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SUMMARY

This paper investigates the use of a two-terminal vibrationsuppression device in a building. The use of
inerter-spring-damper configurations for a multi-storey building structure is considered. The inerter has
been used in Formula 1 racing cars and applications to various systems such as road vehicles have been
identified. Several devices that incorporate inerter(s), as well as spring(s) and damper(s), have also been
identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and
the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with a two-terminal
absorber located at the bottom subjected to base excitationis studied. The brace stiffness is also taken into
consideration. Four optimum absorber layouts, in terms of how spring, damper and inerter components
should be arranged, for minimising the maximum relative displacements of the building are obtained with
respect to the inerter’s size and the brace stiffness. The corresponding parameter values for the optimum
absorber layouts are also presented. Furthermore, a real-life earthquake data is used to show the advantage
of proposed absorber configurations. Copyrightc© 2015 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Mitigating the seismic response of a structure has attracted the interest of researchers for many
decades. Tuned mass dampers (TMDs) were proposed as a dynamic vibration absorber by Frahm [1]
in 1909, then Villaverde [2] and Sadeket al. [3] showed that placing the TMDs at the upper stories
of buildings is an effective way to reduce the vibrations of the structures. The classical method
of choosing the damping ratio is based on the tuning method proposed by Den-Hartog [4] and
others [5–8], and Krenk characterised the damping properties of the TMDand identified the optimal
damping by analysing the motion of the structural mass as well as the relative motion of the damper
mass in [9]. Multiple TMDs [10,11] and combining TMDs with base-isolation systems [12] have
also been shown to be effective in suppressing vibration.The TMDs are widely used as suppression
devices for buildings [13–15], however, the downsides of this kind of device are its weight and the
fact that the device must be situated of the top of the building for maximum effectiveness. In the early
2000s, Smith [16] introduced a new device, called the ‘inerter’, which is a two-terminal equivalent to
the mass element, with the property that the applied force isproportional to the relative acceleration
across its terminals. Applications of inerters in structures have been identified in a wide range of
mechanical systems [17–25]. By using inerters for vibration suppression of building structure, the
two downsides of the TMD can be eliminated, since the inertercan provide a high inertance with
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2 SARA YING ZHANG, JASON ZHENG JIANG AND SIMON NEILD

a much lower mass because of it can include significant gearing and the suppression device can be
installed at the bottom rather than the top because it generates a force based on the relative motion.
In [26], Wanget al.identified several simple absorber layouts incorporating inerter device which are
beneficial in reducing vibration of a one degree of freedom (DOF) and a two DOF building models.
The tuned inerter damper (TID) was proposed in [27] and it has been shown that the performance of
a TID mounted across the ground and lowest floor of the structure can be better than that of a TMD
mounted at the top of the structure.In [28], Krenk and Høgsberg studied the effect of the other non-
resonant modes and proposed a new design method for TMDs and TIDs. Ikagoet al. [29] presented
a new seismic control device the tuned viscous mass damper (TVMD) and analysed the performance
of it when installed in a SDOF structure. The TVMD consists ofa inerter-like ball screw mechanism
mounted in parallel with a viscous damper (which they term asVMD), and a soft spring connecting
the VMD to the primary system. This shift spring can be thought of as representing the connecting
brace compliance. Comparing with the conventional viscousdamper, it also has been shown that
the TVMD is the most effective absorber for the single-degree-of-freedom systems with dampers
having the same additional damping coefficient. In [30], Ikagoet al.obtained the optimum response
of a MDOF building structure with TVMDs in every story. Inerter-like devices known as inertial
dampers have also been introduced in [31]. A new device based on inerter named as TMDI was
proposed in [32]. As the inerter has the direct analogy in the electrical domain, the TID has also
recently been implemented electrically and coupled to the structure using a coil actuator [33].

In the traditional force-current analogy between mechanical and electrical networks, the physical
masses, dampers and springs correspond to the electrical capacitors, resistors and inductors
respectively. However, the conventional mass element fails to be fully equivalent to the capacitor,
since one terminal of the mass is always connected to the ground. With the invention of the
inerter, this problem can be fully solved and the electricaltheorems can be directly used in the
analysis and synthesis of mechanical networks, thus allowsall positive-real mechanical impedances
to be synthesised. Both the TID and the TVMD use the inerter ina fixed configuration, which
restricts the use of the passive impedances and limits the achievable performance of the mechanical
system. In this paper, we use the mechanical admittances to represent the absorber and obtain the
optimum configurations of it by the network synthesis theory. Bott-Duffin [34] proposed the most
general transformerless synthesis procedure to realise any positive-real functions with a network
consisting of resistors, capacitors and inductors. However, this procedure is not ideal since it needs
a large number of elements, which is at odds with a mechanicalrealisation of the device where
minimising the network complexity is crucial. By introducing the concept of regularity, Jiang and
Smith [35] presented the complete set of biquadratics that can be realised by networks consisting of
three resistive and two reactive elements. Applications ofbiquadratic functions as the mechanical
admittances to vehicle suspension have been identified in [17, 23]. It is well known that for the
TMD, the mass ratio is very important in civil engineering since adding large mass to the structure
imposes additional structural constraints. Due to gearing, the inertance provided by an inerter can
far exceed the mass of the device. An effective way to obtain mass ratio of37.5 was reported by
Gonzalez-Buelgaet al. [36], who tested a commercially realisable device. Here, we will consider
the case of a device with a single fixed-inertance inerter which is positioned across the lowest floor
and ground levels. Selecting the inertance before optimising the suppression device allows us to
scale the device in the same way as is done by selecting the mass ratio for a TMD.

It is known that the vibration suppressors, such as dampers,are installed on braces at different
storey levels [37]. The performance of the structures with the brace compliance has been
investigated in [38, 39]. In this paper, considering the installation of the vibration absorber, a
brace compliance is also included between the structure andthe device. Many cost functions
could be selected for the optimisation, we select an exampleone while noting it is the approach
proposed in this paper rather than the specific results whichis of the most interest. By choosing
the relative displacements of the storeys to that of the baseas the performance index, the example
optimisation objective function is generated. Utilizing the patternsearch and fminsearch functions in
MATLAB, the optimum configurations for the suppression device can be obtained. Then making use
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OPTIMAL CONFIGURATIONS FOR A LINEAR VIBRATION SUPPRESSIONDEVICE 3

of simplification approaches, some approximate optimum configurations with significantly fewer
elements are proposed with respect to the inertance and brace stiffness.

This paper is arranged as follows. In Section2, we introduce an idealised building model, the
objective function and the optimisation approach also are presented. Then, in Section3, we propose
a fixed-sized-inerter admittance which is synthesized by seven-element network, named the fixed-
sized-inerter layout and the structural response is shown for the optimised device. The simplification
of the fixed-sized-inerter configuration is carried out in Section 4 and four simple approximate
optimum configurations are identified with respect to the inerter’s size and the brace stiffness.
Conclusions are drawn in Section5.

2. BUILDING MODEL AND OBJECTIVE FUNCTION

2.1. Multi-storey building model

The building model is represented by an−storey structure, reduced to an−DOF lumped mass
system as shown in Figure1. The structural damping is taken to be zero because its valueis typically
small compared with the control device. The vibration suppression device is located between the
ground and the first floor, which makes the installation of theabsorber much easier and it needs to be
noted that only one control system is used at a time. The control system is assumed to be a passive
mechanical admittanceY (s) = F/v [17, 40], whereF is the force exerted by the control device
andv is the relative velocity between the two terminals. Moreover, vibration suppressors, such as
dampers, are usually installed via a brace between storey levels. Hence, it is necessary to consider
a brace stiffnessks which is in series with the absorber attached to the first floor. In our research,
we consider a three-storey building model with equivalent floor storey massesm and equivalent
inter-storey elasticityk. We fix the parameters of the three storey building model asm = 1kNs2/m
andk = 1500 kN/m. The parameters for the building model are the same as the oneused in the
TID paper [27] and these numerical values were selected for convenience while retaining realistic
natural frequencies and noting that the parameters scale linearly. To include the effect of the brace
stiffness, we consider the rangeks ∈ [k/10, ∞].

m1

mi

mn−1

mn

kn

k1 Y (s)

x1

xi

xn−1

r

ks

xn

1st

storey

i
th

storey

n
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Figure 1. Schematic representation of an idealised building and lower floor suppression device with brace
compliance subjected to ground motion.

Defining the variable matrix

x =
[

x1 x2 x3

]T
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4 SARA YING ZHANG, JASON ZHENG JIANG AND SIMON NEILD

wherexi is the displacement of theith storey and the relative displacement of theith storey to
the base iszi = xi − r. Then making Laplace transformation ofzi, we can obtain thatZi(s) =
Xi(s)−R, hence the steady-state equation of motion for the controlled model of Figure1, in matrix
form, in the Laplace domain is





m 0 0
0 m 0
0 0 m



 s2Z +





2k + sksY (s)
sY (s)+ks

−k 0

−k 2k −k
0 −k k



Z = −





m
m
m



 s2R

whereZ = X −R represents the vector of relative storey displacements in the Laplace domain.

2.2. Objective function and optimisation approach

There are many design criterions for a vibration absorber [41]. In this paper, we consider the
displacements of each building storey relative to that of the base. The objective function is defined
as

J∞ = max (‖TR→Zi
(jω)‖

∞
) , i = 1, · · · , n (1)

whereTR→Zi
denotes the transfer function fromR toZi, ‖TR→Zi

(jω)‖
∞

is the standardH∞-norm,
which represents the maximum magnitude ofTR→Zi

across all frequencies. We note that many
objective functions considering different motions, such as inter-storey drift, and weighted frequency
distributions can be devised. Here, as the configuration optimisation approach is of primary interest,
we just consider this example objective function.
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Figure 2. Displacement comparison: optimised TID using (1) with kd = 142.7 kN/m, cd = 3.263 kNs/m
(thin solid line) and TID proposed in [27] with kd = 138.6 kN/m, cd = 2.5 kNs/m (thick dashed line).

The design of the absorber for the MIMO structures is often carried out in the fundamental mode,
with initial tuning based on the assumption that the naturalfrequencies are well separated, hence the
contributions from higher mode are ignored. In reality, themodal cross coupling has a deleterious
effect on the tuning in some cases. Hence, we propose objective function (1) to avert this problem.
In order to show the feasibility of our objective function, we optimise the building model used
in [27] with the same TID configuration. The value of the inerterb = 499 kg is fixed as the same as
that in [27]. By optimisingJ∞, we obtain thatkd = 142.7 kN/m, cd = 3.263 kNs/m. The authors
of [27] chose the value of spring and damper askd = 138.6 kN/m, cd = 2.5 kNs/m based on Den
Hartog tuning method [4] targeting the first mode. By analysing the displacement response with the
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Figure 3. Fixed-sized-inerter layout(a) and corresponding network configuration(b)

TID of these two different set of values, Figure2 suggests that with objective function (1), the TID
device results in much smaller displacements of all the three floors in the vicinity of the second and
third fundamental frequencies. Although the displacementof the first storey in the first fundamental
frequency obtained from the objective functionJ∞ is slightly bigger, the max response displacement
of the first fundamental frequency is smaller (for the third storey) comparing with the results in [27].

Using the objective function (1), we compare the TID configuration as an example, with the
conventional TMD. Because the inerter device can achieve a higher inertance with a much lower
mass via the gearing mechanism [16], we choose the mass of TMD as100 kg, and the inertance of
TID is 1000 kg. By optimising the objective function, we obtain that for the TMD,J∞ = 35.45 with
cd = 2.51 kNs/m andkd = 32.6 kN/m, and the TID achieves an optimal value ofJ∞ = 5.03 with
cd = 8.08 kNs/m andkd = 290.7 kN/m.

3. FIXED-SIZED-INERTER (FSI) LAYOUT AND OPTIMISATION RESULTS

In this section, a fixed-sized-inerter layout is introduced. Using network synthesis, it can be realised
by a seven-element network comprising of dampers, springs and one inerter. An example of
synthesis process is now provided and the optimisation results with this layout for three different
brace stiffness versus the inertance will also be shown.

3.1. Network synthesis and fixed-sized-inerter layout

Given a general admittanceY (s) for the mechanical absorber with unknown parameters, the
optimum admittance can be obtained by optimising the objective function in MATLAB. As
discussed in the introduction, we consider a single fixed size inerter and propose the overall device
layout shown in Figure3(a), named as fixed-sized-inerter layout (FSI layout), where

L1(s) =
s+ α0

β1s+ β0
,

L2(s) =
s+ γ0
δ1s+ δ0

.

The admittance of the absorberY (s) for the layout shown in Figure3(a) can be expressed as

Y (s) =
L1(s)(bs+ L2(s))

bs+ L1(s) + L2(s)
, (2)

where we takeb ∈ [100 kg, 3000 kg].
In the network synthesis, there is a procedure to remove imaginary poles and zeros and subtract

positive constants, which is called “Foster Preamble” [42,43]. Using such procedure, it can be shown

Copyright c© 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit.(2015)
Prepared usingstcauth.cls DOI: 10.1002/stc



6 SARA YING ZHANG, JASON ZHENG JIANG AND SIMON NEILD

100 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

 

 

b (kg)

J
∞

ks = ∞

ks = k/5

ks = k/10

Figure 4. The optimum values ofJ∞ with the FSI layout for the three brace stiffness versusb.

that to guaranteeL1(s) andL2(s) can be realised with spring(s) and damper(s) only,α0, β0, β1, γ0,
δ0, andδ1 should be non-negative and satisfy the following two conditions,

β0 − β1α0 ≤ 0, (3)

and
δ0 − δ1γ0 ≤ 0. (4)

Based on network synthesis theory, the admittanceY (s) (2) with the conditions (3) and (4)
can always be realised by the seven-element network shown inFigure3(b). The element values
of the network of Figure3(b) can then be obtained. For example, for the caseks = ∞ and
b = 2200 kg, we obtain the optimum parameters ofY (s) asα0 = 19.1, β1 = 3.35× 10−5, β0 =
1.00× 10−11 and γ0 = 1.01× 103, δ1 = 27.5, δ2 = 1.26× 10−16 and it achieves the value of
J∞ = 3.197. By using Foster preamble procedure, we can obtain the element values of the seven-
element network of Figure3(b) as: c1 = 1.91× 109 kNs/m, c2 = 29.9 kNs/m, k1 = 571 kN/m,
c3 = 8.35× 1015 kNs/m, c4 = 3.60× 10−5 kNs/m and k2 = 3.85× 10−2 kN/m. It can then be
checked that

L1(s) =
s+ α0

β1s+ β0
=

c1(c2s+ k1)

(c1 + c2)s+ k1
,

L2(s) =
s+ γ0
δ1s+ δ0

=
c3(c4s+ k2)

(c3 + c4)s+ k2
.

3.2. Optimisation results for fixed-sized-inerter layout

We now use the FSI layout shown in Figure3(a) as the candidate vibration suppression device
for optimisation. The brace stiffnessks is chosen from our considered rangeks ∈ [k/10, ∞]. Two
boundaries and the median of the range are chosen as the specific brace stiffness to be studied, which
areks = ∞, ks = k/5 andks = k/10 respectively. Making use of patternsearch and fminsearch
command in MATLAB, the optimum results of the objective function (1) for the three different
brace stiffness have been shown as the grey dashed line in Figure4, with respect to the certain
rangeb ∈ [100 kg, 3000 kg]. It can be seen that the optimum result increases, in terms ofthe cost
function, as the brace stiffness decrease, which reflect thefact that with a less stiff brace a smaller
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Figure 5. Displacement response comparison: FSI layout (thin solid) whenb = 2200 kg and damper (thick
dashed) for the caseks = ∞.

proportion of the relative displacement between the floors is transmitted to the device, and the fixed
brace stiffnessks = ∞ is the most desirable case.

When investigating the proposed FSI layout, it is benefit to consider whether it gives improved
level of performance comparing with the commonly used two-terminal device, a viscous damper.
An example is presented in Figure5 to demonstrate that the proposed layout can reduceJ∞ (1)
further than a damper. The building model is considered withbrace stiffnessks = ∞. The damper
Y (s) = c achieves an optimal value ofJ∞ = 3.93 for c = 69.94 kNs/m. As discussed in Section
3.1, whenb = 2200 kg, the FSI layout achievesJ∞ = 3.197. Here, a18.7% improvement of the
value ofJ∞ can be obtained with the FSI layout compared with that of the damper. It can also be
seen from Figure5 that in the first fundamental frequency, the max relative displacement response
occurs at third floor and the displacement with the FSI layoutis smaller than that with a viscous
damper.

4. SIMPLIFICATION OF BENEFICIAL FSI LAYOUT

4.1. Simplification of FSI to IPD and TTID

The FSI configuration shown in Figure3(b) consists of seven elements and three additional degrees
of freedom. It would be complex to implement as a mechanical device. We therefore adopt a
simplification approach, where we neglect the parallel elements with a relative small value and
replace the series element of a relative large value with a rigid connection. As an example of
this process, we consider the caseks = ∞ and b = 2200 kg, which has been used as example in
Section3.1. A simpler configuration may be achieved by rigidly fixingc3 (asc3 ≫ c4) andc1 (as
c1 ≫ c2) and neglectingc4 (asc4 ≪ c2). This simpler configuration, termed the turned TID (TTID,
the additional T indicating an additional tuning from spring k2)) is shown in Figure6(b2) and once
reoptimised results in theJ∞ of 3.199. There is just0.3% degradation inJ∞ with this much simpler
structure. A comparison of these two systems is given in Figure 7, the response is very close to each
other. Following the similar simplification approach for all the range of inertanceb and allowing up
to 10% degradation of the value ofJ∞, the FSI layout can be reduced to two simpler configurations,
the TTID and the IPD (inerter in parallel with a damper), shown in Figure6, for all the three brace
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Figure 7. Displacement response comparison: FSI configuration of Figure6(a) (red solid) and TTID of
Figure6(b2) (blue dashed) whenb = 2200 kg andks = ∞.

stiffness considered. It should be noted that in choosing a10% degradation in the level of the cost
function, we take the view that a10% improvement inJ∞ does not justify the extra complexity
of the absorber configuration along with identically unrealistic element values that are needed to
obtain this improvement. Figure8 shows the optimum values of the objective functionJ∞ with the
FSI layout, the IPD and the TTID, respectively, whenb is in the range of100 (kg) to 3000 (kg)
for the three brace stiffness. Here, the TTID and IPD responses have been truncated in the range
of b to show just the regions where they achieve acceptableJ∞ compared with that of the FSI
configuration. Short vertical lines show the transition point between the IPD and the TTID. Noted
that the IPD and TTID configurations together can provide similar behaviour to the FSI layout with
the full range of inerter values considered. For the caseks = k/5, whenb ∈ [150 kg, 170 kg], there
appears a highest degradation ofJ∞, and it can be checked that8.3% degradation inJ∞ is the
highest withb = 165 kg, which is below our limitation10%. Also note that the range covered by the
IPD decreases as the brace stiffnessks decreasing. And whenks = k/10, the FSI structure can be
reduced to only one simple structure, the TTID, for the wholerange of inertance considered.
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configurations.

4.2. Further Simplification of TTID to TID and Damper

The TTID configuration contains four elements and it is more complicated than the TID [27]
and the TVMD [29] mentioned in the introduction since both of them just have three elements.
From the optimal elements values obtained for the TTID, it can be noticed that for a range ofb
value, the TTID can be further reduced to a damper (D) or a TID,shown in Figure9, using the
simplification approach described in Section4.1. The acceptable degradation ofJ∞ for reducing
TTID to D and TID configurations was set to3%. To demonstrate this simplification, we consider
the same example used in Section4.1 with ks = ∞ andb = 2200 kg. It has been shown that the FSI
layout can be reduced to a TTID, which achieves the value ofJ∞ = 3.199 with the element values
c = 29.6 kNs/m, k1 = 573.06 kNs/m andk2 = 0.10 kNs/m. By removing the small springk2, the
TTID is simplified to a TID. Reoptimising with the TID resultsin J∞ = 3.201 with c = 29.6 kNs/m
andk1 = 575.95 kNs/m. The value ofJ∞ only increases by0.06%, which is negligible.

As a result, four simple configurations (IPD, D, TID and TTID)are obtained. It can be seen
that the IPD is the special case of the TVMD, which is obtainedby adding a spring in series with
the IPD. Adding such a series spring to the IPD is similar to including the effect of the brace
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Figure 10. For brace stiffnessks = ∞: (a) the optimum results, (b) the corresponding damping values with
IPD (red), Damper (green), TID (purple) and TTID (blue).
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Figure 11. For brace stiffnessks = k/5: (a) the optimum results, (b) the corresponding damping values with
IPD (red), TID (purple) and TTID (blue).

stiffness. We note that Ikagoet al.proposed the TVMD and applied in a different manner with that
is considered here, namely it was installed at every story [30]. A comparison of the optimum values
of J∞ using these four simplified configurations with that of the FSI layout for the three brace
stiffnessks = ∞, ks = k/5 andks = k/10 are given in Figures10(a),11(a) and12(a), respectively.
The corresponding damping values for the configurations areshown in Figures10(b), 11(b) and

12(b), respectively. Here, we allow a10% performance degradation relative to the FSI layout, it
can be seen that these four simple systems together can approximately achieve the value ofJ∞
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Figure 12. For brace stiffnessks = k/10: (a) the optimum results, (b) the corresponding damping values
with TID (purple) and TTID (blue).

of the FSI structure, versus the range of the inerter values considered, while being much easier
to implement. Hence, instead of the real optimum configuration (FSI configuration) obtained from
the admittanceY (s) (2), these four simple systems are scheduled as the approximate optimum
configurations in this paper. Figure10(a) shows that the approximate optimum structure is an
IPD for ks = ∞ when b ∈ [100 kg, 500 kg], a single damper whenb ∈ [500 kg, 1550 kg], a TID
whenb ∈ [1550 kg, 2600 kg] and a TTID whenb ∈ [2600 kg, 3000 kg]. Short vertical lines show the
transition point between the four simplified configurations. The dotted lines show the performance
of the simplified configurations outside the region in which they outperform the other simple
configurations. It can also be noted that the TID and the Damper are simplifications of the TTID,
hence the optimum results for the TTID are similar to those ofthe Damper and the TID in the
regions where the TID and Damper are presented as alternative. Recall that the TTID is replaced
with the TID or Damper when their cost function values are no more than3% higher than the TTID,
the optimal range of the TTID can be determined. Observe thatfor b > 2500 kg, an increase inb
leads to an increase inJ∞ (hence worse performance based on the cost function) and an increase in
the damping required. This region, which we term the suboptimal region as a larger inerter device
requires a larger damper and achieves a worse performance, will be further discussed in Section4.3.
Finally we note that the damper parameter is much lower in theTID than when a pure damper is
considered in their optimal regions. As discussed earlier,in the paper by Lazaret al. [27] the case
whereb = 499 kg was considered. They proposed the use of the TID. In doing so,they considered
the size of a damper that could match the performance of the TID finding that the damping parameter
was an order of magnitude larger in the pure damper configuration. Here, instead, the emphasis is
on the cost function performance and we find that when optimised the damper can outperform the
TID in this region.

The results in Figure11(a), suggest that for the brace stiffnessks = k/5, only three simple
configurations are needed to obtain the similar optimum results, which are the IPD whenb ∈
[100 kg, 165 kg], the TID whenb ∈ [165 kg, 410 kg] and the TTID whenb ∈ [410 kg, 3000 kg]. It can
be also noted from Figure11(a) and (b) that forb > 350 kg, the value of the cost function and the
corresponding damping values are increasing as the value ofb increasing.

For the case where the brace stiffnessks = k/10, Figure12(a) shows that the TID and TTID
are the approximate optimum configurations whenb ∈ [100 kg, 210 kg] and b ∈ [210 kg, 3000 kg]
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Figure 13. The corresponding spring values of the TID (thickpurple) and the TTID ( thick blue fork1, thin
blue fork2) for (a)ks = ∞, (b) ks = k/5 and (c)ks = k/10.

respectively. Furthermore, in conjunction with the corresponding damping values shown in
Figure12(b), it can be seen that the optimum value ofJ∞ and the corresponding damping values
become larger with the value ofb increasing for the range ofb > 180 kg. As a result, the region that
b > 180 kg is suboptimal when brace stiffnessks = k/10.

Figure13shows the corresponding values for the stiffness of the TID and the TTID for the three
different brace stiffnessks = ∞, ks = k/5 andks = k/10 with respect to the inerter’s size within
which the TID or the TTID configuration is optimum.

The optimal configurations within the range ofb ∈ [100 kg, 3000 kg] and the corresponding
parameters have been summarised in TableI for three different brace stiffness. It can be seen that
the configuration TID is the optimal configuration for all thethree brace stiffnessks = ∞, ks = k/5
andks = k/10. The optimum value ofJ∞ increase and the optimum parameters of TID become
smaller as the brace stiffness decreasing.

4.3. Proposed simple configurations

From the analysis shown above, we can conclude that these four simple configurations are effective
in replacing the FSI layout as they provide a similar value ofJ∞ for the base excited structure.
What is more, the approximate optimum simple configuration is different for the differentb value
and different brace stiffnessks. Also a larger inerter does not always give a better performance, but
a larger brace stiffness can provide a smaller value ofJ∞.

Based on the conclusions obtained for the three specific brace stiffnessks = ∞, ks = k/5 and
ks = k/10, we optimise the objective function with these four simple configurations (IPD, D, TID
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Table I. The optimal configurations forb ∈ [100 kg, 3000 kg] for the three different brace stiffness.

Brace stiffness
Optimal configurations

Type J∞ b (kg) c (kNs/m) k (kN/m)

ks = ∞ TID 3.05 2400 32.9 642.3

ks = k/5 TID 14.88 350 6.05 121.3

ks = k/10 TID 28.93 180 2.85 59.4

and TTID) for many brace stiffnessks values in the range of[k1/10, ∞]. The optimal regions for
these four simple configurations with respect to theb value and structured to brace stiffness ratio
k/ks are shown in Figure14.

This provides guidance for selecting the appropriate configurations given a certain inertance and
brace stiffness values. By identifying the region, in whichincreasingb always give a larger minimum
value ofJ∞ and at the same time there is no meaningful reduction in the damper parameter, the
boundary of the suboptimal region is identified and it is shown as a shaded region limited by a black
dashed line with circle markers in Figure14.

Figure 14. The optimum structures with differentb values and brace stiffness ratiok/ks.

Finally, we consider the performance of the building model subjected to earthquake base
excitation. In line with the TID paper by Laseret al. [27], we chose a ground acceleration recorded
from the Tohoku earthquake that took place in Japan on the 11th of March,2011, which is shown
in Figure15(a). All the structural parameters are kept unchanged, the optimum control system is
selected based on the inertance value and the brace stiffness ks. Selectingb = 250 kg andks = k/2
(shown as the asterisk in Figure14), the approximate optimum control configuration is the IPD.
By optimising the objective function (1), the optimal parameters for the IPD can be obtained as
c = 25.6 kNs/m. The optimum relative displacement time history of the third floor is shown as the
red line of Figure15(b).
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Figure 15. (a) Ground acceleration time-history and (b) 3rdfloor relative displacement time history with
optimum IPD configuration (red) and optimum TID configuration (green) forb = 250 kg andks = k/2.
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Figure 16. Single-sided Fourier spectra of (a) the ground acceleration and (b) the 3rd floor relative
displacement with optimum IPD configuration (red) and optimum TID configuration (green) forb = 250 kg

andks = k/2.

By optimising the model with the TID for the sameb = 250 kg and ks = k/2, we obtain the
optimal spring valuek = 81.3 kN/m and the damping valuec = 1.94 kNs/m. The corresponding
relative displacement time history of the third floor is shown as the green line of Figure15(b). It
can be noted that the IPD perform better than the TID at this point in b, k/ks space, as expected
from Figure14. Figure16 shows the single-sided Fourier spectrum of the ground acceleration and
the third floor relative displacement response of the optimum IPD and TID configurations. The

Copyright c© 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit.(2015)
Prepared usingstcauth.cls DOI: 10.1002/stc



OPTIMAL CONFIGURATIONS FOR A LINEAR VIBRATION SUPPRESSIONDEVICE 15

highest amplitudes are attained at low frequencies, and therefore only the0− 8 Hz frequency
range is shown. The first natural frequency of the structure is ω1 = 2.74 Hz, tuned to match the
high amplitude frequency region of the chosen ground motion. The Fourier spectra of Figure16(b)
reflects the performance improvement compared the IPD configuration with the TID configuration
as obtained in Figure15.

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

0 5 10 15 20 25 30 35 40 45 50
−0.15

−0.05

0

0.05

0.15

(a)

(b)

t (s)

t (s)

a
g
(m

/
s2
)

|z
3
|
(m

)

Figure 17. (a) Ground acceleration time-history and (b) 3rdfloor relative displacement time history with
optimum IPD configuration (red) and optimum TID configuration (green) forb = 250 kg andks = k/2.
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Figure 18. Single-sided Fourier spectra of (a) the ground acceleration and (b) the 3rd floor relative
displacement with optimum IPD configuration (red) and optimum TID configuration (green) forb = 250 kg

andks = k/2.
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Figure 19. (a) Ground acceleration time-history and (b) 3rdfloor relative displacement time history with IPD
configuration (red) and TID configuration (green) forb = 1000 kg andks = k/2.
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Figure 20. Single-sided Fourier spectra of (a) the ground acceleration and (b) the 3rd floor relative
displacement with IPD configuration (red) and TID configuration (green) forb = 1000 kg andks = k/2.

The proposed configuration is also tested on a shorter duration recorded from Kobe,1995. The
time history and the single-sided Fourier spectrum are shown in Figure17(a) and Figure18(a). The
relative displacement time history and the single-sided Fourier spectrum of the third floor with
the TID (IPD) have been shown as the green line (red line) of Figure17(b) and Figure18(b),
respectively. Again it can be seen that the IPD performs better than the TID whenks = k/2 and
b = 250 kg.
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Choosing the value of inerter and brace stiffness asb = 1000 kg, ks = k/2 (shown as the dot
in Figure14), the approximate optimum control configuration is the TID according to Figure14.
Comparing with the optimum IPD configuration, Figure19(b) and Figure20(b) both show the
optimum performance of the TID is better than that of the IPD in the time domain and frequency
domain respectively, as expected.

5. CONCLUSIONS

This paper proposed four optimum linear passive absorber configurations with one inerter for
a building model with respect to the inerter’s size and the brace stiffness. First, a generalised
building model was introduced and a steady-state equation of motion for a controlled three-storey
model with the brace stiffness has been derived. Then, we introduced a fixed-sized-inerter layout
for the suppression device considering of the manufacture problem in reality. Making use of the
network synthesis theory, the corresponding fixed-sized-inerter configuration has been obtained.
Optimisation results of this fixed-sized-inerter (FSI) layout have been given as a function of the
inerter’s size for the three different brace stiffness. Since the FSI configuration has seven elements
and three additional degrees of freedom, a simplification process has been carried out. As a result,
four simplified optimum configurations for the suppression device have been obtained with respect
to the different inerter’s size and different brace stiffness. The corresponding parameter values
for these optimum configurations have also been presented. Finally, the responses to the Tohoku
earthquake data were presented to show the validity of the proposed optimal configurations.
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