For

the symbols that will be used, please refer to the notations

in Table 8.

Fuzzy-Intra Coupling Density (Fuzzy-ICD)

sThe Intra Coupling Density objective function, which has

been provided to measure the relationship between coupling

and cohesion of modules in modular software system, is

calculated using the following equation [2, 12]:

where CIin is the number of interactions of components

within the module (Cohesion), and CIout is the number of

interactions between the components in distinct modules

(Coupling). Thus, by using the parameters of Cohesion

and Coupling in the optimization problem, the impact of

(22)ICD =

CI
in

CI
in
+ CI

out

software architecture on the optimal choice of components

was evaluated.

Based on Eq. (22), the rate of cohesion for interactions

within the jth module can be expressed as ICDj. If each mod-

ule has only one component, the amount of ICD for that

module is zero. For compensating this defect, 1 is added to

the fraction of Eq. (22).

In the above equation, ICDj is Intra Coupling Density for

the j-th module, (CIin)j denotes the number of transactions of

components within the jth module, and (CIout)j is the number

of interactions of components between the jth module and

the other modules.

Cohesion of both COTS and in-house components in the

ith module can be expressed as follows:

The total amount of coupling and cohesion associated

with the j-th module as CAj is calculated as follows:

Additionally, the total amount of coupling and cohesion

of a software system is formulated as follows:

(23)ICDj =
(CIin)j + 1

(CIin)j + (CIout)j

(24)(CIin)j =

N−1
∑

i=1

N
∑

i�=i+1

rii�zijzi�j

(25)

CAj =(CIin)j + (CIout)j

=

N−1
∑

i=1

N
∑

i�=i+1

rii�zij(

M
∑

j�=1

zi�j�)

Fig. 5 The overview of the proposed method of component selection with multi-objective optimization problem

3123Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Thus, the total cohesion of all modules is calculated using

Eq. (27):

It is widely known that weak (low) coupling and strong

(high) cohesion can lead to high maintenance capability of

a software system. Therefore, the value of ICD has a great

impact on maintenance capability of a CBSS to improve the

quality of the system and can be expressed as follows:

According to the above equation and the proposed method

of fuzzy computing of Coupling and Cohesion, the calcula-

tion of the objective function of ICD is rewritten as follows:

FISinput_coh

�

∑M

j=1

∑N−1

i=1

∑N

i�=i+1
rii�zijzi�j

�

 a n d

FISinput_cou

�

∑N−1

i=1

∑N

i�=i+1
rii�

�

∑M

j=1
zij

��

∑M

j�=1
zi�j�

��

 respec-

tively are final cohesion and final coupling that: at the first

relation, according to input_coh and input_cou and

Eqs. (21) and (19), each type of cohesion and coupling are

(26)CA =

N−1
∑

i=1

N
∑

i�=i+1

rii�

(

M
∑

j=1

zij

)(

M
∑

j�=1

zi�j�

)

(27)CIin =

M
∑

j=1

N−1
∑

i=1

N
∑

i�=i+1

rii�zijzi�j

(28)

ICD =

CIin =
∑M

j=1

∑N−1

i=1

∑N

i�=i+1
rii�zijzi�j

∑N−1

i=1

∑N

i�=i+1
rii�

�

∑M

j=1
zij

��

∑M

j�=1
zi�j�

� 0 ≤ ICD ≤ 1;

(29)

max ICD =
Fuzzy_Cohesion

Fuzzy_Cohesion + Fuzzy_Coupling
,

Fuzzy_Cohesion = FISinput_coh

(

M
∑

j=1

N−1
∑

i=1

N
∑

i�=i+1

rii�zijzi�j

)

Fuzzy_Coupling = FISinput_cou

(

N−1
∑

i=1

N
∑

i�=i+1

rii�

(

M
∑

j=1

zij

)(

M
∑

j�=1

zi�j�

))

input_coh = {logical, temporal, procedural, communication , sequential, functional}

input_cou = {content, common, control, stamp, data}

calculated (for example, logical_cohesion, content_cou-

pling). Then, the Fuzzy system is performed to calculate

final cohesion with the input {logical, temporal, proce-

dural, communicational, sequential, functional}_cohesion

and final coupling with the input {content, common, con-

trol, stamp, data}_coupling.

Functional performance

Each component in the component-based software system

has a degree of functionality. COTS components functional-

ity available in the market are different and can be prepared

based on the customers or organizations’ requirements.

Furthermore, the functionality of in-house components is

determined by its developers. Thus, functionality is used as

a criterion for evaluating a modular software system.

The purpose of functionality is to maximize overall sys-

tem performance. The total functionality of all modules in

the building or buying strategy is expressed as follows:

Threshold on ICD constraint

This constraint expresses the minimum threshold H on the

value of ICD for each module:

(30)max F =

M
∑

j=1

N
∑

i=1

(

fijyij +

vij
∑

k=1

fijkxijk

)

(31)

FISinput_coh

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

+ 1

FISinput_coh

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

+ FISinput_cou

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zij

∑M

j�=1
z

i�j

� ≥ H;

j = 1, 2, ..., M; j� = 1, 2, ..., M

input_coh =

{logical, temporal, procedural, communication, sequential, functional}

input_cou = {content, common, control, stamp, data}

3124 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Building decision versus buying decision

For each component, several examples of COTS and one

example of in-house can be available for developers. Thus,

from each component, more than one instance is available

to choose.

However, it should be noted that if the i-th component of

the j-th module is bought, (for example, some xijk = 1), the

component will not be developed in the form of in-house any

more (for example yij = 0), and vice versa:

Budget constraint

Cost constraint, as one of the most important parameters,

shows the overall cost of a system. Sum of all costs in all

modules in the build-or-buy strategy is calculated as follows:

The indices i and j represent the number of components and

modules, respectively.

Delivery time constraint

The delivery time of component is the length of time a soft-

ware component gets ready for delivery and use in the com-

ponent-based software system, which includes the develop-

ment time, the integration time, and the time to test the

system. In the case of COTS components, the delivery time

is given simply by dij, while for developed components of

in-house, the time delivery of the ith component for the jth

module is equal to tij + �ijN
tot
ij

 . Therefore, the delivery time

of the ith component can be expressed as follows:

Thus, the delivery time constraint can be described as

follows:

yij +

vij
∑

k=1

xij = zij; i = 1, 2, ..., N; j = 1, 2, ..., M

(32)

M
∑

i=1

zij ≥ 1; j = 1, 2, ..., M

(33)

M
∑

i=1

zij = 1; i = 1, 2, ..., N

(34)

M�
j=1

N�
i=1

⎛
⎜⎜⎝
Cij(tij + �ijN

tot
ij
)yij +

Vij�
k=1

Cijxijk

⎞
⎟⎟⎠
≤ B

(35)Ti =

⎛
⎜⎜⎝
Cij(tij + �ijN

tot
ij
)yij +

Vij�
k=1

dijkxijk

⎞
⎟⎟⎠

where T is the threshold for the delivery time.

The reliability of in-house components

Reliability is defined as the probability of failure-free oper-

ation for a certain period of time in a particular environ-

ment [44]. The purpose of software developers is achieving

maximum reliability. The reliability of COTS components

for a specific module is provided by its vendors. While, the

reliability of built components is estimated by the software

development team.

According to the authors in [26, 32, 45], let A be the event

“ Nsuc
ij

 that test cases with no failure have been done” and B

be the event “the alternative is failure free during a single

run”. If �ij is the chance that the in-house developed alterna-

tive is failure free during a single run, then Nsuc
ij

 test cases

have been successfully done, based on the Bayes Theorem,

as expressed in Eq. (37):

Now, we express the test cases that are with no failure

as follows:

due to p(A|B) = 1,p(B) = 1 − �ij , p(A|B̄) = (1 − �ij)N
suc
ij

 ,

p(B̄) = �ij , We have:

Threshold on the reliability constraint

The probability of failure on demand of the developed ith

component of in-house of the jth module can be expressed

as 1-�ij . Now we can express the average number of failures

of the ith component and the jth module as qij:

The probability that the ith component of the jth module

during its execution faces no failure is given by �ij = e−qij ,

which shows the probability of no failure occurs in a Poisson

distribution with parameter qij:

(36)max
i=1,2,...,N

(T
i
) ≤ T

(37)�ij = p(B|A) =
p(A|B)p(B)

p(A|B)p(B) + p(A|B̄)p(B̄)

(38)Nsuc
ij

= (1 − �ij)N
tot
ij

; i = 1, 2, ..., N; j = 1, 2, ..., M

(39)�ij =
(1 − �ij)

(1 − �ij) + �ij(1 − �ij)N
suc
ij

(40)qij = (1 − �ij)yij +

vij
∑

k=1

�ijxij

(41)

N
∏

i=1

�ij =

N
∏

i=1

e−qij ≥ Rj; j = 1, 2, ..., M

3125Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Solving the optimization problem using fuzzy
multi‑objective approach

In general, different optimization techniques have been intro-

duced to solve the optimization problem in component-based

software systems. These optimization problems are formulated

by using the objective function and Crisp constraint. The Crisp

constraint is based on judgment and decision of developers.

Since human judgments are along with ambiguity and uncer-

tainty, the use of crisp optimization is not a wise decision. This

causes researchers to use the fuzzy multi-objective optimiza-

tion method with fuzzy parameters [2]. The following steps are

needed to be taken into action to solve the problem of fuzzy

multi-objective optimization [39]:

Step 1: The construction of multi-objective optimization

problem.

The formulation of multi-objective optimization on soft-

ware systems expressed in “Formulation of Optimization Prob-

lem based on Fuzzy Computing of ICD” in previous subsec-

tion is as follows:

max ICD =

FISinput_coh

�

∑M

j=1

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

FISinput_coh

�

∑M

j=1

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

+ FISinput_cou

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�

�

∑M

j�=1
zij

��

∑M

j�=1
zi�j�

�� ,

input_coh = {logical, temporal, procedural, communication, sequential, functional}

input_cou = {content, common, control, stamp, data}

max F =

M
∑

j=1

N
∑

i=1

(

fijyij +

vij
∑

k=1

fijkxijk

)

subject to x ∈ s =
{

xij,yij, zij are binary variabels

FISinput_coh

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

+ 1

FISinput_coh

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zijzi�j

�

+ FISinput_cou

�

∑N−1

i=1

∑N

i�=i+1
rii�wii�zij

∑M

j�=1
zi�j�

� ≥ H;

j = 1, 2, ..., M; j� = 1, 2, ..., M

M�
j=1

N�
i=1

⎛
⎜⎜⎝
Cij(tij + �ijN

tot
ij
)yij +

Vij�
k=1

Cijxijk

⎞
⎟⎟⎠
≤ B.

Cij(tij + �ijN
tot
ij
)yij +

Vij
∑

k=1

dijkxijk ≤ Ti

Nsuc
ij

= (1 − �ij)N
tot
ij

; i = 1, 2, ..., N; j = 1, 2, ..., M

Step 2: Solving multi-objective optimization prob-

lem by considering each of the objective functions sepa-

rately. If both solutions (for example X1
= X

2
i = 1, 2, ..., N;

j = 1, 2, ..., M;) are identical, one of them as the optimal

compromise solution will be chosen and it ends. Otherwise,

go to Step 3.

�ij =
(1 − �ij)

(1 − �ij) + �ij(1 − �ij)N
suc
ij

qij = (1 − �ij)yij +

vij
∑

k=1

�ijxij

N
∏

i=1

�ij =

N
∏

i=1

e−qij ≥ Rj; j = 1, 2, ..., M

yij +

vij
∑

k=1

xij = zij; i = 1, 2, ..., N; j = 1, 2, ..., M

M
∑

i=1

zij = 1; i = 1, 2, ..., N

N
∑

i=1

zij ≥ 1; j = 1, 2, ..., M

xijk ∈ {0, 1}; i = 1, 2, ..., N; j = 1, 2, ..., M; k = 1, 2, ..., vij;

yij ∈ {0, 1}; i = 1, 2, ..., N; j = 1, 2, ..., M;

zij ∈ {0, 1}; i = 1, 2, ..., N; j = 1, 2, ..., M;}

3126 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Step 3: Evaluating the objective functions of ICD and

functionality separately and determining the best/worst

lower limit (L), and the best/worst upper limit (U). in the

other words, In this step, the two-objective functions are

solved separately because the parameter of membership

function (ICDL, ICDU, fL and fU are the upper limit and lower

limit of ICD and functionality) for each objective function in

step 4 is calculated in this step according in Table 9.

After determining the membership functions of μICD and

μf in step 4, these membership functions are considered for

constraint in the transformed optimization problem in step 5.

Step 4: Determining the membership function of any objec-

tive function of the optimization model. The membership

function for ICD is calculated as follows:

where ICDL is the worst lower limit, and ICDU is the best

upper limit of the objective function of ICD. The values of x

include all cases of the space of optimization problem (possi-

ble answers), which are at the constraints of optimization prob-

lem. The membership function for functionality is as follows:

where fL is the worst lower limit, and fU is the best upper

limit of the objective function of functionality.

Step 5: Fuzzy development of multi-objective optimization

model.

Based on the principle of maximizing proposed by Bell-

man-zadeh [28] and by using the fuzzy membership functions

defined above, the fuzzy multi-objective optimization model

is formulated as follows:

(42)

�
ICD

(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, ICD(x) ≥ ICD
U

ICD(x) − ICD
L

ICD
U
− ICD

L

, ICD
L
≤ ICD(x) ≤ ICD

U

0, ICD(x) ≤ ICD
L

(43)�f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, f (x) ≥ fU

f (x) − fL

fU − fL
, fL ≤ f (x) ≤ fU

0, f (x) ≤ fL

Actually for solving the multi-objective optimization

problem, the fuzzy multi-objective optimization model

formulates the multi-objective problem into the principle

of maximizing proposed by Bellman-Zadeh (like a single-

objective problem) according to step 4 and 5, and then solves

that.

Solving the above model provides a solution for deci-

sion makers; with reviewing the entire possible space arising

from the objective functions of ICD and Functionality and

considered constraints, they can have the best selection from

COTS and in-house components.

A case study of financial and accounting software [2]

was performed to evaluate the proposed methodology in the

optimum choice of components from the COTS components

and developed components of in-house to develop CBSS.

This case study is a software system with three modules:

 M1, M2, M3. In total, twenty software components available

on the market, (SC1–SC20), are available to build a set of

10 components (S1–S10). In addition, ten components can

be developed as in-house (SB1–SB10). Exactly one software

component in each set of alternatives will be chosen for a

specific software module to meet the operational needs. For

example, each one of SC1, SC2, SC3, SC4, and SB1 can be

replaced by the S1 component. Consequently, one of the five

components will be selected to meet the operational needs

of S1, while SC1, SC2, SC3, and SC4 are COTS components,

and SB1 is a component developed in in-house.

Case study

As mentioned earlier, a case study of financial and account-

ing software [2] was executed in this paper to evaluate the

proposed methodology in the optimum choice of compo-

nents from the components of COTS and developed com-

ponents of in-house for the aim of developing CBSS. This

case study is a software system with three modules: M1, M2,

 M3. In total, twenty of the software components available

in the market (SC1–SC20) are available to build a set of 10

components (S1–S10). The ten components can be developed

as in-house (SB1–SB10). Exactly one software component

in each set of alternatives is selected for a specific software

module to meet the operational needs. As a result, one of

the five components will be selected to meet the operational

needs of S1, whereas SC1, SC2, SC3, and SC4 are COTS

components, and SB1 is a component developed in in-house.

(44)

max �

subject to � ≤ �ICD(x)

� ≤ �f (x)

0 ≤ � ≤ 1

x ∈ S

Table 9 Optimization solution set of the method for the first and sec-
ond objective functions

X1 Solution of optimization problem with functionality objective
function, X2 Solution of optimization problem with ICD objective
function

X1 X2

ICD
Functionality

ICD(X1) = ICDL

Functionality(X1) = fU

ICD(X2) = ICDU

Functionality(X2) = fL

3127Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Table 10 shows the components of each of the three mod-

ules available in the case study along with their alternatives

including in_house and COTS.

Operational requirements of each component, its corre-

sponding replacement software components, and also the

rates of functionality of software components corresponding

with software modules are shown in Table 11.

The function ratings describe the degree of functional

contributions of the software components toward the soft-

ware modules.

The rates range of functionality is from 0 to 1, with 1

referring to very high degree of contributions, while 0 refer-

ring to very low degree of contributions.

As can be seen in Table 10, the amount of components

functionality in the modules to which they belong is higher.

Table 12 shows the degree of interactions between soft-

ware components. The degrees range is from 1 to 10. 1

means very low degree of interactions, while 10 refers to

very high degree of interactions (Table 12).

In Table 13, the cost (Cij for all i, j) in unit of 100 $ and

delay time per day (dij for all i, j) for components of in-house

are given. In addition, Table 14 shows the cost and delay

time associated with COTS components.

The experimental results

This study evaluated the results of the implementation

of multi-objective optimization problem of the optimal

choice of components in component-based software

Table 10 The components of each of the three modules available in
the case study along with their alternatives

Modules In_house COTS

Module 1 SB2 SC5

SB3 SC6

SB8 SC16, SC17

Module 2 SB1 SC1, SC2, SC3, SC4

SB4 SC7, SC8, SC9, SC10

SB5 SC11, SC12

Module 3 SB6 SC13, SC14

SB7 SC15

SB9 SC18, SC19

Table 11 Example of
descriptions and functionality of
in-house and COTS components
in the case

Functional requirements Sk Software
components

Modula 1
(front office)

Modula 2
(back office)

Modula 3
(finance)

Inventory control and management S1 Sc1

Sc2

Sc3

Sc4

SB1

0.68
0.22
0.15
0.23
0.54

0.51
0.63
0.79
0.87
0.67

0.00
0.01
0.00
0.00
0.34

Payment collection and authorization S2 Sc5

SB2

0.94
0.62

0.10
0.23

0.55
0.87

Sales S3 Sc6

SB3

0.75
0.75

0.45
0.23

0.22
0.30

Automatic updates S4 Sc7

Sc8

Sc9

Sc10

SB4

0.08
0.10
0.00
0.20
0.27

0.94
0.22
1.00
0.45
0.69

0.01
0.00
0.20
0.05
0.30

E-Commerce S5 Sc11

Sc12

SB5

0.00
0.00
0.11

0.98
0.31
0.82

0.20
0.10
0.25

Financial reporting S6 Sc13

Sc14

SB6

0.11
0.05
0.36

0.12
0.07
0.54

0.31
0.71
0.78

Business rules and protocol S7 Sc15

SB7

0.22
0.12

0.02
0.05

0.42
0.56

Shift-wise reporting statistics S8 Sc16

Sc17

SB8

0.30
0.80
0.67

0.02
0.10
0.37

0.00
0.00
0.47

Accounts S9 Sc18

Sc19

SB9

0.00
0.00
0.07

0.70
0.06
0.14

0.32
0.78

Finance S10 Sc20

SB10

0.00
0.03

0.00
0.11

0.18
0.35

3128 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

systems based on COTS and in-house components in the

form of two tests. At first, the formulation of the opti-

mization problem with the objective functions of ICD

and Functionality and constraints mentioned in the pre-

vious section is evaluated. In test No. 2, the formulation

of optimization problem with the objective functions of

Fuzzy-ICD and Functionality and considered constraints

is evaluated. Finally, the proposed method performance is

compared with that of other methods.

Simulation conditions

The model proposed in this study was implemented on the

Intel system with the following processor specifications:

Core 2Dou 2.53 GHz, an internal memory of 4 GB, and

Windows 64-bit operating system. Furthermore, the software

used to implement the model is MATLAB, version 2015

(Matlab R2015b).

Table 12 The modified
amount of interactions of the
components in the software
system of the case study

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1 0 0 5 4 0 4 5 8 4 6 3 4 1 7 0 0 0 0 0 5

0 0 3 2 0 4 0 2 1 7 7 0 7 9 0 0 7 0 0 0

10 3 0 4 3 8 7 0 8 2 4 2 0 0 0 6 4 2 0 8

5 9 7 0 3 5 7 6 1 7 9 7 0 0 0 0 0 7 1 4

S2 0 0 8 10 0 4 8 1 9 5 2 7 0 0 0 0 0 6 6 8

S3 1 4 2 2 5 0 6 1 3 7 5 0 0 0 0 2 4 1 7 3

S4 9 4 6 8 7 2 0 0 2 2 9 4 3 4 0 0 0 6 7 2

6 7 0 4 9 10 0 0 6 3 0 4 7 6 0 7 0 3 1 8

6 1 8 3 8 9 8 3 0 2 1 8 5 4 0 0 0 6 3 2

8 7 6 3 3 8 6 1 6 0 4 4 1 3 4 6 7 2 2 1

S5 4 7 8 2 3 10 7 4 4 3 0 7 5 6 1 0 0 7 3 9

5 9 3 6 9 0 4 9 6 1 7 0 1 9 1 0 0 4 9 5

S6 4 9 0 0 0 0 2 8 10 2 9 4 0 0 7 1 0 4 9 4

5 9 4 0 0 0 6 1 7 4 2 2 0 0 6 1 0 0 8 2

S7 0 0 0 0 0 0 0 0 0 1 0 9 5 8 0 0 0 9 1 1

S8 0 0 5 0 0 5 0 10 0 1 0 0 6 1 0 0 9 9 0 0

0 4 8 0 0 2 0 0 0 2 0 0 0 0 0 1 0 0 0 0

S9 0 0 8 7 7 4 6 5 4 8 7 6 1 2 3 9 0 0 8 7

0 0 0 2 6 3 0 6 5 6 5 10 3 3 2 0 0 9 0 1

S10 10 7 1 0 2 3 6 4 0 5 4 3 9 5 4 0 0 1 4 0

Table 13 The cost and time of
delivery of data collection of
In-house components

Components Cost Development time

Module 1 Module 2 Module 3 Module 1 Module 2 Module 3

SB1 7 8 9 6 7 8

SB2 8 8 7 7 7 6

SB3 6 7 6 5 6 5

SB4 9 9 9 8 8 8

SB5 6 7 8 5 6 7

SB6 7 8 7 6 7 6

SB7 8 7 9 7 6 8

SB8 8 6 6 7 5 5

SB9 7 7 7 6 6 6

SB10 6 6 6 5 5 5

3129Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Test No 1: the optimal choice of components
with the objective functions of ICD and functionality

The results of each step of solving multi-objective optimi-

zation problem by using multi-objective fuzzy explained

as follow:

Step 1: Construction of multi-objective optimization

problem in accordance with the formulation of Step 1 of

“Solving the Optimization Problem by using of Fuzzy

Multi-objective Approach” in the previous section with

one difference: the objective function and ICD constraint

are calculated simply and without the use of the fuzzy

method.

Step 2: Solving the multi-objective optimization problem

by considering each of the objective functions.

According to Step 2 in Section titled “Formulation of

Optimization Problem based on Fuzzy Computing of ICD”

and by having two-objective functions, values of X1 and X2

are calculated. Each of the solutions amounts (X1 and X2)

includes ICD values and Functionality. Notably, to solve the

optimization problem, the amount of constraints has been

considered based on the information presented in Table 15.

Thus, by solving the optimization problem related to the

objective function of Functionality, the results of Table 16

will be achieved:

Additionally, by solving the optimization problem related

to the objective function of ICD, the results of Table 17 will

be achieved.

Step 3: Evaluating the first and second objective function

with taking into consideration the constraints of the obtained

Table 14 The cost and time of
delivery of data collection of
COTS components

Sk Components Cost Development time

Module 1 Module 2 Module 3 Module 1 Module 2 Module 3

S1 SC1

SC2

SC3

SC4

10
9
8
8

9
8
7
10

8
9
6
7

3
4
5
5

4
5
6
3

5
4
7
6

S2 SC5 7 7 8 6 6 5

S3 SC6 6 8 9 4 5 4

S4 SC7

SC8

SC9

SC10

9
7
8
10

9
6
10
8

6
7
10
8

7
6
5
3

4
7
3
5

7
6
3
5

S5 SC11

SC12

9
9

8
9

7
9

4
4

5
4

6
4

S6 SC13

SC14

10
8

7
6

8
9

3
5

6
7

5
4

S7 SC15 7 8 6 6 5 7

S8 SC16

SC17

6
7

9
7

7
10

7
6

4
6

6
3

S9 SC18

SC19

8
9

8
9

7
8

5
4

5
4

6
5

S10 SC20 9 10 6 4 3 7

Table 15 Initial parameters and the amount of constraints in the implementation of the optimization problem of the case study

Software System COTS components In-house developed components

Threshold on ICD = 0.40
Threshold on Time = 8 s
Threshold on Budget = 120$
Threshold on Reliability = 0.98

Probability of failure on demand µij=0.0002 Testing time �ij = 0.05
Testability �ij = 0.002

Table 16 Results of solving
the optimization problem
with the objective function of
functionality in the case study

Functionality ICD Time Budget Components

Module 1 Module 2 Module 3

7.75 0.6762 6 s 26$ SC5- SB3- SC17 SC4-SC9-SC11 SC14-SB7-SC19-SC10

3130 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

optimization problem and determining the best/worst lower

limit (L), and the best/worst upper limit (U) (see Table 18).

Step 4: Determining the membership of each objective

function in the optimization model:

Based on optimization solving of the two mentioned objec-

tive functions, the membership function of ICD in the case

study would be as follows:

Moreover, the membership function of f in the case study

would be as follows:

�
ICD

(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, ICD(x) ≥ 0.6992

ICD(x) − 0.6762

0.0230
, 0.6762 ≤ ICD(x) ≤ 0.6992

0, ICD(x) ≤ 0.6762

�f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, f (x) ≥ 7.75

f (x) − 6.61

1.14
, 6.61 ≤ f (x) ≤ 7.75

0, f (x) ≤ 6.61

Step 5: Fuzzy development of multi-objective optimiza-

tion model.

According to the principle of maximizing introduced by

Bellman-zadeh and by using the fuzzy membership func-

tions defined above, the fuzzy multi-objective optimization

model will be along with the results of Table 19.

Test No 2 (the proposed method): the optimal
choice of components with the objective functions
of Fuzzy‑ICD and functionality

The results of the implementation of multi-objective opti-

mization problem by using the objective function of Fuzzy

ICD are as follows.

Step1: Construction of multi-objective optimization

problem (the formulation of the problem of multi-objec-

tive optimization). The formulation of the problem of

multi-objective optimization in the proposed method is

in accordance with the formulation of Step 1 of Section

“Formulation of Optimization Problem based on Fuzzy

Computing of ICD”.

Step 2: Solving the multi-objective optimization problem

by considering each of the objective functions.

According to Step 2 in Section “Formulation of Optimi-

zation Problem based on Fuzzy Computing of ICD” and by

having two-objective functions, values X1 and X2 are calcu-

lated. Each of the solutions amounts (X1 and X2) includes

ICD values and Functionality.

Thus, by solving the optimization problem related to the

objective function of Functionality, the results of Table 20

will be achieved.

Table 17 Results of solving the
optimization problem with the
objective function of ICD in the
case study

Functionality ICD Time Budget Components

Module 1 Module 2 Module 3

6.61 0.6992 6 s 24$ SC5-SB6-SC17 SC1-SC7-SC11 SC14-SC15-SC19-SC20

Table 18 Optimization solution set for the first and second objective
functions

X2 X1

ICD
Functionality [3]

0.6992
6.61

0.6762
7.75

Table 19 The results of fuzzy multi-objective optimization model based on Bellman-zadeh's

Functionality ICD Time Budget Lambda Components

Module 1 Module 2 Module 3

6.61 0.8230 6 s 24$ 0.9 SC5-SB6-SC17 SC1-SC7-SC11 SC14-SC15-SC19-SC20

Table 20 The results of the optimization of the proposed method with the objective function of functionality in the case study

Functionality ICD Time Budget Components

Module 1 Module 2 Module 3

7.82 0.4940 6 s 26$ SC17-SC13-SC5 SC11-SC9-SC4 SB10-SC19- SB7-SC14

3131Complex & Intelligent Systems (2021) 7:3111–3134

1 3

In addition, by solving the optimization problem related

to the objective function of ICD, the results of Table 21 will

be achieved.

Step 3: Evaluating the first and second objective function

with taking into consideration the constraints of the obtained

optimization problem and determining the best/worst lower

limit (L) and the best/worst upper limit (U) (see Table 22).

Step 4: Determining the membership of each objective

function in the optimization model:

Based on the optimization solving of the two mentioned

objective functions, the membership function of ICD in the

case study would be as follows:

In addition, the membership function of f in the case

study would be as follows:

�
ICD

(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, ICD(x) ≥ 0.8809

ICD(x) − 0.4940

0.3869
, 0.4940 ≤ ICD(x) ≤ 0.8809

0, ICD(x) ≤ 0.4940

�f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, f (x) ≥ 7.82

f (x) − 5.40

2.42
, 5.40 ≤ f (x) ≤ 7.82

0, f (x) ≤ 5.40

Step 5: Fuzzy development of multi-objective optimiza-

tion model.

Based on the principle of maximizing proposed by

Bellman-zadeh and by using the fuzzy membership func-

tions defined above in the proposed method, the fuzzy

multi-objective optimization model will be along with the

results presented as can be seen in Table 23, components

SC17, SC5, SC4, SC7, SC14, SC15, SC19, SC20, SB3,

SB5, and SB10 are the best components for selection with

lambda = 0.7328.

Comparing the proposed method with some other
methods

Table 24 shows a comprehensive comparison between the

performance of the method presented in this article and that

of the methods provided by some researchers working in the

field of software in terms of the optimization type, objective

functions, constraints, the build-or-buy strategy, and innova-

tion of the research. As can be seen in Table 24, the opti-

mization method presented in this paper uses the objective

functions of Fuzzy-ICD and functionality and constraints of

ICD, delivery time, reliability, and cost.

To evaluate the proposed method, a comparison was

made between the proposed method (Fuzzy-ICD) and the

Simple-ICD method (without computing the fuzzy ICD).

Table 25 presents the comparative results.

As can be seen in a bold row in Table 25, the objective

function of Intra Coupling Density in the proposed method

includes more maximum values in the optimal choice of

components. In addition, the optissmum component selected

by using the proposed method has less budget and execution

time than the Simple_ICD method in creating of software

system.

Table 21 The results of the
optimization of the proposed
method with the objective
function of ICD in the case
study

Functionality ICD Time Budget Components

Module 1 Module 2 Module 3

5.40 0.8809 6 s 25$ SC16-SB3-SC5 SC12-SC8-SC4 SB10-SC19-SB7-SC13

Table 22 Optimization solution set of the proposed method for the
first and second objective functions

X2 X1

ICD
Functionality [3]

0.8809
5.40

0.4940
7.82

Table 23 Results of the fuzzy multi-objective optimization model with the proposed method based on Bellman-zadeh's principle

Functionality ICD Time Budget Lambda Components COT Components in-house

Module 1 Module 2 Module 3 Module 1 Module 2 Module 3

7.39 0.7798 6 s 26$ 0.7328 SC17-SC5 SC4-SC7 SC14-SC15-SC19-SC20 SB3 SB5 SB10

7.22 0.7743 6 s 26$ 0.720 SC17-SC5 SC4-SC7 SC14-SC15-SC19-SC20 SB3 SB5

7.14 0.7723 6 s 26$ 0.710 SC17-SC5 SC4 SC14-SC15-SC19 SB3 SB4, SB5 SB10

3132 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Conclusion

Component-based software system design with the modu-

lar approach was shown capable of effectively reducing

the level of complexity in cases where the components

selection is done in the best way. The purpose of this arti-

cle was to help software engineers to choose the optimal

components in the process of software system develop-

ment in a component-based software system. The choice

in this paper was done through formulating the problem of

multi-objective optimization with maximizing the objec-

tive functions of Fuzzy-ICD Fuzzy-Intra Coupling Density

and functionality and taking into account the constraints

of budget, delivery time, reliability, and Fuzzy-ICD. Fuzzy

ICD as the method proposed in this paper is a criterion

for calculating more accurately the relationship between

Cohesion and Coupling of components, which is obtained

through fuzzy computing of each of them based on the

Table 24 A comprehensive comparison between the method presented in this paper and the methods proposed by some researchers in the area of
the optimal choice of software components

Type of optimization Objective Constraint Build or Buy Novelty

[25] Single objective Reliability Cost (budget) –

Single objective Quality Cost (budget)
Consistency

COTS Weighted objective

[30] Single objective Quality Cost (budget)
Consistency

COTS Fuzzy for constraint

[26] Single objective Cost Delivery time
Reliability

In-house/
COTS

[13] Multi objective ICD
Functionality

ICD – Joint objective
Using GA

[27] Multi objective Quality
Reliability
Cost
Delivery time
Size

Delivery time
Consistency

COTS FMOP (Fuzzy MOP)
Considering Consistency

[31] Multi objective Reliability
Cost

Reliability
Cost
Consistency

COTS Goal programming

Multi objective Quality
Reliability
Cost
Functionality

Delivery time
Consistency

COTS FMOP (Fuzzy MOP)
Considering Consistency

[46] Multi objective ICD
Functionality

ICD
Reliability
Cost
Delivery time

In-house/COTS Joint Optimization
Fuzzy optimization

[2] Multi objective ICD
Functionality

ICD
Reliability
Cost
Delivery time
Consistency

In-house/COTS Fuzzy optimization
Considering Consistency

Proposed
method

Multi objective Fuzzy-ICD
Functionality

Fuzzy-ICD
Reliability
Cost
Delivery time

In-house/COTS Compute Fuzzy Cohesion and
Fuzzy Coupling then Comput-
ing ICD

3133Complex & Intelligent Systems (2021) 7:3111–3134

1 3

Mayers classification. Then, a two-criterion optimization

model was formulated and it was solved with the help of

the fuzzy multi-objective approach. The implementation

of the proposed optimization on the case study confirmed

the efficiency of the proposed method.

While fuzzy mathematical optimization has an accept-

able effect on software quality parameters than evolution-

ary optimization, we considered optimization based on the

combination of ICA and fuzzy evolution algorithms as a

future solution for reducing time consumption. We are trying

to evaluate the proposed objective function on other multi-

objective evolution algorithms.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Gholamshahi S, Hasheminejad SMH (2019) Software component
identification and selection: a research review. Softw Pract Exp
49(1):40–69

 2. Jha P et al (2014) Optimal component selection based on cohesion
& coupling for component based software system under build-or-
buy scheme. J Comput Sci 5(2):233–242

 3. Tahir M et al (2016) Framework for better reusability in com-
ponent based software engineering. J Appl Environ Biol Sci
(JAEBS) 6(4S):77–81

 4. Garg R, Sharma R, Sharma K (2016) Ranking and selection of
commercial off-the-shelf using fuzzy distance based approach.
Decis Sci Lett 5(2):201–210

 5. Kaura R et al (2015) Fuzzy multi-criteria approach for compo-
nent selection of fault tolerant software system under consensus
recovery block scheme. Procedia Comput Sci 45:842–851

 6. Konys A, Wątróbski J, Różewski P (2013) Approach to practi-
cal ontology design for supporting COTS component selection
processes. In Asian Conference on Intelligent Information and
Database Systems. Springer

 7. Morera D (2002) COTS evaluation using desmet methodology &
Analytic Hierarchy Process (AHP). In International Conference
on Product Focused Software Process Improvement. Springer

 8. Indumati P, Kumar UD (2011) Joint optimization of ICD and reli-
ability for component selection in designing modules of the soft-
ware system incorporating “build-or-buy” scheme. In: Proceedings
of the international conference on soft computing for 0problem
solving (SocProS 2011), 20–22 December 2011. Springer

 9. Darcy DP, Kemerer CF (2002) Software complexity: Toward a
unified theory of coupling and cohesion. In Friday Workshops,
Management Information Systems Research Center, Carlson
School of Management, University of Minnesota

Ta
b

le
 2

5

 E
v
al

u
at

io
n
 r

es
u
lt

s
b
et

w
ee

n
 o

p
ti

m
al

 c
o
m

p
o
n

en
t

se
le

ct
io

n
 w

it
h
 F

u
zz

y
-I

C
D

 a
s

o
n
e

o
f

th
e

o
b
je

ct
iv

e
fu

n
ct

io
n
s

(t
h
e

p
ro

p
o
se

d
 m

et
h
o
d
)

an
d
 t

h
e

S
im

p
le

 I
C

D

M
et

h
o
d

F
u
n
ct

io
n
al

it
y

IC
D

T
im

e
B

u
d
g
et

L
am

b
d
a

C
o
m

p
o
n
en

ts
 C

O
T

C
o
m

p
o
n
en

ts
 i

n
-h

o
u
se

M
o
d
u
le

 1
M

o
d
u
le

 2
M

o
d
u
le

 3
M

o
d
u
le

 1
M

o
d
u
le

 2
M

o
d
u
le

 3

F
u

zz
y
 I

C
D

7
.3

9
0
.7

7
9
8

6
 s

2
6
$

0
.7

3
2

S
C

1
7
-S

C
5

S
C

4
-S

C
7

S
C

1
4
-S

C
1
5
-S

C
1
9
-S

C
2
0

S
B

3
S

B
5

S
B

1
0

7
.2

2
0
.7

7
4
3

6
 s

2
6
$

0
.7

2
0

S
C

1
7
-S

C
5

S
C

4
-S

C
7

S
C

1
4
-S

C
1
5
-S

C
1
9
-S

C
2
0

S
B

3
S

B
5

7
.1

4
0
.7

7
2
3

6
 s

2
6
$

0
.7

1
0

S
C

1
7
-S

C
5

S
C

4
S

C
1
4
-S

C
1
5
-S

C
1
9

S
B

3
S

B
4
-S

B
5

S
B

1
0

S
im

p
le

 I
C

D
7
.1

0
.4

3
1
3

7
.1

 s
1
1
4
$

0
.7

0
S

C
1
7

S
C

4
-S

C
7
-S

C
1
1

S
C

1
3
-S

C
1
9

S
B

2
-S

B
3

S
B

7
-S

B
1
0

7
.3

7
0
.4

2
8
6

7
.1

 s
1
1
1
$

0
.6

8
S

C
1
7
-S

C
5

S
C

4
-S

C
7
-S

C
1
1

S
C

1
4
-S

C
1
9

S
B

2
-S

B
3

S
B

7
-S

B
1
0

7
.1

4
0
.4

4
2
0

7
.1

 s
1
1
4
$

0
.6

7
4

S
C

1
7
-S

C
5

S
C

7
S

C
1
3
-S

C
1
9

S
B

3
S

B
4
-S

B
5

S
B

7
-S

B
1
0

7
.2

1
0
.4

2
7
2

7
.1

 s
1
1
5
$

0
.6

7
3

S
C

1
7

S
C

4
-S

C
7

S
C

1
4
-S

C
1
9

S
B

2
-S

B
3

S
B

5
S

B
7
-S

B
1
0

http://creativecommons.org/licenses/by/4.0/

3134 Complex & Intelligent Systems (2021) 7:3111–3134

1 3

 10. Pressman RS (2005) Software engineering: a practitioner’s
approach. Palgrave macmillan

 11. Yadav A, Khan R (2012) Impact of cohesion on reliability. J Inf
Oper Manag 3(1):191

 12. Abreu EFB, Goulão M (2001) Coupling and cohesion as modu-
larization drivers: Are we being over-persuaded? In Proceed-
ings Fifth European Conference on Software Maintenance and
Reengineering. IEEE

 13. Kwong C et al (2010) Optimization of software components
selection for component-based software system development.
Comput Ind Eng 58(4):618–624

 14. Jadhav AS, Sonar RM (2009) Evaluating and selecting software
packages: a review. Inf Softw Technol 51(3):555–563

 15. Kaur L, Singh DH (2014) Software component selection tech-
niques–a review. Int J Comput Sci Inform Technol 5(3):2

 16. Collier K et al. (1999) A methodology for evaluating and select-
ing data mining software. In Proceedings of the 32nd Annual
Hawaii International Conference on Systems Sciences. 1999.
HICSS-32. Abstracts and CD-ROM of Full Papers. IEEE

 17. Kontio J (1996) A case study in applying a systematic method
for COTS selection. In Proceedings of IEEE 18th International
Conference on Software Engineering. IEEE

 18. Cangussu JW, Cooper KC, Wong EW (2006) Multi criteria
selection of components using the analytic hierarchy process.
In International Symposium on Component-Based Software
Engineering. Springer

 19. Mittal S, Bhatia PK (2013) Framework for Evaluating and Rank-
ing the Reusability of COTS Components based upon Analyti-
cal Hierarchy Process

 20. Maxville V, Armarego J, Lam CP (2004) Intelligent component
selection. In Proceedings of the 28th Annual International Com-
puter Software and Applications Conference, 2004. COMPSAC
2004. IEEE

 21. Jadhav A, Sonar R (2008) A hybrid system for selection of the
software packages. In 2008 First International Conference on
Emerging Trends in Engineering and Technology. IEEE

 22. Siam A, R Maamri, Sahnoun Z (2015) Software components
selection using the fuzzy set theory. In Fifth International Con-
ference on the Innovative Computing Technology (INTECH
2015). IEEE

 23. Cochran JK, Chen H-N (2005) Fuzzy multi-criteria selection
of object-oriented simulation software for production system
analysis. Comput Oper Res 32(1):153–168

 24. Abraham BZ, Aguilar JC (2007) Software component selection
algorithm using intelligent agents. In KES International Sym-
posium on Agent and Multi-Agent Systems: Technologies and
Applications. Springer

 25. Berman O, Ashrafi N (1993) Optimization models for reliabil-
ity of modular software systems. IEEE Trans Software Eng
19(11):1119–1123

 26. Cortellessa V, Marinelli F, Potena P (2008) An optimization
framework for “build-or-buy” decisions in software architecture.
Comput Oper Res 35(10):3090–3106

 27. Gupta P, Mehlawat MK, Verma S (2012) COTS selection using
fuzzy interactive approach. Optim Lett 6(2):273–289

 28. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy
environment. Manag Sci 17(4):B-41-B-64

 29. Jung H-W, Choi B (1999) Optimization models for qual-
ity and cost of modular software systems. Eur J Oper Res
112(3):613–619

 30. Shen X, Y Chen, L Xing (2006) Fuzzy optimization models for
quality and cost of software systems based on COTS. In Pro-
ceedings of the Sixth International Symposium on Operations
Research and Its Applications (ISORA’06), Xinjiang, China

 31. Kumar D et al (2012) Optimal component selection problem
for COTS based software system under consensus recovery

block scheme: a goal programming approach. Int J Comput App
47(4):0975–1888

 32. Jha P et al (2013) Multi-criteria optimization approach for com-
ponent selection under build-or-buy scheme. In: Proceedings of
the third international conference on soft computing for problem
solving. Springer, New Delhi, pp 929–946

 33. Yessad L, Z Boufaida (2011) A QoS ontology-based component
selection. arXiv preprint arXiv:1109.0324

 34. Vescan A, Şerban C (2016) A fuzzy-based approach for the mul-
tilevel component selection problem. In International Conference
on Hybrid Artificial Intelligence Systems. Springer

 35. Chatzipetrou P et al. (2018) Component selection in Software
Engineering-Which attributes are the most important in the deci-
sion process? In 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE

 36. Chatzipetrou P et al (2019) Component attributes and their impor-
tance in decisions and component selection. Softw Qual J 28:1–27

 37. Myers GJ (1975) Reliable software through composite design.
Mason. Charter PublisheTS. S 197

 38. Vir R, Mann P (2013) A hybrid approach for the prediction of fault
proneness in object oriented design using fuzzy logic. J Acad Ind
Res 1(11):661–666

 39. Stevens WP, Myers GJ, Constantine LL (1974) Structured design.
IBM Syst J 13(2):115–139

 40. Fenton N, Melton A (1990) Deriving structurally based software
measures. J Syst Softw 12(3):177–187

 41. Gui G, Scott PD (2009) Measuring software component reus-
ability by coupling and cohesion metrics. JCP 4(9):797–805

 42. Alghamdi JS (2008) Measuring software coupling. Arab J Sci Eng
(Springer Science & Business Media BV) 33

 43. Taube-Schock C, RJ Walker, IH Witten (2011) Can we avoid high
coupling? In European Conference on Object-Oriented Program-
ming. Springer

 44. Pai GJ (2013) A survey of software reliability models. arXiv pre-
print arXiv:1304.4539

 45. Bertolino A, Strigini L (1996) On the use of testability meas-
ures for dependability assessment. IEEE Trans Software Eng
22(2):97–108

 46. Singh O, Kumar UD (2012) Joint optimization of ICD and relia-
bility for component selection incorporating “Build-or-Buy” strat-
egy for component based modular software system under fuzzy
environment. In Proceedings of the International Conference on
Soft Computing for Problem Solving (SocProS 2011) December
20–22, 2011. Springer

 47. Gosain A, Sharma G (2020) A new metric for class cohesion for
object oriented software. Int Arab J Inf Technol 17(3):411–421

 48. Bobde S, Phalnikar R (2020) Cohesion measure for restructuring.
In International Conference on Information and Communication
Technology for Intelligent Systems2020, May: Springer, Singa-
pore p 609–614

 49. Rizwan M, Nadeem A, Sindhu MA (2020) Theoretical evaluation
of software coupling metrics. In 2020 17th International Bhurban
Conference on Applied Sciences and Technology (IBCAST) Janu-
ary: p 413–421. IEEE

 50. Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2015) Adap-
tive replacement strategies for MOEA/D. IEEE Trans Cybern
46(2):474–486

 51. Wang Z, Zhang Q, Li H, Ishibuchi H, Jiao L (2017) On the use
of two reference points in decomposition based multiobjective
evolutionary algorithms. Swarm Evol Comput 34:89–102

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Optimal components selection based on fuzzy-intra coupling density for component-based software systems under build-or-buy scheme
	Abstract
	Introduction
	Related work
	Optimization methods of software components selection
	Weighted scoring method
	Analytical hierarchical process
	Artificial intelligence-based methods
	Optimization-based methods
	Statistical analysis result of related work

	Calculation methods of coupling and cohesion

	Fuzzy method for calculation of coupling and cohesion
	Determining the amount of coupling
	Determining the cohesion

	Selecting the optimal software components with multi-objective optimization approach
	The assumptions of the optimization problem
	Formulation of optimization problem based on fuzzy computing of ICD
	Fuzzy-Intra Coupling Density (Fuzzy-ICD)
	Functional performance
	Threshold on ICD constraint
	Building decision versus buying decision
	Budget constraint
	Delivery time constraint
	The reliability of in-house components
	Threshold on the reliability constraint

	Solving the optimization problem using fuzzy multi-objective approach

	Case study
	The experimental results
	Simulation conditions
	Test No 1: the optimal choice of components with the objective functions of ICD and functionality
	Test No 2 (the proposed method): the optimal choice of components with the objective functions of Fuzzy-ICD and functionality
	Comparing the proposed method with some other methods

	Conclusion
	References

