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Optimal Constant Composition Codes From
Zero-Difference Balanced Functions

Cunsheng Ding, Senior Member, IEEE

Abstract—Constant composition codes are a special class of constant
weight codes, and include permutation codes as a subclass. They have
applications in communications engineering. In this correspondence,
a generic construction of optimal constant composition codes using
zero-difference balanced functions is introduced. It generalizes the earlier
construction of optimal constant composition codes employing perfect
nonlinear functions. In addition, two classes of optimal constant composi-
tion codes with new parameters are reported.

Index Terms—Constant composition codes, constant weight codes, per-
fect nonlinear functions, zero-difference balanced functions.

I. INTRODUCTION

An ����� �� ��� constant weight code is a code over an abelian
group ���� ��� � � � � �����, with length �, size � and minimum dis-
tance � such that the Hamming weight of each codeword is �.

An ����� �� ���� ��� � � � � ������� constant composition code
(CCC in short) is a code over an abelian group ���� ��� � � � � �����,
with length �, size � , and minimum Hamming distance � such that in
every codeword the element �� appears exactly�� times for every �. An
����� �� ���� ��� � � � � ������� constant composition code is called
a permutation code if � � � and �� � � for all �. Thus, permutation
codes are a special class of constant composition codes, and constant
composition codes are a subclass of constant weight codes.

Since the class of binary constant composition codes coincides with
the class of binary constant weight codes, the study of binary constant
composition codes has relatively a long history. Instead of giving a
survey of constant composition codes, we will here provide brief in-
formation on references regarding permutation codes and nonbinary
constant composition codes.

The study of permutation codes goes back to at least 1965 [27]. In the
1970s, Blake [1]–[3], Deza and Vanstone [12], and Frankel and Deza
[19] investigated permutation codes. Recently, advances on permuta-
tion codes have been made by Chu, Colbourn and Dukes [9], Colbourn,
Kløve and Ling [8], Ding, Fu, Kløve, and Wei [14], and Fu and Kløve
[20]. Nonbinary constant composition codes were studied already in
the 60’s. Both algebraic and combinatorial constructions have been
presented. For further information, the reader is referred to Bogdanova
and Kapralov [4], Chee, Ling, Ling, and Shen [7], Colbourn, Kløve, and
Ling [8], Chu, Colbourn, and Dukes [10], [11], Ding and Yin [15]–[17],
Ding and Yuan [18], Luo, Fu, Han Vink, and Chen [23], Semakov and
Zinoviev [25], Semakov, Zinoviev, and Zaitsev [26], Svanström [29],
Svanström, Östergard, and Bogdanova [30], and Zinoviev [31].

The objective of this correspondence is twofold. First of all, we will
present a generic construction of optimal constant composition codes
using a special class of functions—the zero-difference balanced func-
tions. This generalizes the earlier construction of optimal constant com-
position codes employing perfect nonlinear functions [15]. Secondly,
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we will report two classes of optimal constant composition codes with
new parameters.

II. A BOUND ON CONSTANT COMPOSITION CODES

Let 	���� �� ���� ��� � � � � ������ denote the maximum size of an
����� �� ���� ��� � � � � ������� constant composition code. Luo, Fu,
Han Vinck, and Chen [23] developed the following bound for constant
composition codes.

Lemma 1: If ��� �� � ���

� � ��

� � � � �� ��

���� 
 	, then

	���� �� ���� ��� � � � � �������
��

������ ��

�
���

�
�� � ����

���

�

In the sequel, we will present a generic construction of constant com-
position codes meeting the upper bound of Lemma 1.

III. EQUIVALENCE OF CONSTANT COMPOSITION CODES

Let � be a power of a prime. An ��� �� ��� linear code is a subspace
of GF���� with dimension � and minimum Hamming distance �. Two
linear codes are said to be equivalent if one can be obtained from the
other by a combination of operations of the following types:

• permutation of the � coordinates of the codewords;
• multiplication of the symbols appearing in a fixed coordinate by

a nonzero scalar.
For constant composition codes, the situation is quite different. A

multiplication of the symbols appearing in a fixed coordinate may
transform a constant composition code into a non-constant-compo-
sition code. In view of this, two constant composition codes are said
to be equivalent if one can be obtained from the other by coordinate
permutations. Hence, equivalent CCCs have the same codeword length
�, the same number � of codewords, the same minimum Hamming
distance �, and the same frequencies ��.

IV. A GENERIC CONSTRUCTION OF OPTIMAL CCCS USING

ZERO-DIFFERENCE BALANCED FUNCTIONS

A. Zero-Difference Balanced Functions and Their Properties

Let �	��� and �
��� be two abelian groups with orders � and �

respectively. A function � from 	 to 
 is called zero-difference bal-
anced (ZDB) if

��� � 	 
 ���� ��� ���� � 	�� � �

for every nonzero � � 	, where � is a positive integer.
The following proposition follows directly from the definition of

zero-difference balanced functions.

Proposition 2: Let � be a ZDB function from �	��� to �
���.
Define �� � ��� � 	 
 ���� � ��� for every � � 
. Then

���

����� � �� � ���	� � ���

Zero-difference balanced functions were first defined and used to con-
struct difference systems of sets in [13]. In this correspondence, we
employ them to construct optimal constant composition codes.

B. The Construction of Optimal CCCs Using Zero-Difference
Balanced Functions

In this section, we introduce a construction of
����� �� ���� � � � � ������� CCCs that meet the Luo–Fu–Vinck–Chen
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bound of Lemma 1. Our construction is based on zero-difference
balanced functions and is a generalization of the one in [15].

Let � be a function from an Abelian group ����� to an Abelian
group �����. Let

� � ���� ��� � � � � ������ � � ���� ��� � � � � ������

Define

�� � ��� � � � ���� � ����

for each 	.
Now we define

�� � ������ � ���� � � � ������� � ���� � � � 	 � 
� 	�� (1)

Proposition 3: If � is a zero-difference balanced function, then the
�� of (1) is an �
� 
� 
��� 
��� ��� � � � � ������� CCC over �, and is
optimal with respect to the Luo–Fu–Vinck–Chen bound of Lemma 1.

Proof: By definition, �� is a constant composition code with fre-
quencies �� for any function �. Since � is zero-difference balanced,
the Hamming distance between any pair of distinct codewords is 
��.
By Proposition 2

���

���

��
� � ��
� 	� � 
�

Hence


�� 
� �

���

���

��
� � � 
 ��

So the Luo–Fu–Vinck–Chen bound is met.

The construction of optimal constant composition codes is generic in
the sense that any zero-difference balanced function yields an optimal
CCC. It will be seen later that it is a generalization of the earlier one
in [15].

V. OPTIMAL CONSTANT COMPOSITION CODES FROM

ZERO-DIFFERENCE BALANCED FUNCTIONS

A. Optimal Constant Composition Codes From Perfect Nonlinear
Functions

A function � from an abelian group ����� to an abelian group
����� is called linear if and only if ��� � �� � ���� � ���� for
all �� � � �. A function � from ����� to ����� is called affine if and
only if � � ���, where � is linear and � � � is a constant. Obviously,
the zero function is linear.

There are different ways to measure nonlinearity [5]. A robust mea-
sure of nonlinearity of functions is defined by

�� � �
�
������

�
�
���

��� � � � ���� ��� ���� � ���

���
� (2)

The smaller the value of �� , the higher the corresponding nonlinearity
of � (if � is linear, then �� � 	).

It is easily seen that �� � �
���

. For applications in coding theory
and cryptography we wish to find functions with the smallest possible
�� . A function � � �	 � has perfect nonlinearity if �� � �

���
.

The following two lemmas about perfect nonlinear functions were
proved in [5].

Lemma 4: Let ����� and ����� be abelian groups of orders 
 and
� respectively, where � divides 
. Then � is a perfect nonlinear function
from � to � iff

��� � � � ���� ��� ���� � ��� �



�

for every nonzero � � � and every � � �.

Lemma 5: Let ����� and ����� be abelian groups of orders 
 and
� respectively, where � divides 
. If � is a perfect nonlinear mapping
from � to �, then for any nonzero � � �

	�� ��	 �
� �������

�

	�� �	�	�� �
������

�

	�� �	 � 


(3)

where �	 � ��� � � � ���� � ��� for each � � �.

Lemma 4 shows that perfect nonlinear functions are zero-difference
balanced functions. However, zero-difference balanced functions
may not be perfect nonlinear functions. This will be justified subse-
quently. So the construction of optimal constant composition codes
of Section IV-B is indeed a generalization of the one using perfect
nonlinear functions presented in [15].

It follows from Lemma 5 that the distance � � �� � 	�
�� for the
CCC �� of (1) if � is perfect nonlinear [15]. However, the frequencies
�� � �� may not be determined by the set of equations in (3) in some
cases, as (3) may have more than one solution in some cases. For in-
formation on perfect nonlinear functions, the reader is referred to [5],
[6], [15], [21], [22].

B. A Class of Optimal Constant Composition Codes With New
Parameters

The following lemma is proved in [13].

Lemma 6: Let � be a power of a prime, and let � be a positive
integer such that � 
 	 ���� ��. Let � be a generator of GF��
��,
where � is a positive integer. Define � � �� � 
 � ��
 � 	��� , and
a function � from ������ to �GF������ by

���� � ��� 
���
��� � � �� (4)

where ��� 
� is the trace function from GF��
� to GF���, and �� �
��� 	� � � � � 
 � 	�.

If �������� � 	, the function � is zero-difference balanced. Fur-
thermore

��� � �� � ���� ��� ���� � ��� �
�
�� � 	

�

for every nonzero � � ��.
The function � of (4) is zero-difference balanced, but not perfect

nonlinear as � does not divide 
. Hence zero-difference balanced func-
tions may not be perfect nonlinear.

Proposition 7: Let �������� � 	, and let � be the function of
(4). Then the �� of (1) is an optimal cyclic CCC over GF��� with
parameters

�
 � 	

�
�
�
 � 	

�
�
�
���� � 	�

�
� 
��� ��� � � � � �����

�

where �� � ��� � �� � ���� � ���� and ��� ��� � � � � ���� are all the
elements of GF���.

Proof: It follows from Lemma 6 and Proposition 3.

Example 1: When � � ��� � � and � � �, the �� of (1) is an
optimal cyclic CCC over GF��� with parameters �	�� 	�� �� 
�� �� ���	.

Example 2: When � � 	��� � � and � � �, the ��
of (1) is an optimal cyclic CCC over GF�	�� with parameters
���� ��� ��� 
�� �� �� �� �� �� �� �� �� �� �� �� ����	.

When� � 	� �� � �
���	 and�� � �
�� for all 	 � 	 � ��	.
When� � �, the CCC becomes one of the optimal CCCs described in
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[15]. For � � �, it is hard to determine these ��. However, it is known
that [13]

���� ���������� � �

�
� �� �

���� ���������� � �

�
�

For every � with � dividing � � �, it is known that

�� � ���� � ��

It seems that the parameters of the CCC �� described in Proposi-
tion 7 are new when � � �.

C. Another Class of Optimal Constant Composition Codes With New
Parameters

Before describing the class of optimal CCCs with new parameters,
we need to introduce cyclotomy.

Throughout this section, let � � �� and � � ��, where � is a prime,
� and � are positive integers. Let ��� � 	� for two positive integers
	 
 � and � 
 �, and let � be a fixed generator of GF����. Define
�
�����
� � ������ for 
 � �� �� � � � � � � �, where ��� � denotes the

subgroup of GF���� generated by �� . The cosets ������
� are called

the cyclotomic classes of order � in GF���. The cyclotomic numbers
of order � are defined by

�
� ������� � �
�����
� � � ��

�����
�

for all � � 
 � � � � and � � � � � � �.
The Gaussian periods are defined by

�
�����
� �

	�


����� 
 � �� �� � � � � � � �

where ���� 	� �
�� �	�
� is the canonical additive character of GF���,

and �� is a primitive complex �th root of unity.
The following lemma presents well-known formulas on Gaussian

periods [28].

Lemma 8: Let notations be the same as before. Then

�
�����
� �

�����
�	� �

���



�

�
� �� 
� �� ��������
�����

 � 	��

where �� � � if � � � and �� � �, otherwise.

In general, the values of the Gaussian periods cannot be determined
by the relations described in Lemma 8. However, they can be computed
in certain cases.

In the sequel, we will need the following lemma [24].

Lemma 9: Assume there exists a positive integer � such that �� �
���
����, and assume that � is the least such. Let � � ���, where
�� � 
��. Then the Gaussian periods are given below.

1) If �� � and ��� ����� are all odd, then ������
��� � ��� ������ �

���� and �
�����
� � ����� � ���� for all 
 	� ��
.

2) In all other cases, ������
� � ������	��� � ����� � ���� and

�
�����
� � ��������� � ���� for all 
 	� �.

We are now ready to describe the class of optimal CCCs.

Proposition 10: Let � � 
�� � � and � � �� � �. Then 	 �
����. Let � be a generator of GF���� and � � �� . Define a function
���� from ������ to �GF������ by

���� � �������
	�� � 
 ���

Then � is zero-difference balanced and the �� of (1) is an optimal
cyclic CCC over GF��� with parameters

��� � �� �� � �� �� � �� ���� ��� � � � � �������

where �� � ��� 
 �� 	 ���� � ��
� and ��� ��� � � � � ���� are all the
elements of GF���.

Proof: The proof is divided into several parts. We first prove that

�
��GF��� ��

�����
� � �

��	����
� �

Note that any � 
 GF���� can be expressed as

� � ��� 	� 	�	��� � ��� �����	���	���	���

for some � with � � � � � � 
. Hence

�
��GF��� ��

�����
� � �

��	����
� �

On the other hand, since ����
� � � �� � �, we have

GF���� � �
�����
� � ��
�

It then follows that �
��GF��� ��

�����
� � �

��	����
� .

By Lemma 9, we have

�
��	����
� � � � � for all 
 	� �� �

��	����
� � ��� � � � ��

Finally, define

�� � ��
 
 �� 	 ��
� � ����
� � �
�

for each nonzero � 
 ��.
Note that ��
� � ����
� � ��������

� � �����. Furthermore, for
any subset � of GF���, we define

���� �
���

����

where � is the additive group character on GF��� defined before.
For any � � � � 	��, using the results proved above we have then

�� �
�

�

���

�
� �������

������ 
��� ��� ���� ��

�
�

�

���

�
� �������

������ � �����

�
�

�
	�

�������

� ��� � ����
�����
�

�
�

�
	� � ��� � ���

��	����
�

�
�� if �� � � 
 �

��	����
�

� � �� otherwise.
(5)

Now we prove that �� �� 	
 �
��	����
� for all � � � � 	��. On the

contrary, suppose that �� � � 
 �
��	����
� for some � � � � ��. Then

there would exist an integer � such that � � � � �� � ����� � �� and

�� � � � ���	���� (6)

Define � � �� and � � ���	��� . We have then � � � � �.
Since � � �� ��, we have

� � �� 	� � �� � ��� 	� � � � � � �� � �� 	��
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It follows then that

� � �
� � �

� ��
� (7)

Note that �� �� � �������� ���� � GF���. We have

� � �
�

�

� � � �
�
�

This means that ��� ����� � �. It then follows that ��� ����� �
��� ���� � �� � �� that is

�� �
� � �

� � �
� � �� (8)

Note that �� � ���. We have �� � ���. It then follows from (8)
that

��
�

�
� ��

�

�

�

which implies that

��

� � �
�

���

�� � ���
�

Simplifying this equation, we obtain

�� � �
��� � �

����� � �
��� (9)

We now consider the following two cases. In the first case, we as-
sume that � � �� �� �. In this case, it follows from (9) that

� � �
� � �

���
� (10)

Adding (7) and (10) together gives

�
� � �

� � � �
� � �

�
�

Since � � �� �� �, we have � � �. It follows that � � �, which is
impossible.

In the second case, we assume that � � �� � �. Then we have
� � GF���. Therefore � � � � � also belongs to GF���. This means
that ��� ��������� � �. Hence

��� � ������ � ����� ���

which holds if and only if

��� � ����� � ����

Since � is even, 	
������� ���� � �. It then follows that �������� ,
which is possible, since � � � � ��.

Thus, �� � � �� 	
�������
� for all � � � � 
 � �. Hence � is

a zero-difference balanced function and the other conclusions of this
proposition follow from Proposition 3.

Similar to the derivation of (5), we can obtain that

�� �
�

�

� � 	

�������
� � ��

However, the author was not able to compute the other frequencies
�� for 
 � �. The reader is invited to solve this problem. Numerical
examples show that the construction of CCCs of this section may not
work if ����� �� �
� ��.

Example 3: Let � � 
�. Then the code of Proposition 10 is an
optimal CCC over GF��� with parameters ���� ��� �
� ��� �� �� ����.

VI. CONCLUDING REMARKS

There are other known zero-difference balanced functions [13]. But
they do not give optimal constant composition codes with new pa-
rameters. An interesting problem is to search for new zero-difference
balanced functions leading to optimal constant composition codes
with new parameters under the framework of this correspondence. The
reader is invited to attack this problem.
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An Explicit Construction of -Generator
Quasi-Twisted Codes

Eric Z. Chen

Abstract—Quasi-twisted (QT) codes are a generalization of quasi-cyclic
(QC) codes. Based on consta-cyclic simplex codes, a new explicit construc-
tion of a family of �-generator quasi-twisted (QT) two-weight codes is pre-
sented. It is also shown that many codes in the family meet the Griesmer
bound and therefore are length-optimal. New distance-optimal binary QC
����� �� ���, ���	� �� �	
�, and ��
	��� ��	� codes, and good ternary QC
��	���� ���� and ������� �

�codes are also obtained by the construction.

Index Terms—Linear codes, optimal codes, quasi-cyclic codes,
quasi-twisted codes, simplex codes.

I. INTRODUCTION

As a generalization to cyclic codes, quasi-cyclic (QC) codes and
quasi-twisted (QT) codes have been shown to contain many good linear
codes. Many researchers have been using modern computers to search
for good QC or QT codes, and many record-breaking codes are found
[1]–[12]. The problem with this method is that it becomes intractable
when the dimension and the length of the code become large. Unfortu-
nately, very little is known on explicit constructions of good QC or QT
codes. For �-generator QC or QT codes, even fewer results are known
[13], [14].
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A linear code is called projective if any two of its coordinates are
linearly independent, or in other words, if the minimum distance of its
dual code is at least three. A code is said to be two-weight if it has only
two nonzero weights. Projective two-weight codes are closely related
to strongly regular graphs [15].

In this paper, a new explicit construction of a family of �-generator
QT two-weight codes is presented. It is the first time that a family of
�-generator QT codes is constructed systematically. It is also shown
that many codes of this family are good and optimal. Examples are
given to show the construction and the modular structure of the codes.

II. QUASI-TWISTED CODES AND TWO-WEIGHT CODES

A. Consta-Cyclic Codes

The codes discussed in the following sections are linear. A �-ary
linear code is a �-dimensional subspace of an �-dimensional vector
space over the finite field �� , with minimum distance d between any
two codewords. We denote a �-ary code as an ��� �� ��� code, or a bi-
nary ��� �� �� code if � � �. A linear ��� �� ��� code is said to be
�-consta-cyclic if there is a nonzero element � of �� such that for
any codeword ���� ��� � � � � �����, a consta-cyclic shift by one posi-
tion or ������� ��� � � � � ����� is also a codeword [16]. Therefore, the
consta-cyclic code is a generalization of the cyclic code, and a cyclic
code is a �-consta-cyclic code with � � �. A consta-cyclic code can
be defined by a generator polynomial.

B. Hamming Codes and Simplex Codes

Hamming codes are a family of linear single error correcting codes.
For any positive integer 	 
 � and prime power �, we have a Hamming
��� �� 	� 	�� code, where � � ������������. Further, if 	 and ���
are relatively prime, then the Hamming code is equivalent to a cyclic
code.

The dual code of a Hamming code is called the simplex code. So
for any integer 	 
 � and prime power �, there is a simplex ���� �
����� � ��� 	� ������ code. It should be noted that a simplex code is
an equidistance code, where �� � � nonzero codewords have a weight
of ����. Let ��
� be a primitive polynomial of degree 	 over �� . A
�-consta-cyclic simplex �������������� 	� ������ code can be defined
by the generator polynomial ��
� � �
�������
�, where � � ����
����� � �� and � has order of � � � [16]. Further, a simplex code is
equivalent to a cyclic code if 	 and� � � are relatively prime.

C. Quasi-Twisted Codes

A code is said to be quasi-twisted (QT) if a consta-cyclic shift of any
codeword by p positions is still a codeword. Thus a consta-cyclic code
is a QT code with � � �, and a quasi-cyclic (QC) code is a QT code
with � � �. The length n of a QT code is a multiple of �, i.e., � � ��.

The consta-cyclic matrices are also called twistulant matrices. They
are basic components in the generator matrix for a QT code. An���
consta-cyclic matrix is defined as

� �

�� �� �� � � � ����
����� �� �� � � � ����
����� ����� �� � � � ����

...
...

...
...

...
��� ��� ��� � � � ��

(1)

and the algebra of � � � consta-cyclic matrices over �� is isomor-
phic to the algebra in the ring � �
���
� � �� if � is mapped onto the
polynomial formed by the elements of its first row, ��
� � ��
 �� 


� � �
 ���� 


���, with the least significant coefficient on the left. The
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