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We provide theoretical analysis of the statistical and computational prop-
erties of penalized M -estimators that can be formulated as the solution to a
possibly nonconvex optimization problem. Many important estimators fall
in this category, including least squares regression with nonconvex regular-
ization, generalized linear models with nonconvex regularization and sparse
elliptical random design regression. For these problems, it is intractable to
calculate the global solution due to the nonconvex formulation. In this paper,
we propose an approximate regularization path-following method for solving
a variety of learning problems with nonconvex objective functions. Under
a unified analytic framework, we simultaneously provide explicit statistical
and computational rates of convergence for any local solution attained by
the algorithm. Computationally, our algorithm attains a global geometric rate
of convergence for calculating the full regularization path, which is optimal
among all first-order algorithms. Unlike most existing methods that only at-
tain geometric rates of convergence for one single regularization parameter,
our algorithm calculates the full regularization path with the same iteration
complexity. In particular, we provide a refined iteration complexity bound to
sharply characterize the performance of each stage along the regularization
path. Statistically, we provide sharp sample complexity analysis for all the
approximate local solutions along the regularization path. In particular, our
analysis improves upon existing results by providing a more refined sample
complexity bound as well as an exact support recovery result for the final es-
timator. These results show that the final estimator attains an oracle statistical
property due to the usage of nonconvex penalty.

1. Introduction. This paper considers the statistical and computational prop-
erties of a family of penalized M -estimators that can be formulated as

1.1) B; € argmin{L(B) + P:.(B)}.
BeRd
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where L£(fB) is a loss function, while P, (8) is a penalty function with regulariza-
tion parameter A. A familiar example is the Lasso estimator [Tibshirani (1996)],
in which £(B) = |XB —ylI3/(2n) and P (B) = Al Bl1. Here X = (x1,...,x,)] €
R"*4 is the design matrix, y = (y1, ..., yn)T € R" is the response vector, | - ||2
is the Euclidean norm and ||| = 2?21 |B;| is the £1 norm of B. In general, we
prefer the settings where both the loss function £(8) and the penalty term P, (8)
in (1.1) are convex, since convexity makes both statistical and computational anal-
ysis convenient.

Significant progress has been made on understanding convex penalized M-
estimators [Bickel, Ritov and Tsybakov (2009), Koltchinskii (2009), Negahban
et al. (2012), Raskutti, Wainwright and Yu (2011), Rothman et al. (2008), van de
Geer (2000, 2008), Wainwright (2009), Zhang (2009)]. Meanwhile, penalized M -
estimators with nonconvex loss or penalty functions have recently attracted much
interest because of their more attractive statistical properties. For example, un-
like the £ penalty, which induces significant estimation bias for parameters with
large absolute values [Zhang and Huang (2008)], nonconvex penalties such as the
smoothly clipped absolute deviation (SCAD) penalty [Fan and Li (2001)] and min-
imax concave penalty (MCP) [Zhang (2010a)] can eliminate this estimation bias
and attain more refined statistical rates of convergence. As another example of
penalized M -estimators with nonconvex loss functions, we consider a semipara-
metric variant of the penalized least squares regression. Recall that a penalized
least squares regression estimator can be formulated as

_ . 1
B, < argmin{ - IXB ~ yI3 + P8
BeR

= argmin{%(l, —ﬂT)S(l, —,BT)T + PA(ﬂ)},
BeRd

where S = (v, X) ' (y,X)/n is the sample covariance matrix of a random vec-
tor (Y, X7 ¢ R4+ When the design matrix X contains heavy-tail data, we
may resort to elliptical random design regression, which is a semiparametric ex-
tension of Gaussian random design regression. In detail, we replace the sample
covariance matrix S with a possibly indefinite covariance matrix estimator K
(to be defined in Section 2.2), which is more robust within the elliptical fam-
ily. Since K does not guarantee to be positive semidefinite, the loss function
L(B)=(1, —ﬂ )K(l —ﬂ I /2 could be nonconvex.

Though the global solutions of these nonconvex M -estimators enjoy nice sta-
tistical properties, it is in general computationally intractable to obtain the global
solutions. Instead, a more realistic approach is to directly leverage standard op-
timization procedures to obtain a local solution 8, that satisfies the first-order
Karush—Kuhn-Tucker (KKT) condition

(1.2) 0c0{LB,)+P.(B)),

where d(-) denotes the subgradient operator.
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In the context of least squares regression with nonconvex penalties, several nu-
merical procedures have been proposed to find the local solutions, including local
quadratic approximation (LQA) [Fan and Li (2001)], minorize-maximize (MM)
algorithm [Hunter and Li (2005)], local linear approximation (LLA) [Zou and Li
(2008)], concave convex procedure (CCCP) [Kim, Choi and Oh (2008)] and co-
ordinate descent [Breheny and Huang (2011), Mazumder, Friedman and Hastie
(2011)]. The theoretical properties of the local solutions obtained by these nu-
merical procedures are in general unestablished. Only recently Zhang and Zhang
(2012) showed that the gradient descent method initialized at a Lasso solution at-
tains a unique local solution that has the same statistical properties as the global
solution; Fan, Xue and Zou (2014) proved that the LLA algorithm initialized with
a Lasso solution attains a local solution with oracle statistical properties. The same
conclusion was also obtained by Zhang (2010b, 2013), where the LLA algorithm
was referred to as multi-stage convex relaxation. In recent work, Wang, Kim and
Li (2013) proposed a calibrated concave-convex procedure (CCCP) along with
a high-dimensional BIC criterion that can achieve the oracle estimator. However,
these works mainly focused on statistical recovery results, while the corresponding
computational complexity results remain unclear. Also, they did not consider non-
convex loss functions. In addition, their analysis relies on the assumption that all
the computation (e.g., solving an optimization problem) can be carried out exactly,
which is unrealistic in practice, since practical computational procedures can only
attain finite numerical precision in finite time. Moreover, our method only requires
the weakest possible minimum signal strength to attain the oracle estimator [Zhang
and Zhang (2012)], while the procedures in Fan, Xue and Zou (2014), Wang, Kim
and Li (2013) rely on a stronger signal strength which is suboptimal. See Section 6
for a more detailed discussion.

In this paper, we propose an approximate regularization path-following method
for solving a general family of penalized M -estimators with possibly nonconvex
loss or penalty functions. Our algorithm leverages the fast local convergence in the
proximity of sparse solutions, which is also observed by Agarwal, Negahban and
Wainwright (2012), Nesterov (2013), Wright, Nowak and Figueiredo (2009), Xiao
and Zhang (2013). More specifically, we consider a decreasing sequence of reg-
ularization parameters {At}fvz o» Where Ao corresponds to an all-zero solution, and
AN = Mg 18 the target regularization parameter that ensures the obtained estimator
to achieve the optimal statistical rate of convergence. For each A;, we construct a
sequence of local quadratic approximations of the loss function £(#), and utilize a
variant of Nesterov’s proximal-gradient method [Nesterov (2013)], which iterates
over the updating step

e argmin{ﬁ(ﬂi‘) +vL(BY (8- BY)
BeRd
(1.3)

Lk
+ 18 - BE13+ P8,



OPTIMAL RATES FOR SPARSE NONCONVEX LEARNING PROBLEMS 2167

N\
« .~ Fast Convergence Region

O Optimization Precision

FI1G. 1. For regularization parameter \;, ;3\)” is an exact local solution satisfying (1.2) with A = A;.
Within the tth path-following stage, our algorithm achieves an approximate local solution B;, which
approximates the exact local solution B, up to certain optimization precision. Our approximate

path-following algorithm ensures that E, is sparse, and therefore falls into the fast convergence
region corresponding to regularization parameter A; 1.

where k = 1,2,.... Here B¥ and L correspond to the kth iteration of the
proximal-gradient method for regularization parameter ;. Here L’; is chosen by
an adaptive line-search method, which will be specified in Section 3.2. Let B,
be an exact local solution satisfying (1.2) with A = A;. As illustrated in Figure 1,
for each A, our algorithm calculates an approximation B, of the exact local solu-
tion B,, up to certain optimization precision. Such approximate local solution B,
guarantees to be sparse, and therefore falls into the fast convergence region corre-
sponding to A;41. Consequently, the resulting procedure achieves a geometric rate
of convergence within each path-following stage, and therefore attains a global
geometric rate of convergence for calculating the entire regularization path. More-
over, we establish the nonasymptotic statistical rates of convergence and oracle
properties for all the approximate and exact local solutions along the full regular-
ization path.

The idea of path following has been well studied for sparse recovery problems
[Breheny and Huang (2011), Efron et al. (2004), Friedman, Hastie and Tibshi-
rani (2010), Hastie et al. (2004), Mairal and Yu (2012), Mazumder, Friedman and
Hastie (2011), Park and Hastie (2007), Rosset and Zhu (2007), Xiao and Zhang
(2013), Zhao and Yu (2007)]. Compared with these previous works, we consider
a broader family of nonconvex M -estimators, including nonconvex penalty func-
tions, such as SCAD and MCP, as well as nonconvex loss functions, such as semi-
parametric elliptical design loss. Moreover, we provide sharp computational and
statistical analysis for all the approximate and exact local solutions attained by the
proposed approximate path-following method along the regularization path.

The contributions of this paper are twofold:

e Computationally, we propose an optimization algorithm that ensures a global
geometric rate of convergence for nonconvex sparse learning problems. In de-
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tail, recall that N is the total number of path-following stages. Within the Nth
path-following stage, we denote by &, the desired optimization precision of
the approximate local solution ’,E ~- We need no more than a logarithmic number
of the proximal-gradient update iterations defined in (1.3) to calculate the entire
path,

Total # of proximal-gradient iterations < C log<8i>,
opt
where C > 0 is a constant. This global geometric rate of convergence is optimal
among all first-order methods because it attains the lower bound for first-order
methods on strongly convex and smooth objective function [Nesterov (2004),
Theorem 2.1.12], which is a subclass of the possibly nonconvex objective func-
tions considered in this paper.

e Statistically, we prove that along the full regularization path, all the approxi-
mate local solutions obtained by our algorithm enjoy desirable statistical rates
of convergence for estimating the true parameter vector *. In detail, let s* be
the number of nonzero entries of B*, and the approximate local solution B,’s
satisfy

(1.4) |B, — B*|, < Chv/s*  fort=1,...,N

with high probability. In particular, within the Nth path-following stage, we
have Ay = Ayt =C "JTogd/n. Here C and C’ are positive constants that do not
dependent on d and n. In the d >> n regime, the final approximate local solution
By achieves the optimal statistical rate of convergence. Furthermore, we prove
that, within the ¢th path-following stage, the iterative solution sequence {8 If},fozo
produced by (1.3) converges toward a unique exact local solution Bx,, which
enjoys a more refined oracle statistical property. More specifically, let s1 be the
number of “large” nonzero coefficients of B* and s3 = s* — 57 be the number
of “small” nonzero coefficients (detailed definitions of s{ and s; are provided
in Theorem 4.8), we have

—~ st "
(1.5) Hﬂh—ﬂ*Uch\/;Jrc/\/g/\, fort=1,...,N

with high probability. In particular, for the final stage we have Ay = A =
C"/Togd/n. Here C, C’ and C” are positive constants. Note that the oracle
statistical property in (1.5) is significantly sharper than the rate of convergence
in (1.4); for example, when s* = s{ and t = N, the right-hand side of (1.4) is
of the order of /s*logd/n, while the right-hand side of (1.5) is of the order
of \/s*/n. Moreover, we prove that when the absolute values of the nonzero
coefficients of B* are larger than C""+/logd/n, B, exactly recovers the support
of B*, that is,

supp(B;,) = supp(B*).
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In summary, our joint analysis of the statistical and computational properties pro-
vides a theoretical characterization of the entire regularization path.

In independent work, Loh and Wainwright (2013) discussed similar problems.
In detail, they provided sufficient conditions under which local optima have desired
theoretical properties, and verified that the approximate local solution attained by
the composite gradient descent method satisfies these conditions. Our work differs
from theirs in three aspects:

(1) Our statistical recovery result in (1.4) covers all the approximate local solu-
tions along the entire regularization path. They provided a similar statistical result,
but only for the target regularization parameter, that is, Ay = A in (1.4).

(ii) As results of independent interest, we prove the oracle statistical proper-
ties of the exact local solutions along the regularization path, including the refined
statistical rates of convergence in (1.5) and the guarantee of exact support recov-
ery, while they did not provide such results. Since the statistical result in (1.4) is
also achievable using convex regularization, for example, the ¢; penalty, these or-
acle properties are essential for justifying the benefits of using nonconvex penalty
functions.

(iii) Our analysis technique is different from theirs. In detail, our statistical
analysis is embedded in the analysis of the optimization procedure. In particu-
lar, we provide fine-grained analysis of the sparsity pattern of all the intermedi-
ate solutions obtained from the proximal-gradient iterations. In contrast, they pro-
vided characterizations of local solutions under a global restricted strongly con-
vex/smoothness condition.

The rest of this paper is organized as follows. First we briefly introduce some
useful notation. In Section 2 we introduce M -estimators with possibly noncon-
vex loss and penalty functions. In Section 3 we present the proposed approximate
regularization path-following method. In Section 4 we present the main theoreti-
cal results on the computational efficiency and statistical accuracy of the proposed
procedure. In Section 5 we prove the theoretical results in Section 4. In Section 6
we provide a detailed comparison between our method and the existing nonconvex
procedures. Numerical results are presented in Section 7.

Notation: For q € [1, +00), the £, norm of 8 = (B4, ..., BT € R? is denoted
by [IBllg = (X9_, 1,19)/4. Specifically, we define ||B|oc = max)<<4{|8;]} and
|Bllo = card{supp(B)}, where supp(B) = {j : B; # 0} and card{-} is the cardinality
of a set. Correspondingly, we denote the £, ball {8 : ||B|l; < R} by B,(R). For
a set S, we denote its cardinality by |S| and its complement by S. For S, S C
{1,...,d}, we define B¢ eR? and B3 eR? as Bs)j=1(j€S)-Bjand (B3); =
1(j ¢ S)-Bj for j =1,...,d, where 1(-) is the indicator function. We denote
all-zero matrices by 0. For notational simplicity, we use generic absolute constants
C,C’,..., whose values may change from line to line.

Throughout we denote the exact and approximate local solutions by ,3 and
,3 respectively. We index ,B with the corresponding regulation parameter A, for



2170 Z. WANG, H. LIU AND T. ZHANG

example, /ﬂ\k. For the proposed path-following method, we use subscript ¢ to index
the path-following stages, for example, the approximate local solution obtained
within the rth stage is denoted by B ;- Within the ¢th stage, we index the proximal-
gradient iterations with superscript &, for example, ﬂf .

2. Some nonconvex sparse learning problems. Many theoretical results on
penalized M -estimators rely on the condition that the loss and penalty functions
are convex, since convexity makes both computational and statistical analysis con-
venient. However, the statistical performance of the estimator obtained from these
convex formulations could be suboptimal in some settings. In the following, we
introduce several nonconvex sparse learning problems as motivating examples.

2.1. Nonconvex penalty. Throughout this paper, we consider decomposable
penalty functions

d
PrB) =D pa(By),
Jj=1

for example, the £ penalty 1|81 = Zle AlB;j|. When the minimum of |,3;’f| >0
is not close to zero, the ¢; penalty introduces large bias in parameter estimation.
To remedy this effect, Fan and Li (2001) proposed the SCAD penalty

(ar —2)+ 1
(a—Dxr
and Zhang (2010a) proposed the MCP penalty

1B;1
@.1) pk(ﬁj)z)\/o {II(ZSA)Jr (z>k)}dz, Y

1851
(2.2) pi(B)) :A/O (1 - i) dz, b>0.
+

See Zhang and Zhang (2012) for a detailed survey. These nonconvex penalty func-
tions are illustrated in Figure 2(a). In fact, these nonconvex penalties can be for-
mulated as the sum of the ¢; penalty and a concave part

(2.3) pa(Bj) =AlBjl +an(Bj).

The concave components g, (8;) of SCAD and MCP are illustrated in Figure 2(b),
while the corresponding derivatives ¢; (8;) are illustrated in Figure 2(c). See Sec-
tion A.1 of the supplementary material [Wang, Liu and Zhang (2014)] for the de-
tailed analytical forms of p; (B;) and g, (B;) for SCAD and MCP.

In fact, our method and theory are not limited to SCAD and MCP. More gener-
ally, we only rely on the following regularity conditions on the concave component

qr(Bj):
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FIG. 2. An illustration of nonconvex penalties: (a) plots of p; (B;) for MCP, £1 and SCAD; (b) plots
of gr(Bj) for MCP and SCAD; (c) plots ofq;\ (Bj) for MCP and SCAD. Here p)(B;) is the penalty
function evaluated at the jth dimension of B, q,.(B) is the concave component of p, (B;) and q;\ )
is the derivative of q, (Bj). Here we set a = 2.1 for SCAD, b =2 for MCP and ) = 1.

Regularity conditions on nonconvex penalty.

(a) ¢;(B;) is monotone and Lipschitz continuous, that is, for /3;- > B, there
exist two constants {_ > 0 and ¢4 > 0 such that:

q;(ﬁ}) —q,(B))
= 7 =
IBj - ﬂj
(b) ¢x(Bj) is symmetric, that is, g, (—B;) = ¢g.(B;) for any B;;
(¢) ¢,.(B)) and g, (B;) pass through the origin, that is, ¢ (0) = g} (0) = 0;
(d) g;(B;) is bounded, that is, |g; (8;)| < A for any ;;

(e) ¢;(B,) has bounded difference with respect to A: |qil(,8j) - qiz(ﬁj” <
|A1 — Az| for any B;.

-4+ <0;

In regularity condition (a), {_ and ¢4 are two parameters that control the con-
cavity of g, (B;). Note that the second order derivative of a function character-
izes its convexity/concavity. Taking ﬂ} — B in regularity condition (a), we have
gy (Bj) € [—¢—, —¢4] [ignoring those B;’s where g} (8;) does not exist], which
suggests larger ¢ and ¢4 allow g, (B;) to be more concave. For SCAD we have
(- =1/(a—1) and ¢4 = 0, while for MCP we have {_ =1/b and ¢4 = 0. In
Figure 2(b) and (c), we can verify that regularity conditions (a)—(d) hold for MCP
and SCAD. In addition, we illustrate regularity condition (e) for MCP and SCAD
in Section A.2 of the supplementary material [Wang, Liu and Zhang (2014)].

From (2.3) we have P (8) = Y5_; p1(B) = MBIl + X9, 42.(B)). For nota-
tional simplicity, we define

d
(2.4) (B =>_a(B)) =Pr(B) — AlIBI1.

j=1

Hence 9, (B) denotes the decomposable concave component of the nonconvex
penalty Py ().
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2.2. Nonconvex loss function. In this paper, we focus on an example of non-
convex loss function named semiparametric elliptical design regression. More
specifically, we have n pairs of observations z; = (yy, XIT)T, voisZn = (Y, x,{ I
of a random vector Z = (¥, X7)T € R?*! that follows a (d + 1)-dimensional el-
liptical distribution. (See Section A.3 of the supplementary material [Wang, Liu
and Zhang (2014)] for a detailed introduction to elliptical distribution.) Then we
can verify that (Y|X = x) follows a univariate elliptical distribution. If we assume
that E(Y|X = x) = x’ 8*, the population version of the semiparametric elliptical
design regression estimator can be defined as

9]

1 2
B= argmm{ ~Exy((Y —X"B)") + Px(ﬁ)}
BeRd 2
(2.5)
_ . 1 T \T
=argmin{ = (1,—B" )Zz(1,—B")" +P.(B){.
BeRd 2
The above procedure is not practically implementable since the population covari-
ance matrix Xz in (2.5) is unknown. In practice, we need to estimate the popula-
tion covariance matrix Xz. For this purpose, we propose a rank-based covariance
matrix estimator Kz, which is calculated by a two-step procedure described in
Section A.4 of the supplementary material [Wang, Liu and Zhang (2014)]. Since
Kz is not necessarily positive semidefinite, the loss function in semiparametric
elliptical design regression, that is,

(2.6) L(PB) = %(1, —BT)Ky(1, —ﬂT)T

is possibly nonconvex.

3. Approximate regularization path-following method. Before we go into
details, we first present the high-level idea of approximate regularization path fol-
lowing. We then introduce the basic building block of our path-following method,
a proximal-gradient method tailored to nonconvex problems.

3.1. Approximate regularization path following. Fast local geometric conver-
gence in the proximity of sparse solutions has been observed by many authors
[Agarwal, Negahban and Wainwright (2012), Blumensath and Davies (2009),
Wright, Nowak and Figueiredo (2009), Xiao and Zhang (2013)]. We exploit such
fast local convergence under an approximate path framework to achieve fast global
convergence.

Initialization: In (1.1), when the regularization parameter A is sufficiently
large, the solution to sparse learning problems is an all-zero vector. Recall that
any exact local solution /ﬂ\k satisfies the first-order optimality condition, 0 €
B{E(BA) + Ps (/ﬂ\k)}. Since the nonconvex penalty P; () can be formulated as
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Pi(B) = Q:.(B) + AlIBll1, where Q; (B) is defined in (2.4), the first-order optimal-
ity condition implies there should exist some subgradient & € 9|8, ||1 such that

(3.1) 0=VL(B;)+ VB, + AL

Let A be chosen such that B,\ = 0. Then regularity condition (c) implies V Q; (0) =
0. Meanwhile, since & € 9|01, we have ||§||cc < 1, which implies ||VL(0)| s <
A in (3.1). Hence Ap = ||[VL(0)||co is the smallest regularization parameter such
that any exact local solution /ﬂ\k to the minimization problem (1.1) is all-zero. We
choose this Ag to be the initial parameter of our regularization path.

Approximate path following: Let A € (0, Ao) be the target regularization pa-
rameter in (1.1). In practice, we may choose Ay by cross-validation or the high-
dimensional BIC criterion proposed by Wang, Kim and Li (2013). We consider a
decreasing sequence of regularization parameters {\;} fV: o» Where

32 A =n"ro (t=0,...,N), AN =hg and ne€[0.9,1).

Here 7 is an absolute constant that does not scale with sample size n and dimen-
sion d. In Sections 4 and 5 we will prove that n € [0.9, 1) ensures the global geo-
metric rate of convergence. Consequently, since we have Ay = xon™ by (3.2), the
number of path-following stages is
_ log(ho/Ag)

log(n~1)
Without loss of generality, we assume that n is properly chosen such that N is an
integer. We will show in Section 4 that A scales with sample size n and dimen-
sion d. Since 7 is a constant, the number of stages N also scales with n and d.
Within the #th (r =1, ..., N) path-following stage, we aim to obtain a local solu-
tion to the minimization problem ming{L(B) + Py, (B)}.

As shown in lines 5-9 of Algorithm 1, within the ¢th (# =1,..., N — 1) path-
following stage, we employ a variant of proximal-gradient method (Algorithm 3)
to obtain an approximate local solution ﬁ, for regularization parameter A, = n’A.
To ensure that each path-following stage enjoys a fast geometric rate of conver-
gence, we propose an approximation path-following strategy. More specifically,
we use the approximate local solution B,_; obtained within the (¢ — 1)th path-
following stage to initialize the fth stage (lines 8 and 12 of Algorithm 1). Recall
that we need to adaptively search for the best Lf (k=0,1,...)in (1.3). To achieve
computational efficiency, within the (r — 1)th path-following stage, we store the
chosen Lf_l at the last proximal-gradient iteration of the (¢ — 1)th stage as L;_j.
Within the rth stage we initialize the search for L? with L;_1 (lines 8 and 12 of
Algorithm 1), which will be explained in Section 3.2.

Configuration of optimization precision: We set the optimization precision &;
for the rth (r =1,..., N — 1) stage to be A;/4 (line 7 of Algorithm 1). Within the
Nth path-following stage where Ay = A (line 10), we solve up to high optimiza-
tion precision £opy K Atgt/4 (line 11). The intuition behind this configuration of
optimization precision is explained as follows:

(3.3)
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Algorithm 1 The approximate path-following method, which solves for a decreas-
ing sequence of regularization parameters {A,}fvz o- Within the sth path-following
stage, we employ the proximal-gradient method illustrated in Algorithm 3 to
achieve an approximate local solution B, for A;. This approximate local solution
is then used to initialize the (¢ + 1)th stage.

1: {Bt}zN: | < Approximate-Path-Following (A¢gt, £opt)
2: input: Ay > 0, gope > 0 {Here we set gopr K Agr/4.}

: parameters: 7 € [0.9,1), R > 0, Lyin >0, A0 = |[VL(0) || co

{For logistic loss, we set R € (0, +00); For other loss functions, we set R =
400.}
{In practicg, we set Li, to be a sufficiently small value, for example, 10_6.}

4: initialize: By < 0, Lo < Lmin, N < log(ro/Aer)/log(n™1)
5: fort=1,..., N—1do
6: At < 17[)»0
T g M /4 N
8:  {B,, L;} < Proximal-Gradient(\;, &, B,_;, L;—1, R) as in Algorithm 3
9: end for
10: Ay <« )htgt
11: ey < Eopt
12: {BN, Ly} < Proximal-Gradient(Ay, ey, .EN—I’ Ly_1,R)
13: return {ﬁ,}f’:l
e Forr=1,..., N — 1, recall the exact local solution ﬁx[ is an estimator of the

true parameter vector §* corresponding to the regularization parameter A;. Ac-
cording to high-dimensional statistical theory, the statistical error of Bx, should
be upper bounded by Ci,+/s* with high probability, where s* = ||*|lo. In
Lemma 5.1 we will prove that if the optimization error of the approximate local
solution ﬁ, is at most A; /4, then E, lies within a ball of radius C’A,+/s* centered
at §* with high probability. That is to say, the approximate local solution B ; has
the same order of statistical error as the exact solution /ﬂ\kt, and therefore en-
joys desired statistical recovery properties. In particular, in Theorem 5.5 we will
prove that B ; 1s guaranteed to be sparse, and thus falls into the fast convergence
region of the next path-following stage.

However, for t = N, we need to solve up to high optimization precision gqp; K
Agt/4. This is because even though ﬁt and Bx, both have statistical error of the
order A;+/s*, in certain regimes (to be specified in Theorem 4.8), the exact local
solution Bk, can achieve an improved recovery performance [as shown in (1.5)]
due to the usage of nonconvex penalties. Therefore, within the final stage we
need to obtain an approximate solution ﬁ y as close to the exact local solution
Bktgt as possible, so that B ~ has a sharper statistical rate of convergence.
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In Algorithm 1, R > O (line 3) is a parameter that determines the radius of
the constraint used in the proximal-gradient method (lines 8 and 12). For least
squares loss and semiparametric elliptical design loss, we do not need any con-
straint. Therefore, we set R = +o00. However, for logistic loss we need to impose
an £, constraint of radius R € (0, +00). Here Ly, is a parameter used in the
proximal-gradient method (line 3 of Algorithm 3), which is often set to be a suf-
ficiently small value in practice, for example, Ly, = 107 we will provide the
details in Section 3.2.

3.2. Proximal-gradient method for nonconvex problems. Before we intro-
duce our proximal-gradient method which is tailored to nonconvex problems, we
first give a brief introduction to Nesterov’s proximal-gradient method [Nesterov
(2013)], which solves the following convex optimization problem:

(3.4) minimize ¢; (8) where ¢, (B) = L(B) + P.(B), B € 2.

Here £(p) is convex and differentiable, PP, (B) is convex but possibly nonsmooth
and €2 is a closed convex set.

Recall that 8 f corresponds to the kth iteration of the proximal-gradient method
within the ¢th path-following stage. Nesterov’s proximal-gradient method updates
ﬂ]f to be the minimizer of the following local quadratic approximation of ¢, (8)
at gE=1:

s Ve, (B BT =L + VL) (8- 857"

Lf k=12
+7”ﬂ_ﬂz |5+ Pa, (B),

where L¥ > 0 is chosen by line-search.

Nesterov’s proximal-gradient method requires that both L£(8) and P;(B)
in (3.4) are convex. However, in the optimization problem (1.1) considered in
this paper, £(f) and P, (8) may be no longer convex. In this case, directly plug-
ging L£(B) and P, (B) into Nesterov’s proximal-gradient might lead to the phe-
nomenon of bad local optima under a path-following scheme, as observed by She
(2009, 2012). To extend the proximal-gradient method to nonconvex settings, we
adopt an alternative formulation of the objective function.

Recall that the nonconvex penalty can be decomposed as P, (8) = 1|81 +
9,(B), where Q,(B) is defined in (2.4). For notational simplicity, we denote
L(B) + Ou(B) by E,\(ﬂ). Therefore, the objective function ¢, (8) = L(B) +
P.(B) = L(B) + D, (B) + AllB]l1 can be reformulated as

(3.6) $1(B) = Li(B) + 1 1Bll1,

where we can view [,NA (B) as a surrogate loss function and A||B]|; as a new penalty
function. This reformulation ensures the convexity of the new penalty function.
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Moreover, in Lemma 5.1 we will prove that, the surrogate loss function EA (B) is
actually strongly convex on a sparse set. Correspondingly, we modify Nesterov’s
proximal-gradient method to minimize the local quadratic approximation defined
as

pi,, (B B =L, (B + VL, (B (B— 8171
(3.7)

Lf k—1)2
+ 7”/3 - B; ||2+)»z||/3||l-

Note that, unlike (3.5), we use a quadratic approximation to the surrogate loss
function £,,(B) in (3.7), instead of the original loss function £(B). At the kth
iteration of the proximal-gradient method, we update ﬂf to be the minimizer of
the quadratic approximation defined in (3.7), that is,

(3.8) B — arﬂgn;zin{z/fuc’kt (8; B 1)

Now we specify the constraint set € in (3.8). For £(8) being least squares
or semiparametric elliptical design loss, we set & = R¢. For logistic loss, we set
Q = B>(R) with R € (0, +00), where By(R) is a centered £, ball of radius R.
In Lemma 5.1 we will show that, in the setting of logistic loss, the boundedness
of ||,Bf ll2’s 1s essential for establishing the strong convexity of the surrogate loss
function £;, (B) along the full regularization path. To unify the notation, we con-
sider 2 = B> (R) throughout—when the constraint set 2 = R?, we set R = 400.
Correspondingly, we denote (3.8) by

(3.9) B < Tui,, (B 5 R).

In the sequel, we provide the closed-form expression of update scheme (3.9):
Update scheme of proximal-gradient method for nonconvex problems.

e For Q =TR4, thatis, R = +00, TL{‘,A; (ﬂf_l; +400) is a soft-thresholding opera-
tor taking the form of

(7-Lf‘,x, (Mﬁl? +OO))]

_ {0, i 18] < As/LE,
| sign(B) (181 — A /LK), if 1B > A /LE,

for j=1,...,d, where

(3.10)

_ B 1~ 3
B=p LV, (B
(3.11) !

1
=B = (VLB + Vs, (857,
t

and 8 ;j 18 the jth dimension of B.
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e For Q = B,(R) with R € (0, +00), TL?,A, (ﬂ]t‘_l; R) can be obtained by project-
ing TLH; (ﬂ,_l; +00) defined in (3.10) onto B>(R), that is,

TL{‘,A, (ﬂl;_l§ R)
(3.12) 1 ' ol
TLﬁ‘,A, (B; 5 +00), if “TL{‘,A,( i +o0) Hz <R,

— R’TL;(’M(ﬂl]f_l,-i-oo)
1Tk, (B~ +o0)l2”

if [ 776 5, (B "5 +00) |, = R.

See Section B.2 of the supplementary material [Wang, Liu and Zhang (2014)] for
a detailed derivation. In Section B.1 of the supplementary material [Wang, Liu and
Zhang (2014)], we provide the specific forms of VL(B) and VO, (8) in (3.11) for
the nonconvex problems discussed in Section 2.

Line-search method: Before we present the proposed proximal-gradient method
in detail, we briefly introduce a line-search algorithm, which adaptively searches
for the best quadratic coefficient Lf of the local quadratic approximation (3.7). As
shown in lines 4—7 of Algorithm 2, the main idea of line-search is to iteratively
increase Lf by a factor of two and compute the corresponding ﬂf, until the lo-
cal approximation Lk (,Bf ; ,Bf_l) becomes a tight upper bound of the objective

function ¢;, (ﬂ]f). We will theoretically characterize the computational complex-
ity of this line-search algorithm in Remark 4.6, and specify the range of Lf in
Theorem 5.5.

Stopping criterion: In the following, we introduce the stopping criterion of our
proximal-gradient method. In other words, we specify the optimality conditions
that should be satisfied by the approximate solution ﬁt attained by our proximal-
gradient method.

Algorithm 2 The line-search method used to search for the best L* and compute
the corresponding ,Bf. Here ¢;,(B) is the objective function defined in (3.4), and
W Lk A (B; ﬂf_l) is the local quadratic approximation of ¢;,(8) defined in (3.7).

{,B],‘, L’t‘} < line-Search(;, ﬂf‘l, Linit, R)
input: 1, >0, 5" e RY, Lipyy > 0,R >0
initialize: L¥ < Li,
repeat

B — Tik s, (BX=1; R) as defined in (3.9)

if 1, (B) > Vi 5, (Bf: B ) then Lf < 2Lf
until ¢, (B7) < ¥4, (B Bf ™)

return (g%, L}

I A A i e
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It is known that any exact local solution B ;. to the optimization problem

minimize ¢, (8)  where ¢ (8) = L5.(B) + A[|Bll1, B €

satisfies the optimality condition, that is, there exists some & € 9 ||Bx |1 such that
(3.13) B, — B (VLi(B;) +1£) <0 forany B e Q.

We can understand this optimality condition as follows: Locally at ,/B\k, any feasible
direction pointed at EA, that is, (ﬁA — B) where B € 2, leads to a decrease in the
objective function value ¢, (B), because as shown in (3.13), such direction forms
an obtuse angle with the (sub)gradient vector of ¢, () evaluated at BA. If B, lies
in the interior of 2, for example, Q2 = R? then (3.13) reduces to the well-known
first-order KKT condition,’

(3.14) VL,(B,) + =0  where & €0|B, 1.

Based on the optimality condition in (3.13), we measure the suboptimality of a
B € Q with

. {w—ﬂﬂ
= min maxy —————

gealpl pealIB—Blh
To understand this measure of suboptimality, first note that if 8 is an exact local
solution, then we have w; (8) < 0 by (3.13). Otherwise, if 8 is close to some exact

local solution, then w, (B) is some small positive value. When f lies in the interior
of Q, then (3.15) reduces to a more straightforward

(3.16) o, (B)=_ min {|VLL(B) +2E'] .}
§ealpl

(3.15) 01.(B) W@wumw}

Because for any fixed v € R?, we have (8 4+ Cv) € Q for C > 0 sufficiently small.
Setting B to be this value in (3.15), we have

T
()= min max{ v (VZA(B)+)L§’)}
g'ed|pll verd L[ V]1

— min {|VLC AE| L,
s’ea||ﬂu1{” H(B) 1 o)
where the second equality follows from the duality between £ and £+, norm.
Equipped with the suboptimality measure w; (8) defined in (3.15), now we can
define the stopping criterion of our proximal-gradient method to be wy, (ﬂf ) <eé&,
where &; > 0 is the desired optimization precision within the rth path-following
stage (line 9 of Algorithm 3). Therefore, the proximal-gradient method achieves

3Because given that EA lies in the interior of €2, we have (E;\ + Cv) € Q and (B;t —Cv) € Q for

any fixed v € R4 and C > 0 sufficiently small. Setting 8 in (3.13) to be these two values, we obtain
vl (VL (B;) + &) =0, which implies (3.14) since v is arbitrarily chosen.
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Algorithm 3 The proximal-gradient method for nonconvex problems, which itera-
tively leverages the line-search method illustrated in Algorithm 2 at each iteration.

{ﬁ,, L} < Proximal-Gradient(A;, &, ﬂ,o, L?, R)
input: A; > 0, & >0,ﬂ?€Rd,L?>O,R>O
parameter: L, >0
initialize: k < 0
repeat

k<—k+1

Linit <~ max{Lmin, Lf_l/z}

,Bk Lk <« line-Search(};, ,B,_1 Linit, R) as in Algorithm 2
until w;, (,B ) < & as defined in (3.15)
:31 <~ ,Bk
: Ly < Lk
. return {ﬂt,

R A A

— =

an approximate local solution Et with suboptimality &;. Recall that within the ¢th
path-following stage (t =1,..., N — 1), we set &; to be A;/4 (line 7 of Algo-
rithm 1), while within the Nth path-following stage, we set & = gopt K Atgt/4
(line 11 of Algorithm 1).

Proposed proximal-gradient method: We are now ready to present the proposed
proximal-gradient method in detail. Recall that within the ¢th stage of our path-
following algorithm, we employ the proximal-gradient method to obtain the ap-
proximate local solution B , (lines 8 and 12 of Algorithm 1). As shown in line 8
of Algorithm 3, at the kth iteration of our proximal-gradient method, we employ
the line-search method (Algorithm 2) to search for the best Lf and calculate the
corresponding ﬂf.

At the kth iteration of the proximal-gradient method, we set the initial value Lipj
of line-search to be max{Lyin, L]f_l /2} (line 7 of Algorithm 3), where Ly, > 0
is used to prevent Lipj; from being too small. In practice, Ly, is often set to be
a sufficiently small value, for example, Ly, = 10~°. The intuition behind such
initialization can be understood as follows: As shown in (3.7), L’;_l and Llf are
the quadratic coefficients of the local quadratic approximations of the objective
function at ﬂf‘z and ﬁ]t‘_l, respectively. Intuitively speaking, 5—2 and ﬂ]f_l are
close to each other, which implies that Lf_l is a good guess for Lf. Hence we can
initialize the line-search method for Lf with a value slightly smaller than L’; -1
for example, Llf_l/2.

When the stopping criterion wj, (}3/‘) < & is satisfied (line 9 of Algorithm 3),
the proximal-gradient method stops and outputs the approximate local solution
,B ;= ﬂk (line 10 of Algorithm 3). We also keep track of L; = Lk to accelerate the
line-search procedure within the next path-following stage.
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4. Theoretical results. We establish theoretical results on the iteration
complexity and statistical performance of our approximate regularization path-
following method for nonconvex learning problems.

4.1. Assumptions. We first list the required assumptions. The first assumption
is about the relationship between A and ||VL(B™)]lco.

ASSUMPTION 4.1. For least squares loss and logistic loss, we set Ay =
Cy/logd/n. Meanwhile, for semiparametric elliptical design loss, we set Ayt =

C'|IB*|l1+/Togd/n. We assume
(4.1) VLB o = Mige/8

Assumption 4.1 is a common condition that A should be large enough to dom-
inate the noise. For instance, for least squares loss we have

VL(") = X (XB" - y).

where XB* — vy is in fact the noise vector. In Lemma C.1 in Section C.1 of the
supplementary material [Wang, Liu and Zhang (2014)] we will show that for least
squares loss and logistic loss, we have that ||VL(8%)|lcc < C+/logd/n holds with
high probability. Similarly, in Lemma C.2 in Section C.1 of the supplementary
material [Wang, Liu and Zhang (2014)] we will prove that, for semiparametric el-
liptical design loss, |[VL(B™)|lco < C'||B*|l1+/Togd/n holds with high probability.
Thus our assumption on A and |VL(B *)|lso holds with high probability.

In the sequel, we lay out another assumption on the sparse eigenvalues of
V2L(B), which are defined as follows.

DEFINITION 4.2 (Sparse eigenvalues). Let s be a positive integer. The largest
and smallest s-sparse eigenvalues of the Hessian matrix V2£(B) are
p1(V2L.s) =sup{v! V2LB)V: IVl <. [Vl =1, B e RY},
p—(V2L,s) =inf{vI VLBV vllo <s, [VI2=1, B € R?}.
For least squares loss and semiparametric elliptical design loss, V2£(8) does

not depend on . However, for logistic loss we have

1 1
T+exp(—xIB) 1 +exp(x! B)’

(4.2) VL) = % > oxix! -
i=1

which depends on B. Note in Definition 4.2, the smallest s-sparse eigenvalue
p—(V2L, s) is obtained by taking infimum over all 8 € R?. Consequently, for lo-
gistic loss, p_(Vzﬁ, s) is always zero because in (4.2) we can take § such that
|xl.T B| — +oo for all nonzero x;’s, which implies that V2£(8) goes to an all-zero
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matrix. To avoid this degenerate case, for logistic loss we define the sparse eigen-

values by taking infimum/supremum over all § with || 8|2 bounded instead of over
all B e R4,

DEFINITION 4.3 (Sparse eigenvalues for logistic loss). Let s be a positive
integer. For logistic loss, we define the largest and smallest s-sparse eigenvalues
of V2L(B) to be

p+(V2L, s, R) = sup{v! VZL(B)V:|[Vlo <s, [Vl =1, B2 < R},
p—(V2L, s, R) =inf{v V2L(B)V:|[V]o <s, [Vl =1, [IBll2 < R},

where R € (0, +00) is an absolute constant such that ||8*||» < R.

In Definition 4.3, we implicitly assume that ||| is upper bounded by some
known absolute constant. Although it seems rather restrictive, this assumption is
essential for logistic loss. Otherwise, V2£(B*) may go to an all-zero matrix when
I|B*]l2 — +oc. In this case, the curvature of the objective function at B* is zero,
a consistent estimation of 8* is impossible. Although such assumption is necessary
for theoretical purposes, we require no prior knowledge about the exact value of
|B*|l2 in practice, since we can always set R to be a sufficiently large constant in
our algorithm (line 3 of Algorithm 1). To unify the later analysis for different loss
functions, we omit the extra term R in Definition 4.3 unless its necessary.

Recall that we impose an ¢, constraint of radius R for all the proximal-gradient
iterations within each path-following stage (lines 8 and 12 of Algorithm 1).
Therefore, we have ||ﬂf||2 < R during the whole iterative procedure [for least
squares loss and semiparametric elliptical design loss, R = +o00; for logistic loss,
R € (0, 400)]. Now we are ready to present the assumption on the sparse eigen-
values of the Hessian matrix.

ASSUMPTION 4.4. Let s* = ||*|lo. We assume:
e There exists an integer 5 > Cs™ such that
o4 (V2L, s* +25) < +o0, p_(V2L,s* +25) >0

are two absolute constants. The constant C > 0 is specified in (4.4).
e The concavity parameter {_ defined in regularity condition (a) satisfies

(4.3) ¢ <C'p_(V2L,s* +25)

with constant C’ < 1.

In Assumption 4.4, the constant

4.4) C = 1441 + 250k,
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where « is a condition number defined as

P+ (V2L s* +25) — ¢4
K = .
p_(V2L,s*+25) —¢_

The constant in (4.4) is rather large for practical purposes. We could expect it to
be much smaller if we manage to get smaller constants in the technical proof.
However, we mainly focus on providing novel theoretical insights in this paper,
without paying too much attention to optimizing constants.

Recall that regularity condition (a) implies {y < {_. Meanwhile, we have
p—(V2L, s* +25) < py (V2L, s* + 25) by definition. Thus (4.3) implies

4.5)

(4.6) tr < Clpyp(V2L,s* +25),

where C’ < 1 is the same constant as in (4.3). Therefore, we have « € [1, +00).
Restrictions (4.3) and (4.6) on the concavity parameters suggest that the concavity
of the concave component 9, (B) = Z‘;: 1 9,(B;) of the nonconvex penalty should
not outweigh the convexity of the loss function on a sparse set. It is also worth not-
ing the concavity parameters are independent from the regularization parameter;
for example, for MCP in (2.2), b = 1/¢_ and A are two independent parameters.
Thus Assumption 4.4 does not depend on A at all.

Assumption 4.4 is closely related to the restricted isometry property (RIP) con-
dition proposed by Candes and Tao (2005). Similar conditions have been stud-
ied by Bickel, Ritov and Tsybakov (2009), Raskutti, Wainwright and Yu (2010),
Negahban et al. (2012), Zhang (2010b, 2013) and Xiao and Zhang (2013). In de-
tail, for least squares loss, the RIP condition assumes there exists an integer s and
some constant § € (0, 1) such that

4.7) 1-8<p_(V2L,s) < ps(VZL,s) <1438,

Now we justify Assumption 4.4 for least squares loss with an example.

To show that Assumption 4.4 is well defined, we assume the RIP condition in
(4.7) holds with s = 877s* and § = 0.01. We set the concavity parameters of the
nonconvex penalty in (a) to be ¢y =0 and ¢_ = p_(V2L, 5)/20; for example, for
MCP defined in (2.2), we take b =1/¢_ = 20/p_(V2£, s). In the following, we
verify there exists an integer 5 = 438s* that satisfies Assumption 4.4.

First, according to the RIP condition, we have

o1 (V2L,s* +28) = pi (V2L, 8775%) = p4 (V2L, s)
(4.8)
<(148)=1.01 < +o0,

p—(V2L, s* 4+ 28) = p_(V2L, 877s*) = p_(V>L, 5)
(4.9)
> (1-8)=0.99 > 0.
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Second, we calculate the value of § in detail. Since the condition number « defined
in (4.5) satisfies

l<ee pr(V2L,s* +25) = py (V2L s) — oy
T (VAL s*+25) — - p_(V2L,s) — ¢
2
_20 (VL) 20 1406 e
19 p_(V2L,s) — 19 1-36
We now verify that § satisfies s > Cs* in Assumption 4.4, where C is defined
in (4.4). Plugging the range 1 < « < 1.08 into the definition of C, we obtain C =
144k2 4250k < 438. Therefore, as long as the RIP condition holds with s = 877s*
and § = 0.01, we can find an integer 5 = 438s* that satisfies Assumption 4.4,
which also implies Assumption 4.4 is a weaker assumption than the RIP condition.
For least squares loss, the RIP condition is known to hold for a variety of design
matrices with high probability, which implies that Assumption 4.4 also holds with
high probability for these designs.

Furthermore, we will justify Assumption 4.4 for £(8) being semiparametric el-
liptical design loss and logistic loss in Section C.2 of the supplementary material
[Wang, Liu and Zhang (2014)]. Also, in the discussion for logistic loss in Sec-
tion C.2, we prove that the assumption of restricted strong convexity/smoothness
in Loh and Wainwright (2013) is stronger than our Assumption 4.4.

Hereafter, we use the shorthand

(4.10) ot = p(V2L, s* +25), p— = p_(V2L,s* 4 25)

for notational simplicity.

4.2. Main theorems. We first provide the main results about the computational
rate of convergence. We then establish the statistical properties of the local solu-
tions obtained by our approximate path-following method.

4.2.1. Computational theory. The next theorem shows that the proposed ap-
proximate regularization path-following method achieves a global geometric rate
of convergence for calculating the entire regularization path, which is the optimal
rate among all first-order optimization methods.

Recall that gop¢ < Agg/4 is the desired optimization precision of the final path-
following stage (line 12 of Algorithm 1), and N = log(Ao/Atgt) /log(n_l) is the
total number of approximate path-following stages, where n € [0.9, 1) is an abso-
lute constant. Meanwhile, we remind the reader that p_ = p_ (V2L,s*+25) >0
is the smallest sparse eigenvalue specified in Assumption 4.4; As defined in regu-
larity condition (a), {— > 0 is the concavity parameter of the nonconvex penalty,
which satisfies (4.3) in Assumption 4.4.

THEOREM 4.5 (Geometric rate of convergence). Under Assumptions 4.1
and 4.4, we have the following results:
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(1) Geometric rate of convergence within the rth stage: Within the tth (t =
1,..., N) path-following stage (lines 8 and 12 of Algorithm 1), the iterative
sequence {BiC Yooy produced by the proximal-gradient method (Algorithm 3)
converges to a unique local solution ﬁx,-

o Within the tth path-following stage (t =1,..., N — 1), the total number
of proximal-gradient iterations (lines 5-9 of Algorithm 3) is no more than
C'log(4C+/s*).

o Within the Nth stage (AN = Agt), the total number of proximal-gradient
iterations is no more than max{0, C/log(C)Ltgt\/s_*/sopt)}.

Here s* = ||B*|o and

1
4.11) C =221kl +k), C/:2/log<7>,
1—1/(8k)
where k € [1, +00) is the condition number defined in (4.5).
(2) Geometric rate of convergence over the full path: To compute the entire path,
we need no more than

Chign/5™
(4.12) (N — 1)C'log(4C/5%) + C’ log<Ls>
&
1,...,(N—1)th stages ont
Nth stage

proximal-gradient iterations, where C, C' are specified in (4.11).
(3) Geometric rate of convergence of objective function value: Let 8, be the ap-
proximate local solution obtained within the tth stage.

o Fort=0,...,N — 1, the value of the objective function decays exponen-
tially toward the value at the final exact local solution 8 hgt? that is,
(4.13) Brig (Br) — Pr (Br) < CAgs™ - > HY,

where C =105/(p— — ¢-).
e fort= N, we have

(4.14) Prig BN) = P Bi) < (C'heges™) - opts
where C' =21/(p_ — ).

PROOF. See the next section for a detailed proof. [J

Result (1) suggests that, within each path-following stage, the proximal-gradient
algorithm attains a geometric rate of convergence. More specifically, within the ¢th
(t=1,...,N) stage (lines 8 and 12 of Algorithm 1), we only need a logarithmic
number of proximal-gradient update iterations (lines 5-9 of Algorithm 3) to com-
pute an approximate local solution §,. Furthermore, within the ¢th path-following
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stage, the iterative sequence { ﬂt }oeo produced by Algorithm 3 converges toward
a unique local solution ﬁ 2+ In Theorem 4.8, we will show that ﬁ 2, €NjOys a more
refined statistical rate of convergence due to the usage of nonconvex penalty.

Result (2) suggests that our approximate path-following method attains a global
geometric rate of convergence. From the perspective of high-dimensional statistics,
the total number of stages N scales with dimension d and sample size n, because
N =log(Ao/Mgt) /log(n~"), where 7 is an absolute constant. From the perspec-
tive of optimization, given dimension d and sample size n, when the optimization
precision &gqp is sufficiently small such that in (4.12) the second term dominates
its first term, then the total iteration complexity is Clog(1/&opt). In other words,
we only need to conduct a logarithmic number of proximal-gradient iterations to
compute the full regularization path.

Recall that we measure the suboptimality of an approximate solution with
wy (B) defined in (3.15), which does not directly reflect the suboptimality of the
objective function value. Hence we provide result (3) to characterize the decay of
the objective gap Prige (ﬂ ) = P (ﬂ Mg .)- In detail, (4.13) illustrates the exponent1al
decay of the objective gap along the regularlzatlon path, thatis, r =1, . -1,
while (4.14) suggests that, the final objective function value evaluated at ,[3 N 18
sufficiently close to the value at the exact local solution ﬂ hage> S long as the opti-
mization precision gqp 18 sufficiently small.

Recall the largest sparse eigenvalue py = po (V2L, s* + 25) > 0 is specified
in Assumption 4.4; as defined in regularity condition (a), {4 > 0O is the concavity
parameter of the nonconvex penalty, which satisfies (4.6) in Assumption 4.4; Ly
is a parameter of Algorithm 3 (line 3).

REMARK 4.6. Nesterov (2013) proved that the total number of line-search
steps (lines 4—7 of Algorithm 2) within the kth proximal-gradient iteration (line 8
of Algorithm 3) is no more than

1 — —log Ly
2(k+1)+max{0, og(p+ — ¢4) —log mm}.

log?2

Piecing the above results together, we conclude that the total number of line-search
iterations (lines 4-7 of Algorithm 2) required to compute the full regularization
path is of the same order as (4.12).

4.2.2. Statistical theory. We present two types of statistical results. Recall that
ﬁ, is the approximate local solution obtained within the fth path-following stage,
while ﬁ;w is the corresponding exact local solution that satisfies the exact optimal-
ity condition in (3.13). In Theorem 4.7, we will provide a statistical characteriza-
tion of all the approximate local solutions (B ,}fV: | attained along the full regular-
ization path. Recall that in Theorem 4.5 we prove that within the rth stage, the
iterative sequence { ﬂf},‘j‘;o produced by the proximal-gradient method converges
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toward a unique exact local solution ﬁx,~ In Theorem 4.8, we will provide more
refined statistical properties of these exact local solutions {8 ,\,}ZV: | along the full

regularization path. Since Bx N = ﬁ)\tgt’ this result justifies the statistical property
of the final estimator.

THEOREM 4.7 (Statistical rates of convergence of approximate local solutions).
Recall that B, is the approximate local solution obtained within the tth path-
following stage (lines 8 and 12 of Algorithm 1). Under Assumptions 4.1 and 4.4,
we have

(4.15) |B, — B*|, < Cri/s*  fort=1,...,N,
where s* = ||B*|lo and C = (21/8)/(p— — ¢-).

PROOF. See the next section for a detailed proof. [J

Theorem 4.7 provides statistical rates of convergence of all the approximate
local solutions attained by our algorithm along the regularization path. Recall that
in Assumption 4.1, we set Ay = C+/logd/n for least squares and logistic loss,
and A = C'||B*|l14/logd/n for semiparametric elliptical design loss. For least
squares and logistic loss, taking t = N in Theorem 4.7, we have

21/8 21/8-C [s*logd
/ 28 s = / |s*logd
- = po— — - n

Hence the final approximate local solution ﬁ N attains the minimax rate of con-
vergence for parameter estimation. Similarly, for semiparametric elliptical design

loss, we have
~ 21/8 C’ s logd
[By =Bl = — Hﬂ 1y

which suggests that the rate of convergence of the final approximate local solution
is also optimal in the regime where ||8*[|1 is upper bounded by a constant. More-
over, since 7 is an absolute constant, for 8 y_g with K being a positive integer
constant, Theorem 4.7 gives

|By —B*[, <

21/8 21/8 -nK
—/g)LN—K s* < / 77( )\tgt\/_

By_x —B*|, <
1Byv_x — B[, PR o

which suggests that the approximate local solution ,E N_k enjoys the same rate of
convergence as the final approximate local solution B > but with a larger constant
= 21/8) -0 K /(p- = ¢-) > 21/8)/(p- — ¢-).
In independent work, Theorem 1 and Corollaries 1-3 of Loh and Wainwright
(2013) show that the approximate local solution ﬁ attained by their optimization
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procedure satisfies ||ﬁ —B*2 < C)Ltgt\/? . A comparison between Theorem 4.7
and their result suggests that our approximate local solution ﬁ n obtained within
the final path-following stage has the same statistical rate of convergence as the
approximate local solution attained by their procedure. Meanwhile, Theorem 4.7
provides additional statistical characterizations for the other regularization param-
eters along the regularization path, that is, Ay, ..., An_1.

In the next theorem, we provide a refined statistical rate of convergence. Recall
within the ¢th path-following stage, the iterative sequence {f8 f Yoo produced by the
proximal-gradient method converges toward a unique exact local solution ﬁ a- The
next theorem states that ,ﬁ\)\t benefits from nonconvex regularization and possesses
an improved statistical rate of convergence.

THEOREM 4.8 (Refined statistical rates of convergence of exact local so-
lutions). For the regularization parameter \;, we assume that the nonconvex

penalty Py, (B) = YI_, pa, (B)) satisfies

(4.16) P, (B =0 for|B;l= v,

for some v, > 0. Let S§ U S5 = §* = supp(B™) with |ST| =57, |S5| =55 and |S*| =
s* =57 +s5. For j € Sf C S*, we assume I,B;fl > v;, while for j € S5 C §*, we
assume | /3;‘-‘| < vy. Under Assumptions 4.1 and 4.4, we have

@17 By, — B2 < CI(VLB) gl + Chnfss  fore=1,....N,
——
ST:La_rge |.Bj| ’s S;:Small |/3_/'|’S

where C =1/(p— —¢_) and C' =3/(p_ — ).
PROOF. See the next section for a detailed proof. [J

In Theorem 4.8, the assumption in (4.16) applies to a variety of nonconvex
penalty functions. For SCAD in (2.1), we have v; = aA;; While for MCP in (2.2),
we have v, = bA;. Theorem 4.8 suggests that, for “small” coefficients such that
|8l < v, the second part on the right-hand side of (4.17) has the same recovery
performance as in Theorem 4.7, while for “large” coefficients such that |B;] > vy,
the first part in (4.17) possesses a more refined rate of convergence. To under-
stand this, we consider an example with £(f) being least squares loss. We assume
that (Y |X = x;) follows a sub-Gaussian distribution with mean xiT B* and variance
proxy o2. Moreover, we assume that the columns of X are normalized in such a
way that max (1, q}{IX;ll2} < +/n. Then we have

(@.18) (VB ], scff\/%
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with high probability. Clearly, this ,/s}/n rate of convergence on the right-hand

side of (4.18) is significantly faster than the usual /s*logd/n rate, since it gets
rid of the logd term, and si < s*. In fact, v; is the minimum signal strength above
which we are able to obtain this refined rate of convergence. In the examples of
SCAD and MCP, we have v; = CA;. Recall that {At}f\/: o 1s a decreasing sequence.
Hence, we are able to achieve this more refined rate of convergence for smaller
and smaller signal strength along the regularization path. Moreover, for t = N, the
minimum signal strength vy = Ay = A = C+/logd/n. Hence the required min-
imum signal strength goes to zero as the sample size increases. Following a proof
similar to Lemmas C.1 and C.2 in the supplementary material [Wang, Liu and
Zhang (2014)], we can also obtain similar results for logistic loss and semipara-
metric elliptical design loss. This refined rate of convergence is sharper than the
result in Theorem 4.7, which is also achievable via convex regularization, for ex-
ample, the £1 penalty. Therefore, Theorem 4.8 clearly justifies the benefits of using
nonconvex regularization. Moreover, in Section 6 we will show that our require-
ment on the minimum signal strength to achieve this refined rate of convergence
is optimal and is a weaker requirement than the suboptimal requirements in Fan,
Xue and Zou (2014), Wang, Kim and Li (2013).

In addition to the refined rate of convergence for parameter estimation in The-
orem 4.8, in the next theorem we prove that the exact local solution 8, also re-
covers the support of B*. Before we present the next theorem, we introduce the
definition of an oracle estimator, denoted by B. Recall that S* = supp(8*). The
oracle estimator S is defined as
(4.19) ﬁo = argmin L(f),

supp (B)< 8™
Be2
where © = R? for least squares loss and semiparametric elliptical design loss,
while € = By(R) for logistic loss with R > IB*|l>. In the next lemma, we show
that B is the unique global solution to the minimization problem in (4.19) even
for nonconvex loss functions and has nice statistical properties.

LEMMA 4.9. Under Assumption 4.4, the oracle estimator ﬁo is the unique
global minimizer of (4.19). For L(B) being least squares loss, we assume that
(Y|X = x;) follows a sub-Gaussian distribution with mean XI-T B* and variance

proxy o%. Then the oracle estimator satisfies

-~ 1 *
@20 [Bo 8l = o2/ <2

with high probability for some constant C.

PROOF. See the supplementary material [Wang, Liu and Zhang (2014)] for a
detailed proof. [l
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Statistical recovery results similar to (4.20) also hold for logistic loss and
semiparametric elliptical design loss under different conditions. These results are
omitted here for simplicity. Lemma 4.9 suggests that, for a sufficiently large n
and sufficient minimum signal strength, the oracle estimator f exactly recov-
ers the support of B*. More specifically, if the minimum signal strength satisfies
min j ¢ g« |,3;‘.‘| > 2v for v > 0, then with high probability

log s*

min|(Bo);| = min| 57| — [Bo — B 22 — a2/ p--

which 1mphes min e g |(ﬁ0) jl=v>0forn sufﬁ01ent1y large. Meanwhile, recall
that supp(ﬂ o) C S* by definition. Hence we have supp(ﬂ o) =S"

The next theorem states that under the condition of sufficient minimum signal
strength, B, is the oracle estimator, and exactly recovers the support of g*.

THEOREM 4.10 (Support recovery). For the regularization parameter A;, Sup-
pose that the nonconvex penalty Py, (B) = Z‘Ji: 1 P», (Bj) satisfies (4.16) for some
vy > 0. For least squares loss, we assume that (Y|X = xl) follows a sub-Gaussian
distribution with mean XTﬁ* and variance proxy o>. Under Assumptions 4.1
and 4.4, if the minimum signal strength satisfies mincg« |B ]| > 2v;, then for n
sufficiently large, ﬁk[ = BO, and supp(ﬁk[) = supp(ﬁo) = supp(B™) with high
probability.

PROOF. See the next section for a detailed proof. [J

Recall that the assumption in (4.16) applies to a variety of nonconvex penalties,
including SCAD and MCP, for which we have v, = CX; with C > 0. Hence the
minimum signal strength that is required to achieve the oracle estimator and exact
support recovery actually shrinks with the decreasing sequence {At}l[V: o along the
regularization path. For least squares loss, we have vy = CAy = C'y/logd/n for
t = N. Hence within the final path-following stage, the required minimum signal
strength goes to zero as sample size n — oc. Furthermore, such requirement on
the minimum signal strength for achieving the oracle estimator is optimal; that
is, no weaker requirement exists [Zhang and Zhang (2012)]. In Section 6 we will
show that, for least squares loss, some recent works [Fan, Xue and Zou (2014),
Wang, Kim and Li (2013)] require a stronger minimum signal strength to achieve
the oracle estimator in the same setting of least squares regression. Similar results
to Theorem 4.10 also hold for other loss functions, but under different conditions.
They are omitted here for simplicity.

5. Proof of main results. In this section we present the proof sketch of the
main results. The desired computational and statistical results rely on the strong
convexity of the surrogate loss function £, (). For example, we need £, (8) to
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be strongly convex to establish the geometric rate of convergence of the proximal-
gradient method within each path-following stage. However, £, () is nonconvex
in general, since L, (B) = L(B) + Q:.(B), where L(B) is possibly nonconvex and
Q,.(B) is concave. In the following lemma, we prove that £, (8) = L(B) + Q4 (B)
is strongly convex for § on a sparse set. In a similar way, we establish the strong
smoothness of Zx (B) on a sparse set.

Recall p_ = p_(V2L,s* + 25) and py = py(V2L, s* + 25) are the sparse
eigenvalues specified in Assumption 4.4. As defined in regularity condition (a),
¢—, ¢4+ > 0 are the concavity parameters of the nonconvex penalty, which sat-
isfy (4.3) and (4.6).

LEMMA 5.1. Let B, B € R? be two sparse vectors, which satisfy ||(B —
Bs=llo < 25, where § is specified in Assumption 4.4 and S* = supp(B*). For
L(B) being logistic loss, we further assume ||B|l2 < R and ||B’|l» < R, where
R is a constant specified in Definition 4.3. Then the surrogate loss function

L, (B) = L(B) + Qi (B) satisfies the restricted strong convexity

E(8) = B+ VEB) (B~ )+ =18~ B3

and the restricted strong smoothness
EB) < LB + VLB (B~ B)+ 28— I

PROOF. See Section D.2 in the supplementary material [Wang, Liu and Zhang
(2014)] for a detailed proof. [

A similar result has been discussed by Negahban et al. (2012). The main differ-
ence is that our constraint set, where £, (B) is strongly convex/smooth, is a sparse
subspace, while that of Negahban et al. (2012) is a cone. N

Note that in Lemma 5.1, the strong convexity and smoothness of £, (8) rely on
the sparsity of 8 and B’. Hence we need to establish results regarding the sparsity
of ﬂf throughout the whole iterative procedure. In the sequel, we provide several
important lemmas: Lemmas 5.2 and 5.3 characterize the statistical properties of
any sparse f8; based on such statistical properties, Lemma 5.4 proves that, any
proximal-gradient update iteration with a sparse input produces a sparse output.
Equipped with these lemmas, we can establish the sparsity of the solution path by
mathematical induction in Theorem 5.5.

The next lemma provides a characterization of any sparse 8 with certain subop-
timality.

LEMMA 5.2.  We assume that B satisfies

(5.1) Bs=llo <5, wr(B) <A/2
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with A > Agt, where w) (B) is the measure of suboptimality defined in (3.15). For
logistic loss, we assume ||Bl2 < R, where R > 0 is a constant specified in Defini-
tion 4.3. Under Assumptions 4.1 and 4.4, B satisfies

21/8
1B —B*||, < Cav/s* whereC:i/é_,
o_—C_
Meanwhile, the objective function value evaluated at B satisfies
21/2
&1 (B) — o (B*) < C/)\2s* where C' = —/§
o —C_

PROOF. See Section D.3 of the supplementary material [Wang, Liu and Zhang
(2014)] for a detailed proof. [J

Recall that we use the approximate local solution B, 1 obtained within the
(t — 1)th path-following stage to be the initialization of the rth stage (line 8
of Algorithm 1), that is, /3: /3, 1- By setting = ,B, | = ,B, and A = A; in
Lemma 5.2, we can see that if ,B —1 1s sparse and (A;/2)-suboptimal, then the ini-
tial point ﬁ? of the rth stage has nice statistical recovery performance. However,
it is unclear whether the rest of 8;’s (k =1, 2, ...) within the ¢th stage also have
similar recovery performance. To prove this, we first present Lemma 5.3, which
shows that under the condition that B is sparse and ¢; (B) is close to ¢, (8), B has
desired statistical properties. After Lemma 5.3, we will explain that if ? satisfies
this condition, then all the ,Bf s (k=1,2,...) within the same path-following stage
also satisfy this condition and therefore enjoys nice statistical properties.

LEMMA 5.3.  Suppose that for A > A, B satisfies
21/2
_ -

For logistic loss, we further assume ||B|l2 < R, where R is a constant specified in
Definition 4.3. Under Assumptions 4.1 and 4.4, we have

15/2
=

1Bl =5, $5.(B) — ¢ (B*) < CA%s* where C =

”ﬂ—ﬂ*||2§C/)»\/s_* where C' =

PROOF. See Section D.4 of the supplementary material [Wang, Liu and Zhang
(2014)] for a detailed proof. [J

Let A =X; and § = ﬂf in Lemma 5.3. It suggests that within the rth path-
following stage, all ,Bf’s (k=1,2,...) have nice statistical recovery performance
under three sufficient conditions: (i) each ﬂf is sparse; (ii) the objective function
value ¢;, (ﬁf) is close to ¢, (B*); (iii) for logistic loss, we further need ||,Bl; ll2 <R.
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For condition (ii), recall that if we set 8 = ,B? and A = X, in Lemma 5.2, then ,B?
being sparse and (A, /2)-suboptimal implies that ¢, (ﬂ?) is close to ¢, (B*). Since
the proximal-gradient method ensures the monotone decrease of {¢;, (,B’;)},fio
within the tth stage (see Lemma D.1 of the supplementary material [Wang, Liu
and Zhang (2014)]), condition (ii) also holds. Meanwhile, condition (iii) obviously
holds because of the £, constraint. To establish the statistical recovery performance
of all the B;’s within the rth stage, we still need to establish the sparsity of ,Bf’s
to guarantee that condition (i) holds. To prove this, we present Lemma 5.4, which
states that if B is sparse, then a proximal-gradient update operation (3.9) on f8
produces a sparse solution.

LEMMA 5.4.  Suppose that, for k. > g, B satisfies

1By <5, ¢n(B) —u(B*) <CA%* and L <2(py — &),

where C = (21/2)/(p— — ¢-). For logistic loss, we assume ||B]l2 < R, where R is
specified in Definition 4.3. Under Assumptions 4.1 and 4.4, the proximal-gradient
update operation defined in (3.9) produces a sparse solution, that is,

[(TLx(B: B))ge g <5
Here we set R = +00 if the domain 2 in (3.8) is R4,

PROOF. See Section D.4 of the supplementary material [Wang, Liu and Zhang
(2014)] for a detailed proof. [

For B = B!, A =1, and L = L¥, Lemma 5.4 states that if B! is sparse
and the objective function value ¢, (,Blt‘_l) is close to ¢;,(B*), then ﬂf =
TL?, . B f_l ; R) produced by the proximal-gradient update step (3.8) is also sparse.
Within the ¢th path-following stage, if ﬂ? is sparse, wy, (ﬂ?) < A+/2, and for logis-
tic loss ||ﬂ?||2 < R, then by Lemma 5.2 we have

21/2
¢1,(B7) — 91, (B") < his®
p— =&
Since {¢;, (ﬂf)},fio decreases monotonically, we have

21/2

b1, (BX) — 01, (B*) < ¢, (BY) — o1, (B*) < P AZs* fork=1,2,....

Assume that we have L],‘ < 2(p4+ — ¢4) (which will be proved in Theorem 5.5).
Applying Lemma 5.4 recursively, we obtain || (ﬂf)sfﬁllo <s5(k=1,2,...). Mean-
while, we have || ﬂf 2 < R due to the ¢» constraint. Then according to Lemma 5.3,
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all ﬂ’;’s within the ¢th path-following stage have nice recovery performance, that
18,

1B — Bl < 22 V5 fork=1.2,....
p— =&
Furthermore, by Lemma 5.1 the sparsity of ﬂf’s implies the restricted strong con-
vexity and smoothness of £, (), which enable us to establish the geometric rate
of convergence within the #th path-following stage. These results are formally pre-
sented in Theorem 5.5.

THEOREM 5.5. Suppose within the tth path-following stage, the proximal-
gradient method in Algorithm 3 is initialized by ﬂ? and L?, which satisfy

[(BD)s+llo <5 @, (B7) </2 and L] <2(p+ — 1)

For logistic loss we further assume ||ﬂ?||2 < R with R specified in Definition 4.3.
Then we have the following results:

e fork=1,2,..., we have

_ 15/2
62 [B)5lo<r |8 By = 2

L ——As%, LF <2(p —¢).

e The iterative sequence {ﬂk }k ~o converges toward a unique exact local solu-
tion ,B A , which satisfies || (,B a)sllo = s and the exact optimality condition that
w;, (B¥) <0,

e 710 achieve an approximate local solution ,B ; that satisfies w;, (ﬂ ) < At /4, we

need no more than C'log(4C~/s*) proximal-gradient iterations defined in lines
5-9 of Algorithm 3. Here

1
53 C=2v21- 1 , Cc'=2/1 (7)
(53) V21 (1 + k) e e
e To obtain an approximate local solution B, such that wy, (Bt) < Eopt, we need

no more than C'log(Cx, \/s_*/eopt) proximal-gradient iterations. Here C and C’
are defined in (5.3).

PROOF. See Section D.6 of the supplementary material [Wang, Liu and Zhang
(2014)] for a detailed proof. [

To prove the geometric rate of convergence and desired statistical recovery re-
sults hold within all path-following stages, thatis, t =0, ..., N, we need to verify
that the conditions of Theorem 5.5 hold within each stage. We prove by induction.
We assume the initialization of (¢ — 1)th path-following stage satisfies

G4 BDslo=5.  @u(B) =A/2 and Ly <2(p = &4).
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Applying Theorem 5.5, we obtain
1B ) ly <5, LF <2004 —¢p)  fork=1,2,....

Consequently, the approximate solution B,_l produced by the (+ — 1)th stage sat-
isfies ||(B;_1)s=llo <5, while L;_; satisfies L;_1 <2(p4+ — ¢1). Since we warm
start the #th path-following stage with ﬂ? = Bt_l and L? = L;—1 (line 8 of Algo-
rithm 1), we have

(5.5) 18%)5llo <5, LY <2(ps — L3

Moreover, note that the stopping criterion of the proximal-gradient method ensures
w;, (B;—1) < Xi—1/4 (line 9 of Algorithm 3), which implies w;,(B,_1) < A;/2
according to Lemma D.4 of the supplementary material [Wang, Liu and Zhang
(2014)]. Thus we have

(5.6) w2, (BY) <2 /2.

Therefore, we know that (5.4) implies (5.5) and (5.6). We will verify (5.5) and (5.6)
hold for # = 0 in the proof of Theorem 4.5 in the supplementary material [Wang,
Liu and Zhang (2014)]. By induction, we have that (5.5) and (5.6) hold for
t =0,...,N. As a consequence of Theorem 5.5, all path-following stages have
geometric rates of convergence along the solution path, which implies the global
geometric rate of convergence in Theorem 4.5. See the supplementary material
[Wang, Liu and Zhang (2014)] for a detail proof. Meanwhile, all ﬂ’; ’s have desired
statistical properties, that is,

15/2
p— =&
which leads to the statistical rates of convergence of the approximate local solu-
tions {f t}i\’: 1 in Theorem 4.7, the more refined rates of convergence of the exact
local solutions {8, }ivz | in Theorem 4.8 and the support recovery results in The-

orem 4.10. See Sections D.8-D.10 of the supplementary material [Wang, Liu and
Zhang (2014)] for detailed proofs, respectively.

1B~ B*||, < /st fort=1,...,Nandk=0,1,...,

6. Discussion. Our work is related to recent works on understanding non-
convex regularization in the context of least squares regression. Zhang (2010a)
proposed an MC+ procedure for MCP penalized least squares regression. How-
ever, the computation of MC+ might be inefficient because there can be expo-
nentially many switching points on its solution path. To remedy this issue, Zhang
(2010b, 2013) proposed the multi-stage convex relaxation method, which itera-
tively solves

d
6.1) ﬂk<—argm‘iin ﬁ(ﬂ)+2p;\(|ﬁ§71|)|ﬂj| , k=1,2,...,
BeR j=1
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. . . P (I
where p; (B;) is defined in Section 2, and the initialization B~ is set to be the

Lasso estimator corresponding to A. For k sufficiently large, Bk has the same ora-
cle properties as in Theorems 4.8 and 4.10. However, for each £ we need to solve
the minimization problem in (6.1) exactly, which is not realistic in practice, since
practical optimization methods only attain finite numerical precision in finite iter-
ations. In contrast, we provide simultaneous statistical and computational analysis
by explicitly taking the numerical precision into account, and establish the global
geometric rate of convergence in terms of iteration complexity for calculating the
full regularization path.

This multi-stage convex relaxation method was previously referred to as local
linear approximation (LLA), and was analyzed on fixed dimensional models by
Zou and Li (2008). Fan, Xue and Zou (2014) recently provided nonasymptotic
analysis of LLA and proved that LLA finds the oracle estimator in two iterations.

However, their results rely on that the Lasso initialization satisfies ||Z§0 — B oo <
C A with high probability, which requires A to take the value of C’\/s*logd/n.
Consequently, their requirement on the minimum signal strength is of the order of
J/s*logd/n, which is suboptimal. In contrast, we only require a minimum signal
strength of the order of \/logd/n, which is optimal [Zhang and Zhang (2012)].
Also, they did not analyze the iteration complexity for computing each step of
LLA, that is, solving (6.1).

Very recently, Wang, Kim and Li (2013) considered a two-step approach simi-
lar to the two-step LLA procedure, named the calibrated CCCP. It differs from the

two-step LLA in that its Lasso initialization BO is obtained using the regulariza-
tion parameter T, where 7 = o(1) and A = /logd/n. It attains the oracle esti-
mator under the restricted eigenvalue (RE) condition [Bickel, Ritov and Tsybakov
(2009)], but requires the minimum signal strength to be larger than Cs*./logd /n.
Under a stronger assumption than the RE condition, namely the relaxed sparse
Riesz condition, a minimum signal strength of the order of ./logd/n/t is re-
quired. Such requirement is still suboptimal, but is close to the optimal scaling
of \/logd/n in our results, since t can take 1/logn. They proposed a novel high-
dimensional BIC criterion, which can be used to choose the best A in our proce-
dure. Also, they provided extensions to logistic regression.

The iterative hard thresholding (IHT) algorithm [Blumensath and Davies
(2009)] can also achieve a local solution with desired statistical recovery perfor-
mance at a global geometric rate of convergence. However, the theoretical results
of IHT are not directly comparable with ours because of the usage of different
noise models. If we have to cast the theoretical results of IHT into our model, their
results are much weaker than ours. In detail, IHT attains an approximate local
solution B, which satisfies

(6.2) |8 — B*, <6llel

with high probability. Here e € R” is the noise vector in their setting, which is
often considered to be perturbation noise. Note that a proper normalization gives



2196 Z. WANG, H. LIU AND T. ZHANG

e=(y — XB%)//n, where y — XB* is considered to be the sub-Gaussian noise
with zero mean and variance proxy o2 in our setting. Then (6.2) gives

(6.3) |B—B*|,<6lelr=6]y —XB*|,/v/n <640 /n//n="24c

with high probability. Note that the upper bound on the right-hand side of (6.3)
does not depend on s* and d, and fails to converge to zero as n — oo. In summary,
casting the results of IHT into our setting of sub-Gaussian noise yields a rather
weak result. Also, IHT requires prior knowledge on the true sparsity level s* to
achieve fast global convergence, while our method does not.

In addition, the difference between our work and the independent work by Loh
and Wainwright (2013) has been discussed in Section 1 and Section 4 with details.

7. Numerical results. We provide numerical results illustrating the compu-
tational efficiency and statistical accuracy of the proposed method. In detail, first
we illustrate the effectiveness of our method on a problem with both nonconvex
loss and penalty functions. Then we conduct comparison between our method and
existing nonconvex procedures.

In the first experiment, we consider £(f) to be semiparametric elliptical random
design loss defined in (2.6) and P (8) to be the MCP penalty defined in (2.2). We
test on a synthetic dataset with n = 500 samples and d = 2500 dimensions. See the
supplementary material [Wang, Liu and Zhang (2014)] for the detailed settings.

As shown in Figure 3(a), the objective function value ¢A(ﬂf) is monotone
decreasing along the regularization path, as characterized by our theory (see
Lemma D.1 of the supplementary material [Wang, Liu and Zhang (2014)]) and
converges eventually.

Convergence of Objective
Function Value

%
)
)]
300 %
‘{; )
£20 e
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(a)
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(c)

Semiparametric elliptical design regression with MCP: (a) plot of the objective function

value ¢, (ﬂf) along the regularization path; (b) plot of ¢, (,Bf) — &, (,Et) (log-scale) within each
path-following stage; (c) plot of the recovery error IIﬂﬂ‘ — B*|lp. Here we illustrate each path-fol-
lowing stage (t =1, ..., N) with a different color. Note that each point in the figure denotes ﬂf,
which corresponds to the kth iteration of the proximal-gradient method (Algorithm 3) within the tth
path-following stage.
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Figure 3(b) illustrates the geometric rate of convergence within each path-
following stage. In detail, each line denotes a path-following stage. It shows the
objective function value gap, that is, ¢, (ﬂ/t‘) — ¢5,(B;) decays exponentially with
k within each stage. Note that

b1, (B — ¢, (B) = s, (BE1) — ¢, (B)
(7.1)

L o (B
2 (Lf+py — )%

Here the first inequality is because the objective function ¢;, (ﬂf ) is monotone de-
creasing, while the second and third inequalities follow from Lemmas D.1 and D.2
of the supplementary material [Wang, Liu and Zhang (2014)], respectively. There-
fore, w;, (ﬂ]t‘) also decays exponentially within each stage, which implies that we
only need a logarithmic number of iterations to attain the desired approximate local
solution within each path-following stage, as characterized by Theorem 4.5.

Figure 3(b) illustrates the success of the path-following scheme in Figure 1:
The k = 1 point on each line denotes the initialization of the corresponding path-
following stage, for example, the 7th stage. Recall that such initialization is set to
be the approximate local solution f8,_; obtained within the (# — 1)th stage, which
falls into the region of optimization precision in Figure 1. Meanwhile, the fast
convergence within the 7th stage suggests that B8,_; also falls into the region of
fast convergence in Figure 1. Thus the path-following scheme works exactly as we
have described in Figure 1 empirically.

Figure 3(c) shows that the ¢»> recovery error decays toward a small value as the
optimization method proceeds, which implies that the attained approximate local
solution has desired statistical properties, as predicted by Theorem 4.7.

In the second experiment, we compare our method with several existing non-
convex procedures on statistical performance, including LLA [Zou and Li (2008)],
the calibrated CCCP [Wang, Kim and Li (2013)], SparseNet [Mazumder, Fried-
man and Hastie (2011)] and the multi-stage convex relaxation method [Zhang
(2010b, 2013)]. We consider an example of least squares regression with MCP,
where n = 200, d = 2000 and ||*|lo = 10. See the supplementary material [Wang,
Liu and Zhang (2014)] for the detailed settings.

We compare the support recovery performance and £, recovery error of the esti-
mators obtained from these procedures in Table 1, where we use the Lasso estima-
tor and the oracle estimator defined in (4.19) as references. For support recovery,
we are interested in the cardinality of true positive sets (TPS) and false positive set
(FPS), both of which are defined in Table 1.

Ideally, the cardinality of TPS should be as large as ||*|lo (which is 10 in this
example), since a good procedure should exactly identify $* = supp(B*). Mean-
while, the cardinality of FPS should be close to zero; that is, few of the coordinates
in S* are wrongly identified as nonzero. Table 1 shows that all nonconvex proce-
dures significantly outperform the Lasso, which produces a less sparse estimator

Lk 12
Al
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TABLE 1
Comparing statistical performance of nonconvex procedures: TPS/FPS denote the true/false
positive sets, which are defined as {j € S*: Ej #0} and {j € §*: Ej # 0}, respectively, and | - |
denotes their cardinality. The €y recovery error is defined as ||B — B*|l2, where E is the estimator.
Standard deviations are present in the parentheses

Method |TPS]| |FPS]| £, error
Approximate path following 10 (0) 0.180 (0.0411) 0.702 (0.0278)
SparseNet 10 (0) 0.950 (0.108) 0.848 (0.0230)
Multi-stage convex relaxation 10 (0) 2.21 (0.146) 1.28 (0.0753)
LLA 10 (0) 2.98 (0.304) 1.28 (0.0996)
Calibrated CCCP 9.99 (0.01) 3.28 (0.308) 1.40 (0.122)
Lasso 9.98 (0.0141) 31.15 (0.799) 2.63 (0.0460)
Oracle estimator 10 (0) 0(0) 0.484 (0.0221)

with larger £, recovery error. In this specific example, our method outperforms the
existing nonconvex procedures. Moreover, our method almost recovers S* exactly
and achieves a small £, recovery error that is very close to the £> error of the oracle
estimator, as characterized by Theorem 4.8.

8. Conclusion. In this paper, we provide a unified theory for penalized M-
estimators with possibly nonconvex loss and penalty functions. These problems
are motivated by generalized linear models with nonconvex penalties and semi-
parametric elliptical design regression, as well as a broad range of other applica-
tions. Because it is intractable to compute the global solutions of these problems
due to the nonconvex formulation, we need to establish theory that characterizes
both the computational and statistical properties of the local solutions obtained by
specific algorithms. For this purpose, we propose an approximate regularization
path-following method, which serves as a unified framework for solving a variety
of high-dimensional sparse learning problems with nonconvexity. Computation-
ally, our method enjoys a fast global geometric rate of convergence for calculating
the entire regularization path; statistically, all the approximate and exact local solu-
tions attained by our method along the regularization path possess sharp statistical
rate of convergence in both estimation and support recovery. In particular, we pro-
vide sharp theoretical analysis that demonstrates the advantage of using nonconvex
penalties. This paper shows that, under suitable conditions, we can efficiently ob-
tain the entire regularization path of a broad class of nonconvex sparse learning
problems.

Our work can be extended in many directions: Our method and theory for least
squares loss and logistic loss can be easily extended to other generalized linear
models (see Section C.2 of the supplementary material [Wang, Liu and Zhang
(2014)] for details); for inverse covariance matrix estimation, our work is directly
applicable to the sparse column inverse operator (SCIO) [Liu and Luo (2012)];
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meanwhile, it might need more effort than verifying Assumptions 4.1 and 4.4 to
adapt the graphical Lasso into our framework; for example, the optimization algo-
rithm also has to be modified to enforce the positive semidefinite constraint; it is
also interesting to consider other loss functions, for example, quantile regression
[Wang, Wu and Li (2012)], for which Assumption 4.4 may no longer hold.
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SUPPLEMENTARY MATERIAL

Optimal computational and statistical rates of convergence for sparse non-
convex learning problems (DOI: 10.1214/14-A0S1238SUPP; .pdf). We provide
the detailed proof in the supplement [Wang, Liu and Zhang (2014)].
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