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Abstract

Compound orthogonal arrays (COAs) and single arrays are alternatives to the inner-

outer arrays advocated by Taguchi for robust parameter design experiments. A criterion

based on the wordtype patterns and strengths of COAs is proposed to select optimal

COAs. Single arrays are classified into prodigal single arrays (PSAs) and economical single

arrays (ESAs) according to their relative estimation capacities, and various optimality

criteria again based on the wordtype patterns are proposed for selecting optimal single

arrays. Useful optimal COAs, PSAs and ESAs are constructed and tabulated as convenient

references for experimenters in practice.

KEY WORDS: Robust parameter design, compound orthogonal array, single array

1 INTRODUCTION

Robust parameter design (or briefly parameter design) is an engineering strategy, originally

proposed by Taguchi (1986), for quality improvement in industrial systems. Factors that affect a

system can be classified into two types, control factors and noise factors. Control factors refer

to the variables whose levels are adjustable, while noise factors refer to the variables whose

levels are hard or impossible to control in a system’s normal operation state. In a parameter

design experiment, both control and noise factors are varied systematically. The key idea of

parameter design is to explore the effects of control factors, noise factors and their interactions,

and choose control factor settings to simultaneously bring the system’s mean response on target

and reduce its performance variation caused by noise factors. For comprehensive reviews on

parameter design, see Nair (1992) and Steinberg (1996).

Taguchi originally proposed to use inner-outer array, or cross array, as the experimental

plan for parameter design. A cross array is the cross product of an orthogonal array for control

factors (or briefly control array) and an orthogonal array for noise factors (or briefly noise array).
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After data are generated from an experiment using cross array, response mean and variance

at each setting of control factors are calculated, and the location-dispersion modeling approach

is usually used to identify location and dispersion effects for parameter design optimization

(Vining and Myers, 1990). Due to the concerns over the run size and flexibility of cross array,

Lucas (1989), Welch et al. (1990) and Shoemake et al. (1991) proposed to use combined

array, or single array, as an alternative to cross array. A single array is an ordinary orthogonal

array that accommodate both control and noise factors and does not necessarily possess the

“crossing” structure as cross array. In analyzing the data generated from an experiment using

single array, the response modeling approach is usually used to directly model response as a

function of control factors, noise factors and their interactions, then control-by-noise plots and

the transmitted variance model are employed to identify location and dispersion effects. The

idea of response modeling was first hinted in Easterling (1985).

The advantages and disadvantages of cross array and single array were discussed in Nair

(1992) and Steinberg (1996). Recently there is a fair amount of effort devoted to the selection of

optimal experimental plans for parameter design. In a series of papers, Rosenbaum (1994, 1996,

1998) extended cross array to compound orthogonal array (COA) and provided justifications

for using COAs in parameter design experiments. COA relaxes the rigid crossing structure

required by cross array so that different arrays can be employed for noise factors at different

settings of control factors. A detailed description of COA will be given in Section 3.1. Hedayat

and Stufken (1999) studied the basic properties of COAs and constructed the tables of COAs

with both the numbers of control and noise factors less than six. However, the optimal selection

of COAs have not been addressed in the literature.

Although combinatorially single arrays are just ordinary orthogonal arrays, their optimal

selection is not straightforward due to the presence of two different types of factors. Bing-

ham and Sitter (2003) proposed a minimum-aberration type of criterion based on modified

wordlengths, and constructed the tables of small arrays applicable in split-plot parameter de-

sign experiments. The tables show that the criterion is not sensitive in discriminating single

arrays when their sizes are relatively large. Wu and Zhu (2003) developed a general frame-

work for selecting optimal single arrays, again using a minimum-aberration type of criterion.

The framework becomes too complicated when high order effects are taken into consideration.

Hence, a simple and direct approach is still needed for the selection of optimal single arrays

The current paper is intended to address the optimal selection of COAs and single arrays

and is organized as follows. Section 2 is a brief review of fractional factorial design with two
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groups of factors. Section 3 introduces COAs and proposes a minimum aberration criterion for

selecting optimal COAs. In Section 4, single arrays are classified into economical single arrays

and prodigal single arrays, several criteria for selecting optimal single arrays are proposed, and

optimal economical single arrays and prodigal single arrays are tabulated and discussed. Con-

cluding remarks are given in Section 5. In this paper, we focus on COAs and single arrays that

are regular two-level fractional factorial designs.

2 2(l1+l2)−m DESIGNS WITH TWO GROUPS OF FACTORS

Regular two-level fractional factorial designs, i.e., 2l−m designs, are generated by defining

relations (or defining words) among experimental factors. The collection of all the possible

defining words of a design d is referred to as its defining contrast subgroup denoted by G. Let

Wi be the number of defining words of length i in G for 1 ≤ i ≤ l and W = (W0,W1,W2, . . . ,Wl).

Then W is called the wordlength pattern of d. The resolution of d is the smallest positive integer

i such that Wi > 0. If d has resolution R, it is well-known that the strength of d is R − 1;

see Rao (1947) for the definition of strength for general orthogonal arrays. Suppose d1 and

d2 are two designs, d1 is said to have less aberration than d2 if Wi0(d1) < Wi0(d2) where i0 is

the smallest integer i such that Wi(d1) 6= Wi(d2). If there does not exist a design with less

aberration than d1, then d1 is said to have minimum aberration (MA) (Fries and Hunter, 1980).

A main effect or a two-factor interaction (2fi) is said to be clear or clearly estimable if it is not

aliased with any other main effects or 2fi’s, and is eligible if it is not clear but only aliased with

some other 2fi’s (Wu and Chen, 1992).

In 2l−m design, experimental factors are treated symmetrically. This, however, is not proper

when multiple groups, or types, of factors are involved, for example, in parameter design where

factors are divided into control factors and noise factors. In this paper, we only consider the

case of two groups of factors , which are denoted by Group I and Group II. Let l1 and l2 be

the number of factors in Group I and Group II respectively. A 2(l1+l2)−p
τ design d is a two-level

fractional factorial design with l1 columns assigned to Group I factors and the remaining l2

columns to Group II factors, where τ represents the assignment of the columns and is usually

suppressed. d is also determined by its defining contrast subgroup G. However, the wordlength

pattern W is not a proper aliasing characterization for G, because defining words with the same

length can consist of different numbers of group I and group II factors. Zhu (2003) proposed

using the wordtype pattern matrix, (Ai.j)0≤i≤l1,0≤j≤l2 , to characterize the aliasing pattern of G,

where Ai.j is the number of defining words in G involving i Group I factors and j Group II
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factors. In a parameter design experiment involving lc control factors and ln noise factors,

we assume Group I consists of the control factors and Group II the noise factors. If we only

consider two-level regular fractional factorial designs as possible experiment plans, then cross

arrays, COAs and single arrays are in fact 2(lc+ln)−m designs with or without additional con-

straints. As a convention in the paper, we use capital letters such as A, B, etc. to represent

control factors, and little letters such as a, b, etc. to represent noise factors.

3 OPTIMAL COMPOUND ORTHOGONAL ARRAYS

3.1 COAs and Maximum Strengths

Let OA(N, l, 2, t) denote a two-level orthogonal array with N rows, l columns and strength

t (Rao, 1947). A COA with parameters Nc, Nn, lc, ln, tc, tn and ta is an NcNn × (lc + ln) or-

thogonal array with the following properties: (P1) The first lc columns are assigned to control

factors and consists of Nn replications of an OA(Nc, lc, 2, tc); (P2) The remaining ln columns

are assigned to noise factors, and for each fixed setting of the lc control factors, denoted by ci

for 1 ≤ i ≤ Nc, the corresponding settings of the ln noise factors form an OAci
(Nn, ln, 2, tn),

where the subscript ci indicates that the array may vary from one setting to another; (P3) The

entire array has strength ta. Let T = (tc, tn, ta). We call T the strength vector of a COA. It

can be verified that min(tc, tn) ≤ ta ≤ (tc + tn) (Hedayat and Stufken, 1999). When all the

OAci
(Nn, ln, 2, tn)’s are identical for 1 ≤ i ≤ Nc, the COA is a cross array. A COA is said to

be regular if it is a regular 2(lc+ln)−m design that satisfies (P1)-(P3). As mentioned earlier, we

only consider regular COAs in the current paper.

Example 1. Suppose a 32-run experiment involves four control factors (A, B, C, D) and

three noise factors (a, b, c). Consider the following two 2(4+3)−2 designs: d1 : I = ABCD =

ABabc = CDabc and d2 : I = ABCD = abc = ABCDabc. Both d1 and d2 have 32 rows and

seven columns with the first four assigned to the control factors and the remaining three to the

noise factors. In d1, the control factor columns consist of four copies of a 16-run 24−1 resolution

IV design defined by I = ABCD. At each fixed setting of A, B, C and D, the corresponding

settings of the noise factors form a 4-run resolution III design defined by AB = CD = abc. For

example, at the setting (1,−1, 1,−1) of the control factors, the corresponding settings of a, b

and c are generated by −I = abc, which are (−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1). So,

d1 is a COA with Nc = 8, Nn = 4, lc = 4, ln = 3, tc = 3, tn = 2 and ta = 3, and T (d1) = (3, 2, 3).

Similarly, it can be verified that d2 is a COA with T (d2) = (3, 2, 2). Notice that, in d2, at

4



different settings of the control factors, the noise arrays are identical, which is generated by

I = abc. Hence, d2 is a cross array. It is clear that d1 is not a cross array and it has higher

overall strength than d2. The wordtype patterns of d1 are A0.0 = 1, A2.3 = 2, A4.0 = 1, and

Ai.j = 0 otherwise; the wordtype patterns of d2 are A0.0 = 1, A0.3 = A4.0 = A4.3 = 1, and

Ai.j = 0 otherwise.

Let d be a 2(lc+ln)−m COA with wordtype pattern matrix (Ai.j). Considering the relationship

between strength and resolution, we can verify that

tc = min(lc, min{i − 1 : Ai.0 6= 0 and i ≥ 1}),

tn = min(ln, min{j − 1 : Ai.j 6= 0 and j ≥ 1}),

and

ta = min{i + j − 1 : Ai.j 6= 0 and i + j ≥ 1}.

Hence (Ai.j) determines T (d). In the definition of COA above, there is no specific requirement

for tn, so tn can take on any nonnegative integer values. Rosenbaum (1994, 1996) proposed

COAs as an extension of cross arrays and pointed out that COAs with tn < 2 are not able

to identify dispersion effects and are unlikely to be useful; see Theorem 1 and Section 3.1 of

Rosenbaum (1996). In other words, COAs with tn ≤ 1 are not a reasonable extension of cross

arrays. When investigating the maximum strengths of COAs from a theoretical perspective,

Hedayat and Stufken (1999) included COAs with tn ≤ 1. In this paper, we are more interested

in COAs that are useful in parameter design, therefore, in addition to the three properties given

above, we further require COAs to satisfy the following condition,

(P4) tc ≥ min(lc, 2) and tn ≥ min(ln, 2).

For regular 2(lc+ln)−m COAs with resolution III or higher, that is, ta ≥ 2, the condition tc ≥
min(lc, 2) is automatically satisfied. When ln ≥ 2, the condition tn ≥ min(ln, 2) requires that the

noise arrays of a COA have strength at least 2. In terms of wordtype patterns, tn ≥ min(ln, 2)

is equivalent to Ai.1 = Ai.2 = 0 for 1 ≤ i ≤ lc. Clearly, cross arrays are COAs. Both d1 and d2

in Example 1 satisfy (P4), so they are still COAs.

For given lc, ln and run size 2k, COAs do not always exist. Define

S(2k) = {(i, j) : dlog2(i + 1)e + dlog2(j + 1)e ≤ k}, (1)
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where dxe represents the smallest integer greater than or equal to x.

Proposition 1. The necessary and sufficient condition for the existence of a COA with lc

control factors, ln noise factors and 2k runs is (lc, ln) ∈ S(2k)

The proof of Proposition 1 is given in the Appendix. When k = 4, S(24) = {(1, j)}1≤j≤7
⋃{(i, 1)}

1≤i≤7
⋃ {(2, 2), (2, 3), (3, 2), (3, 3)}. Because (3,4) /∈ S(24), there does not exist a 16-run COA

with three control factors and four noise factors. Note that the necessary and sufficient condition

for the existence of cross arrays is exactly the same as that for COAs.

Suppose d is a COA with T (d) = (tc(d), tn(d), ta(d)). d is said to have maximum strengths if

there does not exist another COA d̃ with the same run size, lc and ln as d such that T (d̃) ≥ T (d)

componentwisely and at least one of the inequalities is strict. The preference of COAs with

maximum strengths is justified by Theorem 1 in Rosenbaum (1996) and an observation of He-

dayat and Stufken (1999) that has further improved part c of Theorem 1 in Rosenbaum (1996);

see the beginning of Section 2 in Hedayat and Stufken (1999). When the response modeling

approach is used in analysis, COAs with maximum strengths should also be preferred accord-

ing to Section 4 in Rosenbaum (1996). In Example 1, T (d1) = (3, 2, 3) and T (d2) = (3, 2, 2).

Clearly, T (d1) ≥ T (d2) and ta(d1) > ta(d2). Hence, d2, a cross array, does not achieve maximum

strengths. In fact, we can show that d1 attains maximum strengths as a COA with 32-run, four

control factors and three noise factors.

3.2 Wc-Aberration and Optimal COAs

The strength vector T of a COA can be considered as an extension of the resolution R of a

fractional factorial design. Different COAs may share the same strength vector and need to be

further discriminated.

Example 2. Let us consider a 64-run parameter design experiment that involves four control

factors (A, B, C, D) and six noise factors (a, b, c, d, e, f). Four possible 2(4+6)−4 COAs are

given below. Due to limited space, only a set of independent defining words is listed for each

array.

d3 : ABCD,Dabd,Dace,Dbcf ; d4 : ABCD, abde, ABacd,ACabf ;

d5 : ABCD, abce, abdf,ACacd; d6 : ABCD, abd, ace, bcf.
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d3 was the design given in Table 1 in Rosenbaum (1996); d4 is a MA 210−4 design with the

distinction between control factors and noise factors neglected; and d6 is a cross array. The

strength vectors of the four COAs are T (d3) = T (d4) = T (d5) = (3, 2, 3) and T (d6) = (3, 2, 2).

It can be shown that d3, d4 and d5 all have achieved the maximum strengths for COAs with 64

rows, four control factors and six noise factors. However, they are still quite different from each

other as will be shown below, so further discrimination between them is necessary in order to

select the best plan for the experiment.

The defining contrast subgroups and wordtype pattern matrices of the above arrays can

be derived from independent defining words. It can be verified that the wordtype pattern

matrices are different from each other. In the following, we further compare d3, d4 and d5

in terms of their detailed aliasing patterns. For simplicity, we assume effects of order 3 or

higher are negligible. So we only need to consider the defining words with length less than

five, which are {ABCD,Dabd,Dace,Dbcf,Ddef, bcde, acdf, abef} for d3, {ABCD, abde} for

d4, and {ABCD, abce, abdf, cdef} for d5. Because all the three arrays have resolution IV, their

control and noise main effects are clear. Because ABCD appears in d3, d4 and d5, the control-

by-control 2fi’s in all the three arrays are eligible. Consider the 24 possible control-by-noise

2fi’s. In d3, the 18 control-by-noise 2fi’s between {A,B,C} and {a, b, c, d, e, f} are clear, and the

six control-by-noise 2fi’s between {D} and {a, b, c, d, e, f} are aliased with some noise-by-noise

2fi’s and thus are only eligible; in d4, all the 24 control-by-noise 2fi’s are clear, in addition,

the noise-by-noise 2fi’s ac, bc, cd, ce, cf , af , bf , df and ef are also clear, and the other six

noise-by-noise 2fi’s are eligible; in d5, all the 24 control-by-noise 2fi’s are clear, but all the noise-

by-noise 2fi’s are only eligible. Heuristically, d4 is the best among the three arrays according

to their aliasing patterns, followed by d5 and d3. Hence, d4 should be selected for the experiment.

Example 2 shows that COAs with maximum strengths may not be unique and they can be

further discriminated by their wordtype patterns. Let

i︷ ︸︸ ︷
C · · ·C

j
︷ ︸︸ ︷
n · · ·n represent a defining word

consisting of i control factors and j noise factors, which is said to be of type (i, j). Note that

Ai.j is the number of defining words of type (i, j) in the defining contrast subgroup of a COA.

Defining words of length k have (k+1) different types, which are (k, 0), (k−1, 1), . . ., (1, k−1),

and (0, k). In the following, we re-arrange Ai.j into a sequence that can be used to rank-order

different COAs. First, we consider the defining words of length 3: CCC, CCn, Cnn and nnn.

In COAs, CCn and Cnn are not present. Because the purposes of robust parameter design

are mean response optimization and variance reduction, in terms of aliasing severity, CCC is
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considered more severe than nnn, which we write as CCC � nnn, or, A3.0 � A0.3. Next, we

consider the defining words of length 4: CCCC, CCCn, CCnn, Cnnn and nnnn. Similarly,

CCCn and CCnn are not present in COAs, and we regard CCCC as being more severe than

nnnn, that is, CCCC�nnnn. It is reasonable that Cnnn should be considered more severe than

nnnn, however, the comparison between CCCC and Cnnn is not conclusive at first glance.

CCCC causes aliasing between control-by-control 2fi’s, which may hinder the identification

of second order location effects for response mean optimization, while Cnnn causes aliasing

between control-by-noise 2fi’s and noise-by-noise 2fi’s, which may hinder the identification of

first order dispersion effects for variation reduction. Therefore, we regard Cnnn to be more

sever than CCCC, and Cnnn � CCCC � nnnn, or, A1.3 � A4.0,�A0.4. For the defining words

of order 5, we have CCnnn � Cnnnn � CCCCC � nnnnn, or, A2.3 � A1.4 � A5.0 � A0.5. In

general, Ai1.j1 � Ai2.j2 if

(i) i1 + j1 < i2 + j2; or

(ii) | i1 − j1 |<| i2 − j2 | and i1 + j1 = i2 + j2; or

(iii) i1 > i2 and |i1 − j1| = |i2 − j2| and i1 + j1 = i2 + j2.

(2)

Thus, following �, all the wordtype patterns Ai.j can be arranged into a sequence, denoted by

Wc, from the most severe to the least severe, as follows:

Wc = (A3.0, A0.3, A1.3, A4.0, A0.4, A2.3, A1.4, A5.0, A0.5, A3.3, A2.4, A1.5, A6.0, A0.6, · · ·). (3)

And we refer to Wc as the wordtype pattern sequence for COAs. Note that Ai.j with 0 ≤ i+j ≤ 2

are constants for designs with resolution at least III, so they are not included in Wc.

Suppose d1 and d2 are two COAs whose wordtype pattern sequences are Wc(d1) and Wc(d2)

respectively. Let Ai0.j0 be the first component of Wc such that Ai0.j0(d1) 6= Ai0.j0(d2). If

Ai0.j0(d1) < Ai0.j0(d2), then d1 is said to have less Wc-aberration than d2. If there does not

exist a COA with less Wc-aberration than d1, d1 is said to have minimum Wc-aberration. Fur-

thermore, if d1 has minimum Wc-aberration and maximum strengths, then d1 is said to be an

optimal COA. The reason to include the requirement of maximum strengths in the optimal-

ity criterion for COAs is that it is not necessarily true that T (d1) ≥ T (d2) componentwisely

when d1 has less Wc-aberration than d2. Though all the known minimum Wc-aberration COAs

achieve maximum strengths, we are not able to prove that it is always true. So we conjecture

that minimum Wc-aberration COAs also achieve maximum strengths.

Example 2 (Continued). For d3, d4, d5 and d6, Wc(d3) = (0, 0, 4, 1, 3, 0, 0, 0, 0, 4, 0, . . .),

Wc(d4) = (0, 0, 0, 1, 1, 8, 0, 0, 0, 0, 4, . . .), Wc(d5) = (0, 0, 0, 1, 3, 8, 0, 0, 0, 0, 0, . . .) and Wc(d6) =
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(0, 4, 0, 1, 3, 0, 0, 0, 0, 0, 0, . . .). In the order of increasing Wc-aberration, we have d4, d5, d3 and

d6. Complete computer search concludes that d4 has minimum Wc-aberration and maximum

strengths among all the 64-run COAs with four control factors and six noise factors. Hence,

d4 is the optimal COA and should be recommended for the experiment, and the second best is d5.

3.3 Tables of Optimal COAs with ln ≥ 3

Because optimal COAs of 16-, 32- and 64-run are useful for parameter design experiments,

it is valuable to tabulate them as a convenient reference for experimenters in practice. The

optimal COAs with 2k runs and one or two noise factors can be easily constructed as follows.

Because ln ≤ 2, Wc is reduced to be (Ai.0)3≤i≤lc after the zero components are removed. For

(lc, 1) or (lc, 2) that belongs to S(2k), the optimal COA is a cross array, where the control array

is a 2lc full factorial design for 1 ≤ lc ≤ k − 1, or a 2lc−(lc+ln−k) MA design for lc ≥ k, and the

noise array is a 2ln full factorial design.

When ln ≥ 3, in general, how to construct optimal COAs with (lc, ln) ∈ S(2k) is unknown,

so we have conducted extensive computer search with complete isomorphism checking to select

optimal COAs. Two 2(l1+l2)−p designs d and d′ are said to be isomorphic, if there exists a

relabeling of the factors of d that transforms G(d) to G(d′), where G(d) and G(d′) are the

defining contrast subgroups of d and d′, respectively. Our search procedure consists of three

steps. The first step is to construct the list of all nonisomorphic 2(l1+l2)−p designs, the second

step is to sort all the nonisomorphic designs according to the optimality criterion for COAs for

any given lc, ln and k (k = 4, 5, 6), and the third step is to output the optimal COAs. For 16-

and 32-run designs, we have utilized the lists of nonisomorphic 2l−p designs generated by Sun

et al. (1993), where factors are not separated into two groups. For 64-run designs, we have

constructed the list of nonisomorphic 2(l1+l2)−p designs from scratch for l1 + l2 up to 16.

The final output of our computer search is reported in Table 1 and Table 2. Table 1 contains

all the 16-run and 32-run optimal COAs with ln ≥ 3, and Table 2 contains all the 64-run optimal

COAs with lc + ln ≤ 16 and ln ≥ 3. In both the tables, every row gives an optimal COA, and

the columns, from the left to the right, give (lc, ln), independent defining words (or generators),

strength vector T = (tc, tn, ta) and the number of clear control main effect, noise main effects,

control-by-control 2fi’s, control-by-noise 2fi’s and noise-by-noise 2fi’s, respectively. For example,

from Table 1, the optimal 32-run COA with lc = 2 and ln = 7, denoted by d1, is

(2, 7)? abce abdf acdg ABbcd (2,2,3) (2,7,1,14,0);

the optimal 32-run COA with lc = 3 and ln = 6, denoted by d2, is
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(3, 6)◦ ABC Aabd Aace Bbcf (2,2,2) (0, 6, 0, 8, 1).

d1 is a resolution IV design with its control array and noise arrays of strength 2. In d1, all the

control main effects, the noise main effects, the control-by-control 2fi’s and the control-by-noise

2fi’s are clear. The 32-run cross array with lc = 2 and ln = 7, denoted by d′
1, is given by crossing

a 22 control array and a 27−4 noise array. Note that the noise array in d′
1 is a saturated 8-run

fractional factorial design. The resolution of d′
1 is III, which is less than that of d1. In d′

1, the

control main effects and the control-by-noise 2fi’s are also clear, but the noise main effects are

only eligible. Therefore, in terms of both strengths and the number of clear effects, d1 is better

than d′
1, which is indicated by the ? in (2, 7)?. The same interpretation applies to other arrays

marked with ? in Tables 1 and 2.

The optimal COA d2 above is a resolution III design with its control array and noise arrays

of strength 2. In d2, six noise main effects, eight control-by-noise 2fi’s and one noise-by-noise

2fi are clear, and control main effects are aliased with control-by-control 2fi’s and the other

control-by-noise 2fi’s and noise-by-noise 2fi’s are only eligible. The corresponding 32-run cross

array, denoted by d′
2, is given by crossing a 4-run 23−1 control array and a 8-run 26−3 design.

d2 and d′
2 have the same strength vector. In d′

2, all the control-by-noise 2fi’s are clear, control

main effects are aliased with some control-by-control 2fi’s, noise main effects are aliased with

some noise-by-noise 2fi’s, and the rest 2fi’s are eligible. There clearly exists a trade-off between

d2 and d′
2, that is, d2 guarantees the clear estimation of the noise main effects while d′

2 ensures

the clear estimation of all the control-by-noise 2fi’s. Due to the trade-off, the advantage of d′
2

over d2 is not as clear as that of d1 over d′
1 discussed in the proceeding paragraph. We indicate

this trade-off by the ◦ in (3, 6)◦. The same interpretation applies to other arrays marked with

◦ in Tables 1 and 2. The trade-off can also be regarded as an indication that the array for

the given lc and ln is already too tight to simultaneously possess a crossing structure and a

good estimation capability for important effects. It may suggest that single array be considered

instead; see the good single arrays with lc = 3 and ln = 6 reported in Table 3 later. Some of

the designs reported in Tables 1 and 2 were also obtained by Hedayat and Stufken (1999) and

Bingham and Sitter (2003). Nonetheless, they are included in the tables for completeness.

4 OPTIMAL SINGLE ARRAYS

From the discussion in Section 3.1, we know that the smallest COA or cross array with lc

control factors and ln noise factors requires 2dlog2(lc+1)e+dlog2(ln+1)e runs. When both lc and ln

increase, COAs become too large to be feasible in practice. For example, there does not exist
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Table 1: 16- and 32-Run Optimal Strong Compound Orthogonal Arrays

Design generators strength clear effects

16-run:

(1, 4)? Aabcd (1, 3, 4) (1, 4, 0, 4, 6)
(2, 3)? ABabc (2, 2, 4) (2, 3, 1, 6, 3)
(1, 5)◦ Aabd Aace (1, 2, 3) (1, 5, 0, 0, 0)
(3, 3)◦ ABC Aabc (2, 2, 2) (0, 3, 0, 6, 0)
(1, 6)◦ Aabd Aace Abcf (1, 2, 3) (1, 6, 0, 0, 0)
(1, 7)◦ Aabd Aace Abcf abcg (1, 2, 3) (1, 7, 0, 0, 0)

32-run:

(1, 5)? Aabcde (1, 4, 5) (1, 5, 0, 5, 10)
(2, 4)? ABabcd (2, 3, 5) (2, 4, 1, 8, 6)
(3, 3)? ABCabc (3, 2, 5) (3, 3, 3, 9, 3)
(1, 6)? abce Aabdf (1, 3, 3) (1, 6, 0, 6, 9)
(2, 5)? abcd ABabe (2, 2, 3) (2, 5, 1, 10, 4)
(3, 4)? ABC Aabcd (2, 3, 2) (0, 4, 0, 12, 6)
(4, 3)? ABCD ABabc (3, 2, 3) (4, 3, 0, 12, 3)
(1, 7)? abce abdf Aacdg (1, 3, 3) (1, 7, 0, 7, 6)
(2, 6)? abce abdf ABacd (2, 2, 3) (2, 6, 1, 12, 0)
(3, 5)◦ ABC Aabd Bace (2, 2, 2) (0, 5, 0, 9, 4)
(5, 3)? ABD ACE BCabc (2, 2, 2) (0, 3, 0, 15, 3)
(1, 8)? abcf abdg abeh Aacde (1, 3, 3) (1, 8, 0, 8, 0)
(2, 7)? abce abdf acdg ABbcd (2, 2, 3) (2, 7, 1, 14, 0)
(3, 6)◦ ABC Aabd Aace Bbcf (2, 2, 2) (0, 6, 0, 8, 1)
(6, 3)? ABD ACE BCF ABCabc (2, 2, 2) (0, 3, 0, 18, 3)
(1, 9)◦ Aabe Aacf Aadg Abcdh abcdi (1, 2, 3) (1, 9, 0, 0, 0)
(3, 7)◦ ABC Aabd Aace Abcf Babcg (2, 2, 2) (0, 7, 0, 8, 0)
(7, 3)◦ ABD ACE BCF ABCG Aabc (2, 2, 2) (0, 3, 0, 18, 0)
(1, 10)◦ abce abdf acdg bcdh Aabi Aacj (1, 2, 3) (1, 10, 0, 0, 0)
(1, 11)◦ abce abdf acdg bcdh Aabi Aacj Aadk (1, 2, 3) (1, 11, 0, 0, 0)
(1, 12)◦ abcf abdg acdh bcdi abej acek bcel Aade (1, 2, 3) (1, 12, 0, 0, 0)
(1, 13)◦ Aabe Aacf Abcg abch Aadi Abdj abdk Acdl acdm (1, 2, 3) (1, 13, 0, 0, 0)
(1, 14)◦ Aabe Aacf Abcg abch Aadi Abdj abdk Acdl acdm bcdn (1, 2, 3) (1, 14, 0, 0, 0)
(1, 15)◦ Aabe Aacf Abcg abch Aadi Abdj abdk Acdl acdm bcdn Aabcdo (1, 2, 3) (1, 15, 0, 0, 0)
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Table 2: 64-Run Optimal Strong Compound Orthogonal Arrays

Design generators strength clear effects
(1, 6)? Aabcdef (1, 5, 6) (1, 6, 0, 6, 15)
(2, 5)? ABabcde (2, 4, 6) (2, 5, 1, 10, 10)
(3, 4)? ABCabcd (3, 3, 6) (3, 4, 3, 12, 6)
(4, 3)? ABCDabc (4, 2, 6) (4, 3, 6, 12, 3)
(1, 7)? Aabcf abdeg (1, 3, 4) (1, 7, 0, 7, 21)
(2, 6)? Aabce Babdf (2, 3, 4) (2, 6, 1, 12, 15)
(3, 5)? ABabd Cabce (3, 2, 4) (3, 5, 3, 15, 10)
(4, 4)? ABCD ABabcd (3, 3, 3) (4, 4, 0, 16, 6)
(5, 3)? ABabc ABCDE (4, 2, 4) (5, 3, 10, 15, 3)
(1, 8)? abcf Aabdg acdeh (1, 3, 3) (1, 8, 0, 8, 22)
(2, 7)? abce Aabdf Bacdg (2, 3, 3) (2, 7, 1, 14, 15)
(3, 6)? abce ACabd Bacdf (3, 2, 3) (3, 6, 3, 18, 9)
(4, 5)? ABCD ABabd ACace (3, 2, 3) (4, 5, 0, 20, 10)
(5, 4)? ABD ACE BCabcd (2, 3, 2) (0, 4, 0, 20, 6)
(6, 3)? ABCE ABDF ACDabc (3, 2, 3) (6, 3, 0, 18, 3)
(1, 9)? abcf Aabdg Aabeh acdei (1, 3, 3) (1, 9, 0, 9, 24)
(2, 8)? abcf Aabdg Aabeh Bacde (2, 3, 3) (2, 8, 1, 16, 16)
(3, 7)? abcf abdg Bacde ACabe (3, 2, 3) (3, 7, 3, 21, 6)
(4, 6)? ABCD ABabd ABace ACbcf (3, 2, 3) (4, 6, 0, 24, 9)
(5, 5)? ABD ACE BCabd ABCace (2, 2, 2) (0, 5, 0, 25, 10)
(6, 4)? ABD ACE BCF ABCabcd (2, 3, 2) (0, 4, 0, 24, 6)
(7, 3)? ABCE ABDF ACDG BCDabc (3, 2, 3) (7, 3, 0, 21, 3)
(1, 10)? abcg abdh acdei acdfj Aabef (1, 3, 3) (1, 10, 0, 10, 24)
(2, 9)? abcf abdg abeh acdei ABbcde (2, 2, 3) (2, 9, 1, 18, 8)
(3, 8)? ABC abce Aabdf Bacdg ABbcdh (2, 3, 2) (0, 8, 0, 24, 16)
(4, 7)? abce abdf ACacd BDacd ABabg (3, 2, 3) (4, 7, 0, 28, 6)
(5, 6)? ABD ACE BCabd BCace ABCbcf (2, 2, 2) (0, 6, 0, 30, 9)
(6, 5)? ABD ACE BCF ABCabd ABCace (2, 2, 2) (0, 5, 0, 30, 4)
(7, 4)? ABD ACE BCF ABCG Aabcd (2, 3, 2) (0, 4, 0, 28, 6)
(8, 3)? ABCE ABDF ACDG BCDH ABabc (3, 2, 3) (8, 3, 0, 24, 3)
(1, 11)? abcg abdh acei adfj aefk Aabcdef (1, 3, 3) (1, 11, 0, 11, 10)
(2, 10)? abcf abdg aceh adei abcdej ABacd (2, 2, 3) (2, 10, 1, 20, 0)
(3, 9)◦ ABC Aabe Aacf Badg Abcdh ABabcdi (2, 2, 2) (0, 9, 0, 17, 16)
(5, 7)? ABD ACE BCabd BCace BCbcf Aabcg (2, 2, 2) (0, 7, 0, 35, 6)
(6, 6)? ABD ACE BCF ABCabd ABCace ABCbcf (2, 2, 2) (0, 6, 0, 36, 0)
(7, 5)◦ ABD ACE BCF ABCG Aabd Bace (2, 2, 2) (0, 5, 0, 29, 4)
(9, 3)? ABE ACF ADG BCDH ABCDI BCabc (2, 2, 2) (0, 3, 0, 27, 3)
(1, 12)? abcg abdh abei Abcde acfj defk acdefl (1, 3, 3) (1, 12, 0, 12, 0)
(2, 11)? abcf abdg acdh abei acej adek ABbcd (2, 2, 3) (2, 11, 1, 22, 0)
(3, 10)◦ ABC Aabe Aacf Bbcg Badh Abcdi ABabcdj (2, 2, 2) (0, 10, 0, 10, 17)
(6, 7)? ABD ACE BCF ABCabd ABCace ABCbcf abcg (2, 2, 2) (0, 7, 0, 42, 0)
(7, 6)◦ ABD ACE BCF ABCG Aabd Bace Cbcf (2, 2, 2) (0, 6, 0, 30, 3)
(10, 3)? ABE ACF BCG ADH BCDI ABCDJ BDabc (2, 2, 2) (0, 3, 0, 30, 3)
(1, 13)? abcg abdh acei adej abfk Abcdf cefl defm (1, 3, 3) (1, 13, 0, 13, 0)
(2, 12)? abcf abdg acdh bcdi abej acek adel ABbce (2, 2, 3) (2, 12, 1, 24, 0)
(3, 11)◦ ABC Aabe Aacf Bbcg Aadh Bbdi Bacdj Abcdk (2, 2, 2) (0, 11, 0, 8, 6)
(7, 7)◦ ABD ACE BCF ABCG Aabd Bace Cbcf ABCabcg (2, 2, 2) (0, 7, 0, 28, 0)
(11, 3)? ABE ACF BCG ADH BDI ACDJ BCDK ABCDabc (2, 2, 2) (0, 3, 0, 33, 3)
(1, 14)? abcg abdh acei adej abcdek abfl Aacdf aefm abcefn (1, 3, 3) (1, 14, 0, 14, 0)
(2, 13)? abcf abdg acdh bcdi abej acek bcel adem ABbde (2, 2, 3) (2, 13, 1, 26, 0)
(3, 12)◦ ABC Aabe Aacf Bbcg Aadh Bbdi ABacdj Abcdk abcdl (2, 2, 2) (0, 12, 0, 7, 3)
(12, 3)? ABE ACF BCG ADH BDI ACDJ BCDK ABCDL ABCabc (2, 2, 2) (0, 3, 0, 36, 3)
(1, 15)? abcg abdh acei adej abcdek abfl Aacdf aefm abcefn abdefo (1, 3, 3) (1, 15, 0, 15, 0)
(2, 14)? abcf abdg acdh bcdi abej acek bcel adem bden ABcde (2, 2, 3) (2, 14, 1, 28, 0)
(3, 13)◦ ABC Aabe Aacf Abcg Babch Aadi Abdj Babdk Bcdl acdm (2, 2, 2) (0, 13, 0, 6, 2)
(13, 3)? ABE ACF BCG ABCH ADI BDJ ABDK CDL ACDM BCDabc (2, 2, 2) (0, 3, 0, 39, 3)
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a 32-run COA with lc = 4 and ln = 6. If one can only afford to conduct a 32-run experiment,

he/she should consider single arrays. For given lc, ln and run size 2k, formally, a single array is

a 2(lc+ln)−m design with lc columns assigned to the control factors and the remaining ln columns

assigned to the noise factors, where m = lc + ln − k (Wu and Zhu, 2003). The necessary and

sufficient condition for the existence of a single array is lc + ln ≤ 2k − 1. For the experiment

with four control factors (A, B, C, D) and six noise factors (a, b, c, d, e, f), for example, the

single array generated by the independent defining words abd, ace, bcf , ACabc and ABDa, can

be considered.

COAs are single arrays that possess crossing structures, so they are special cases of single

arrays. Based on the number of control factors (lc), the number of noise factors (ln), and the

run size (2k), we propose to classify single arrays into two categories, which are prodigal single

arrays and economical single arrays, as follows. A single array with lc, ln and run size 2k is

a prodigal single array (PSA) if (lc, ln) ∈ S(2k), and it is an economical single array (ESA) if

(lc, ln) /∈ S(2k).

We know that 2k-run single arrays exist for lc control factors and ln noise factors if lc + ln ≤
2k−1. For 2k-run single arrays, the total degrees of freedom are fixed to be 2k, but lc and ln can

vary. Heuristically, when lc + ln is small, the number of lower-order effects such as the control

main effects and the control-by-noise 2fi’s is small, so it may be possible to construct the single

array in a way such that all the lower-order effects can be clearly estimable, and we claim that

the single array has large relative estimation capacity with respect to lc and ln. When lc + ln is

large, the number of lower-order effects is large, so it may not be possible to have a single array

in which all the lower-order effects are clearly estimable, and we claim that the single array has

small relative estimation capacity with respect to lc and ln. One purpose of classifying single

arrays into PSAs and ESAs is to distinguish single arrays with large relative estimation capaci-

ties, i.e., PSAs, from those with small relative estimation capacities, i.e., ESAs. As will be clear

later, different criteria need to be used for selecting optimal PSAs and ESAs. Another purpose

of the above classification is to facilitate the fair comparison between cross arrays and single

arrays. In the literature, there is much discussion regarding the advantages and disadvantages

of single arrays versus cross arrays, however, no general conclusions have been reached. We

suggest that cross arrays or COAs are only comparable with PSAs, but not directly with ESAs.

This greatly clarifies the discussion, and leads to various useful criteria for choosing COAs,

PSAs and ESAs. In the rest of the section, we focus on proposing optimality criteria for single

arrays in general in Section 4.1, then discuss the selection of optimal ESAs in Section 4.2, and
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the selection of optimal PSAs in Section 4.3.

4.1 Optimality Criteria for Single Arrays

4.1.1 Ws-Aberration

The wordtype patterns Ai.j of single arrays are not subject to the restrictions Ai.1 = Ai.2 = 0.

The arguments used to arrange Ai.j with j ≥ 3 into Wc in Section 3.2 are still valid for single

arrays. To obtain a complete sequence of wordtype patterns for single arrays, we need a proper

way to insert Ai.j with j = 1, 2 into Wc. Let us first consider A2.1 and A1.2, or equivalently, CCn

and Cnn. The worst aliasing relations induced by CCn and Cnn are C = Cn and Cn = n

respectively. Because C and Cn are of primary importance for parameter design, C = Cn is

more severe than Cn = n. So CCn � Cnn. Clearly, both CCn and Cnn are more severe in

terms of aliasing severity than CCC and nnn. Hence, we have CCn � Cnn � CCC � nnn, or,

A2.1 � A1.2 � A3.0 � A0.3. Next, we consider A4.1 and A4.2, or CCCn and CCnn. The worst

aliasing relation induced by CCCn is CC = Cn and the worst by CCnn is Cn = Cn. Both CC

and Cn are effects of order 2, but Cn plays a more crucial role in parameter design than CC.

So Cn = Cn is considered to be more severe than CC = Cn, which implies CCnn � CCCn.

In a similar way, we have CCCn � Cnnn. Hence, CCnn � CCCn � Cnnn � CCCC � nnnn,

or A2.2 � A3.1 � A1.3 � A4.0 � A0.4. We can further compare defining words with length larger

than four. This leads to the same scheme as stated in (3) for ranking two different wordtype

patterns Ai1.j1 and Ai2.j2 in terms of aliasing severity. We denote the resulted sequence by Ws,

which is

Ws = (A2.1, A1.2, A3.0, A0.3, A2.2, A3.1, A1.3, A4.0, A0.4, A3.2, A2.3, A4.1, A1.4, A5.0, A0.5, . . .). (4)

Note that Wc is a subsequence of Ws.

The hierarchical ordering principle states that (i) effects of lower order are more important

than those of higher order; (ii) effects of the same order are equally important. In Ws, (i) is

preserved, but (ii) does not hold. In fact, effects with the same order are further distinguished

according to their relative importance for parameter design. Based on Ws, Ws-aberration and

the minimum Ws-aberration criterion can be defined and proposed for selecting optimal single

arrays. In the derivation of Ws, we have only considered the aliasing relations implied by the

wordtype patterns and have not taken into account the run size of a single array, or to be more

precise, the relative estimation capacity of a single array. When the relative estimation capacity

of a single array is much limited, for example, in an economical single array, it is impossible to
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guarantee that all the lower-order effects can be clearly estimated. Hence, in selecting practi-

cally useful single arrays, one needs to prioritize the estimation of important effects versus less

important effects. In extreme cases, the estimation of the less important effects may need to

be compromised entirely.

4.1.2 Split Wordtype Patterns and (Wsm,Wsn)-Aberration

The major advantage of using ESAs is run size economy. As mentioned in the end of the

previous subsection, the relative estimation capacities of ESAs are already small. In other

words, ESAs usually do not have enough capacities to accommodate all the low-order effects in

a balanced way. Nonetheless, the use of ESAs in practice can be justified by the effects sparsity

principle and the effects asymmetry existing in parameter design (Shoemaker, et al., 1991).

The effects sparsity principle states that the number of effects that are significant in a factorial

experiment is relatively small (Box and Meyer, 1986), and the effects asymmetry refers to the

fact that control-by-noise 2fi’s as well as control main effects are more important than noise

main effects and other 2fi’s. If an ESA ensures the clear estimation of the important effects,

e.g., control main effects and control-by-noise 2fi’s, while sacrificing other less important effects,

e.g., noise effects, it is still a practically useful experimental plan. To reflect the emphasis on

the important effects and the discrimination against the less important effects, we first split Ws

into two separate sequences:

Wsm = (A2.1, A1.2, A3.0, A2.2, A3.1, A1.3, A4.0, A3.2, A2.3, A4.1, A1.4, A5.0, A3.3, . . .), (5)

and

Wsn = (A0.3, A0.4, A0.5, A0.6. . . .). (6)

Notice that Wsm consists of Ai.j with i > 1 that involve at least one control factor; Wsn consists

of Ai.j with i = 0 that involve only noise factors. We call Wsm the mixed wordtype pattern

sequence and Wsn the noise wordtype pattern sequence. Next we append Wsn in the end of

Wsm to form a longer sequence (Wsm,Wsn), which is called the split wordtype pattern sequence.

Based on (Wsm,Wsn), (Wsm,Wsn)-aberration and the minimum (Wsm,Wsn)-aberration cri-

terion can be defined. Note that, in (Wsm,Wsn), noise effects are treated as secondary, and are

sacrificed to ensure more estimation capacity for control effects and control-by-noise interac-

tions. Thus both statements (i) and (ii) in the hierarchical ordering principle are violated. It

is known that defining words that contain only noise factors can also induce aliasing between

important effects. For instance, nnn induces Cn = Cnn. As will be discussed in the following
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subsection, the split wordtype pattern sequence is one of the possible compromising schemes

aimed at allocating most estimation capacity to important effects. It usually does not guarantee

the clear estimation of all important effects, neither do other schemes. We propose (Wsm,Wsn)

first because it is a systematic scheme that possesses clear combinatorial structure and often

leads to overall good single arrays, especially good ESAs.

4.1.3 Shifted Wordtype Patterns and Wss-Aberration

In contrast to (Wsm,Wsn), milder compromising schemes can be introduced by shifting A0.j

with j ≥ 3 rightward to new positions in Ws, instead of appending all of them at the end of

Wsm. We propose one possible shifting scheme next. Because the estimation of noise effects is

to be compromised, we ignore the aliasing between them in the following discussion. We follow

the worst-case argument used by Bingham and Sitter (2003). Consider A0.3 or nnn. The worst

alias relation induced by nnn is Cn = Cnn, similar to C1n = C2nn, which is the worst aliasing

relation induced by CCnnn. This implies that nnn and CCnnn are comparable in terms of

aliasing severity. So we can have either nnn � CCnnn or CCnnn � nnn. We decide to select

nnn � CCnnn and move A0.3 to the position between A3.2 and A2.3. Next, consider A0.4 or

nnnn. The worst case induced by nnnn is Cnn = Cnn, similar to C1nn = C2nn, which is

induced by CCnnnn. Hence, we shift A0.4 to the position between A4.2 and A2.4. In general,

following the same argument, we have Ai.2 � A0.i � A2.i for i ≥ 3. Shifting all A0.i rightward as

described above, Ws becomes

Wss = (A2.1, A1.2, A3.0, A2.2, A3.1, A1.3, A4.0, A3.2,A0.3, A2.3, A4.1, A1.4, A5.0, A3.3, A4.2,A0.4,

A2.4, A5.1, A1.5, A6.0, A4.3, . . .). (7)

A0.3 and A0.4 are highlighted in Wss to indicate their new positions. Wss is called the shifted

wordtype pattern sequence.

The difference between Wss and a list of rank-ordered effects given in Bingham and Sitter

(2003) is that Wss further distinguishes wordtype patterns with the same modified wordlength.

For example, CCn and Cnn have the same modified wordlength 2.5, but CCn � Cnn in Wss;

CCC and CCnn have the same modified wordlength 3, but CCC � CCnn in Wss. Bingham

and Sitter (2003) treated nnn as equally important as CCCC, CCCnn and CCnnn, while in

Wss, CCCC � CCCnn � nnn � CCCnn. If the wordtypes with the same modified wordlength

were combined, Wss is reduced to be

WDR = (A2.1 +A1.2, A3.0 +A2.2, A3.1 +A1.3, A4.0 +A3.2 +A0.3 +A2.3, A4.1 +A1.4, A5.0 +A3.3 +A4.2
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+A0.4 + A2.4, A5.1 + A1.5, A6.0 + A4.3, . . .), (8)

which was exactly the sequence proposed in Bingham and Sitter (2003). The Wss-aberration and

the WDR-aberration can be defined in a standard fashion, so are the minimum Wss-aberration

criterion and the WDR-aberration criterion. Bingham and Sitter (2003) reported minimum

WDR-aberration designs. Because WDR is relatively a coarse sequence, it may not be able to

discriminate designs that may have different aliasing and structural properties.

Example 3. Consider a 32-run experiment involving two control factors (A, B) and five noise

factors (a, b, c, d e). Three minimum WDR-aberration arrays were reported in Table 4 of Bing-

ham and Sitter (2003), which are d1 : I = abcd = ABabe = ABcde, d2 : I = abc = ABade =

ABbcde, and d3 : I = abc = ade = bcde. d1, d2 and d3 share the same WDR = (0, 0, 0, 2, 0, 1),

and all of them are in fact COAs. Their strength vectors are T (d1) = (2, 2, 3), T (d2) = (2, 2, 2)

and T (d3) = (2, 2, 2), so d1 possesses higher strengths than d2 and d3. All of the designs

guarantee the clear estimation of control main effects and control-by-noise 2fi’s. In addition,

d1 guarantees the clear estimation of noise main effects. Therefore, d1 is overall better than

the other two arrays. The shifted wordtype pattern sequences of d1, d2 and d3 are Wss(d1) =

(0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, . . .), Wss(d2) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, . . .),

and Wss(d3) = (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, . . .). Hence, d1 is the minimum Wss-

aberration single array, followed by d2 and d3.

In summary, on one hand, Wss is more elaborate than WDR, therefore it is more sensitive

in discriminating different designs. On the other hand, WDR is more conservative, because the

minimum WDR-aberration criterion usually leads to a group of designs so that good designs

would not be missed.

4.2 Optimal Economical Single Arrays

Because PSAs and ESAs are fairly different from each other in terms of their relative es-

timation capacities, different optimality criteria should be employed to select optimal PSAs

and ESAs. In this section, we will focus on the selection of optimal ESAs. For ESAs, be-

cause their relative estimation capacities are already limited, the minimum Wss-aberration and

(Wsm,Wsn)-aberration criteria are more appropriate than the minimum Ws-aberration crite-

rion. We have also found that Wss-aberration and (Wsm,Wsn)-aberration often lead to the

same optimal ESAs. Hence, the minimum (Wsm,Wsn)-aberration criterion more genuinely re-
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flects the structures of optimal ESAs. In this paper, we only report the ESAs with minimum

(Wsm,Wsn)-aberrations.

Similar to the selection of optimal COAs, we have carried out exhaustive computer search

with isomorphism checking to select ESAs with minimum (Wsm,Wsn)-aberration, and have ob-

tained all the optimal 16-, 32- and 64-run (up to 16 factors) ESAs. Due to limited space, only

some of the optimal ESAs are chosen and presented in Table 3. There are two general rules to

guide the choice of optimal ESAs. First, Table 3 only includes optimal ESAs with lc + ln ≤ 2k−1

for k = 4, 5; lc + ln ≤ 16 for k = 6. Second, if an optimal ESA with lc and ln is also an ordinary

MA 2(lc+ln)−m design (m = lc + ln − k), it is not listed in Table 3. The complete tables of 16-,

32- and 64-run optimal ESAs can be requested from the authors.

4.3 Optimal Prodigal Single Arrays

For fixed lc and ln, compared with ESAs, PSAs have larger relative estimation capacities.

Hence, discrimination against less important effects in the selection of optimal PSAs may not be

as necessary as in the selection of optimal ESAs. Among the three optimality criteria proposed

in Sections 4.1.2-3, it appears that the minimum Ws-aberration criterion is the most suitable for

PSAs. Although, for most lc and ln, the optimal PSAs according to the minimum Ws-aberration

criterion are much better than the optimal PSAs according to the other two criteria in terms

of strengths and the number of clearly estimable effects, there exist cases where the latter two

criteria select better arrays. These cases occur usually when (lc, ln) are on the boundary of

S(2k) in the sense that there does not exist (l′c, l
′
n) ∈ S(2k) such that l′c ≥ lc, l′n ≥ ln and

l′c + l′n > lc + ln. Hence, when constructing the tables of optimal PSAs of 16-, 32- and 64-run,

we have considered all the three criteria. In the cases where the criteria lead to different optimal

PSAs, if one optimal PSA is apparently better than the others, it will be selected only; if they

are comparable with each other, we keep all of them in the tables. The obtained optimal PSAs

are reported in Table 4 including 16- and 32-run arrays and in Table 5 including 64-run arrays

with up to 16 factors.

In both Tables 4 and 5, from the left to the right, the first two columns give (lc, ln) and

the independent defining words (or Generators), the next three columns indicate whether an

array is optimal according to Ws-, (Wsm,Wsn)- and Wss-aberration, and the last two columns

indicate whether the array is also a COA and whether it is a MA design with the distinction

between control and noise factors neglected. For example, in Table 4, there are two optimal

32-run PSAs for lc = 4 and ln = 3, which are
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Table 3: 16- 32- and 64-Run Optimal ESAs

Design generator clear 2fi

16-run:

(2, 4) abc ABad (2, 1, 0, 4, 2)
(2, 5) abd ace ABbc (2, 0, 0, 2, 0)
(2, 6) abd ace bcf ABabc (2, 0, 0, 0, 0)

32-run:

(4, 5) ABac ABbd Aabe BCDab (4, 5, 5, 10, 0)
(5, 4) abd ACac BDac ABEb (5, 1, 0, 7, 2)
(2, 8) abd ace bcf abcg ABah (2, 1, 0, 12, 6)
(4, 6) abd ace bcf ACabc ABDa (4, 0, 0, 8, 0)
(5, 5) abd ace ACbc BDbc ABEa (5, 0, 0, 4, 0)
(6, 4) abc ABDa ACEa BCFa ABCbd (6, 1, 0, 6, 2)
(2, 9) abe acf bcg abch adi ABbd (2, 0, 0, 10, 0)
(3, 8) abd ace bcf Aabcg Babch ABCa (3, 2, 0, 4, 0)
(4, 7) abd ace bcf ACabc Babcg ABDa (4, 1, 0, 4, 0)
(5, 6) abd ace bcf ACabc BDabc ABEa (5, 0, 0, 4, 0)
(6, 5) abd ace ACbc BDbc ABEa ABFabc (6, 0, 0, 0, 0)
(7, 4) ABac ACDa BCEa ABCF Aabd BGab (7, 4, 0, 0, 0)
(8, 3) ABDa ACEa BCFa ABCG Aabc BHab (8, 3, 0, 0, 0)
(2, 10) abe acf bcg abch adi bdj ABcd (2, 0, 0, 8, 0)
(3, 9) abf acg adh Abcd aei Bbce Cbde (3, 0, 0, 3, 0)
(4, 8) abd ace bcf ACabc Babcg ABDa ABbch (4, 2, 0, 0, 0)
(5, 7) abd ace bcf ACabc BDabc ABEa ABbcg (5, 1, 0, 0, 0)
(6, 6) abd ace bcf ACabc BDabc ABEa ABFbc (6, 0, 0, 0, 0)
(8, 4) ACab Dabc Aacd AEbc BFab ABGa ABHb (8, 4, 0, 0, 0)
(2, 11) abe acf bcg abch adi bdj abdk ABcd (2, 0, 0, 6, 0)
(3, 10) abe acf bcg adh bdi ABabc Aabdj ACcd (3, 1, 0, 0, 0)
(4, 9) abf acg adh Abcd aei Bbce Cbde Dcde (4, 0, 0, 4, 0)
(2, 12) abe acf bcg abch adi bdj abdk cdl ABacd (2, 0, 0, 4, 0)
(3, 11) abe acf bcg adh bdi acdj ABabc ACabd Acdk (3, 1, 0, 0, 0)
(2, 13) abe acf bcg abch adi bdj abdk cdl acdm ABbcd (2, 0, 0, 2, 0)
(3, 12) abe acf bcg adh bdi acdj bcdk ABabc ACabd Acdl (3, 1, 0, 0, 0)
(2, 14) abe acf bcg abch adi bdj abdk cdl acdm bcdn ABabcd (2, 0, 0, 0, 0)
(3, 13) abe acf bcg adh bdi acdj bcdk abcdl ABabc ACabd Acdm (3, 1, 0, 0, 0)

64-run:

(4, 8) abe acf bcg Aabch ACad BDabcd (4, 2, 5, 20, 4)
(8, 4) Cabc Dabd AEacd BFacd ABGab ABHbcd (8, 4, 12, 24, 0)
(4, 9) abe acf bcg adh Aabci ACbd ABDacd (4, 1, 5, 20, 2)
(5, 8) abd ace bcf abcg ABDa ACEb BCch (5, 1, 2, 26, 5)
(8, 5) Aabd Aace ADbc BEabc CFabc ABCG ABCHabc (8, 5, 6, 30, 0)
(9, 4) ABCE ABDF ACDG ABHa BCDbc Aabd ABCDIab (9, 4, 6, 16, 0)
(4, 10) abf acg bch adi bdj Babce Cabde ADcde (4, 1, 5, 20, 0)
(5, 9) abe acf bcg abch adi ACbd BDabd ABEc (5, 0, 2, 23, 0)
(6, 8) abd ace bcf abcg ABDa ACEb BCFc ABCabch (6, 1, 0, 24, 4)
(8, 6) abd ace bcf ADabc ABEa ACFa BCGabc ABCHbc (8, 0, 0, 24, 0)
(9, 5) abd ace ADbc BEbc ABFa ACGa BCHabc ABCIbc (9, 0, 0, 20, 0)
(10, 4) ABEa ACFa BDGa CDHa ABCDIa Aabc BCabd ABCJb (10, 4, 4, 12, 0)
(4, 11) abe acf bcg adh bdi acdj ACabc Aabdk ABDcd (4, 1, 5, 22, 0)
(5, 10) abe acf bcg abch adi bdj ACcd BDacd ABEb (5, 0, 2, 20, 0)
(6, 9) abe acf bcg abch adi ACbd BDbd ABEc ABFabcd (6, 0, 0, 20, 0)
(7, 8) abe acf adg Cbcd ADbc Abdh BEabcd ABFb ABGacd (7, 1, 0, 14, 1)
(8, 7) abe acf adg Cbcd ADbc AEbd BFabcd ABGb ABHacd (8, 0, 0, 15, 0)
(9, 6) abd ace bcf ADabc BEabc ABFc ACGa BCHb ABCIab (9, 0, 4, 12, 0)
(10, 5) abd ace ADbc BEbc ABFa CGbc ACHa BCIabc ABCJ (10, 0, 0, 16, 0)
(11, 4) abd ADac BEac ABFb CGac ACHb BCIabc ABCJa ABCKc (11, 1, 0, 8, 2)
(4, 12) abe acf bcg adh bdi acdj bcdk ACabc Aabdl ABDcd (4, 1, 5, 24, 0)
(5, 11) abe acf bcg abch adi bdj abdk ACcd BDacd ABEb (5, 0, 2, 17, 0)
(6, 10) abe acf bcg abch adi bdj ACcd BDcd ABEa ABFbcd (6, 0, 0, 14, 0)
(7, 9) abf acg adh Bbcd aei Cbce Dbde AEbc AFabde AGacde (7, 0, 0, 10, 0)
(8, 8) abe acf adg Cbcd Abch ADbd AEacd BFabcd ABGa ABHbcd (8, 1, 0, 14, 1)
(9, 7) abe acf bcg Cabcd ADabc AEad BFabc BGad ABHb ABIabd (9, 1, 0, 8, 0)
(10, 6) abd ace bcf ADabc BEabc ABFa CGabc ACHb BCIc ABCJ (10, 0, 3, 12, 0)
(11, 5) abd ace ADbc BEbc ABFa CGbc ACHa BCIabc ABCJ ABCKbc (11, 0, 0, 12, 0)
(12, 4) ABCE ABDF ACDG BCDH ABIa ACJa ADKa ABbc CDabd ABCDLab (12, 4, 2, 6, 0)
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Design Generators Ws (Wsm,Wsn) Wss COA MA

(4, 3) ABCD ABabc
√ √ √

(4, 3) abc ABCDa
√ √

.

We refer to the first array above as d1 and the second as d2. d1 is optimal according to

the minimum Ws-aberration criterion and it is in fact an optimal COA, while d2 is optimal

according to the minimum (Wsm,Wsn)-aberration and Wss-aberration criteria. Note that for a

32-run parameter design experiment involving four control factors and three noise factors, the

optimal COA coincides with the optimal PSA according to Ws-aberration. However, this is not

generally true in other cases as shown in Tables 4 and 5. It is not difficult to see that d2 is not a

COA. d2 guarantees the clear estimation of all the control main effects , the control-by-control

2fi’s and the control-by-noise 2fi’s, but the noise main effects and noise-by-noise 2fi’s are aliased

with each other. In d1, the noise main effects and noise-by-noise 2fi’s are clearly estimable, but

the control-by-control 2fi’s are aliased with each other. As a single array, d2 is better than d1

if the noise 2fi’s are assumed to be negligible.

When lc = 3 and ln = 5, there are also two optimal 32-run PSAs reported in Table 4, which

are

Design Generators Ws (Wsm,Wsn) Wss COA MA

(3, 5) Aabd Aace ABCbc
√ √

(3, 5) abd ace ABCbc
√ √

We denote the first array above as d3 and the second array as d4. d3 is optimal according to the

minimum Ws-aberration criterion while d4 is optimal according to the minimum (Wsm,Wsn)-

aberration and Wss-aberration criteria. Neither of d3 and d4 is COA. The optimal 32-run COA

for three control factors and four noise factors given in Table 1 is generated by ABC, Aabd and

Bace and we denote it as d5. In terms of the number of clearly estimable effects, d3 and d4 are

better than d5.

5 CONCLUDING REMARKS

In this paper, we suggest that structural constraints and relative estimation capacities should

be taken into consideration when selecting optimal plans for parameter design experiments. We

have proposed various optimality criteria for selecting useful COAs, ESAs and PSAs. Using

the tables provided in this paper, experimenters can consider and compare possible good ex-

perimental plans, which are optimal in one way or another, and choose the one that best fits

their experimental constraints, capacity and goals. For example, suppose there are four control
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Table 4: 16- and 32-Run Optimal PSAs with (lc, ln) ∈ S(2k)

Design Generators Ws (Wsm, Wsn) Wss COA MA

16-Run:
(1, 4) Aabcd

√ √ √
(2, 3) ABabc

√ √ √ √
(3, 2) ABCab

√ √ √ √
(4, 1) ABCDa

√ √ √ √
(1, 5) abd ace

√ √ √
(3, 3) ABCa ABbc

√ √
(3, 3) ABCa abc

√ √
(5, 1) ABDa ACEa

√ √ √ √
(1, 6) abd ace bcf

√ √ √
(6, 1) ABDa ACEa BCFa

√ √ √ √
(1, 7) abd ace bcf abcg

√ √ √
(7, 1) ABDa ACEa BCFa ABCG

√ √ √ √

32-Run:
(1, 5) Aabcde

√ √ √
(2, 4) ABabcd

√ √ √ √
(3, 3) ABCabc

√ √ √ √
(4, 2) ABCDab

√ √ √ √
(5, 1) ABCDEa

√ √ √ √
(1, 6) abce Aabdf

√ √ √
(2, 5) abcd ABabe

√ √ √ √
(3, 4) abcd ABCab

√ √
(4, 3) ABCD ABabc

√ √ √
(4, 3) abc ABCDa

√ √
(5, 2) ABCD ABEab

√ √ √ √
(6, 1) ABCE ABDFa

√ √ √ √
(1, 7) abce abdf Aacdg

√ √ √
(2, 6) abce abdf ABacd

√ √ √ √
(3, 5) Aabd Aace ABCbc

√ √
(3, 5) abd ace ABCbc

√ √
(5, 3) ABDa ACEa BCabc

√ √
(6, 2) ABCE ABDF ACDab

√ √ √ √
(7, 1) ABCE ABDF ACDGa

√ √ √ √
(1, 8) abcf abdg abeh Aacde

√ √ √
(2, 7) abce abdf acdg ABbcd

√ √ √
(3, 6) Aabd Aace Abcf BCabc

√
(3, 6) abd ace bcf ABCabc

√ √
(6, 3) ABDa ACEa BCFa ABCbc

√
(7, 2) ABCE ABDF ACDG BCDab

√ √ √ √
(8, 1) ABCF ABDG ABEH ACDEa

√ √ √ √
(1, 9) abe acf adg bcdh abcdi

√ √ √
(3, 7) abd ace bcf abcg ABCa

√ √
(7, 3) abc ABDa ACEa BCFa ABCGb

√ √
(9, 1) ABEa ACFa ADGa BCDHa ABCDI

√ √ √ √
(1, 10) abe acf bcg adh bcdi abcdj

√ √ √
(10, 1) ABCE ABDF ACDG BCDH ABIa ACJa

√ √ √ √
(1, 11) abe acf bcg adh bdi acdj bcdk

√ √ √
(11, 1) ABCE ABDF ACDG BCDH ABIa ACJa ADKa

√ √ √ √
(1, 12) abe acf bcg adh bdi acdj bcdk abcdl

√ √ √
(12, 1) ABCF ABDG ACDH BCDI ABEJ ACEK BCEL ADEa

√ √ √ √
(1, 13) abe acf bcg abch adi bdj abdk cdl acdm

√ √ √
(13, 1) ABEa ACFa BCGa ABCH ADIa BDJa ABDK CDLa ACDM

√ √ √ √
ACDM

(1, 14) abe acf bcg abch adi bdj abdk cdl acdm bcdn
√ √ √

(14, 1) ABEa ACFa BCGa ABCH ADIa BDJa ABDK CDLa
√ √ √ √

ACDM BCDN
(1, 15) abe acf bcg abch adi bdj abdk cdl acdm bcdn abcdo

√ √ √
(15, 1) ABEa ACFa BCGa ABCH ADIa BDJa ABDK CDLa

√ √ √ √
ACDM BCDN ABCDOa
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Table 5: 64-Run Optimal PSAs with (lc, ln) ∈ S(2k)

Design Generators Ws (Wsm, Wsn) Wss COA MA
(1, 6) Aabcdef

√ √ √
(2, 5) ABabcde

√ √ √ √
(3, 4) ABCabcd

√ √ √ √
(4, 3) ABCDabc

√ √ √ √
(5, 2) ABCDEab

√ √ √ √
(6, 1) ABCDEFa

√ √ √ √
(1, 7) Aabcf abdeg

√ √ √
(2, 6) Aabce Babdf

√ √ √
(3, 5) ABabd Cabce

√ √ √
(4, 4) Aabcd ABCDa

√ √
(5, 3) ABabc ABCDE

√ √ √ √
(6, 2) ABCEa ABDFb

√ √ √ √
(7, 1) ABCFa ABDEG

√ √ √ √
(1, 8) abcf Aabdg acdeh

√ √ √
(2, 7) abce Aabdf Bacdg

√ √ √
(3, 6) abce ACabd Bacdf

√ √ √
(4, 5) abce ACabd ABCDbc

√ √ √
(5, 4) abcd ABDab ACEac

√ √
(6, 3) ABCE ABabc ACDFa

√ √
(6, 3) abc ABCEa ABDFb

√ √
(7, 2) ABCE ABDFa ACDGb

√ √ √ √
(8, 1) ABCF ABDGa ACDEH

√ √ √ √
(1, 9) abcf Aabdg Aabeh acdei

√ √ √
(2, 8) abcf Aabdg Aabeh Bacde

√ √ √
(3, 7) abcf abdg Bacde ACabe

√ √
(4, 6) abce abdf ACacd BDbcd

√ √
(5, 5) abce ACabd BDabd ABEac

√ √
(5, 5) abd ace ABDbc ACEabc

√ √
(6, 4) abcd ABDab ACEab BCFac

√ √
(7, 3) ABCE ABDF ACDGa ABabc

√
(7, 3) abc ABCE ABDFa ACDGb

√ √
(8, 2) ABCF ABDGa ABEHa ACDEb

√ √ √ √
(9, 1) ABCF ABDGa ABEHa ACDEI

√ √ √ √
(1, 10) abcg abdh acdei acdfj Aabef

√ √ √
(2, 9) abcf abdg abeh acdei ABbcde

√ √ √
(3, 8) abcf abdg abeh Bacde ACbcde

√
(4, 7) abce abdf ACacd BDacd ABabg

√ √ √
(4, 7) abe acf adg ACbcd BDabcd

√
(5, 6) abce abdf ACacd BDacd ABEab

√ √
(6, 5) ABCE ABDF ACDac ACDbd ABabe

√ √
(6, 5) abd ace ABDbc ACEbc BCFabc

√ √
(7, 4) ABCE ABDF ACDac ACDbd ABGab

√ √
(8, 3) ABCF ABDG ABEH ACDEb BCDEac

√
(8, 3) abc ABCE ABDFa ACDGb BCDHab

√ √
(9, 2) ABCF ABDG ABEH ACDEI BCDEab

√ √ √
(10, 1) ABCG ABDH ACDEI ACDFJ ABEFa

√ √ √ √
(1, 11) abcg abdh acei adfj aefk Aabcdef

√ √
(2, 10) abcf abdg aceh adei abcdej ABacd

√ √
(2, 10) abcf abdg acdh bcdi abej ABace

√ √
(3, 9) abe acf bcg adh bcdi ABCabcd

√
(3, 9) abe acf bcg abch adi ABCabd

√
(5, 7) ABCE ABDc ACDad ACDbe ABabf BCDabg

√ √
(5, 7) abe acf adg ACbcd BDabcd ABEb

√
(5, 7) abd ace bcf abcg ABDa ACEb

√
(6, 6) abce abdf ACacd BDacd ABEab ABFbcd

√ √ √
(7, 5) abd ace ABDbc ACEbc BCFbc ABCGa

√ √
(9, 3) ABCG ABDH ABEI BCDEa ACFb DEFc

√
(9, 3) abc ABEa ACFa ADGb BCDHa ABCDIab

√ √
(10, 2) ABCF ABDG ACEH ADEI ABCDEJ ACDab

√ √ √
(11, 1) ABCG ABDH ACEI ADFJ AEFK ABCDEFa

√ √ √
(1, 12) abcg abdh abei Abcde acfj defk acdefl

√ √
(2, 11) abcf abdg acdh abei acej adek ABbcd

√ √
(3, 10) abe acf bcg adh bdi acdj ABCbcd

√
(3, 10) abe acf bcg abch adi bdj ABCcd

√
(6, 7) ABDa ACEa BCFa ABCbd ABCce abcf ABCabcg

√
(7, 6) abd ace bcf ABDabc ACEabc BCFabc ABCG

√
(10, 3) ABCG ABDH ACEI ADEa ABFJ BCDFb CEFc

√
(10, 3) abc ABEa ACFa BCGb ADHb BCDIa ABCDJab

√ √
(11, 2) ABCF ABDG ACDH ABEI ACEJ ADEK BCDab

√ √ √
(12, 1) ABCG ABDH ABEI BCDEa ACFJ DEFK ACDEFL

√ √ √
(1, 13) abcg abdh acei adej abfk Abcdf cefl defm

√ √
(2, 12) abcf abdg acdh bcdi abej acek adel ABbce

√ √
(3, 11) abe acf bcg adh bdi acdj bcdk ABCabcd

√
(11, 3) ABCF ABDG ACEH ADEI ABCDEb ABJa ACDac AEKa

√
(11, 3) abc ABEa ACFa BCGb ADHa BDIb ACDJb BCDKa

√ √
(12, 2) ABCF ABDG ACDH BCDI ABEJ ACEK ADEL BCEab

√ √ √
(13, 1) ABCG ABDH ACEI ADEJ ABFK BCDFa CEFL DEFM

√ √ √
(1, 14) abcg abdh acei adej abcdek abfl Aacdf aefm abcefn

√ √
(2, 13) abcf abdg acdh bcdi abej acek bcel adem ABbde

√ √ √
(3, 12) abe acf bcg abch adi bdj abdk cdl ABCacd

√ √
(12, 3) ABCG ABDH ACDI BCDJ ABEK ACEa ABFL ADFb ABCDEFc

√
(12, 3) abc ABEa ACFa BCGb ADHa BDIb ACDJab BCDKa ABCDL

√ √
(13, 2) ABCF ABDG ACDH BCDI ABEJ ACEK BCEL ADEM BDEab

√ √ √
(14, 1) ABCG ABDH ACEI ADEJ ABCDEK ABFL ACDFa AEFM ABCEFN

√ √ √
(1, 15) abcg abdh acei adej abcdek abfl Aacdf aefm abcefn abdefo

√ √
(2, 14) abcf abdg acdh bcdi abej acek bcel adem bden ABcde

√ √ √
(3, 13) abe acf bcg abch adi bdj abdk cdl acdm ABCbcd

√ √
(13, 3) ABCF ABDG ACDH BCDI ABEJ ACEK ADEb ABLa ACMa ABCDEac

√
(13, 3) abc ABEa ACFa BCGa ABCHb ADIa BDJa ABDKb CDLb ACDM

√ √
(14, 2) ABCF ABDG ACDH BCDI ABEJ ACEK BCEL ADEM BDEN CDEab

√ √ √
(15, 1) ABCG ABDH ACEI ADEJ ABCDEK ABFL ACDFa AEFM ABCEFN ABDEFO

√ √ √
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factors (A, B, C, D) and five noise factors (a, b, c, d, e) in a parameter design experiment.

Because (4, 5) /∈ S(25), there does not exist a 32-run COA with lc = 4 and ln = 5. The optimal

64-run COA d′ can be found in Table 2, which is generated by ABCD, ABabd and ACace.

The experimenter may also consider if the optimal 64-run PSA can be better. Table 5 lists

the optimal 64-run PSA d′′ with lc = 4 and ln = 5, which is generated by abce, ACabd and

ABCDbc. If the crossing structure is not crucial in experiment and analysis, it appears that d′′

is a better choice than d′ because d′′ guarantees the clear estimation of the control-by-control

2f.i.’s. If the experimenter cannot afford to run a 64-run design, he/she may consider using

32-run ESAs. The optimal 32-run ESA d′′′ with lc = 4 and ln = 5 can be found in Table

3, which is generated by ABac, ABbd, Aabe, BCDab. Due to limited capacity, d′′′ does not

guarantee the clear estimation of all the important effects.

6 APPENDIX

Proof of Proposition 1: Sufficiency. Because (lc, ln) ∈ S(2k), dlog2(lc +1)e+dlog2(ln +1)e ≤
k. Let kc = dlog2(lc + 1)e and kn = dlog2(ln + 1)e. It is clear that lc ≤ 2kc − 1 and ln ≤ 2kn − 1.

Hence two fractional factorial designs, denoted by d1 and d2, can be constructed for the control

factors and the noise factors, respectively. Crossing d1 and d2 gives an COA with run size

2kc × 2kn ≤ 2k. Necessity. Suppose d is a COA with lc control factors, ln noise factors and 2k

runs. Let Nc and Nc be the run sizes of the control array and the noise arrays. NcNn = 2k.

Because both Nc and Nn are powers of 2, there exist kc and kn such that kc + kn = k, Nc = 2kc

and Nn = 2kn . According to the definition, tc ≥ min(lc, 2) and tn ≥ min(ln, 2). Hence the

control array and the noise arrays are either full factorial designs or have resolutions higher

than three. Hence, one has lc ≤ 2kc − 1 and ln ≤ 2kn − 1, which implies that (lc, ln) ∈ S(2k).

7 ACKNOWLEDGMENTS

Yu Zhu’s research was supported by National Science Foundation grant DMS-0405694. The

authors want to thank the editor, the associate editor and the referees for constructive com-

ments and suggestions that helped improve an early version of the paper.

8 REFERENCES

Bingham, D. and Sitter, R. R. (2003), “Fractional Factorial Split-Plot Designs for Robust

Parameter Experiments,” Technometrics, 45, 80-89.

23



Box, G. E. P., and Meyer, R. D. (1986), “Dispersion Effects from Fractional Designs (Corr:

V29 p250)”, Technometrics, 28, 19-27.

Easterling, R. G. (1985), “Discussion of the Paper by Karkar (1985),” Journal of Quality

Technology, 17, 191-192.

Fries, A. and Hunter, W. G. (1980), “Minimum Aberration 2k−p Designs,” Technometrics, 22,

601-608.

Hedayat, A. S. and Stufken, J. (1999), “Compound Orthogonal Arrays,” Technometrics, 41,

57-61.

Karkar, R. N. (1985), “Off-line Quality Control, Parameter Design, and the Taguchi method

(with discussion),” Journal of Quality Technology, 17, 176-209.

Lucus, J. M. (1989), “Achieving a Robust Process Using Response Surface Methodology,” in

Proceedings of the Sesquicentennial Invited Sessions, American Statistical Association,

pp. 579-593.

Nair, V. N. (1992), “Taguchi’s Parameter Design: A Panel Discussion,” Technometrics, 34,

127-161.

Rao, C. R. (1947), “Factorial Experiments Derivable From Combinatorial Arrangements of

Arrays,” Journal of the Royal Statistical Society, Supplement, 9, 128-139.

Rosenbaum, P. R. (1994), “Dispersion Effects From Fractional Factorials in Taguchi’s Method

of Quality Design,” Journal of the Royal Statistical Society, Ser. B, 56, 641-652.

Rosenbaum, P. R. (1996), “Some Useful Compound Dispersion Experiments in Quality De-

sign,” Technometrics, 38, 354-364.

Rosenbaum, P. R. (1999), “Blocking in Compound Dispersion Experiments,” Technometrics,

41, 125-134.

Shoemaker, A. C., Tsui, K. L., and Wu, C. F. J. (1991), “Economical Experimentation Meth-

ods for Robust Design,” Technometrics, 33, 415-427.

Steinberg, D. (1996), “Robust Design: Experiments for Improving Quality,” in Handbook of

Statistics 13: Design and Analysis of Experiments, eds. S. Ghosh and C. R. Rao, New

York: North-Holland, pp. 199-240.

24



Steinberg, D. M. and Burstztyn, D. (1998), “Noise Factors, Dispersion Effects and Robust

Design,” Statistica Sinica, 8, 67-85.

Taguchi, G. (1986), Introduction to Quality Engineering: Designing Quality into Products and

Process, Tokyo: Asian Productivity Organization.

Vining, G. G., and Myers, R. H. (1990), “Combining Taguchi and Response Surface Philoso-

phies: A Dual Response Approach, “ Journal of Quality Technology, 22, 38-45.

Welch, W. J., Yu, T. K., Kang, S. M., and Sacks, J. (1990), “Computer Experiments for

Quality Control by Parameter Design,” Journal of Quality Technology, 22, 15-22.

Wu, C. F. J. and Hamada, M. S. (2000), Experiments: Planning, Analysis and Parameter

Design Optimization, New York: John Wiley.

Wu, C. F. J. and Zhu, Y. (2003), “Optimal Selection of Single Arrays for Parameter Design

Experiments”, Statistica Sinica, 13, 1179-1199.

Wu, C. F. J. and Chen, Y. Y. (1992), “A Graph-aided Method for Planning Two-Level Ex-

periments when Certain Interactions are Important”, Technometrics, 34, 162-175.

Zhu, Y. (2003), “Structure Function for Aliasing Patterns in 2l−n Design with Multiple Groups

of Factors,” Annals of Statistics, 31, 995-1011.

25


