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Abstract

The Recon�gurable Mesh (RM) attracted
criticism for its key assumption that a
message can be broadcast in constant
time independent of bus length. To ac-
count for this limit Beresford-Smith et al.
have recently proposed k-constrained RM
where buses of length at most k, a con-
stant, are allowed to be formed. Straight-
forward simulations of optimal RM al-
gorithms on this constrained RM model
are found to be non-optimal. This paper
presents two optimal algorithms to com-
pute the contour of maximal elements of
a set of planar points. The �rst algorithm
solves this problem of size p in O( p

k
) time

on an k-constrained RM of size k � p,
k � p, and the second algorithm solves
this problem of size n in O( q

k
) time on an

k-constrained RM of size p�q, p � q, and
pq = kn.

1 Introduction

It is well-known that interprocessor com-
munications and simultaneous memory
accesses often act as bottlenecks in

present-day parallel machines. Bus sys-
tems have been introduced recently to a
number of parallel machines to address
this problem. Examples include the Bus
Automaton [16], the Recon�gurable Mesh
(RM) [12], the content addressable array
processor [20], and the Polymorphic torus
[11]. Among them RM draws much at-
tention because of its simplicity. A bus
system is called recon�gurable if it can be
dynamically changed according to either
global or local information.

In the most common model of RM, it
is assumed that a message can be broad-
cast in constant time along any bus in-
dependent of its length. This assump-
tion attracted criticism and cast a shadow
of doubt on the implementation of RM.
Although investigations of bus delays in
[8, 9, 10] has con�rmed that broadcast de-
lay is very small, theoretically it cannot
be correctly modelled by a constant inde-
pendent of bus length. To account for this
limit, Beresford-Smith et al. [2] has pro-
posed the k-constrained RM where buses
of length at most k, a constant, are al-
lowed to be formed at any time.

In [2, 5, 6] it has been pointed out that
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straightforward simulations of RM algo-
rithms on k-constrained RM compromise
with the AT 2 [17, chapter 2] optimality.
To address this issue, optimal algorithms
have already been developed for sorting
and computing convex hull [2], broadcast-
ing [5], and multiplying sparse matrices
[6]. In this paper we have explored one
further problem from a similar point of
view. We have presented here two opti-
mal algorithms on k-constrained RM to
compute the contour of the maximal ele-
ments of a given set of planar points. The
�rst algorithm computes the m-contour
(see Section 2.2) of p planar points on a
k-constrained RM of size k � p in O( p

k
)

time and the second algorithm computes
the m-contour of n planar points on a k-
constrained RM of size p�q in O( q

k
) time,

where p � q and pq = kn.

The paper is organised as follows. In
the next section we present the basic is-
sues associated with RM and its various
models based on message propagation de-
lay. This section also presents de�nition
of the problem and describes the AT 2

lower bound metric. AT 2 optimal m-
contour algorithms on k-constrained RM
are developed in Section 3. Section 4 con-
cludes the paper.

2 Preliminaries

For the sake of completeness, here we
brie
y de�ne the recon�gurable mesh and
its various models based on message prop-
agation delay. We also give de�nition of
the problem of computing the contour of
the maximal elements of a given set of
planar points and describe the AT 2 lower
bound metric. Throughout the paper, we
use �() to mean \order exactly," O() to
mean \order at most," and 
() to mean

: switch

N

W

S

E

Figure 1: A recon�gurable mesh of size
3� 4

\order at least."

2.1 Recon�gurable Mesh

and Models Based on

Propagation Delay

The recon�gurable mesh is primarily a
two-dimensional mesh of processors con-
nected by recon�gurable buses. In this
parallel architecture, a processor element
is placed at the grid points as in the usual
mesh connected computers. Processors
of the RM of size X � Y are denoted
by PEi;j, 0 � i < X � 1, 0 � j <

Y � 1 where processor PE0;0 resides in
the south-western corner. Each proces-
sor is connected to at most four neigh-
bouring processors through �xed bus seg-
ments connected to four I/O ports E &
W along dimension x and N & S along
dimension y. These �xed bus segments
are building blocks of larger bus compo-
nents which are formed through switch-
ing, decided entirely on local data, of the
internal connectors (see Figure 1) between
the I/O ports of each processor. The
�fteen possible interconnections of I/O
ports through switching are shown in Fig-
ure 2. The connection patterns are rep-
resented as fp1; p2; : : :g, where each of pi
represents a group of switches connected
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{E,W,N,S} {EW,N,S} {E,W,NS} {EW,NS} {WN,E,S}

{WS,E,N} {EN,W,S} {ES,W,N} {ES,WN} {EN,WS}

{NWS,E} {ENW,S} {NES,W} {ESW,N} {EWNS}

Figure 2: Possible internal connections
between the four I/O ports of a proces-
sor

together such that
S
8i pi = fN;E;W;Sg.

For example, fNS,E,Wg represents the
connection pattern with ports N and S

connected and ports E and W uncon-
nected.
A recon�gurable mesh operates in

the single instruction multiple data
(SIMD) mode. Besides the recon�gurable
switches, each processor has a computing
unit with a �xed number of local registers.
A single time step of an RM is composed
of the following four substeps:

BUS substep. Every processor switches
the internal connectors between I/O
ports by local decision.

WRITE substep. Along each bus, one
or more processors on the bus trans-
mit a message of length bounded by
the bandwidth of the �xed bus seg-
ments as well as the switches. These
processors are called the speakers. It
is assumed that a collision between
several speakers will be detected by
all the processors connected to the
bus and the transmitted message will
be discarded.

READ substep. Some or all the proces-
sors connected to a bus read the mes-

sage transmitted by a single speaker.
These processors are called the read-
ers.

COMPUTE substep. A constant-time
local computation is done by each
processor.

Other than the buses and switches the
RM of size p � q is similar to the stan-
dard mesh of size p � q and hence it has
�(pq) area in VLSI embedding [17], under
the assumption that processors, switches,
and links between adjacent switches oc-
cupy unit area.
One critical factor in the complexity

analysis of recon�gurable algorithms is
the time needed to propagate a message
over a bus. In the most common unit-time
delay model [19], it is assumed that in any
con�guration any message can be trans-
mitted along any bus in constant time, re-
gardless of the bus length. Unfortunately
this assumption, based on which a large
number of algorithms with constant time
complexity are developed, is theoretically
false, as the speed of signals carrying in-
formation is bounded by the speed of
light. This partially explains why the re-
con�gurable meshes have not gained wide
acceptance initially. Recently some VLSI
implementations of recon�gurable meshes
have demonstrated that the broadcast de-
lay, though not a constant, is nevertheless
relatively small in terms of machine cy-
cles. For example, only 16 machine cycles
are required to broadcast on a 106 pro-
cessor YUPPIE (Yorktown Ultra Parallel
Polymorphic Image Engine) [9, 10]. GCN
(Gated-Connection Network) [8] has even
shorter delays by adopting precharged cir-
cuits. Broadcast delay can further be re-
duced by using optical �bere for recon-
�gurable bus system and electrically con-
trolled directional coupler switches as pro-
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posed in [1]. Although the above ob-
servations serve the practical purposes,
unit-time delay can never be theoretically
sound. To account for this theoretical
limit, two di�erent models have been in-
troduced in the literature.
In the log-time delay model [13] it is as-

sumed that each broadcast takes �(log s)
time to reach all the processors connected
to a bus, where s is the maximum num-
ber of switches in a minimum switch path
between two processors connected on the
bus.
Beresford-Smith et al. [2] have recently

proposed the k-constrained model where
it is assumed that in any situation any
message can propagate at most k �xed
bus segments and thus buses of length at
most k are allowed in any step, where k
is a constant. We use the notation RMk

A

to refer to a k-constrained RM of area A.
A linear bus is a bus which never

branches, thereby excluding the con-
nection patterns fNSE,Wg, fNSW,Eg,
fEWN,Sg, fEWS,Ng, and fNSEWg.
Now, any RM algorithm which uses only
linear buses can be simulated by the k-
constrained RM by propagating signals k
processors at a time.

Lemma 1 Any message can be broadcast
over a linear bus of length l in O( l

k
) time

on a k-constrained RM. 2

Beresford-Smith et al. [2] have shown
in obvious way that such a simulation
loses AT 2 optimality unless the area of
the mesh is reduced. To address this is-
sue, AT 2 optimal algorithms have already
been developed for sorting and computing
convex hull [2], broadcasting [5], and mul-
tiplying sparse matrices [6].
Throughout this paper RM is assumed

to be unconstrained if not stated other-
wise.

non-maximal point
maximal point

x

y

Figure 3: m-contour of a set of planar
points

2.2 Problem De�nition

Let the planar point at coordinate (i; j)
be de�ned as P (i; j). Again, let for any
point p, x(p) denote the x-coordinate and
y(p) denote the y-coordinate of p, e.g.,
x(P (i; j)) = i and y(P (i; j)) = j.

De�nition 1 A point p dominates a
point q (denoted by q � p) if x(q) � x(p)
and y(q) � y(p). (The relation \�" is
naturally called dominance.)

Let S be a set of N planar points. To
simplify the exposition of our algorithms,
the points in S are assumed to be distinct.

De�nition 2 A point p 2 S is maximal
if there is no other point q 2 S with p � q.

We are interested in the contour
spanned by the maximal elements of S,
called the m-contour of S which can be
obtained by simply sorting the maximal
elements in ascending order of their x-
coordinates (Figure 3). Let the m-contour
of a set S be denoted as m(S).
We have mentioned two interesting ob-

servations on m-contour in our paper
[14, 15] which are given below for the sake
of completeness.
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Lemma 2 Every m-contour is sorted in
descending order of the y-coordinates.

Proof. Suppose the contrary. Then there
exists at least one pair of maximal ele-
ments p and q such that y(p) < y(q) while
x(p) � x(q), which contradicts with the
assumption that point p is maximal. 2

Let for any set S of some planar
points functions minx(S) and maxx(S)
denote the minimum and maximum x-
coordinates in the set respectively. Let
two more functionsminy(S) andmaxy(S)
be de�ned similarly w.r.t. y-coordinate.

Lemma 3 Given K sets S0, S1, . . .SK�1

of planar points such that 8t : 0 � t <

K � 1, maxx(St) � minx(St+1), then 8i :
0 � i < K � 1, 8p 2 m(Si) ^ y(p) >

maxy(m(Sj)), 8j > i, if and only if, p 2
m(

SK�1
t=0 St).

Proof. The necessity part can be proved
by arranging a contradiction of Lemma 2.
To prove the suÆciency part we take a
point p 2 m(Si), 9i : 0 � i < K � 1 ^
p 62 m(

SK�1
t=0 St). Then by the de�nition

of maximality we get 9q 2 SK�1
t=i+1 St such

that p � q, i.e., y(p) � y(q). 2

The m-contour problem is also known
as �nding the maxima of a set of vec-
tors and has been extensively explored
for serial computers in [7, 8, 21]. Com-
putation of maximal elements is impor-
tant in solving the Largest Empty Rect-
angle Problem [4] where a rectangle R,
and a number of planar points S 2 R,
are given and the problem is to compute
the largest rectangle r � R that con-
tains no point in S and whose sides are
parallel to those of R. If R is divided
into four quadrants then the maximal el-
ements w.r.t. the northeast(NE), north-
west(NW), southwest(SW), and south-
east(SE) directions as depicted in Figure 4

SW

NW

SE

NE

Figure 4: Importance of maximal ele-
ments in computing largest empty rect-
angle

remain the only candidates to be the sup-
porting elements of the empty rectangles
lying in all the four quadrants.

It is well known that the time com-
plexity for computing the contour of the
maximal elements of n planar points is
�(n logn) using a serial computer [8].
This lower boundary can be concluded
from the fact that the problem of sort-
ing can be easily transformed into an m-
contour problem of same size. The AT 2

lower bound of m-contour problem of size
n, as shown in Section 2.3, is 
(n2).
Dehne [3] gives an AT 2 optimal algorithm
for solving m-contour problem on a mesh
of size

p
n�p

n in O(
p
n) time. Manzur

et al. [14, 15] have presented three con-
stant time m-contour algorithms on RM
of various dimensions. Using the result of
optimal simulation of a multidimensional
RM by a 2-dimensional RM in [18], it can
easily be shown that all the three algo-
rithms in [14, 15] are AT 2 optimal.

2.3 AT 2 Lower Bounds

Let a problem P of size n have I infor-
mation content [17, pages 51-54]. If this
problem P is realised in a VLSI circuit
with aspect ratio � then, by Ullman [17,
page 57], AT 2 lower bound of solving P
will be 
(�I2).
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Problem of sorting n logn-bit numbers
has information content I = 
(n). As
the problem of sorting n numbers can be
easily transformed into a problem of com-
puting the contour of maximal elements
of n planar points, it can be concluded
that the m-contour problem of size n has
information content I = 
(n). Hence, the
AT 2 lower bound of computing m-contour
of n planar points is 
(n2).
Let m-contour of p planar points on an

RMk
kp of size k�p, k � p, be done in O(T )

time. This solution will be AT 2 optimal
if

kpT 2 =
p

k
p2 ;

i.e., T = p
k
. Similarly, to compute m-

contour of n planar points, AT 2 optimally,
on RMk

kn of size p� q, p � q, the solution
time must be O( q

k
).

3 Optimal m-contour

Algorithms on k-

constrained RMs

We �rst brie
y outline a few published re-
sults to be used in our algorithms.

Lemma 4 Given p items in the �rst row
of an RMk

kp of size k � p, k � p, these
items can be sorted in O( p

k
) time, which

is AT 2 optimal.

Proof. See in [2]. 2

Lemma 5 Given n items in the �rst n
p

columns of an RMk
kn of size p� q, p � q,

these items can be sorted in O( q
k
) time,

which is AT 2 optimal.

Proof. See in [2]. 2

Given a binary sequence, bj, 0 � j <

N , the pre�x-and computation is to com-
pute, 8i : 0 � i < N , b0 ^ b1 ^ � � � ^ bi.

Similarly the pre�x-or computation com-
putes b0 _ b1 _ � � � _ bi, 8i : 0 � i < N .
Adapting the technique of bus splitting
[13] it is easy to show that:

Lemma 6 Given a binary sequence of
length k in the only row of an RMk

k of size
1 � k, both the pre�x-and and the pre�x-
or of the elements in the sequence can be
computed in O(1) time.

Proof. It is easy to check that the con-
stant time algorithm in [13] on an RM of
size 1 � k uses only horizontal buses of
length at most k. Hence, the same algo-
rithm can be used for RMk

k of size 1 � k.
2

Lemma 7 Computing m-contour of k

planar points in the �rst row of an RMk
k2

of size k � k can be done in O(1) time.

Proof. Again it is easy to check that the
�rst algorithm in [14, 15] on an RM of
size k�k can compute the m-contour of k
planar points in constant time using only
linear buses of length O(k). Hence, the
same algorithm can be used for RMk

k2 of
size k � k to compute the same problem
in O(1) time. 2

3.1 Optimal Computing of

the m-contour of p Pla-

nar Points on RMk
kp of

Size k � p, k � p

Let the RMk
kp of size k�p be divided into

p
k
submeshes of size k � k each and the

given p planar points in the �rst row be
distributed in such a way that each pro-
cessor PEi;jk, 0 � i < k and 0 � j < p

k
,

receives a point. It is obvious that such
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a redistribution of elements can be car-
ried out in constant time using a col-
umn broadcast followed by a row broad-
cast with bus splitting [13]. Now, we sort
the points w.r.t. x-coordinate in column-
major order by Lemma 4 in O( p

k
) time.

Let the points residing in column jk be
denoted by the set Sj, 0 � j < p

k
. Clearly

these p
k
sets of planar points follow the

condition of Lemma 3, i.e., 8j : 0 � j <
p
k
� 1, maxx(Sj) � minx(Sj+1). The m-

contours m(Sj), 0 � j < p
k
, are now com-

puted in parallel using a submesh of size
k� k for each computation. By Lemma 7
this operation takes only O(1) time. Now,
we transfer themaxy(m(Sj)) values to the
�rst row of the RMk

kp in the following sin-
gle RM step using Lemma 2:

1. b: Any processor in column j con-
taining a point 2 m(Sj) discon-
nects all port interconnections
while the rest of the processors
connect port N with S for all
0 � j < p

k
.

w: Any processor in column j con-
taining a point 2 m(Sj) now
writes the y-coordinate of the
point to port S for all 0 � j < p

k
.

r: Every processor in the �rst row
reads port S in.

Here, the substeps are labelled as \b:",
\w:", \r:", and \c:" to denote the BUS,
WRITE, READ, and COMPUTE sub-
steps respectively. As the buses formed in
the above RM step are of length at most
k, this RM step can also be used as a sin-
gle k-constrained RM step.
Now, the m-contour of the entire p

points can be computed in the following
RM steps using Lemma 3:

1. Iterate the following for t = 0 tol
p
k2

m
� 1 in step 1:

1.1 Copy maxy(m(Stk+j)) to pro-
cessors PEi;j+rk, 0 � i < k,
0 � r < p

k
, for all 0 � j < k, us-

ing a column broadcast then a
row broadcast and �nally a col-
umn broadcast.

1.2 Copy the y-coordinate of
the point residing in proces-
sor PEi;kj to the processors
PEi;kj+r, 0 � r < k, for all
0 � j < p

k
, 0 � i < k, using a

row broadcast.

1.3 Now in the jth submesh of size
k � k, the ith row contains k

maxy values paired with the y-
coordinate of a particular point,
say d. Now, apply Lemma 3
to eliminate d by computing
pre�x-or over the comparison
values.

The bus length in the column broadcasts
in Step 1.1 is at most k while the same
in the row broadcast is at most p. Hence,
by Lemma 1 Step 1.1 can be used on k-
constrained RM in O( p

k
) time. Step 1.2

uses buses of length at most k and thus it
can be used on k-constrained RM in con-
stant time. By Lemma 6 Step 1.3 takes
O(1) time. It can then be concluded that

the above iteration takes O(
l

p
k2

m
p
k
) time

which is non-optimal.

Now, the clever idea of systolic com-
puting can be applied to achieve optimal
time. It can be easily shown that p

k2
it-

eration steps can be done systolically at
each step of simulation of broadcasting
over longer buses in k-constrained RM. As
p
k2
� p

k
, it can be concluded that

Theorem 1 Given p planar points in the
�rst row of an RMk

kp of size k� p, k � p,
the m-contour of these points can be com-
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puted in O( p
k
) time, which is AT 2 optimal.

2

3.2 Optimal Computing of

the m-contour of n Pla-

nar Points on RMk
kn of

Size p� q, p � q

Let the RMk
kn of size p � q be divided

into q
k
submeshes of size p � k each and

the given n planar points in the �rst n
p

columns be distributed in such a way that
each processor PEi;jk, 0 � i < p and
0 � j < q

k
, receives a point. It can easily

be shown that such a redistribution can be
carried out systolically in O(n

p
) = O( q

k
)

time using only row broadcasts. Now,
we sort the points w.r.t. x-coordinate in
column-major order by Lemma 5 in O( q

k
)

time.
Let the points residing in column jk be

denoted by the set Sj, 0 � j < q
k
. Clearly

these q
k
sets of planar points follow the

condition of Lemma 3, i.e., 8j : 0 � j <
q
k
� 1, maxx(Sj) � minx(Sj+1). The m-

contours m(Sj), 0 � j < q
k
, are now com-

puted in parallel using a submesh of size
p�k for each computation. By Theorem 1
this operation takes onlyO( p

k
) time. Now,

we transfer themaxy(m(Sj)) values to the
�rst row of the RMk

kn in the following sin-
gle RM step using Lemma 2:

1. b: Any processor in column j con-
taining a point 2 m(Sj) discon-
nects all port interconnections
while the rest of the processors
connect port N with S for all
0 � j < q

k
.

w: Any processor in column j con-
taining a point 2 m(Sj) now
writes the y-coordinate of the
point to port S for all 0 � j < q

k
.

r: Every processor in the �rst row
reads port S in.

As the buses formed in the above RM step
are of length at most p, this RM step can
also used for k-constrained RM in O( p

k
)

steps by Lemma 1.
Now, the m-contour of the entire n

points can be computed in the following
RM steps using Lemma 3:

1. Iterate the following for t = 0 tol
q
k2

m
� 1 in step 1:

1.1 Copy maxy(m(Stk+j)) to pro-
cessors PEi;j+rk, 0 � i < k,
0 � r < q

k
, for all 0 � j < k, us-

ing a column broadcast then a
row broadcast and �nally a col-
umn broadcast.

1.2 Copy the y-coordinate of
the point residing in proces-
sor PEi;kj to the processors
PEi;kj+r, 0 � r < k, for all
0 � j < q

k
, 0 � i < p, using a

row broadcast.

1.3 Now in the jth submesh of size
p � k, the ith row contains k

maxy values paired with the y-
coordinate of a particular point,
say d. Now, apply Lemma 3
to eliminate d by computing
pre�x-or over the comparison
values.

The bus length in the column broadcasts
in Step 1.1 is at most p while the same
in the row broadcast is at most q. Hence,
by Lemma 1 Step 1.1 can be used on k-
constrained RM in O( q

k
) time as p � q.

Step 1.2 uses buses of length at most k
and thus it can be used on k-constrained
RM in constant time. By Lemma 6 Step
1.3 takes O(1) time. It can then be
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concluded that the above iteration takes
O(

l
q
k2

m
q
k
) time which is non-optimal.

Again, the clever idea of systolic com-
puting can be applied to achieve optimal
time. It can be easily shown that q

k2
it-

eration steps can be done systolically at
each step of simulation of broadcasting
over longer buses in k-constrained RM. As
q
k2
� q

k
, the following can be concluded:

Theorem 2 Given n planar points in the
�rst n

p
columns of an RMk

kn of size p� q,
p � q, the m-contour of these points can
be computed in O( q

k
) time, which is AT 2

optimal. 2

4 Conclusion

In [2, 5, 6] it has been pointed out that
straightforward simulations of RM algo-
rithms on k-constrained RM compromise
with the AT 2 optimality. To address this
issue, we have developed two optimal al-
gorithms to compute the contour of max-
imal elements of a set of planar points.
The �rst algorithm solves this problem of
size p in O( p

k
) time on an k-constrained

RM of size k � p, k � p, and the second
algorithm solves this problem of size n in
O( q

k
) time on an k-constrained RM of size

p� q, p � q, and pq = kn.
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