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1. INTRODUCTION. After two centuries of experimentation with alternative allo-

cation rules, and considerable political maneuvering, the issue of the “best” method for

allocating seats in the U.S. House of Representatives remains unsettled, although the

field has narrowed considerably to so-called “divisor” methods. Mathematically, we

have s states, house size h, state populations p1, . . . , ps , total population p =
∑s

i=1 pi ,

“quota” qi = hpi/p for state i , and integer allocation of seats ai for state i ; currently,

of course, s = 50 and h = 435. In addition, we have constitutionally mandated lower

bounds ai ≥ 1 (i.e., each state shall have at least one seat), and there are currently in-

active upper bounds ai ≤ pi/30,000 (i.e., the number of representatives in each state

shall not exceed one per thirty-thousand). Beyond these constraints, Article I of the

U.S. Constitution simply says that seats “shall be apportioned among the several states

according to their respective numbers.” In other words, ai should be “close to” qi .

To avoid controversy, the allocation methodology should be perceived as reasonably

balanced between large and small states. It should also be sensible in terms of avoiding

paradoxes associated with addition of new states, increase in house size, or differential

state growth rates; divisor methods are generally free of these impediments [1]. The

Hill method, in use by law since 1941, is a divisor method. The Webster method, in

use during some previous decades, is a divisor method. Another divisor method due to

Jefferson was used early on but was abandoned because it clearly favored large states.

A non-divisor method due to Hamilton was used in the 1800s, but it was abandoned

when it gave rise to nonsensical paradoxes.

The purpose of this article is to expand the list of divisor methods to include those

associated with the logarithmic and identric means. We show that these two methods

stem from mirror-image objective functions in terms of optimization, in the same sense

that the Hill and Webster methods have mirror-image objective functions. We then

explore the connections of the various objective functions to information theory and

statistics, concluding that the identric mean and arithmetic mean (Webster) objective

functions are the most natural, and moreover that the former has certain theoretical

advantages. Finally, we compare optimal congressional allocations associated with the

four means: geometric, logarithmic, identric, and arithmetic.

Our principal reference on congressional apportionment is the comprehensive

monograph by Balinski and Young [1], which provides rich historical context, empiri-

cal support for the Webster method, and Appendix A which lays out the mathematical

structure, including optimization criteria. We adopt their notation and avoidance of

positive lower bounds, which are easily added to divisor calculations; we also ignore

the upper bounds which are currently inactive and which could easily be added to the

calculations if necessary. Two recent articles in this MONTHLY have dealt with the

apportionment problem. Grimmett [4] proposed a randomized (lottery) scheme which

guarantees quota in an expected value sense in the absence of lower bounds. Balinski

[2] presented a general theory of coherence for apportionment problems, including the

congressional problem.

2. DIVISOR METHODS. We assume that d is an increasing function on the non-

negative integers such that d(a) ∈ [a, a + 1] for every a. Different d-functions lead
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to alternative allocation methods. We next introduce a “divisor,” which is a notional

ratio of population heads per congressional seat. For real divisor x > 0, we put ai =
⌊pi/x⌋ if pi/x < d (⌊pi/x⌋) and ai = ⌊pi/x⌋ + 1 if pi/x > d (⌊pi/x⌋). If pi/x =
d (⌊pi/x⌋) we have a tie where ai can be either ⌊pi/x⌋ or ⌊pi/x⌋ + 1. Equivalently,

we choose ai such that d(ai − 1) ≤ pi/x ≤ d(ai ), or pi/d(ai − 1) ≥ x ≥ pi/d(ai ),

or qi/d(ai − 1) ≥ xh/p ≥ qi/d(ai ), where the terms including d(ai − 1) only apply

when ai ≥ 1. Another characterization of a divisor solution is that qi/d(ai − 1) ≥
q j/d(a j ) whenever ai ≥ 1 and i �= j ; this relationship will be important in the next

section.

Our objective is to find a constrained divisor solution where
∑

ai = h by adjusting

the divisor x . If the state populations are distinct, as they always have been, there

will normally be one such solution a1, . . . , as , although the associated divisor is not

unique. Algorithmically, we have to deal with ties in a systematic way. Our approach

is to put ai = ⌊pi/x⌋ if pi/x ≤ d (⌊pi/x⌋), ai = ⌊pi/x⌋ + 1 otherwise, and, starting

with a sufficiently large divisor to ensure
∑

ai < h, to approximate the minimum

divisor satisfying the constraint
∑

ai = h using Microsoft Excel Standard Solver.

This algorithm is straightforward, but there are theoretical instances where it can fail

to deliver a proper constrained solution, even when the state populations are distinct.

For example, suppose we have two states, i and j , with pi/x = d (⌊pi/x⌋), p j/x =
d

(

⌊p j/x⌋
)

, and
∑

ak = h − 1. If x is decreased slightly, the algorithm will increase

both ai and a j by one, yielding
∑

ak = h + 1, i.e., we will have skipped over our

target house size h. The problem is that when pi/x = d (⌊pi/x⌋), ai can actually be

either ⌊pi/x⌋ or ⌊pi/x⌋ + 1; in the instance posed, either ai or a j can be increased to

meet the house size constraint, so we have a nonunique solution, which is of course

politically undesirable. Fortunately, this situation appears to be very unlikely, and in

fact it did not occur in any of our algorithmic calculations.

Attention has naturally focused on d-functions derived from means between a and

a + 1 (see Table A.3 in [1]). The following table adds two means to the usual list.

Table 1. Comparison of divisor methods

Method Mean d(a)

Adams Minimum a

Dean Harmonic a(a + 1)/(a + 1/2)

Hill Geometric
√

a(a + 1)

Logarithmic 1/ ln
(

(a + 1)/a
)

Identric (a + 1)a+1/(eaa)

Webster Arithmetic a + 1/2

Jefferson Maximum a + 1

Recall that for any a and b satisfying 0 < a < b, we have

√
ab ≤

b − a

ln b − ln a
≤

1

e

(

bb

aa

)1/(b−a)

≤
a + b

2
,

so the logarithmic and identric means fit into the natural hierarchy and the table con-

tains the cases where b = a + 1. We next show that these two means correspond to

mirror-image, information-theoretic objective functions in an optimization context.

Note that d(0) = 0 for every entry in Table 1 up through logarithmic, so the consti-
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tutional lower bounds are automatically satisfied; for the last three methods d(0) > 0

(for the identric mean, d(0) = e−1), so lower bounds must be imposed on these algo-

rithms.

3. OPTIMIZATION. It is demonstrated in [1] that the arithmetic mean (Webster)

method results from minimizing

∑

pi

(

ai

pi

−
h

p

)2

=
(

h

p

)

∑ (ai − qi )
2

qi

,

subject to
∑

ai = h and ai ≥ 0. It is also indicated there that the geometric mean (Hill)

method results from minimizing

∑

ai

(

pi

ai

−
p

h

)2

=
( p

h

)2 ∑ (qi − ai )
2

ai

.

Fundamentally, then, these two objective functions are mirror images in terms of the

roles played by the ai and qi . We now provide a more comprehensive result.

Proposition 1. The following four divisor methods result from minimizing the indi-

cated objective functions, subject to
∑

ai = h and ai ≥ 0.

Geometric Mean
∑

(qi − ai )
2/ai (1)

Logarithmic Mean
∑

qi (ln qi − ln ai ) (2)

Identric Mean
∑

ai (ln ai − ln qi ) (3)

Arithmetic Mean
∑

(ai − qi )
2/qi (4)

Proof. For any minimizing objective function
∑

fi (ai ), optimality requires

fi (ai ) + f j (a j ) ≤ fi (ai − 1) + f j (a j + 1),

or

fi (ai − 1) − fi (ai ) ≥ f j (a j ) − f j (a j + 1),

whenever ai ≥ 1 and i �= j . Otherwise, we can reduce the objective function by

switching one seat from state i to state j . For objective function
∑

(ai − qi )
2/qi , we

have

fi (ai − 1) − fi (ai ) = 2 −
2(ai − 1/2)

qi

and

f j (a j ) − f j (a j + 1) = 2 −
2(a j + 1/2)

q j

,

so we must have

−
2(ai − 1/2)

qi

≥ −
2(a j + 1/2)

q j

,
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or

qi

d(ai − 1)
≥

q j

d(a j )

with d(a) = a + 1/2, whenever ai ≥ 1 and i �= j . These conditions characterize the

arithmetic mean divisor method and therefore establish (4). For objective function
∑

(qi − ai )
2/ai , we have

fi (ai − 1) − fi (ai ) =
q2

i

ai (ai − 1)
− 1

and

f j (a j ) − f j (a j + 1) =
q2

j

a j (a j + 1)
− 1,

so we must have q2
i / (ai (ai − 1)) ≥ q2

j /
(

a j (a j + 1)
)

, or qi/d(ai − 1) ≥ q j/d(a j )

with d(a) =
√

a(a + 1), whenever ai ≥ 1 and i �= j . These conditions characterize

the geometric mean divisor method and therefore establish (1). For objective function
∑

qi (ln qi − ln ai ), we have

fi (ai − 1) − fi (ai ) = qi

(

ln ai − ln(ai − 1)
)

and

f j (a j ) − f j (a j + 1) = q j

(

ln(a j + 1) − ln a j

)

,

so we must have

qi (ln ai − ln(ai − 1)) ≥ q j

(

ln(a j + 1) − ln a j

)

,

or

qi

d(ai − 1)
≥

q j

d(a j )

with d(a) = 1/ ln ((a + 1)/a), whenever ai ≥ 1 and i �= j . These conditions charac-

terize the logarithmic mean divisor method and therefore establish (2). For objective

function
∑

ai (ln ai − ln qi ), we have

fi (ai − 1) − fi (ai ) = (ai − 1) ln(ai − 1) − ai ln ai + ln qi

and

f j (a j ) − f j (a j + 1) = a j ln a j − (a j + 1) ln(a j + 1) + ln q j ,

so we must have

(ai − 1) ln(ai − 1) − ai ln ai + ln qi ≥ a j ln a j − (a j + 1) ln(a j + 1) + ln q j ,
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or

qi

d(ai − 1)
≥

q j

d(a j )

with d(a) = (a + 1)a+1/(eaa), whenever ai ≥ 1 and i �= j . These conditions charac-

terize the identric mean divisor method and therefore establish (3).

Note that objective functions (1) and (4) are mirror images in terms of the roles

played by ai and qi . Likewise, objective functions (2) and (3) are mirror images. (1) and

(4) represent weighted least-squares distances. (2) and (3) represent relative entropy

distances (discussed shortly). We now explore the relationships between all four of

these objective functions in the context of information theory and statistical hypothesis

testing.

4. CONNECTIONS TO INFORMATION THEORY AND STATISTICS. In [3,

p. 13], the entropy associated with a random variable with known finite probability

distribution {u1, . . . , un} is defined as H = −
∑

ui log ui . Normally, the logarithm is

base 2 and H is expressed in bits. An intuitive way to think about entropy is in the

context of data compression [3, Chapter 5]. If you have a file consisting of a sequence

of characters independently selected from a specified distribution, then entropy rep-

resents a lower bound on the average number of bits per character in the compressed

file, or, what is the same, a lower bound on the expected binary codeword length.

The entropy lower bound cannot be attained in all cases, but practical coding schemes

approach it.

The Kullback-Leibler relative entropy distance measure [3, p. 18] between two fi-

nite probability distributions {u1, . . . , un} and {v1, . . . , vn} is defined as

D =
∑

ui log

(

ui

vi

)

=
∑

ui (log ui − log vi ).

In the context of data compression, relative entropy measures the inefficiency associ-

ated with assuming the wrong character frequency distribution. If you use a file com-

pression algorithm assuming distribution {v1, . . . , vn} and apply it to data with actual

distribution {u1, . . . , un}, then H + D bits represents a lower bound on the expected

codeword length in the compressed file. Hence, the compressed file is larger than it

would have been if you had used an optimal compression algorithm for your data.

Objective functions (2) and (3) are of the relative entropy form, except for a scale

factor, considering distributions {ai/h} and {qi/h} and employing natural logarithms.

Moreover, as indicated in [3, p. 333], (1) and (4) can be considered as Taylor approx-

imations to (2) and (3), respectively. Consider the function fi (ai ) = ai (ln ai − ln qi )

and expand fi about qi so that

fi (ai ) = fi (qi ) + f ′
i (qi )(ai − qi ) +

1

2
f ′′
i (qi )(ai − qi )

2 + · · ·

= ai − qi +
1

2
(ai − qi )

2/qi + · · · .

It follows that
∑

fi (ai ) = 1

2

∑

(ai − qi )
2/qi + · · · or that (4) is a Taylor approxima-

tion to two times (3). Similarly, (1) is a Taylor approximation to two times (2) with the

roles of ai and qi reversed.
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We can get somewhat more insight on these comparisons within the theory of

statistical hypothesis testing for multinomial trials [5, pp. 549–553]. Imagine an ex-

periment with h independent trials where at each trial a ball is deposited in urn

i with probability pi/p, i = 1, . . . , s. Let ai denote the accumulated number of

balls in urn i with expectation qi = hpi/p. In statistical theory, the likelihood ratio

test statistic for conformance of the ai outcomes with the qi expectations is simply

2
∑

ai (ln ai − ln qi ), i.e., two times (3). An older alternative is the classical Pearson

test statistic
∑

(ai − qi )
2/qi , i.e., (4). In real experimental situations, both of these

test statistics are asymptotically chi-square distributed with s − 1 degrees of freedom

when the hypothesized probabilities and expectations are true, whereas improbably

large values lead to a rejection of that hypothesis. The bottom line is that small values

of these statistics provide credibility to the hypothesized parameters.

Now, we don’t really have a statistical experiment, and the ai are allocations, not

random outcomes. Nevertheless, these connections lend support to (3) and (4) as natu-

ral objective functions for the apportionment problem, and in particular to Balinski and

Young’s preference for Webster over Hill. It certainly seems less intuitive to reverse

roles and consider the qi as outcomes and the ai as expectations.

The two test statistics, likelihood ratio and Pearson, are asymptotically equivalent,

but the former is generalized from the optimal Neyman-Pearson lemma ([3, pp. 304–

309] and [5, pp. 431–433]), is more exact, and is generally favored by statisticians.

This would tend to favor objective function (3) over (4). While this doesn’t provide

a very strong endorsement of (3), it does support the notion that the identric mean

method is a logical contender to Webster, and moreover that both are preferable to

Hill.

5. HISTORICAL APPORTIONMENTS. Appendix B in [1] contains comparative

allocations for all decennial apportionments from 1790–2000 under existing divisor

methods. The following table adds the logarithmic and identric methods compared

to the geometric (Hill) and arithmetic (Webster) methods for 1920–1990, the modern

era with house size 435. Divisor calculations incorporating unit lower bounds were

straightforwardly executed in Excel. The focus here is only on those states where

differences arose. The years 1930 and 2000 are excluded because the four methods

produced identical allocations. As an aside, the minimal divisors associated with the

geometric, logarithmic, identric, and arithmetic mean methods in 1990 were 574847.5,

574630.0, 574412.5, and 574109.8 respectively.

In 1990, the arithmetic method allocated one additional seat to Massachusetts and

one less to Oklahoma as compared to the other three methods. Likewise, in 1980 the

arithmetic method allocated one additional seat to Indiana and one less to New Mexico.

1970 is more complicated in that Connecticut got an additional seat from arithmetic,

Oregon one less seat from geometric, Montana one less seat from arithmetic, and South

Dakota one more seat from geometric. 1960 is similar to 1980 and 1990, with the

arithmetic method allocating one additional seat to Massachusetts and one less seat to

New Hampshire. In 1950, we have a different line-up where the arithmetic and identric

methods allocated an additional seat to California and one less to Kansas. Similarly,

in 1940 the arithmetic and identric methods allocated an additional seat to Michigan

and one less to Arkansas. 1920 is the most complicated case of all. The arithmetic and

identric methods agreed on the larger states, New York and North Carolina, and on

the smaller states, New Mexico and Vermont, but they differed on Virginia and Rhode

Island. Overall, the identric and arithmetic methods produced identical allocations in

some instances (1930, 1940, 1950, 2000) but not in others (1920, 1960, 1970, 1980,
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Table 2. Congressional allocations for house size 435

Year State Quota Geometric Logarithmic Identric Arithmetic

1990 Massachusetts 10.532 10 10 10 11

Oklahoma 5.516 6 6 6 5

1980 Indiana 10.574 10 10 10 11

New Mexico 2.504 3 3 3 2

1970 Connecticut 6.503 6 6 6 7

Oregon 4.500 4 5 5 5

Montana 1.496 2 2 2 1

South Dakota 1.435 2 1 1 1

1960 Massachusetts 12.543 12 12 12 13

New Hampshire 1.479 2 2 2 1

1950 California 30.722 30 30 31 31

Kansas 5.529 6 6 5 5

1940 Michigan 17.453 17 17 18 18

Arkansas 6.473 7 7 6 6

1920 New York 42.919 42 42 43 43

North Carolina 10.581 10 10 11 11

Virginia 9.547 9 9 9 10

Rhode Island 2.499 3 3 3 2

New Mexico 1.461 2 2 1 1

Vermont 1.457 2 2 1 1

1990). The geometric and logarithmic methods were closely aligned, differing only in

1970.
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