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Optimal Conditioning of Quasi-Newton Methods*

By D. F. Shanno and P. C. Kettler

Abstract. Quasi-Newton methods accelerate gradient methods for minimizing a function

by approximating the inverse Hessian matrix of the function. Several papers in recent

literature have dealt with the generation of classes of approximating matrices as a function

of a scalar parameter. This paper derives necessary and sufficient conditions on the range of

one such parameter to guarantee stability of the method. It further shows that the parameter

effects only the length, not the direction, of the search vector at each step, and uses this

result to derive several computational algorithms. The algorithms are evaluated on a series

of test problems.

I. Introduction. Quasi-Newton methods for minimizing a function f(x), x an

n-vector, are iterative accelerated gradient methods which use past computational

history to approximate the inverse of the Hessian matrix of the function. This is

accomplished by selecting an initial approximation Hw) to the inverse Hessian, as

well as an initial estimate x<0) to the minimum of f(x), and then finding at each step

a(K\ the scalar parameter which minimizes f(xiK) - a(K) HiK) glK)). Letting s(K) =

-Hwg(K), *iK) = aiK)s<K\ xiK+u = x(K> + ¿K),g(x) = V/(x),gw = giO.and

y(K) = g(K+1) - g(K), H(K) is then updated by

(1) HlK+l> =  H{K) + DlK\

where D(K> is the correction matrix. As has been shown by Fletcher and Powell [3],

«-step convergence to the minimum of a positive definite quadratic form is achieved

when D{K> satisfies

(2) £><*>/*> = „«» - //<*>/*>.

In a previous paper [6], a class of correction matrices D(K) satisfying (2) was gen-

erated by a scalar parameter to be

m n<*>  =  , <L^L   ,   ((1  - Per1*'  - //(Ky*')((l  - t)a^ -  ff""/")'

1  ) ,<»'/« ((1 - t)<r'K) - H™ylK))'yiK)

It was then shown in [6] that if t > (a(K) - l)/a(K), positive definiteness of H(K>

implies positive definiteness for H(K+1). Further, it was shown that the smallest eigen-

value of HiK+1) was a nondecreasing function of increasing t, and hence that the

condition of HiK) improved as t —> °°.

Section II of this paper will show that s<Ä+1) = -H Ki ng(JC+1) can be represented as

(4) s(*+l) = <A(K>(i>(A')
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658 D. F. SHANNO AND P. C. KETTLER

where <j>(K)(t) is a scalar function of t and /K) a vector independent of t. Further, it will

be shown that <b(K)(t) assumes all values from (— °°, oo), and that for all t such that

<p<K)(0 > 0, HiK+iy is positive definite.

The chief significance of (4) lies in the fact that if one were able to choose t properly,

the search for aiK) at each step could be eliminated. A number of choices for / were

tried with the aim of minimizing the total number of function evaluations necessary

to minimize /. Section III contains the results of these trials, together with the reasons

for the various choices, and an accelerated means for determining a(K) when the t

chosen is not optimal.

Finally, some numerical accuracy difficulties which were encountered in an at-

tempt to choose optimal t will be documented and their significance discussed.

II. Representation of HŒ+1)'gÍK+1) as a Function of t. An exact representation

of H{K+1) as a function of t is derived by combining (1) with (3) to yield

(JO    (JO'
^+1> - *m + < fWL7B

(5) *     y
((1 - t)a{K) - H(K,/K)W - t)aw - H(K)ylK)Y

«i - tyK) - HiK)/K)y/K>

We note, as in [6], that a necessary condition for a(K) to minimize j(x) along

1(x{K) + alK)siK)) is that

(6) dj/dam = g<*+1,yK> = g<*+"V*> = o.

It is now possible to use (5) and (6) to show:

Theorem 1. Let a = g(KyH<K)g{K\ b = g<«+»'H(K)g(K+1). Then

(7) a««),«*» = 0<«>W(ajï<*y*+» + bHŒ)glK)),

where

I    (JO. (JO      i      .,

W *     W       (awt - aw + l)a + b

Proof. Since ym = g(X+1> - giK), (6) and (5) yield

„(JC+l)    (JC+1)    _     „(JO     (K+l)

W (Jf+1) „(JOtJC+l)

_S "g_   ,,,   _   ,\   (JO   _    I/<ÄVK>1
«i - /><*> - //<*y*>)y*>u     J ;'

Now by the definitions of aiK) and H(K)y(K) and (6) we get

do)     ((1 ~ t)aŒ) - ^V*')'/*'

= (-1 +«(K) - crlK>t)giKyHlKigw - g<K+1)'HlK)giK+u.

Substituting (10) for the denominator in (9), cross-multiplying and collecting terms

yields
/„(JO, (JO     ,     .,     „(JO     (K+l) ,    (if). (JO     I     iu „(JO„(K)

„<Jt+i)   (jc+i) _   —{a     t — a      + \)aH     g —(a     t — a      + \)oH     g
& i   ut). (JO   _1_   1\_ u

,jj. — (a    t — a      + l)a — b

l      (JO (JO , ,N
iaHlKiglK*" + bHwgw).    Q.E.D.

(a{K)t - aiK) + l)a + b
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OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS 659

We wish to show that <p(K)(t) has the properties mentioned previously.

Note that since H(K) is assumed to be positive definite, g{KyH{K)glK) and

gtK+iVffmgtK+a > 0 unless either g«> or g«+» = 0; at which point the algorithm

is terminated. Also, since H(K) is positive definite, a(A' is positive. Hence

(12) éLJÛ = -?L_Ê- > 0

and solving for zeroes of the numerator and denominator of <j>iK)(t) yields

(13) *""(/) >0    for    t>^=^    or    t < ^¡¡^ - ~
a a a     a

In order to show that <b(K)(t) can assume any value on (— °°, °°); simply solve the

equation 4><K)(t) = s for any s.

We now prove the assertion that for <t>(K)(t) > 0, H<K) positive definite implies

H(K+1) positive definite. For this we first require the following lemma.

Lemma 1. H'K) positive definite implies g<*+»'#<*+y*+» > 0 if and only if

<t>(K)(t) > 0.

Proof. From (2) and (3), HiK+l)y'K) = <xm, so by (6),

(14) ^jc+ij'jyc/r+iy/r+i) = g<.K+ir RiK+» gvu ^

Applying (14) to (11) yields

Now since HtK) is positive definite, a and b are > 0, so the lemma is proved.

Theorem 2. If HlK) is positive definite H{K+1) is positive definite if and only if

<p"°(0 > 0.
Proof. Since H(K) is positive definite, any set of « vectors which are mutually H'K)

orthogonal span FT. Since gm * 0, g(K+l) * 0, and gw'H{K)g(K+1) = 0, let g(K),

g(K+1), and any n — 2 vectors Zj, • • • , z„_2 which are mutually //(K) orthogonal and

which satisfy z',H{K)gw = 0, zrHiK)¿K+i) = 0, be a basis for £". Now let £ be any

arbitrary vector. We wish to consider £HiK+1)£. Since z„ ■ ■ ■ , zn_2, glK\ g(K+1) are

a basis for E", we can write £ as

/ie\ (Jf+i)' „(Jr+i)   (Jt+i) .¿(JO,,s   .(15) g Hg =0    (f)ao-

n¿\ y T^ I (A')     i (JC+1)
(16) £   =     ¿^  Û>Z.   +   a»-li? +   °ng

• -1

Now substitution into (5) shows that the //"" orthogonality of the z's to each other

and to g(K), gŒ+1) guarantees that zi#(K+1)z,. = 0 for i ^ j and that z[HlK+" giK) = 0,

z;#(K+iy*+1) = 0. Hence by (5) and (16),

n-2

¡.t rj(K+l)¡. X^      2   , „(JO ,      „2 (JO'„<A'+l)     (JO     i     « _      (JO'„(A'+l)     (JC+I)
S «        ? =   2-, aiziH    Zi + a„-ig      « g      + 2a„_1£j„g      H        g

and from (14),

i 2    (JC+1)' „(A'+l)     (K+l)
+ a„g H        g

(17)
_L   /">„ „     _L   „2\    (K+l)' „(Ä+D     (JC+1)
+ (2a„_,a„ + an)g H        g
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660 D. F. SHANNO AND P. C. KETTLER

We now use again the fact that HlK+1)yiK) = </*' to show

(18) g^'H{K+1)g<K) = a{K) glKy Hw gw + g<*+1>'//<K+ly*+».

Hence (17) becomes

n-2

ç a K —   2-1 aizi"     z, + ßn-ia     g       H     g

(19)
_!_/-„ J      ,.  \2    (K+l)' tj(K+))    (JT+1)
+ (an-i + an) g H        g

Applying Lemma 1 to (19) gives the desired result.

Thus for any / in the range defined by (13), H(K+1) is positive definite. Hence, choice

of t in this range maintains stability while scaling s(K+1) to any length desired. The

following section deals with some choices of t in this range.

III. Choosing the Parameter t.   Section II shows that s(K+1) can be written as

(20) S<K+1> =  -#(K+1VK+U =  -<plK)(t)riK\    where

(JO  _     <JO'„(JO   <JO„(JO   (Jí+n    i      <jr+i)'„(JO   (Jí:+i)„(JO   (jo

Having chosen a /, and hence s(K+1', we are then faced with the problem of deter-

mining a(/c+1). In general, the closer aiK+1) is to 1, the fewer functional evaluations

are necessary to determine the optimal value of a<K+1). But since a(K+1) is determined

by the length of s(K+1>, a(K+1) is in fact a function of t. Thus the proper choice of t

would yield aiK+1) = 1 at each step.

The problem here is attempting to determine the magnitude of the step-size to

the minimum along sCK+I). Since / is arsumed to be a nonlinear function, no analytic

expression for the step-size can generally be obtained. The best which can be achieved

is an estimate to the parameter t, and to this end several algorithms are tried.

The first algorithm tried is the algorithm for r = °° developed in [6]. The rationale

for this in view of the developments of this paper can be derived from the following

argument:

Expand i(x) in a Taylor series about x(K) to yield

f(xŒ+n) = f(x{K)) + (x(K+i) - xiK))'glK)

+ HxiK+v - xiK))'T(K)(x(K+l) - x{K))

= f(xiK)) + o-iKyg{K) + lc'KyTÎK\Œ)

= /(*<*>) + aiK)sÍKyg(K) + WK)'sŒ)'TŒ)s{K\

Differentiating (21) with respect to a(K) yields

(22) ttK>'gm +a{K)slKyTlKVK) = 0.

or

(JO' „(JO    (JO

(23) a (JO g1" //'"y

(JO ' „(JO ^(Jf) „(JO    (JO
g       ti      l       ti      g

Now if H(K)g(K) = r(K,-yK', then aŒ) = 1. Hence we want to choose H(K)g(K)

as close to T(K)~1glK> as possible. Fletcher and Powell have shown that as x{K) ap-
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OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS 661

proaches a region in which / is essentially a quadratic function, HiK) will tend to

r<Ä)_1. In general, the rationale for choosing / = <» derives from the fact that giK+1)

and giK) are H{K) orthogonal, hence the step-sizes in these orthogonal directions

have no discernible relationship to each other. However, computational experience

may have generated a reasonable step-size in the direction of HiK)g(K+". Thus we

wish to keep the eigenvalue of HiK+1) in the direction of g(K+1) as close to that of

Hw in the direction of g(K+1) as possible.

As in Lemma 1,

(jc+i)' „(jc+i)   <J¡r+n (JO'„<K+u   (JT+D
g Hg = g      H        g

(24) /   (K), (JO     i     n   (JO' „(JO    (A')    (Jf+l)-„(JO    (JT4(at — a       +l)g       H     g     g Hg
,   IK) (JO     ,     ...    <JO'„(JO    (JO     i (JC+l)'„(JO    <
(a     t — a       + \)g       H     g       -j- g Hg

and hence

(25) limg(A'+1,'//(*+ly*+I) = g'K+1>'//'*yK+1\

(-.CO

yielding precisely the desired result.

Another, and perhaps more important, property of r = «> arises from the prob-

lem of minimizing the condition number of the matrix H{K+1). This problem is alluded

to in [6]. Here the desire is to minimize p(A) = \\A\\ ||^-1||. Letting ||-1| be the

spectral norm, p(A) = Xn/X1; where Xn and Ax are the largest and smallest eigen-

values of A respectively.

To attack this problem for jY(K+1), we see from (19) and (15) that for any vector £',

¡:>HlK+uH =  ftóA + aUa^g^'H^g^

(26)
+ (a^ + an)2^K)(t)g^yH^g^\

where \¡/{K)(t) = a4>(K)(t). As this is true for any vector £, it is true for rn(t) and r¡(t),

where rn(t) and r¡(t) are the eigenvectors corresponding to X„ and Xi and normalized

so that | |r,,(0|| = IkiCOll = '• The quantity which we wish to minimize is then

,,,-,-. (-„(k+Ds      rn(t) H       rn(t)

(27) ßiH      } = rÁtyH^\(t)

Now by (26) and (27), certainly as ^K)(t) -* », rn(t) -> gŒ+l)/\\g(K+,)\\ and

Xn —> ». Also, in this case, the component of rx(t) in the direction of g(K+v —> 0,

and X, remains finite. Hence ß(H(K+l)) -» » as ^K)(i) -* ». Also, as ^(K)(t) -> 0,

ri(0 ~* g'K+1)/\ |g<x+u 11 and X! —> 0. Again, here the component of rn(t) in the direc-

tion of g(K+1) -> 0, and Xn > 0. Here again ß(HiK+1)) -* «.

Thus we wish to keep \p<K)(t) bounded away from 0 and œ. Now by (8),

,  (JO. (JO    i    ,-,„

(28) ft = a^Xt) = X \ ,Î I,'
(a'  't — a + \)a + b

Differentiation of (28) shows that d\piK)(t)/dt = 0 for t = œ, and that this is an

inflection point of f(t).
As i = œ corresponds to ^{K)(i) = 1, this clearly avoids the problem of </>(K'(0 —» 0

or ^(Jn(0 —> oo. Further, since / = °° is an inflection point of \piK\t), it would appear
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OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS 663

that the deterioration of the condition number u is symmetric about \¡/lK)(i) = 1, and

hence t = œ is in some sense an optimal choice to minimize ß(HiK+1)) at each step.

Another method which suggested itself takes into account the result [4], that as

x(K) approaches the minimum, Newton's method converges quadratically, i.e. if £ is

the minimum

(29) \\xiK+1) - x\\ á M\\xw - x\\2.

This suggested using ||o-(X>|| as an estimate of \\x<K) — x\\ and t was chosen so that

l^tx+Dji _ n^joi^ jYùs proved computationally unsatisfactory (see Section IV),

so was modified by choosing t so that | \s(K+i) 11 = | \aK) 11.

Two other methods, both directly sensitive to aiK\ were also tried. The first was

simply t = a<K), which has no rational basis, but appears to be reasonably satisfac-

tory. The last was t = (2a(JO — l)/aiK\ which is obtained by the composite Fletcher-

Powell scaling discussed in [6].

The results of testing all five methods on a series of test problems are discussed in

Section IV. Two further points are necessary to round out this section.

First, in the two methods which chose t so that | \siK+1) 11 = | |<r<K> 112 and | \s(K+1} 11 =

\\<tŒ)\\, the method proved numerically unstable for t < (aiK) - l)/aiK) - b/aa(K).

This arises from the fact that it is computationally unfeasible to force glK+1) 'H(K)giK)=0,

but rather only \gÍK+1)'HÍK)g(K)\ < Ô, where 5 is rather crude. This instability can be

eliminated by refining S, but numerical experiments with this showed that the number

of function evaluations increases. Hence t was restricted to the range t> (a<K) — l)/a<K\

and if t < (aŒ) — l)/alK) — b/aaK) was indicated, t = « was substituted.

Finally, the cubic quadrature technique devised by Davidon [2], was used to

locate aiK) at each step after two points were found at which df/dalK) < 0 and

df/da(K) > 0. In an attempt to expedite the a search when no point had yet been found

at which df/da(K) > 0, rather than simply doubling a(K) as suggested by Davidon, a

new approximation was found as follows:

Assume f(x) = \x'Ax + x'b. Then by (23),

(30) alK) =  -sÎKygŒ)/(sŒyAsw).

Now

f(x(K) + stK)) - /(*<*>) = fAs^ + hs<KyASiK) + b'siK)
(31)

= sm'glK) + hm'Asw,

hence

(32) slKyAsŒ) = 2(f(xw + slK)) - f(slK)) - slK)'giK)).

(30) and (32) combine to yield

„(JO-    (JO

(33) aiK) = -—-*-
2(f(xlK) + i(K>) - f(x'K)) - siKyg{K))

Thus if dJ/da(K) < 0 for a(K) = 1 and a(K) yielded by (33) satisfies atK) > 1, this

aiK) is tried. Otherwise aiK) = 2 is tried. Comparison of the results in Section IV with

the results in [6] verifies that this saves a fair number of function evaluations.
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664 D. F. SHANNO AND P. C. KETTLER

IV. Computational Results. The five methods for selecting t discussed in Sec-

tion III were tested on the four test problems documented in [6]. As previous testing

included the straight Fletcher-Powell and Barnes-Rosen [1], [5] techniques, they are

not included here. Previous tests have shown both to be substantially inferior to four

of the five methods tested here.

The results of the tests are summarized in Table 1. As in [6], Iter. designates the

number of times HiK} is updated, and Eval. the number of function evaluations. The

choice of / which yields ||s<x+1>|| = ||<rCX)||2 is designated as the contracting norm

version, while the version which yields ||s<K+J)|| = ||<rCJC>|| is designated as the con-

stant norm version.

It is clear from the table that the contracting norm version is markedly inferior to

the other four versions, apparently because the quadratic convergence criterion

does not begin to take effect until the last few iterations. The other four versions seem

remarkably similar, with a slight edge going to the t = oo version. The reduction

in total function evaluations for t = œ and / = (2aiK) — l)/a<K) from [6] is due to

the improved a(K) search documented in Section III. Note, however, that for the

initial estimates (250, .3, 5) for the Weibull function, t = (2aci° - l)/acx> is inferior

to this choice of / without the new algorithm for determining a(K). This verifies that

ill-conditioned problems are very sensitive to all phases of the computational tech-

nique.

In general, the results of this testing appear to justify using t = oo as a reasonable

choice for t generally. It may, however, prove somewhat better to combine this

algorithm with the constant norm algorithm, using t — oo until steps become small,

then switching to the constant norm. Computational experience verifies that this may

accelerate convergence to some degree.
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