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Abstract. We study the positive blowing-up solutions of the semilinear parabolic

system: ut � Du ¼ vp þ u r, vt � Dv ¼ uq þ v s, where t A ð0;TÞ, x A R
N and p; q; r; s > 1.

We prove that if r > qþ 1 or s > pþ 1 then one component of a blowing-up solution may

stay bounded until the blow-up time, while if r < qþ 1 and s < pþ 1 this cannot

happen. We also investigate the blow up rates of a class of positive radial solutions.

We prove that in some range of the parameters p; q; r and s, solutions of the system have

an uncoupled blow-up asymptotic behavior, while in another range they have a coupled

blow-up behavior.

1. Introduction.

In this paper we are concerned with the study of the behavior of positive blowing-

up solutions of the semilinear parabolic system:

ut � Du ¼ vp þ ur; 0 < t < T ; x A R
N
;

vt � Dv ¼ uq þ vs; 0 < t < T ; x A R
N
;

�

ð1Þ

where u ¼ uðt; xÞ, v ¼ vðt; xÞ. Throughout this paper, we assume that p; q; r; s > 1, N is

a positive integer and we consider initial data

uð0; xÞ ¼ u0ðxÞ; vð0; xÞ ¼ v0ðxÞ;ð2Þ

where u0; v0 are assumed to be nonnegative and bounded. Also k � k
y

will denote the

norm in LyðRNÞ.

It is known that (1)–(2) has a unique nonnegative maximal solution on ½0;TÞ � R
N ,

classical for t > 0. This follows by standard contraction mapping argument. More-

over, if T < y, then

lim
t%T

ðkuðtÞk
y
þ kvðtÞk

y
Þ ¼ y;ð3Þ

and we say that the solution blows up in finite time with blow-up time T . We say that

the blow-up is simultaneous if

lim sup
t%T

kuðtÞk
y

¼ lim sup
t%T

kvðtÞk
y

¼ yð4Þ

and that it is non-simultaneous if (4) does not hold, i.e. if one of the two components

remains bounded on ½0;TÞ � R
N .
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System (1) can be viewed as a combination of the following two systems

ut � Du ¼ vp; 0 < t < T ; x A R
N ;

vt � Dv ¼ uq; 0 < t < T ; x A R
N ;

�

ð5Þ

and

ut � Du ¼ u r; 0 < t < T ; x A R
N ;

vt � Dv ¼ v s; 0 < t < T ; x A R
N :

�

ð6Þ

It is well known [7] that (5) has only simultaneous blowing-up solutions. Of course,

since (6) is completely uncoupled, non-simultaneous blowing-up solutions clearly exist

for (6). It is therefore natural to ask whether the blow-up is simultaneous or not for the

system (1).

Intuitively, one might expect that only simultaneous blow-up should occur if r; s are

small as compared with p; q in some sense, and that non-simultaneous blow-up could

occur in the opposite case. An almost complete answer to this question is given in the

following theorem, which is the main result of this paper.

Theorem 1 (Simultaneous or non-simultaneous blow-up). Let ðu; vÞ be a positive

blowing-up solution of (1)–(2).

(i) If r < qþ 1 and s < pþ 1, then only simultaneous blow-up occurs, that is (4)

holds.

(ii) If r > qþ 1 or s > pþ 1, then there exist u0 and v0 such that non-simultaneous

blow-up occurs.

In Proposition 2.1 below we indicate which component of the solution ðu; vÞ

must blow-up in the case of non-simultaneous blow-up. The phenomenon of non-

simultaneous blow-up for parabolic systems seems to have first been suggested in [23]

(see [23, pp. 467–472]). It was observed numerically there for a quasilinear system

coupled by products of power nonlinearities and explicitly computed in the spatially

homogeneous case (system of ODE’s). Further mathematical study was carried out in

[20], [21] for a system of two porous medium equations coupled by nonlinear boundary

conditions, and for a semilinear parabolic system in R
N coupled by products of power

nonlinearities.

Our second aim in this paper is to investigate the blow-up rates of solutions of (1).

The blow-up rate is essentially known in the scalar case (6) [26], [11], [13] and for the

purely coupled system (5) (see [1], [5], [9], and also [4], [6] for the bounded domain case

and [10] for general unbounded domains). More precisely, for the scalar equation

ut � Du ¼ ur in R
N it always holds

C1ðT � tÞ�1=ðr�1Þ
a kuðtÞk

y
aC2ðT � tÞ�1=ðr�1Þ

assuming ðN � 2Þr < N þ 2, see [13]. On the other hand, for large classes of solutions

of (5), it holds

kuðtÞk
y
aCðT � tÞ�ð pþ1Þ=ðpq�1Þ

kvðtÞk
y
aCðT � tÞ�ðqþ1Þ=ðpq�1Þ

and it is not too di‰cult to show that the corresponding lower bounds are also true.
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We prove that for some values of the parameters p; q; r; s, nonglobal solutions have

the same blow-up rate as for (5). For some other values of p; q; r; s we obtain an

uncoupled asymptotic blow-up behavior: each component either remains bounded or

blows up at the same rate as solutions of ut � Du ¼ ur or vt � Dv ¼ v s. However, we

are presently unable to give the blow-up rates for all values of p; q; r and s. See Pro-

position 3.2 below, where lower estimates of blow-up rates are established.

We will usually consider positive nonglobal solutions of (1) which are radially

symmetric and radially nonincreasing, and which are nondecreasing in time. In other

words:

uðt; xÞ ¼ uðt; rÞ; vðt; xÞ ¼ vðt; rÞ; where r ¼ jxj;

u; v > 0; ut; vtb 0; ur; vra 0 on ð0;TÞ � R
N :

�

ð7Þ

Note that the existence of solutions to (1) satisfying (3) and (7) can be obtained for

initial data ðlu0; lv0Þ, with l > 0 large enough, whenever

u0; v0 are positive radially symmetric; radially nonincreasing;

Du0 þ v
p
0 þ ur

0b 0;

Dv0 þ u
q
0 þ vs0b 0:

8

<

:

ð8Þ

We have obtained the following result.

Theorem 2 (Blow-up rates). Let ðu; vÞ be a positive blowing-up solution of (1)–(2).

Then we have the following:

(i) Let r < pðqþ 1Þ=ðpþ 1Þ and s < qðpþ 1Þ=ðqþ 1Þ and assume (7). Then there

exist C1;C2 > 0 such that

C1a ðT � tÞðpþ1Þ=ðpq�1ÞkuðtÞk
y
aC2; 0 < t < Tð9Þ

and

C1a ðT � tÞðqþ1Þ=ðpq�1ÞkvðtÞk
y
aC2; 0 < t < T ;ð10Þ

provided that

N � 2

N
<

1

pþ 1
þ

1

qþ 1
:ð11Þ

(ii) Let r > qþ 1 or s > pþ 1, and assume that non-simultaneous blow-up occurs.

(a) if limt%TkuðtÞky ¼ y, then there exist C1;C2 > 0 such that

C1a ðT � tÞ1=ðr�1ÞkuðtÞk
y
aC2; 0 < t < T ;ð12Þ

provided that ðN � 2Þr < N þ 2.

(b) if limt%TkvðtÞky ¼ y, then there exist C1;C2 > 0 such that

C1a ðT � tÞ1=ðs�1ÞkvðtÞk
y
aC2; 0 < t < T ;ð13Þ

provided that ðN � 2Þs < N þ 2.

(iii) Let r > qþ 1, s > pþ 1, N ¼ 1 and assume (7). Then (12) and (13) hold.
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Note that in view of Theorem 1, non-simultaneous blow-up can occur in the case

(ii) of Theorem 2. The result of Theorem 2 (i) still holds for the system (5) (with same

proof ). Although for the system (5) the upper estimates in (9)–(10) are known from [4],

[1], [5], our result is new even for (5). Indeed, unlike [4], we do not impose the con-

dition utr; vtra 0 on the solution (cf. (v) in [4, Theorem, p. 266]). Also, the results of

[1], [5] are obtained under di¤erent assumptions on N; p and q.

Let us briefly describe the main ideas of our proofs. The proof of simultaneous

blow-up in Theorem 1 relies on a scaling argument, in the spirit of [5] for system (5),

which enables one to estimate the maximum of one component up to time t in terms of

the other component (see Proposition 2.1). The examples of non-simultaneous blow-up

rely on a combination of an upper bound for T, obtained by estimating one component

from below, with an upper estimate for the other component. To prove the upper blow-

up rates in Theorem 2, we use some arguments from [25] based on scaling and inte-

gration by parts in time (see also [26]). Unlike other methods for blow-up rate es-

timates, it has the advantage to apply to problems without variational structure.

The system (1) was considered in [24] and a similar system with reaction and ab-

sorption terms was treated in [3]. Global existence and large time behavior are studied

in [24]. The problem of global or nonglobal existence is considered in [3].

The rest of the paper is organized as follows. Section 2 contains the proof of

Theorem 1 and some additional results. Section 3 is devoted to the proof of Theorem

2. We also establish a result concerning the limiting case when r ¼ pðqþ 1Þ=ðpþ 1Þ

and s ¼ qðpþ 1Þ=ðqþ 1Þ. In this paper C1;C2 and C denote positive generic constants,

not necessarily the same at di¤erent places.

2. Simultaneous and non-simultaneous blow-up.

In this section we are concerned with the proof of Theorem 1. The main ingre-

dient is the following result, which makes it possible to compare the components of

positive blowing-up solution of the system (1). In particular it indicates which

component of the solution ðu; vÞ must blow-up in case of non-simultaneous blow-up.

Proposition 2.1. Let ðu; vÞ be a positive solution of (1) with T < y, and define

Qt ¼ ð0; tÞ � R
N .

(i) If r < qþ 1, then there exists C > 0 such that

sup
Qt

ua
aC sup

Qt

v; T=2 < t < T ;ð14Þ

where

a ¼ min qþ 1� r;
qþ 1

pþ 1
;
q

s

� �

:

In particular, lim supt%TkvðtÞky ¼ y.

(ii) If s < pþ 1, then there exists C > 0 such that

sup
Qt

vbaC sup
Qt

u; T=2 < t < T ;ð15Þ

P. Souplet and S. Tayachi574



where

b ¼ min pþ 1� s;
pþ 1

qþ 1
;
p

r

� �

:

In particular, lim supt%TkuðtÞky ¼ y.

Proof. Let ðu; vÞ be a blowing-up solution of (1). Then (3) holds. As in [5], let

us introduce the functions U ;V defined by:

UðtÞ ¼ sup
Qt

u and VðtÞ ¼ sup
Qt

v:ð16Þ

Then U and V are positive continuous and nondecreasing on ð0;TÞ. Also, by (3) at

least U or V diverges as t % T .

We first prove (i). We argue by contradiction. Assume that (14) is not true.

Then there exists a sequence tn % T as n ! y such that

VðtnÞ½UðtnÞ�
�a ! 0 as n ! y:

Since a > 0, it follows that UðtÞ diverges as t % T . Let

ln ¼ ½UðtnÞ�
�ðq�aÞ=2:

Since a < q (note that aa q=s) then ln ! 0 as n ! y.

Let ðt 0n; x
0
nÞ A ð0; tn� � R

N be such that uðt 0n; x
0
nÞb ð1=2ÞUðtnÞ. We have t 0n ! T as

n ! y. Define the rescaled functions jn and cn by:

jnðs; yÞ ¼ l2=ðq�aÞ
n uðl2nsþ t 0n; lnyþ x 0

nÞ;

cnðs; yÞ ¼ l2a=ðq�aÞ
n vðl2nsþ t 0n; ln yþ x 0

nÞ:

where ðs; yÞ A ð�l�2
n t 0n; l

�2
n ðT � t 0nÞÞ � R

N
1Dn.

If we restrict s to ð�l�2
n t 0n; 0�, then we have

0a jna 1; jnð0; 0Þb 1=2 and 0acnaVðtnÞ½UðtnÞ�
�a ! 0; as n ! y:ð17Þ

On the other hand, since ðu; vÞ is solution of (1) then ðjn;cnÞ is solution of the system

js � Dj ¼ l2ððpþ1Þ=ðq�aÞÞððqþ1Þ=ðpþ1Þ�aÞ
n cp þ lð2=ðq�aÞÞðqþ1�r�aÞ

n j r;

cs � Dc ¼ jq þ lð2s=ðq�aÞÞðq=s�aÞ
n cs

(

on Dn. By the choice of a, all the powers of ln in the right hand sides of the equations

are nonnegative and then the coe‰cient converges to zero or one as n ! y. As in [5],

by using interior parabolic estimates, there exists a subsequence, still denoted by ðjn;cnÞ,

converging uniformly on compact subsets of ð�y; 0� � R
N to a solution ðj;cÞ of

js � Dj ¼ e1c
p þ e2j

r;

cs � Dc ¼ jq þ e3c
s

�

on ð�y; 0� � R
N , with ei ¼ 0 or 1, i ¼ 1; 2; 3.
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But (17) implies that c1 0 and then by the second equation j1 0. This leads to a

contradiction with the fact that j must satisfy jð0; 0Þb 1=2. This proves (14) and then

(i) of Proposition 2.1.

Statement (ii) follows by interchanging the role of u and v, a and b, r and s and p

and q. This finishes the proof of the proposition. r

We now give results of non-simultaneous blow-up. Let j1ðxÞ ¼ c sinðpxÞ be the

eigenfunction of �d 2=dx2 in H 1
0 ð0; 1Þ corresponding to the first eigenvalue l1 ¼ p2 with

Ð 1

0 j1ðxÞ dx ¼ 1. Also, define the constants

a ¼
1

r� 1
; c1 ¼

1

r� 1� q
and c2 ¼

r� 1

s� 1

� �1=ðs�1Þ

:

We have obtained the following.

Proposition 2.2. Assume that r > qþ 1.

(i) If u0; v0 are two positive constant functions such that

v0 þ c1u
qþ1�r
0 < c2u

ðr�1Þ=ðs�1Þ
0 ;ð18Þ

then the (spatially homogeneous) solution ðu; vÞ of (1)–(2) satisfies

lim
t!T

uðtÞ ¼ y and sup
t A ð0;TÞ

vðtÞ < y

for some finite T.

(ii) Assume N ¼ 1. There exist constants c3; c4 > 0 depending only on q; r; s, such

that for all u0; v0 A LyðRÞ satisfying (7) and,

kv0ky þ c3

ð1

0

u0j1

� �qþ1�r

a c4

ð1

0

u0j1

� �ðr�1Þ=ðs�1Þ

ð19Þ

and

ð1

0

u0j1b ð2l1Þ
1=ðr�1Þ;

the solution ðu; vÞ of (1)–(2) satisfies

lim
t!T

kuðtÞk
y

¼ y and sup
ð0;TÞ�R

v < y

for some finite T.

Remark 2.1. For s > pþ 1, the analogue of Proposition 2.2 obviously holds by

exchanging the roles of u; v.

Proof of Proposition 2.2. (i) It is clear that the solution ðu; vÞ of (1)–(2) is

independent from the space variable x and satisfies

ut ¼ vp þ ur

vt ¼ uq þ vs:

�

ð20Þ

Since utb ur, it follows that the maximum existence time T of ðu; vÞ satisfies TaT1 :¼

u
�ðr�1Þ
0 =ðr� 1Þ and that

uðtÞa ðð1=aÞðT � tÞÞ�a; 0 < t < T :
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Then integrating the second equation of (20), in view of aq < 1, we get

vðtÞa v0 þ

ð t

0

vsðsÞ dsþ aaq

ð t

0

ðT � sÞ�aq
ds

a v0 þ
aaq

1� aq
T 1�aq þ

ð t

0

vsðsÞ ds; 0 < t < T :

We deduce that v is bounded on ½0;T 0Þ for any T 0
aT such that

T 0 < T2 :¼
1

ðs� 1Þ½v0 þ ðaaq=ð1� aqÞÞT 1�aq�s�1
:

Then, if (18) holds (which for fixed v0 is satisfied for all u0 large enough), it follows that

T2 > T1, so that v is bounded on ½0;TÞ.

(ii) Since v is nonnegative, by the first equation of (1), u satisfies

utb uxx þ ur; on ð0;TÞ � R:ð21Þ

Multiplying (21) by j1, integrating by parts over ð0; 1Þ, using Jensen’s inequality and the

fact that j 0
1ð0Þ > 0, j 0

1ð1Þ < 0 yields

d

dt

ð1

0

uðt; xÞj1ðxÞ dx

� �

b

ð1

0

uxxj1 þ

ð 1

0

urj1

b

ð1

0

uj 00
1 � ½uj 0

1�
1
0 þ

ð 1

0

uj1

� �r

b�l1

ð1

0

uj1 þ

ð1

0

uj1

� �r

:

Since
Ð 1

0 u0j1b ð2l1Þ
1=ðr�1Þ, it follows that

Ð 1

0 uðt; xÞj1ðxÞ dxb ð2l1Þ
1=ðr�1Þ for all

t A ½0;TÞ. Hence by the last inequality we have that

d

dt

ð1

0

uðt; xÞj1ðxÞ dx

� �

b
1

2

ð1

0

uj1

� �r

; 0 < t < T :ð22Þ

Integrating (22) gives that T satisfies:

TaT1 :¼
2

r� 1

ð1

0

u0ðxÞj1ðxÞ dx

� ��ðr�1Þ

:

On the other hand, by the second equation of (1), v satisfies:

vðtÞ ¼ e tDv0 þ

ð t

0

eðt�sÞDv sðsÞ dsþ

ð t

0

eðt�sÞDuqðsÞ ds; 0 < t < T ;

where e tD is the heat semigroup. Then, estimating this integral equation in Ly-norm

yields

kvðtÞk
y
a kv0ky þ

ð t

0

kvðsÞks
y
dsþ

ð t

0

kuðsÞkq
y
ds; 0 < t < T :ð23Þ

Now, since u satisfies (7) and (21), it follows from [25, Theorem 4 (i)] that there exists a

Non-simultaneous blow-up 577



constant C > 0 such that kuðtÞk
y
aCðT � tÞ�1=ðr�1Þ, 0 < t < T . Actually, the proof of

[25, Theorem 4 (i)] in the case of RN shows that this constant C depends only on r. By

combining this estimate and (23) and arguing as in case (i), we prove that v is bounded

on ½0;T 0Þ � R
N for any T 0

aT satisfying

T 0 < T2 :¼
1

ðs� 1Þ½kv0ky þ CT 1�aq�s�1
:

In particular, if

kv0ky þ c3

ð1

0

u0j1

� �qþ1�r

a c4

ð1

0

u0j1

� �ðr�1Þ=ðs�1Þ

;

where c3; c4 are positive constants depending only on q; r; s, then T1 < T2 so that v is

bounded on ½0;TÞ � R
N proving a non-simultaneous blow-up. r

Remark 2.2. The result of Proposition 2.2 part (ii) would still hold in higher

dimensions (with similar proof ) provided that one could prove that kuðtÞk
y
a

CðT � tÞ�1=ðr�1Þ for all t A ½0;TÞ, with C a constant independent on u0 and v0.
ð�Þ

Proof of Theorem 1. Let ðu; vÞ be a blowing-up solution of (1)–(2).

We first prove (i). Assume that r < qþ 1 and s < pþ 1. Then by Proposition 2.1

part (ii), lim supt%TkuðtÞky ¼ y and by Proposition 2.1 part (i), lim supt%TkvðtÞky ¼

y. Then u and v blow up and (4) holds. Hence, non-simultaneous blow-up does not

occur.

We now prove (ii). Assume that r > qþ 1. Then by Proposition 2.2 there exist

u0; v0 such that limt!T kuðtÞk
y

¼ y and supð0;TÞ�R
N v < y for some finite T . Hence,

non-simultaneous blow-up occurs. For s > pþ 1, the analogue of Proposition 2.2 holds

by exchanging the roles of u and v. This finishes the proof of Theorem 1. r

3. Blowup rates.

In this section we establish the blow-up rates and some additional results. In view

of the proof of the upper estimates in Theorem 2 (i), we prepare the following lemma.

Lemma 3.1. Put a ¼ ðpq� 1Þ=2ðpþ 1Þ, b ¼ ðpq� 1Þ=2ðqþ 1Þ. Under the hypoth-

esis (11), there exist R > 0, h > 0 such that the problem

z 001 þ
N � 1

r
z 01 þ jz2j

p�1
z2 ¼ h1ðrÞ; 0 < r < R;

z 002 þ
N � 1

r
z 02 þ jz1j

q�1
z1 ¼ h2ðrÞ; 0 < r < R;

z 01ð0Þ ¼ z 02ð0Þ ¼ 0;

z1ð0Þ ¼ a > 0; z2ð0Þ ¼ b > 0; aa þ bb ¼ 1

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð24Þ

admits no solution ðz1; z2Þ of class C2 such that z1; z2b 0 on ½0;RÞ, whenever
ðR

0

jh1ðrÞj drþ

ðR

0

jh2ðrÞj dr < h:ð25Þ

ð�ÞNote added in proof : results in that direction have been obtained recently by J. Rossi and the first

author (to appear).
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Proof. Consider the problem

y 00
1 þ

N � 1

r
y 0
1 þ jy2j

p�1
y2 ¼ 0; r > 0;

y 00
2 þ

N � 1

r
y 0
2 þ jy1j

q�1
y1 ¼ 0; r > 0;

y 0
1ð0Þ ¼ y 0

2ð0Þ ¼ 0; y1ð0Þ ¼ a > 0; y2ð0Þ ¼ b > 0:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð26Þ

(We denote yið:Þ ¼ yiða; b; :Þ, i ¼ 1; 2, the unique maximal solution of (26) when no

confusion arises.) Under the hypothesis (11), it is known from [17, Theorem 3.2,

p. 138] that there exists a (first) Ra;b > 0 such that y1y2ðRa;bÞ ¼ 0. Note that (26) im-

plies that y 0
1; y

0
2 < 0 on ð0;Ra;b�.

We claim that the map ða; bÞ 7! Ra;b is continuous for a; b > 0.

To prove this, fix ða0; b0Þ and i A f1; 2g and assume that

yiða0; b0;Ra0;b0Þ ¼ 0:ð27Þ

Then there exists e0 A ð0;Ra0;b0Þ such that y 0
i ða0; b0; :Þ < 0 on ð0;Ra0;b0 þ e0�. By

continuous dependence, for all e A ð0; e0�, there is de > 0 such that ja� a0j þ jb � b0j < de
implies

y 0
i ða; b; :Þ < 0 on ð0;Ra0;b0 þ e0�;

yiða; b;Ra0;b0 � eÞ > 0 and yiða; b;Ra0;b0 þ eÞ < 0:

It follows that for all ða; bÞ close to ða0; b0Þ, yiða; b; :Þ possesses a first zero R
ðiÞ
a;b and

that the function ða; bÞ 7! R
ðiÞ
a;b is continuous at ða0; b0Þ. If (27) is true for a single

i A f1; 2g, then Ra;b ¼ R
ðiÞ
a;b in the neighborhood of ða0; b0Þ. Otherwise, if (27) is true

for both i ¼ 1; 2, then Ra;b ¼ R
ð1Þ
a;b5R

ð2Þ
a;b in the neighborhood of ða0; b0Þ. In both cases,

Ra;b is continuous at ða0; b0Þ and the claim is proved.

Since K :¼ fa > 0; b > 0; aa þ b b ¼ 1g is compact, we deduce that R0 :¼

maxK Ra;b < y and maxK y 0
14y 0

2ðRa;bÞ ¼: �k < 0. Moreover, since ya
1 þ yb

2a 1 on

½0;Ra;b�, standard arguments show that, for some d > 0 and Mb 1 independent of

ða; bÞ A K , the solution ðy1; y2Þ exists and satisfies jy1j þ jy2jaM on ½0;Ra;b þ d� and

y 0
14y 0

2a�k=2 on ½Ra;b;Ra;b þ d�. Therefore,

y15y2ðRa;b þ dÞa�kd=2:ð28Þ

Now, let R ¼ R0 þ d and assume that ðz1; z2Þ is a solution of (24). Using the

integral form of (24), (26), and subtracting, we obtain, for all r A ½0;Ra;b þ d�,

ðz1 � y1ÞðrÞ ¼

ð r

0

ð s

0

s

s

� �N�1

ðh1 þ jy2j
p�1

y2 � jz2j
p�1

z2ÞðsÞ dsds

hence, using jy2jaM,

jz1 � y1jðrÞaR

ð r

0

ðjh1j þ pjy2 � z2jðjy2j
p�1 þ jz2j

p�1ÞÞðsÞ ds

aR

ðR

0

jh1ðsÞj dsþ RCðpÞ

ð r

0

ðM p�1jy2 � z2j þ jy2 � z2j
pÞðsÞ ds:

Let wðrÞ ¼ maxs A ½0; r�ðjz1 � y1j þ jz2 � y2jÞðsÞ and g ¼ p4q. Using the similar inequal-
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ity for jz2 � y2j, the fact that w is nondecreasing and Mb 1, it follows that

wðrÞaR

ðR

0

ðjh1ðsÞj þ jh2ðsÞjÞ dsþ RCðgÞðM g�1 þ wg�1ðrÞÞ

ð r

0

wðsÞ ds:

By Gronwall’s inequality and (25), we deduce

wðrÞaRh exp½R2CðgÞðM g�1 þ wg�1ðrÞÞ� on ½0;Ra;b þ d�:ð29Þ

Assuming h < R�1 exp½�R2CðgÞðM g�1 þ 1Þ�, this implies that wðrÞ < 1, hence

wðrÞaRh exp½R2CðgÞðM g�1 þ 1Þ� on ½0;Ra;b þ d�:ð30Þ

(Indeed, otherwise, since wð0Þ ¼ 0, there is r such that wðrÞ ¼ 1 and (29) yields a con-

tradiction.) Finally, for h small enough (depending only on g; k; d;M;R), (28) and (30)

imply that z1 or z2 achieves some negative values on ½0;Ra;b þ d�. The Lemma is

proved. r

Proof of Theorem 2 (i). We first prove the upper estimates. Let

aðtÞ ¼ ½uðt; 0Þ�ðpq�1Þ=2ðpþ1Þ; bðtÞ ¼ ½vðt; 0Þ�ðpq�1Þ=2ðqþ1Þ and

gðtÞ ¼ aðtÞ þ bðtÞ; 0 < t < T :

Define

w1ðt; rÞ ¼
uðt; gðtÞ�1

rÞ

gðtÞ2ðpþ1Þ=ðpq�1Þ
; w2ðt; rÞ ¼

vðt; gðtÞ�1
rÞ

gðtÞ2ðqþ1Þ=ðpq�1Þ
; 0 < t < T ; rb 0:

By hypotheses we have limt!T gðtÞ ¼ y,

0aw1;w2a 1; qrw1; qrw2a 0; 0 < t < T ; rb 0;

and

qrw1ðt; 0Þ ¼ qrw2ðt; 0Þ ¼ 0; ½w1ðt; 0Þ�
ðpq�1Þ=2ðpþ1Þ þ ½w2ðt; 0Þ�

ðpq�1Þ=2ðqþ1Þ ¼ 1:

Also,

Aðt; rÞ1Dw1 þ w
p
2 þ gðtÞ�2ðr�1Þðð pþ1Þ=ðpq�1Þ�1=ðr�1ÞÞ

wr
1 ¼

qtuðt; gðtÞ
�1
rÞ

gðtÞ2pððqþ1Þ=ðpq�1ÞÞ
ð31Þ

Bðt; rÞ1Dw2 þ w
q
1 þ gðtÞ�2ðs�1Þððqþ1Þ=ðpq�1Þ�1=ðs�1ÞÞ

w s
2 ¼

qtvðt; gðtÞ
�1
rÞ

gðtÞ2qððpþ1Þ=ðpq�1ÞÞ
:ð32Þ

Following [25, Lemma 3.1], we observe that lðtÞ :¼ uðt; gðtÞ�1
rÞ satisfies

l 0ðtÞb qtuðt; gðtÞ
�1
rÞ

thanks to (7), and we integrate by parts. For all 0 < t < t < T this yields

ð t

t

qtuðs; gðsÞ
�1
rÞ

upðqþ1Þ=ðpþ1Þðs; 0Þ
dsa

lðsÞ

upðqþ1Þ=ðpþ1Þðs; 0Þ

� �t

t

þ
pðqþ 1Þ

pþ 1

ð t

t

lðsÞqtuðs; 0Þ

u1þpðqþ1Þ=ðpþ1Þðs; 0Þ
ds

a
uðt; 0Þ

upðqþ1Þ=ðpþ1Þðt; 0Þ
þ

pðqþ 1Þ

pþ 1

ð t

t

qtuðs; 0Þ

upðqþ1Þ=ðpþ1Þðs; 0Þ
ds
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hence,

1

T � t

ðT

t

qtuðs; gðsÞ
�1
rÞ

gðsÞ2pððqþ1Þ=ðpq�1ÞÞ
dsð33Þ

a p
qþ 1

pq� 1

u�ðpq�1Þ=ðpþ1Þðt; 0Þ

T � t
1 g1ðtÞ; 0 < t < T ; rb 0;

and similarly

1

T � t

ðT

t

qtvðs; gðsÞ
�1
rÞ

gðsÞ2qððpþ1Þ=ðpq�1ÞÞ
dsð34Þ

a q
pþ 1

pq� 1

v�ðpq�1Þ=ðqþ1Þðt; 0Þ

T � t
1 g2ðtÞ; 0 < t < T ; rb 0:

Let R > 0 and t A ð0;TÞ. Integrating (31)–(32) on ðt;TÞ � ð0;RÞ and using (33)–

(34), it follows from the mean-value theorem that there exists t 0 A ðt;TÞ such that

o1ðrÞ ¼ w1ðt
0; rÞ and o2ðrÞ ¼ w2ðt

0; rÞ satisfy

Do1 þ o
p
2 þ e1ðt

0; rÞ ¼ h1ðrÞ; r A ð0;RÞ;

Do2 þ o
q
1 þ e2ðt

0; rÞ ¼ h2ðrÞ; r A ð0;RÞ;

�

with

0ao1;o2a 1; o 0
1;o

0
2a 0; o1;o2 A C2ð½0;R�Þ

o 0
1ð0Þ ¼ o 0

2ð0Þ ¼ 0; ½o1ð0Þ�
ðpq�1Þ=2ðpþ1Þ þ ½o2ð0Þ�

ðpq�1Þ=2ðqþ1Þ ¼ 1;

where

e1ðt
0; rÞ ¼ gðt 0Þ�2ðr�1Þððpþ1Þ=ðpq�1Þ�1=ðr�1ÞÞ

wr
1ðt

0; rÞ;

e2ðt
0; rÞ ¼ gðt 0Þ�2ðs�1Þððqþ1Þ=ðpq�1Þ�1=ðs�1ÞÞ

w s
2ðt

0; rÞ;

and where h1ðrÞ :¼ Aðt 0; rÞb 0 and h2ðrÞ :¼ Bðt 0; rÞb 0 verify

ðR

0

ðh1ðrÞ þ h2ðrÞÞ draRðg1ðtÞ þ g2ðtÞÞ; 0 < t < T :ð35Þ

Now choose R given by Lemma 3.1. Since ke1ðt
0ÞkLyð0;yÞ þ ke2ðt

0ÞkLyð0;yÞ ! 0 as

t 0 ! T , we deduce from the Lemma that Rðg1ðtÞ þ g2ðtÞÞb h=2 for all t close enough to

T . Since (cf. Proposition 2.1)

0 < C1a
w

qþ1
1 ðt; 0Þ

w
pþ1
2 ðt; 0Þ

¼
uqþ1ðt; 0Þ

vpþ1ðt; 0Þ
aC2 < y; T=2 < t < T

under the current assumptions on p; q; r; s, the upper estimates in (9)–(10) follow.

The lower estimates are much easier. They are actually particular cases of the

following result.

Proposition 3.2. Let ðu; vÞ be a blowing-up solution of (1)–(2) satisfying (7). Let a

and b be as in Proposition 2.1. Then we have the following:
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(i) If s < pþ 1, then there exists a constant C > 0 such that

kuðtÞk
y
bCðT � tÞ�1=ððp=bÞ�1Þ; 0 < t < T :ð36Þ

(ii) If r < qþ 1, then there exists a constant C > 0 such that

kvðtÞk
y
bCðT � tÞ�1=ððq=aÞ�1Þ; 0 < t < T :ð37Þ

Proof. The assumptions (7) on the solution ðu; vÞ imply that Duðt; 0Þa 0 and

Dvðt; 0Þa 0. Therefore,

utðt; 0Þa vpðt; 0Þ þ urðt; 0Þ;

vtðt; 0Þa uqðt; 0Þ þ vsðt; 0Þ;

�

ð38Þ

for t A ð0;TÞ.

We first prove (i). By the first equation of (38) and the comparison result of

Proposition 2.1 we have

utðt; 0Þa vbðp=bÞðt; 0Þ þ u rðt; 0Þ

aCup=bðt; 0Þ þ urðt; 0Þ

aCup=bðt; 0Þ;

for t close to T . Here we have used the fact that ra p=b and that u blows up. Then,

by integrating the last di¤erential inequality we obtain (36). (37) follows similarly by

using the second equation of (38). r

We now turn to prove parts (ii) and (iii) of Theorem 2.

Proof of Theorem 2 (ii). Assume for instance that u blows up and v remains

bounded. Therefore, ub 0 satisfies

ut � Du ¼ F ðt; x; uÞ; 0 < t < T ; x A R
N ;

where Fðt; x; uÞ :¼ ur þ bðt; xÞ with jbðt; xÞjaC on ð0;TÞ � R
N . Since ðN � 2Þr <

N þ 2, the upper estimate in (12) follows from an obvious adaptation of the arguments

in [13, Section 6]. The lower estimate is obtained by standard arguments using the

variation of constants formula (cf. the proof of part (iii)). r

Proof of Theorem 2 (iii). Since u satisfies (21) and (7), the upper estimate in (12)

follows from [25, Theorem 4 (i)], and the upper estimate in (13) follows similarly.

To establish the lower estimates, we use the upper estimates obtained in (12)–(13).

Clearly, by the first equation in (38) and by using the fact that p < s� 1, the fact that u

blows up and the upper estimate in (13) we have

kuðtÞk
y
a ku0ky þ

ð t

0

kuðtÞkr
y
dtþ

ð t

0

kvðtÞkp
y
dt

a ku0ky þ

ð t

0

kuðtÞkr
y
dtþ C

ð t

0

ðT � tÞ�p=ðs�1Þ
dt

a ku0ky þ C þ

ð t

0

kuðtÞkr
y
dt:
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The lower estimate in (12) follows by integration. The lower estimate in (13) follows

similarly. r

Remark 3.1. Part (iii) of Theorem 2 holds for simultaneous and non-simultaneous

blow-up as well. A simple example of simultaneous blow-up in this context is obtained

by taking r ¼ s, p ¼ q, r > qþ 1 and u0 ¼ v0 ¼ lf, l large. We do not know whether

simultaneous blow-up occurs for all r > qþ 1 or s > pþ 1. We suspect that such

behavior should occur as a limiting case which separates non-simultaneous blow-up of

either component and that it should be rather unstable.ð�Þ Indeed, when r > qþ 1,

s > pþ 1 and N ¼ 1 for instance, it follows from Proposition 2.2 that u blows up with v

bounded if u0 is ‘‘very large’’ as compared with v0, and vice-versa.

Finally, in the limiting case of Theorem 2 (i), we have the following result.

Theorem 3. Let ðu; vÞ be a blowing-up solution of (1)–(2) satisfying (7). Assume

that

r ¼ p
qþ 1

pþ 1
and s ¼ q

pþ 1

qþ 1
:ð39Þ

Then (9) and (10) hold provided that

N � 2

2
amax

pþ 1

pq� 1
;
qþ 1

pq� 1

� �

:

Proof. The proof follows along the lines of the proof of Theorem 2 (i). Using

the same notation as in the last proof, o1 and o2 will satisfy the elliptic system

Do1 þ o
p
2 þ or

1 ¼ h1ðrÞ; r A ð0;RÞ;

Do2 þ o
q
1 þ os

1 ¼ h2ðrÞ; r A ð0;RÞ;

�

with same additional properties. By hypotheses and [18, Theorem 2.1, p. 466] there

must exist C > 0 a constant such that Rðg1ðtÞ þ g2ðtÞÞbC for t close to T . The

conclusion now follows by definition (33)–(34) and Proposition 2.1. r
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