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Optimal Constrained Layer 

Damping of Beams: 

Experimental and 

Numerical Studies 

This article deals with the optimal damping of beams constrained by viscoelastic 
layers when only one or several portions of the beam are covered. The design variables 
are the dimensions and locations of the viscoelastic layers and the objective function 
is the maximum damping factor. The discrete design variable optimization problem 
is solved using a genetic algorithm. Numerical results for minimum and maximum 
damping are compared to experimental results. This is done for a various number of 
materials and beams. © 1995 John Wiley & Sons. Inc. 

INTRODUCTION 

Structural vibration control is a major design 

problem for a variety of structures. This control 

may be approached in several ways such as active 

attenuators, structural damping, etc. In most 

cases the designer's objective is to minimize vi

bration amplitudes in a wide frequency range to 

prevent damage by fatigue. For this purpose, two 

main processes may be followed by engineers. 

One is the use of composite materials that gener

ally exhibit excellent material damping properties 

one or two orders higher than most common met

als; the other is to damp the structure itself by 

viscoelastic material coatings or to insert passive 

dampers at the most efficient locations. Each of 

these solutions has it own advantages, but it may 

be pointed out that the second method may often 

be used without any change in the design require

ments. An efficient technique to damp beams or 

other structures is the use of viscoelastic con

strained layers glued on the surface (Fig. 1). This 
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article is concerned with the optimal damping of 
beams partially covered by constrained viscoelas

tic layers. The optimization problem is the deter

mination of the sizes and the locations of these 

specific dampers. This article combines a numeri

cal study of optimized partial coverage of a con

strained viscoelastic layer on a beam with experi

mental results for the predicted configurations of 

maximum and minimum damping. 

There exist too few references for optimal con
strained layer damping. The present article can 

be considered as the continuation of two previous 
articles. Marcelin et al. (1992) dealt with a similar 

problem but only with a numerical approach; con

ventional nonlinear programming optimization 

was used but was not very efficient. Indeed, as the 

design variables that represent the constrained 

viscoelastic layers positions are not continuous, 

the objective function has no derivatives and the 

classical mathematical approaches are invalid. 

The second article of Marcelin and Trompette 

(1994) was devoted to optimal location of plate 
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FIGURE 1 Beam damped by viscoelastic material. 

damped parts by use of a genetic algorithm; but 

there was only numerical results and no compari

son with experiments was achieved. It was shown 

how stochastic optimization methods as genetic 

algorithms offer a new and attractive way for solv

ing this kind of question. In another article from 

Nokes and Nelson (1968), theoretical and experi

mental studies were also presented on partially 

covered beams, but without an optimization step. 

The major conclusion of Nokes and Nelson (1968) 

was the following: it is not necessary to cover the 

whole beam to achieve adequate damping in a 

structure. The tests of Nokes and Nelson indi

cated a peak in the damping at about 60% cover

age (of the central portion) of a free-free beam. 

Here both partial covering, optimization, and for 

the first time, experimental validation are consid

ered. The design variables are the dimensions and 

the locations of all the viscoelastic layers. Special 

beam finite elements are used to represent the 

behavior of the sandwich parts of the beam, and 

a genetic search is used for the optimization prob

lem (Marcelin and Trompette, 1994). The same 

problem, with similar techniques and similar re

sults, was dealt with in Hajela and Lin (1991), 

but without any experimental approach and for 

additional design variables corresponding to the 

thicknesses of the viscoelastic layers and the con

straining layers. Hajela and Lin (1991) show that 

genetic search methods are well suited for such 

generically difficult design. Applications in the 

design of isotropic and composite beams for maxi

mum damping and minimum weight are shown in 

Hajela and Lin (1991). 

OPTIMIZATION METHOD 

The dynamic behavior of partially covered beams 

is obtained from a modal model. The homoge

neous parts of the beam are discretized by con

ventional Cl finite elements (FEs) and the hetero

geneous or sandwich ones by specific FEs 

designed to represent accurately the viscoelastic 

core shear damping effect. The finite elements 

of the damped and undamped parts must be as 

compatible as possible. Such elements have been 

used previously for plates in Marcelin and Trom

pette (1994). 

The equilibrium equations associated to struc

tural damping are: 

Because of time dependent stress-strain rela

tions, the representation (1) of the structural 

damping is simple only for periodic excitations. 

For such excitations a viscoelastic material be

havior may be represented by a complex Young's 

modulus: Ev = Evr + jEvi . This means that the 

damping introduced by viscoelastic constrained 

layers is a special case of structural damping. It 

can be assumed that the real and the imaginary 

part of Ev ' the storage and the loss modulus, are 

frequency dependent. This hypothesis is often 

experimentally verified for Evr • The frequency de

pendence of EVi might be taken into account but 

without adding anything to the main results of the 

optimization process that does not depend on this 

parameter; this is the reason why it is not consid

ered hereafter. 

Frequencies and mode shapes of the undamped 

associated structures can be considered as a good 

and simple modal basis to be used for predicting 

the dynamic behavior of the corresponding 

damped structure. Wi and CPi' i = 1, n are the 
undamped frequencies and corresponding mode 

shapes obtained from the matrix equation: 

(-w2IMI + IKI){x} = {O}. (2) 

Performing the usual transformation {x} = IFI{q}, 
and preumltiplying by WiT, Eq. (3) is obtained for 

free vibrations: 

(-w2Imdiagl + (Ikrdiagl + jlkil){q} = {cpl. (3) 

Because of the orthogonality of the modes, Iml 

and Ikrl are diagonal matrices, but not IkJ Gener

ally for beams the frequencies are well separated, 

so the full damping matrices can be considered as 

diagonal dominant. In these conditions the modal 

system (3) is the sum of n uncoupled equations. 

It follows from the preceding that in a modal re

sponse, a good approximation of the structural 

loss factor for the optimization may be easily cal

culated from (3), so the objective function to be 

maximized has the general form: 

(4) 



in which Es is noted as the elastic strain energy 

and Ed the dissipation energy. Due to the above 

hypothesis, the damping can be written: 

Lk=nb of retained modes (Xkkk 

(5) 

(Xk is a weighting modal factor given by the user. 

It is pointed out here that the use ofthe undamped 

modes simplify readily the calculation of the ob

jective function. The denominator of (5) is invari

ant during all the optimization process. 

Because the design variables are the locations 

and the dimensions of the viscoelastic parts, the 

optimization problem is obviously a discrete one. 

So to maximize the damping factor a genetic algo

rithm is used (Goldberg, 1989). Genetic algo

rithms are based on the principles of natural selec

tion and survival of the fittest. The genetic 

analogy is maintained in the terminology used in 

the method. An initial popUlation is generated by 

random selection of the individual bits in a binary 

string of given length. The strings represent, di

rectly or indirectly, the design variables in the 

objective function. Groups are formed, initially 

at random, to compose families of strings, each 

family containing a single set of parameters com

prising a design. The fitness of each group is then 

evaluated and assessed against the objective func

tion. The strings in the best families are given 

favorable weightings in a selection process 

whereby pairs of strings (parents) are chosen, 

combined by a crossover process. It is useful 

also to introduce an element of mutation whereby 

some bits are switched to encourage the develop

ment of new genetic material. The incidence of 

mutation is controlled by the user through the 

prescription of a mutation probability. After each 

cycle of selection, crossover, and possibly muta

tion, the fitness of each family is again assessed 

by converting the binary strings to decimal digits 

(decoding) and evaluating the objective function. 

The cycle then continues into the next generation. 

The process is terminated when convergence is 

detected or when the specified maximum number 

of generations is reached. Genetic algorithms are 

particularly well suited to represent simply the 

dimensions and the locations of the viscoelastic 

layers. In the present work, heterogeneous beam 

elements may be coded by 1 and homogeneous 

beam elements by 0, so a design point (a chromo

some) is an n binary number in which n is the 

number of finite elements. All the details are given 
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in Marcelin and Trompette (1994). In the study 

by Marcelin et al. (1995) about optimization of 

composite beam structures, they show that ge

netic algorithms are a very attractive and efficient 

way to optimize damping of mechanical struc

tures. In the article by Marcelin et al. (1995), 

the optimization problem is to find an optimal 

stacking sequence of composite materials to max

imize a modal damping factor. 

EXPERIMENTS 

For measurement of damping vibration in the 

structures there are several methods; they are 

explained in Ewins (1989). The best method is the 

impulse frequency response technique, because 

with an only hammer shock, different frequencies 

are excited and therefore one can gain several 

modes of vibrations. In this work damping in 

flexural vibration for the first mode is considered. 

One can apply different boundary conditions on 

the beam specimens, but to avoid the different 

effects of supports and fixations on the structure, 

a free-free beam is selected. The beam specimens 

are suspended on the nodes ofthe first frequency; 

and with a modally tuned hammer one excite the 

specimens. Therefore there are rigid body mo

tions as well as the other modes of vibration. 

Figure 2 shows a schematic of the test and appa

ratus. 

Response 

Signal 

Excitation Signal 

Printer 

FIGURE 2 Apparatus for free-free vibration of 

beam. 
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Hammer 

For exciting the beams with an impulse shock, we 

use a modal-tuned impact hammer. This hammer 

reduces the input force so that the amplitude of 

the beams is small enough to eliminate aerody

namic damping as a significant factor. The nonlin

earity and external noise are less than the other 

methods of excitation. There are different tips 

with different hardness for exciting different 

beam materials. A force transducer is installed in 

the tip of hammer. The hammer is energized by 

a power supply. 

Accelerometer 

An accelerometer is installed in the middle of the 

free-free beam for acquiring the acceleration of 

the beam at that location. An amplifier and a con

ditioner are used for amplifying and conditioning 

the signals. 

Data Acquisition 

The input signal of the force transducer and re

sponse signal of the accelerometer are sent to the 

data acquisition system. An analyzer fast Fourier 

transform (FFT) is installed for treatment of the 

data acquired. 

Computer 

A PC computer is used for FFT computation by 

curve fitting to the frequency response function. 

The resonant frequencies and the modal loss fac

tors are determined with good accuracy. Zoom 

measurement of the frequency response near the 

resonant frequency improves the results. The ma

jor advantage of the curve fitting is that much 

more data near a resonance are used to measure 

damping. For minimizing the errors associated 

with curve fitting, a Nyquist plot is applied using 

a circle fit algorithm (Fig. 3). Equation (6) is used 

for determination of the loss factor. 

W~ - wb 
YJ = -----=-~--

w2 (tan (J a + tan (J b) 
r 2 2 

(6) 

where wa ' (Ja' and Wb, (Jb are points on the modal 

circle below and above the resonant frequency, 

W r • A close correlation exists between the experi

mental damping properties of a known aluminum 

FIGURE 3 Properties of modal circle. 

specimen and the theoretical Zener thermoelas

tic prediction. 

Two kinds of beams are considered in the nu

merical and experimental processes. The first 

beams are made of polyurethane (PU). The di

mensions of these beams are the following; length 

0.950 m, section 0.05 x 0.014 m. The loss factor 

of PU at normal temperatures is around 1%. The 

first free-free frequency of the PU beams is 19 

Hz. The second beams are sandwich aluminum

PU-aluminum beams. The dimensions of these 

beams are the following; length 1.5 m, width 0.07 

m, aluminum thicknesses 0.0006 m, PU height 

0.0108 m. The first free-free frequency of the 

sandwich beams is 28 Hz. In the two cases, the 

constrained viscoelastic layers have a thickness 

of 0.0008 m; the loss factor of the viscoelastic 

material used is near 1%; the constraining layers 

are made of aluminum and their thickness is 

0.0006 m. 

RESULTS 

The locations of viscoelastic layers are deter

mined from numerical optimization for minimum 

and then for maximum damping for the two kinds 

of beams. In both cases only the first free-free 

mode is considered and the total length of the 

damped parts are set equal to 25% of the length 

of the beams. Sixteen FEs were used to model 

the beams. Only a part (4) of the elements can be 

covered. In this case, the string length is 16, but 

the first four strings determine the location of 

the first element, the following four other strings 

determine the location ofthe second element, and 

so on. There are no equality or inequality con

straints. 



25 % of fength covered 
height of constraining fayers 0.0006 m 
height of constrained layers 0.0008 m 

length of PU beam 0,950 m 
width 0.05 m height 0.01 4 m 

maximum damping for mode 1 

FIGURE 4 Maximum damping solution for PU beam. 

An example of string when only fo ur e lements 

are covered is: 

0010 0000 1000 1011 

that means that elements 3 (0010) , I (0000), 9 

(1000) , and 12(1011) a re covered . The results for 

the PU beams are the following. Figure 4 gives 

the genetic search results for maximum damping 

only for mode I. The parameters defining the ge

netic algorithm are the following: population size 

20, number of generations 40 , probability of 

crossover 0.6 , probability of mutation 0.1 . We do 

not use the weighting modal factor defined in Eq. 

(5). The damped parts are separated. In this way , 

flexural vibration causes more shearing strain in 

the viscoelastic core and thus more energy is dis

sipated . The experiments for this configuration 

give a damping factor of 1.55% (the numerical 

one is 1.36%). Figure 5 gives the genetic search 

re sult for minimum damping for mode I . The ex

periments for thi s configuration give a loss factor 

of 0.99% (the numerical one is 0.11 %). The diffe r

ence between the two cases is about 50%. The 

opt imization was not performed for modes 2 and 

3: nevertheless experiments were done for modes 

2 and 3. For the configuration of Fig. 4, the damp

ings of modes 2 and 3 a re, respectively , 1.53 and 

1.48% . For the configuration of Fig. 5, the damp

ings of modes 2 and 3 are , respectively, 0.97 and 

0.93% . In conclusion, in this case the optimum 

results for mode I also seem val id for modes 2 

and 3. 

The res ult s for the sandwich beams are the 

fol lowing. Figure 6 gives the genetic search re

su lts for maximum damping only for mode I. The 

distribution of the damped parts is the same as 

.. ______ 111 

FIGURE 5 Minimum damping sol ut ion for PU beam . 
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25% of beam covered 

height of constraining layers 0.0006 m 
height of constra ined layers a.OaDBm 

length 1.5 m 
width 0.07 m 

aluminium thicknesses 0.0006 m 

PU height 0.0108 m 
maximum damping 

FIGURE 6 Maximum damping so lution for sand

wich beam. 

that in the previous example. The experiments 

for thi s configuration give a damping factor of 

0.45% (the numerical one is 1. 17%). Figure 7 gives 

the genetic search result for minimum damping 

for mode I. The experiments for this configura

tion give a loss factor of 0.06% (the numerical 

one is 0.22%). The difference between the two 

cases is very important and shows the interest of 

an optimal partial coverage . The phys ical reasons 

that the configuration of Fig. 4 or 6 provides maxi

mum damping and the configuration of Fig. 5 or 7 

provides minimum damping may be the following: 

for maximum damping , the constrained viscoelas

tic layers are located in the areas where shear 

strain energy is maximum and the layers are di

vided into four parts , so shear strain is increased ; 

for minimum damping , the constrained viscoelas

tic layers are located at the two ends of the beams 

in the areas where strain energy is minimum and 

they are not divided . 

The experimental validations follow the nu

merical calculations because the numerical calcu

lations of damping give only qualitative results 

and allow one to see whether damping is impor

tant or not. Numerical calculations do not give 

the exact values so the numerical damping cannot 

be compared with the experimental ones . Other 

investigators have achieved much better agree

ment between numerical a nd experimental re

sults. The reasons why the numerical results are 

at such variance with experimental results are: 

first, the same modal basis (the undamped modes) 

is used all along the calculations to guarantee the 

efficiency of the optimization (which need a lot 

of calculations); second , we have not determined 

FIGURE 7 Minimum damping so lution for sand

wich beam. 



450 Marcelin, Shakhesi, and Pourroy 

the frequency dependence of the damping of the 

materials that we used. Nevertheless the inaccu

racy of our numerical prediction of damping does 

not seem to affect the accuracy of our prediction 

of the optimum damping configuration. 

CONCLUSION 

The optimization of damping of beams by con

strained viscoelastic layers, when only one or 

several portions of the beam are covered, was 

considered. Applications may exist in several 

areas such as the aeronautics, automobile, sports, 

and building industries. The comparison between 

the computational and the experimental results 

show that the proposed approach is an efficient 

and attractive way for minimizing vibration am

plitudes. 

We are grateful to the Society Rossignol for having 

provided the experimental beams. 
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