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Abstract. We study the positive blowing-up solutions of the semilinear parabolic
system: u; — Au=v” 4+ u’, v, — Av = u? + v*, where te (0,T), xe RY and p,q,r,s > 1.
We prove that if r > ¢+ 1 or s > p + 1 then one component of a blowing-up solution may
stay bounded until the blow-up time, while if r<¢g+1 and s< p+1 this cannot
happen. We also investigate the blow up rates of a class of positive radial solutions.
We prove that in some range of the parameters p, ¢,r and s, solutions of the system have
an uncoupled blow-up asymptotic behavior, while in another range they have a coupled
blow-up behavior.

1. Introduction.

In this paper we are concerned with the study of the behavior of positive blowing-
up solutions of the semilinear parabolic system:

(1)

{u,—Au:vP—i—u’, 0<t<T,xeR",
v—Av=ul+v’, 0<t<T,xeR",

where u = u(t,x), v =v(t,x). Throughout this paper, we assume that p,q,r,s > 1, N is
a positive integer and we consider initial data

(2) u(0,x) = uo(x), v(0,x)=wvo(x),

where o, vy are assumed to be nonnegative and bounded. Also |- ||, will denote the
norm in L*(RM).

It is known that (1)—(2) has a unique nonnegative maximal solution on [0, T') x R",
classical for 7> 0. This follows by standard contraction mapping argument. More-

over, if 7 < oo, then

(3) lim (fJu(O)ll + llo(D) = oo,

0

and we say that the solution blows up in finite time with blow-up time 7. We say that
the blow-up is simultaneous if

(4) lim sup [lu(2)[|,, = limsup [[o(7)]],, = oo
t/T /T

and that it is non-simultaneous if (4) does not hold, i.e. if one of the two components
remains bounded on [0, T) x R".
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System (1) can be viewed as a combination of the following two systems

(5) {u,—Au:vl’, 0<t<T,xeR",
v—Av=ul, 0<t<T,xeR",

{u,—Au:u", 0<t<T,xeR",
v—Adv=0v', 0<t<T,xeR".

It is well known [7] that (5) has only simultaneous blowing-up solutions. Of course,
since (6) is completely uncoupled, non-simultaneous blowing-up solutions clearly exist
for (6). It is therefore natural to ask whether the blow-up is simultaneous or not for the
system (1).

Intuitively, one might expect that only simultaneous blow-up should occur if r, s are
small as compared with p,q in some sense, and that non-simultaneous blow-up could
occur in the opposite case. An almost complete answer to this question is given in the
following theorem, which is the main result of this paper.

THEOREM 1 (Simultaneous or non-simultaneous blow-up). Let (u,v) be a positive
blowing-up solution of (1)—(2).

(i) Ifr<q+1 and s < p+1, then only simultaneous blow-up occurs, that is (4)
holds.

(i) Ifr>q+1ors>p+1, then there exist uy and vy such that non-simultaneous
blow-up occurs.

In [Proposition 2.1 below we indicate which component of the solution (u,v)
must blow-up in the case of non-simultaneous blow-up. The phenomenon of non-
simultaneous blow-up for parabolic systems seems to have first been suggested in [23]
(see [23, pp. 467-472]). It was observed numerically there for a quasilinear system
coupled by products of power nonlinearities and explicitly computed in the spatially
homogeneous case (system of ODE’s). Further mathematical study was carried out in
[20], [21] for a system of two porous medium equations coupled by nonlinear boundary
conditions, and for a semilinear parabolic system in R" coupled by products of power
nonlinearities.

Our second aim in this paper is to investigate the blow-up rates of solutions of (1).
The blow-up rate is essentially known in the scalar case (6) [26], [11], [13] and for the
purely coupled system (5) (see [1], [5], [9], and also [4], [6] for the bounded domain case
and [10] for general unbounded domains). More precisely, for the scalar equation
u, — Au=u" in RV it always holds

CHT = 7 < u(0)],, < C(T - 57D

assuming (N —2)r < N + 2, see [13]. On the other hand, for large classes of solutions
of (5), it holds

lu(1)]|, < C(T — 1)~ r+D/ =)

lo(8)]|, < C(T — t)*(qﬂ)/(qul)

and it is not too difficult to show that the corresponding lower bounds are also true.
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We prove that for some values of the parameters p, ¢,r,s, nonglobal solutions have
the same blow-up rate as for (5). For some other values of p,q,r,s we obtain an
uncoupled asymptotic blow-up behavior: each component either remains bounded or
blows up at the same rate as solutions of u; — Au = u" or v, — Av = v*. However, we
are presently unable to give the blow-up rates for all values of p,q,r and s. See Pro-
position 3.2 below, where lower estimates of blow-up rates are established.

We will usually consider positive nonglobal solutions of (1) which are radially
symmetric and radially nonincreasing, and which are nondecreasing in time. In other
words:

0 {u(t, x) = u(t,p), v(t,x) =v(t,p), where p=|x|,

u,v > 0,u;,0, >0, u,v,<0 on (0,T)x R".

Note that the existence of solutions to (1) satisfying (3) and (7) can be obtained for
initial data (Awug,Avy), with 1 > 0 large enough, whenever

ug, vy are positive radially symmetric, radially nonincreasing,
(8) Aug + vf +uf >0,
Avy + ul + v = 0.

We have obtained the following result.

THEOREM 2 (Blow-up rates). Let (u,v) be a positive blowing-up solution of (1)—(2).
Then we have the following:
(i) Letr<plg+1)/(p+1)ands<q(p+1)/(q+1) and assume (7). Then there
exist Cy,Cy > 0 such that

(9) CL < (T — )PPy, <G, 0<t<T
and
(10) Cr < (T =)0V, <G, 0<r<T,

provided that

N -2 1 1
11 < + :
(11) N p+1 qg+1
(i) Let r>q+1 or s> p+1, and assume that non-simultaneous blow-up occurs.
(@) if lim, ~7|lu(?)||., = oo, then there exist Ci,Cy >0 such that
(12) C < (T-0""DNu@)|, <C, 0<t<T,

provided that (N —2)r < N + 2.
(b) if lim, ~7||v(?)||,, = oo, then there exist Cy,Cy >0 such that

(13) G =(T-0"" V), <G, 0<t<T,

provided that (N —2)s < N + 2.
(i) Let r>qg+1, s>p+1, N=1 and assume (7). Then (12) and (13) hold.
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Note that in view of [Theorem 1, non-simultaneous blow-up can occur in the case
(ii) of Theorem 2l The result of (i) still holds for the system (5) (with same
proof). Although for the system (5) the upper estimates in (9)—(10) are known from [4],
[1], [5], our result is new even for (5). Indeed, unlike [4], we do not impose the con-
dition u,,,v,, < 0 on the solution (cf. (v) in [4, Theorem, p. 266]). Also, the results of
[1], [5] are obtained under different assumptions on N, p and g¢.

Let us briefly describe the main ideas of our proofs. The proof of simultaneous
blow-up in [Theorem 1 relies on a scaling argument, in the spirit of [5] for system (5),
which enables one to estimate the maximum of one component up to time ¢ in terms of
the other component (see [Proposition 2.1). The examples of non-simultaneous blow-up
rely on a combination of an upper bound for 7, obtained by estimating one component
from below, with an upper estimate for the other component. To prove the upper blow-
up rates in [Theorem 2, we use some arguments from [25] based on scaling and inte-
gration by parts in time (see also [26]). Unlike other methods for blow-up rate es-
timates, it has the advantage to apply to problems without variational structure.

The system (1) was considered in [24] and a similar system with reaction and ab-
sorption terms was treated in [3]. Global existence and large time behavior are studied
in [24]. The problem of global or nonglobal existence is considered in [3].

The rest of the paper is organized as follows. Section 2 contains the proof of
and some additional results. Section 3 is devoted to the proof of
2. We also establish a result concerning the limiting case when r= p(¢+1)/(p+1)
and s=¢g(p+1)/(¢g+1). In this paper Ci, C; and C denote positive generic constants,
not necessarily the same at different places.

2. Simultaneous and non-simultaneous blow-up.

In this section we are concerned with the proof of Theorem 1. The main ingre-
dient is the following result, which makes it possible to compare the components of
positive blowing-up solution of the system (1). In particular it indicates which
component of the solution (u,v) must blow-up in case of non-simultaneous blow-up.

PropoOSITION 2.1.  Let (u,v) be a positive solution of (1) with T < oo, and define
0, = (0,1) x RY.
(i) If r<q+1, then there exists C >0 such that

(14) supu*<Csupv, T/2<t<T,
O O
where
: 1
oc:mln(q—i— 1 —r,i,g).
p+1's

In particular, limsup, ,r||v(7)]],, = co.
(i) If s< p+1, then there exists C >0 such that

(15) supvf < Csupu, T/2<t<T,
Ql Q/
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where

. p+1 p
p— 1 —_— B — .
p m1n<p+ S’q-l—l’r)
In particular, limsup, .r||u(?)|| , =

ProOOF. Let (u,v) be a blowing-up solution of (1). Then (3) holds. As in [5], let
us introduce the functions U, V' defined by:

U(t)=supu and V(¢) =sup v.
Ql QI

Then U and V' are positive continuous and nondecreasing on (0, 7). Also, by (3) at
least U or V diverges as ¢t ~ T.

We first prove (i). We argue by contradiction. Assume that is not true.
Then there exists a sequence t, / T as n — oo such that

V(t)[U(t,)] " — 0 as n— oo.
Since a > 0, it follows that U(¢) diverges as ¢ / T. Let
In = [U(tn)]_(q_a)/z-

Since o < ¢ (note that o < ¢/s) then 4, — 0 as n — oo.
Let (#),x') € (0,1,] x RY be such that u(z',x') = (1/2)U(t,). We have ¢/ — T as
n— oo. Deﬁne the rescaled functions ¢, and y, by:
0u(5,7) = 22/ u(s + by, dny + 57),
V(s 3) = 22 0(rs + 1), Ay + ;).

where (s,y) e (=42t 2. 2T - 1)) x RN = D,.

n’'n

If we restrict s to (—4, ¢/, 0], then we have
0<¢p,<1, ¢,0,00>1/2 and 0<y, < V(1,)[U(t,)]" — 0, as n— oo.
On the other hand, since (u,v) is solution of (1) then (¢,,,) is solution of the system

0, — Ap = /12 (p+1)/(g=2)((g+1)/(p+1)~ ¢p+12/4 D) a+1=r=a) pr.
W, — A = g4 + A (25/(q—2))(q/s— Dy
n
on D,. By the choice of «, all the powers of 4, in the right hand sides of the equations
are nonnegative and then the coefficient converges to zero or one as n — oo. As in [5],

by using interior parabolic estimates, there exists a subsequence, still denoted by (¢, ¥,),
converging uniformly on compact subsets of (—c0,0] x R to a solution (¢,y) of

{(Ps — Adp = ey + &0,
Yy, — A = o + e3y°

on (—0,0] x RY, with ¢ =0 or 1, i=1,2,3.
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But (17) implies that y = 0 and then by the second equation ¢ = 0. This leads to a
contradiction with the fact that ¢ must satisfy ¢(0,0) > 1/2. This proves and then
(i) of [Proposition 2.].

Statement (ii) follows by interchanging the role of u and v, « and f, r and s and p
and ¢. This finishes the proof of the proposition. ]

We now give results of non-simultaneous blow-up. Let ¢,(x) = c¢sin(nx) be the
eigenfunction of —d?/dx? in HJ (0, 1) corresponding to the first eigenvalue 4; = z*> with
jol ¢,(x)dx =1. Also, define the constants

1 1 r—1\/67Y
Ly gy am102=<§_1) |

We have obtained the following.

a =

PrROPOSITION 2.2.  Assume that r > q+ 1.
(i) If ug,vy are two positive constant functions such that

(r=1)/(s=1)

-
< cuy ,

(18) vo + C1ity
then the (spatially homogeneous) solution (u,v) of (1)—(2) satisfies

limu(t) =0 and sup v(t) < o
=T te(0,7)

for some finite T.
(i) Assume N = 1. There exist constants c3,c4 > 0 depending only on q,r,s, such
that for all ug,vo € L*(R) satisfying (7) and,
1 (r=1)/(s=1)
< ¢4 (J ”0(/71>
0

1 q+1-r
(19) nwu+qquw0
0

1
and J upp; > (22,)"0°Y,
0

the solution (u,v) of (1)—(2) satisfies

lim ||u(?)||,, =00 and  sup v< o
=T (0,T)xR

for some finite T.

RemARk 2.1. For s > p+ 1, the analogue of Proposition 2.2 obviously holds by
exchanging the roles of u,v.

Proor ofF ProrosiTioN 2.2. (i) It is clear that the solution (u,v) of (1)—(2) is
independent from the space variable x and satisfies

(20) {u,:vf’—iru’

v; = u? + ve.

Since u, > u’, it follows that the maximum existence time 7" of (u,v) satisfies 7' < T :=
—(r-1)
u, /(r—1) and that

u(t) < ((1/a)(T —1)™", 0<t<T.
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\

Then integrating the second equation of

>

in view of aq < 1, we get

t t

v*(0) do + a“qJ (T —0) “do
0

o(t) < UO+J

0

a“ !
< vy +—T““4+J v(o)do, 0<t<T.
1 —aq 0

We deduce that v is bounded on [0,7") for any 7’ < T such that
1
(s = Dfvo + (a%/(1 — ag) T'-wa)*~"
Then, if holds (which for fixed vy is satisfied for all u( large enough), it follows that

T, > Ty, so that v is bounded on [0, T).
(i) Since v is nonnegative, by the first equation of (1), u satisfies

T/<T22

u, > uy+u’, on (0,7) x R.

Jl

Multiplying by ¢,, integrating by parts over (0, 1), using Jensen’s inequality and the
fact that ¢1(0) >0, ¢{(1) <0 yields

d /(! 1 1
(], e as) = [ ot |
0 0 0
1 1 1
> J up) — [upy], + (J Wﬂl)
0 0
1 1 r
—/hj up, + (J u(/)1> )
0 0

Since jol wop; > (2)07Y, it follows that fo (1, x)p, (x) dx > (22) D for all
te[0,T). Hence by the last inequality we have that

r

r

(22) % (J(: u(t, x)p,(x) dx> > % (J; ugp1> , 0<t<T.

Integrating gives that T satisfies:
2 1 —(r-1)
T<T = (J uo(x)p; (x) dx) :
r—1 0

On the other hand, by the second equation of (1), v satisfies:

t t
e=1p3 () dd"‘J Myd(o)de, 0<t<T,
0

v(t) = e vy + J

0

where e is the heat semigroup. Then, estimating this integral equation in L*-norm
yields

t t
(23) o)l < lleol.. + jo (@5 do+ | Jul)lL do. 0<r<T.

Now, since u satisfies (7) and [21), it follows from [25, Theorem 4 (i)] that there exists a
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constant C > 0 such that |ju(?)||, < C(T — )YV 0 <t < T. Actually, the proof of
[25, Theorem 4 (i)] in the case of R shows that this constant C depends only on r. By
combining this estimate and (23) and arguing as in case (i), we prove that v is bounded
on [0,7') x RY for any T’ < T satisfying
B 1

(s = Dlleoll, + CT'=aa)™"

1 g+1-r 1 (r=1)/(s=1)
llvol[,, + ¢3 (J uofl)l) SC4(J Mofﬂ]) ;
0 0

where c3,c4 are positive constants depending only on ¢,r,s, then 77 < T, so that v is
bounded on [0,7) x RY proving a non-simultaneous blow-up. ]

T/<T2:

In particular, if

REMARK 2.2. The result of [Proposition 2.2 part (ii) would still hold in higher
dimensions (with similar proof) provided that one could prove that [ju(7)],, <
C(T =070 for all re [0, T), with C a constant independent on uq and vy.*)

PrOOF OF THEOREM 1. Let (u,v) be a blowing-up solution of (1)—(2).

We first prove (i). Assume that r < ¢+ 1 and s < p+ 1. Then by [Proposition 2.1|
part (ii), limsup, -7|lu(?)||,, = oo and by [Proposition 2.1 part (i), limsup, .r|[v(?)|,, =
co. Then u and v blow up and (4) holds. Hence, non-simultaneous blow-up does not
occur.

We now prove (ii). Assume that r > g+ 1. Then by [Proposition 2.2 there exist
uo, vy such that lim,.7 ||u(7)||,, = co and sup, 7),gv v < oo for some finite 7. Hence,
non-simultaneous blow-up occurs. For s > p + 1, the analogue of [Proposition 2.2 holds
by exchanging the roles of u and v. This finishes the proof of Theorem 1. O

3. Blowup rates.

In this section we establish the blow-up rates and some additional results. In view
of the proof of the upper estimates in [Theorem 2 (i), we prepare the following lemma.

LemMma 3.1. Puta=(pg—1)/2(p+1), b= (pqg—1)/2(q+1). Under the hypoth-
esis (11), there exist R > 0, n > 0 such that the problem

( N -1 B
2y + i+ |n = n(p), 0<p<R,
(24) o N s =), 0<p<R

z1(0) = z3(0) = 0,
(Z21(0)=0>0, 20)=>0, a'+p=1

admits no solution (z1,z,) of class C* such that z1,z; >0 on [0, R), whenever
R

(25) JO (o)l dp + jo () dp < 1.

) Note added in proof: results in that direction have been obtained recently by J. Rossi and the first
author (to appear).
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Proor. Consider the problem
(o ON-1 .
yi/+Ty{+|y2|P y2:07 /7>0,

26 N —1 _
( ) yg—’_ P yé+|y1‘q 1)’1:0> P>07
(y1(0) = »3(0) =0, »1(0) =a>0, »(0)=4>0.
(We denote y;(.) = yi(o, B;.), i = 1,2, the unique maximal solution of when no
confusion arises.) Under the hypothesis [11), it is known from [17, Theorem 3.2,
p. 138] that there exists a (first) R, s > 0 such that y;y2(R, z) =0. Note that im-
plies that y{, y; <0 on (0, R, g].

We claim that the map (o, f) — R, s is continuous for o, > 0.

To prove this, fix (x,f,) and i€ {1,2} and assume that

(27) Yi(@0; Bo; Rag. ) = 0

Then there exists & € (0, R, 3,) such that yj(xo,fy,.) <0 on (0,R, g, + ). By
continuous dependence, for all ¢ € (0, &), there is d, > 0 such that |a — oo| + |f — fo| < I
implies

yi(e,B;.) <0 on (0,Ry, 4, + &),

Vi(a, Bi Ryy p, —€) >0 and  yi(a, f; Ruy p, +€) <O.
It follows that for all (a,f) close to («o,fy), yi(a, f;.) possesses a first zero Rg;)ﬁ and
that the function (a,f) — Rg;)ﬁ is continuous at (ag,f,). If is true for a single
ie{l,2}, then R, 3= Ril’)ﬁ in the neighborhood of («,f,). Otherwise, if is true
for both i = 1,2, then R, 3 = R% A R% in the neighborhood of (ag, ;). In both cases,
R, p is continuous at («o,f,) and the claim is proved.

Since K :={a>0,>0,ua" + B = 1} is compact, we deduce that Rj:=
maxg R, < oo and maxg y| Vv y5(R, ) =1 —k < 0. Moreover, since y{+ y? <1 on
[0,R, g, standard arguments show that, for some 6 >0 and M >1 independent of
(o, f) € K, the solution (yi, y») exists and satisfies |y + |y2| < M on [0, R, s+ 6] and

yivyh<—k/2 on [R,p, R, p+0]. Therefore,
(28) VA Y2(Ryp+0) < —kod/2.

Now, let R=Ro+ 0 and assume that (zj,z;) is a solution of [24]. Using the
integral form of [24), [26), and subtracting, we obtain, for all € [0, R, s+ J],

=00 = [ () bt 20 s

0Jo
hence, using |y,| < M,

r

21 = nl(r) < RL(I'M + ply2 = 2l(1y2l" "+ [221"71)(s) ds

R r
stvmmm+Ramjuﬂﬂm—aH+m—m%wm.
0 0

Let w(r) = maxgep, (|21 — y1| + |22 — »2|)(s) and y = pvq. Using the similar inequal-
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ity for |z — y»|, the fact that w is nondecreasing and M > 1, it follows that

R r

Om@%Hw@D%+Rawwﬂ1+WVWﬂLW®d&

w(r) < RJ

0
By Gronwall’s inequality and [25), we deduce

(29) w(r) < Ryexp[R*C(y)(M"~' +w’~(r))] on [0,R,p+0].
Assuming 7 < R exp[—R>C(y)(M7~" +1)], this implies that w(r) < 1, hence
(30) w(r) < Rpexp[R*C(y)(M""' +1)] on [0, R, 4+ 0]

(Indeed, otherwise, since w(0) = 0, there is r such that w(r) =1 and (29) yields a con-
tradiction.) Finally, for # small enough (depending only on y,k,d, M, R), and (30)
imply that z; or z achieves some negative values on [0,R, s+ J]. The Lemma is

proved.
PrOOF OF THEOREM 2 (i). We first prove the upper estimates. Let
() = [u(t, 0)] PV () = [o(r, 0)] PV and

(1) =a(t)+p(r), 0<t<T.
Define

e 0'0) o0 )

w1 tap = 9
(t,p) y(l>2(p+1)/(pq—1)

y(1)2(q+1)/(pq—1) ’
By hypotheses we have lim,_7y(7) = o,

0<w,mw <1, 0,,w1,8,,W2£0, 0<t<T,p=0,
and

p) = 0<t<T,p=0.

w1 (£,0) = 8,wa(£,0) = 0, [wi(t,0)] P~ V2T 4 [y (7, 0)] P~ DD — 1.

Also,

duu(t, y(1)"'p)
y(t)2p((q+1)/(17f1—1))

(31)  A(t,p) = Aw; +wh + y(t>—2("—1)((P+1)/(Pq—1)—1/(r—1))W{ —

al‘v([7 V(t)ilp)
(1) 2q((p+1)/(pg-1))

(32)  B(t,p) = Awy +wi + y<[)—2(s—1)((q+1)/(17(1—1)—1/(5—1))Wiv —
7

Following [25, Lemma 3.1], we observe that A(7) := u(z,p(¢)"'p) satisfies

2 (1) = du(t, (1) p)
thanks to (7), and we integrate by parts. For all 0 <7< 7 < T this yields

" Ow(s,(s) ') A(s) ToplgH D) [T A(s)du(s, 0)
lup(q+1)/(p+1)(s70) - up(q+1)/(p+1)(s70)t p+1 [u1+p(q4r1)/(p+1)(s7o)

u(z,0) plg+1)[° ou(s,0)
=< uPla+D)/(P+1) (7, 0) + p+1 L urla+tD/(p+1)(5.0) ds

ds

O
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hence,
1 (T o =
(33) J IZ(S,V(S) p) d
T—1t), 7(s) p((¢+1)/(pg—1))
g+ 1 wPa=D/(+1) (1 0)
< = t O<t<T,p>0
<P T gi(1), 0<t<T,p=0,

and similarly

L (" _aw(s,2()"'p)
(34) T_;J (5) 2D T

‘Y
p _|_ 1 U_(pq_l)/(q+l)(t’ O)
=g2(t), 0<t<T,p=0.

Let R >0 and 7€ (0,7). Integrating [31}-(32) on (7, 7) x (0,R) and using [33}-
(34), it follows from the mean-value theorem that there exists ' € (#,7) such that
wi(p) =wi(t',p) and wy(p) = wo(t', p) satisty

{Awl + o) +e(t,p)=hi(p), pe(0,R),
Awy + ol +e(t',p) = ha(p), pe(0,R),
with
0<w,m<l, o],0,<0, o,w0ecC*[0,R])
@1(0) = }(0) = 0, [a)l(o)](mfl)/ﬂpﬂ) + [wz(())](pqq)/z(qﬂ) —1,
where

() 2D (g1 =) g1 )

ei(t’,p) =7
e(t',p) = y(l/)*z(sfl)((q+1)/(17<171)*1/(s*1))W5<l/7p),

and where h;(p) := A(t',p) = 0 and hy(p) := B(¢',p) = 0 verify

R
(35) J (hi(p) + ha(p)) dp < R(g1(1) + ¢2(1)), 0<1<T.
0
Now choose R given by Lemma 3.1. Since [[e1(¢') |10 o) + l2(t) || 10, c) — O as

t' — T, we deduce from the Lemma that R(g;(¢) + g2(¢)) = /2 for all ¢ close enough to
T. Since (cf. |Proposition 2.1)

wit'(2,0)  uit'(z,0)
wltl 1,0y vP1(2,0)

0<C < <G <w, T/2<t<T

under the current assumptions on p,q,r,s, the upper estimates in (9)—(10) follow.

The lower estimates are much easier. They are actually particular cases of the
following result.

PROPOSITION 3.2.  Let (u,v) be a blowing-up solution of (1)—(2) satisfying (7). Let o
and f be as in Proposition 2.1. Then we have the following:
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(i) If s< p+1, then there exists a constant C >0 such that
(36) lu(n)|l,, = C(T — ) @AD" o << T,
(i) If r<q-+1, then there exists a constant C > 0 such that
(37) lo(d)]|,, = C(T — ) V@2V o<t < T.
ProOF. The assumptions (7) on the solution (u,v) imply that Au(z,0) <0 and

Av(t,0) < 0. Therefore,

(38) {u,(L 0) < v?(¢,0) +u'(,0),

v,(2,0) < u(1,0) + v°(¢,0),
for te(0,7).

We first prove (i). By the first equation of and the comparison result of
IProposition 2.1 we have

u,(t,0) < v 2/P(1,0) 4 u'(1,0)
< Cu?P(1,0) 4+ u"(t,0)

< Cu’b(1,0),

for ¢ close to 7. Here we have used the fact that r < p/f and that u blows up. Then,
by integrating the last differential inequality we obtain (36). follows similarly by
using the second equation of [38). O

We now turn to prove parts (ii) and (iii) of [Theorem 2.

PROOF OF THEOREM 2 (ii). Assume for instance that u blows up and v remains
bounded. Therefore, u > 0 satisfies

u— Au=F(t,x,u), 0<t<T,xeR",

where F(t,x,u) :=u" +b(t,x) with |b(t,x)] < C on (0,T)x RY. Since (N —2)r<
N + 2, the upper estimate in follows from an obvious adaptation of the arguments
in [13, Section 6]. The lower estimate is obtained by standard arguments using the
variation of constants formula (cf. the proof of part (iii)). ]

PrOOF OF THEOREM 2 (iii). Since u satisfies and (7), the upper estimate in
follows from [25, Theorem 4 (i)], and the upper estimate in follows similarly.

To establish the lower estimates, we use the upper estimates obtained in [12}-{13)
Clearly, by the first equation in and by using the fact that p < s — 1, the fact that u
blows up and the upper estimate in we have

t t
IMWwSWNMﬂNMm&W+LMM&M

t t
< luoll +J lu(o)|l., dr + CJ (T — ) "D gy
0 0

t

swww+c+mem¢a



Non-simultaneous blow-up 583

The lower estimate in follows by integration. The lower estimate in follows
similarly. ]

REMARK 3.1. Part (iii) of holds for simultaneous and non-simultaneous
blow-up as well. A simple example of simultaneous blow-up in this context is obtained
by taking r==s, p=¢q, r > q+ 1 and uy = vy = A¢, 4 large. We do not know whether
simultaneous blow-up occurs for all r >¢g+1 or s> p+ 1. We suspect that such
behavior should occur as a limiting case which separates non-simultaneous blow-up of
either component and that it should be rather unstable.*) Indeed, when r > g+ 1,
s> p+1and N =1 for instance, it follows from |[Proposition 2.2| that u blows up with v
bounded if uy 1s “very large” as compared with vy, and vice-versa.

Finally, in the limiting case of (i), we have the following result.

THEOREM 3. Let (u,v) be a blowing-up solution of (1)—(2) satisfying (7). Assume
that

qg+1 p+1
39 r=p—— and s=q——.
(39) pp+1 y qq+1
Then (9) and (10) hold provided that
L_z gmax{p+1 , q+1 }
2 pq—1 pg—1

ProOOF. The proof follows along the lines of the proof of Mheorem 2| (i). Using
the same notation as in the last proof, w; and w, will satisfy the elliptic system

{Awl + o + o] =h(p), pe(0,R),
sz-l—wi]—i—a)f:hz(p), pE(O,R),
with same additional properties. By hypotheses and [18, Theorem 2.1, p. 466] there

must exist C >0 a constant such that R(g;(¢) + ¢2(¢)) = C for ¢ close to T. The
conclusion now follows by definition [33}-{34) and [Proposition 2.1]. ]

ACKNOWLEDGEMENT. We thank M. Fila and P. Quittner for useful discussion
about this work.

References

[1] D. Andreucci, M. A. Herrero and J. J. L. Velazquez, Liouville theorems and blow up behaviour in
semilinear reaction diffusion systems, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), 1-53.

[2] J. Beberness and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New
York, 1989.

[3] N. Bedjaoui and Ph. Souplet, Critical blowup exponents for a system of reaction-diffusion equations
with absorption, Z. Angew. Math. Phys., 53 (2002), 197-210.

[4] G. Caristi and E. Mitidieri, Blow-up estimates of positive solutions of a parabolic system, J. Dif-
ferential Equations, 113 (1994), 265-271.

) Note added in proof: results in that direction have been obtained recently by J. Rossi and the first
author (to appear).



P. SoupLET and S. TAYACHI

M. Chlebik and M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend.
Mat. Appl. Ser VII, 19 (1999), 449-470.

[6] K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47 (1996), 132-143.
[7] M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system,
J. Differential Equations, 89 (1991), 176-202.
[8] M. Escobedo and H. A. Levine, Critical blow up and global existence numbers for a weakly coupled
system of reaction-diffusion equations, Arch. Ration. Mech. Anal., 129 (1995), 47-100.
[9] M. Fila and P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl,,
238 (1999), 468-476.
[10] M. Fila and Ph. Souplet, The blow-up rate for a semilinear parabolic problems on general domains,
Nonlinear Differ. Eq. and Appl. NoDEA, 8 (2001), 473-480.
[11] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana
Univ. Math. J., 34 (1985), 425-447.
[12] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,
Comm. Pure Appl. Math., 34 (1981), 525-598.
[13] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J.,
36 (1987), 1-40.
[14] A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ.
Math. J., 32 (1982), 167-189.
[15] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch.
Ration. Mech. Anal., 49 (1973), 241-269.
[16] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of
Parabolic Type, Amer. Math. Soc. Translation of Math., Monographs, 23, Providence, RI, 1968.
[17] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18
(1993), 125-151.
[18] E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in R", Differential and
Integral Equations, 9 (1996), 465-479.
[19] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[20] F. Quirds and J. D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. Angew.
Math. Phys., 52 (2001), 342-346.
[21] F. Quirés and J. D. Rossi, Non-simultaneous blow-up in a nonlinear parabolic system, Adv.
Nonlinear Stud., 3 (2003), 397-418.
[22] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math.,, No. 1072,
Springer-Verlag, Berlin, 1984.
[23] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in Quasilinear
Parabolic Equations, Walter de Gruyter, Berlin, New York, 1995.
[24] S. Snoussi and S. Tayachi, Asymptotic self-similar behavior for a semilinear parabolic system,
Commun. Contemp. Math., 3 (2001), 363-392.
[25] Ph. Souplet and S. Tayachi, Blowup rates for nonlinear heat equations with gradient terms and for
parabolic inequalities, Colloq. Math., 88 (2001), 135-154.
[26] F. B. Weissler, An L™ blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math., 38
(1985), 291-295.
Philippe SoupLET Slim TAYACHI
Département de Mathématiques Département de Mathématiques
Universit¢ de Picardie Facult¢ des Sciences de Tunis
INSSET, 02109 St-Quentin Université de Tunis El Manar Campus Universitaire
France 1060 Tunis
Tunisia
and

E-mail: slim.tayachi@fst.rnu.tn

Laboratoire de Mathématiques Appliquées
UMR CNRS 7641

Université de Versailles, 45 avenue des
Etats-Unis

78035 Versailles

France

E-mail: souplet@math.uvsq.fr



	1. Introduction.
	THEOREM 1(Simultaneous ...
	THEOREM 2(Blow-up ...

	2. Simultaneous and non-simultaneous ...
	3. Blowup rates.
	THEOREM 3. ...


