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To model liquid water correctly and to reproduce its structural, dynamic and thermodynamic

properties warrants models that account accurately for electronic polarisation. We have

previously demonstrated that polarisation can be represented by fluctuating multipole moments

(derived by quantum chemical topology) predicted by multilayer perceptrons (MLPs) in response

to the local structure of the cluster. Here we further develop this methodology of modeling

polarisation enabling control of the balance between accuracy, in terms of errors in Coulomb

energy and computing time. First, the predictive ability and speed of two additional machine

learning methods, radial basis function neural networks (RBFNN) and Kriging, are assessed with

respect to our previous MLP based polarisable water models, for water dimer, trimer, tetramer,

pentamer and hexamer clusters. Compared to MLPs, we find that RBFNNs achieve a 14–26%

decrease in median Coulomb energy error, with a factor 2.5–3 slowdown in speed, whilst Kriging

achieves a 40–67% decrease in median energy error with a 6.5–8.5 factor slowdown in speed.

Then, these compromises between accuracy and speed are improved upon through a simple

multi-objective optimisation to identify Pareto-optimal combinations. Compared to the Kriging

results, combinations are found that are no less accurate (at the 90th energy error percentile),

yet are 58% faster for the dimer, and 26% faster for the pentamer.

1. Introduction

The importance of water with respect to life on Earth,

biological systems, environmental issues and chemistry as a

whole is well documented. Water is a chemical anomaly and is

the subject of a vigorous and prolonged research program.

Both experimental and theoretical studies aim at a deeper

understanding of this apparently simple molecule. A number

of reviews cover the expansive topic of water, detailing the

possible causes of why water acts in the curious ways that it

does.1–5 Over the last eight decades that water has been studied

theoretically, the degree of sophistication of the models has

increased. In spite of an abundance of water models6 the need

for accuracy and realism in potentials remains. The issue of an

accurate and transferable water model is still not resolved,

hampered by the shortcuts and simplifications still in use

today, which were first introduced a quarter of a century ago.

It is expected that water models will become more accurate

and transferable if polarisation is explicitly represented in the

model.6–10 Mahoney and Jorgensen also note that flexibility

(i.e. non-rigidity of the intramolecular geometry) should only

be introduced once polarisation can be properly modelled.11

Related to the issue of correctly representing how the electron

density of water responds to an external field, there is the need

for more accurate representations of the electron density. The

water molecule has an anisotropic electron density in the gas

phase, and with the condensed phase the interactions with

other molecules will cause further deformations of the electron

density that can only be described adequately if the use of

point charges is abandoned.12–14 A popular alternative is to

represent the electron density by means of multipole moments

derived from ab initio wavefunctions.15–17

There are now a number of chemical potentials that make

use of machine learning methods. These methods allow the

functions describing the potential to emerge from the data,

ideally coping with a high number of independent variables.

A commonly used method is a type of artificial neural network

called multilayer perceptron (MLP).18,19 Hundreds to thousands

of ab initio calculations20–23 provide the data (typically energies) to

teach the MLP the potential.

Here we expand on our previous work24–26 involving MLPs

and introduce two other machine learning methods called

radial basis function neural networks (RBFNN) and Kriging.

These two methods generate models that are capable

of accurately predicting the multipole moments (output) of

a water molecule in the centre of a water cluster, solely from

the configuration of the cluster (input). To the best of our

knowledge this is the first time that Kriging is used in the

context of (inter)molecular potentials. These new models offer

two alternatives for predicting the multipole moments, and

in turn the polarisation response of the molecule, with respect
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to a given water cluster configuration. Using the above

learning methods, models are built using the same ab initio

data that we have previously used26 to train and test a

MLP-based water model. In this work we create models for

water dimer, trimer, tetramer, pentamer and hexamer clusters.

The current method generates instantaneously fluctuating

multipole moments that allow us to combine dynamic

polarisation and charge transfer effects into a single dynamic

Coulomb term. In addition, as we show below, we consider27

water molecules appearing in water clusters as non-overlapping.

The finite boundaries of the water molecules preclude both

overlap and spatial gaps between the atoms (or molecules). As

a consequence, there is no need to use any form of correction,

such as damping functions, to correct for the so-called

penetration effect.28,29

2. Background

2.1 Water potentials

There are two general categories of water potentials: ab initio

potentials and empirical potentials. Ab initio models are those

which are parameterised to fitted potential energy surfaces

found by ab initio calculations.30 Empirical potentials are

parameterised to reproduce the bulk phase thermodynamic

properties, with recent models including TIP5P11 and TIP4P/

2005.31 The vast majority of water models use point charges,

though some make use of multipole moments. The simplest

models are rigid and non-polarisable ones that make use of

point charges located at the nuclei and at the off-nuclear

sites.32–35 These simplifications are still followed in the SPC

series of models,36–38 the TIPS series11,39,40 and the recent

model called NvdE.41 Another simplification followed in the

past is to assume that the water molecule is non-polarisable. In

the bulk phase the dipole moment of water is enhanced, by

mutual polarisation, from the gas phase value of 1.85 D42 to

between 2.3 and 3.1 D in the liquid.43–47 To account for this

polarisation in the bulk phase most water models have an

artificially enhanced dipole moment, such as in SPC/E and

TIP4P.36,37 An anisotropic polarisation response of water,

however, is important if we consider the water molecule in

heterogeneous conditions, such as on surfaces, interfaces

and very polar environments. This makes non-polarisable

models with implicit polarisation only accurate for bulk,

homogeneous water.6,48 It is generally agreed that polarisation

needs to be modelled explicitly for more accurate, transferable,

potentials.

2.2 Quantum chemical topology and electrostatics

It is widely accepted that multipole moments are better at

representing the electron density of water (and other molecules).

Gresh et al.,12 Kaminsky and Jensen,13 and Rasmussen et al.14

demonstrated that a multipolar representation of electron

density is vital for modelling electrostatic interactions accurately.

Expressing the moments in terms of (irreducible) spherical

harmonics reduces the computational cost of evaluating

multipol-multipole interactions, compared to using the less

compact Cartesian tensors. The former are used in distributed

multipole analysis (DMA),29 which provides multipole moments

for the ASP potential,15,49 the AMOEBA17 water model and the

effective fragment potential (EFP) method.50 Within the

‘‘sum of interactions between fragments ab initio’’ (SIBFA)51,52

potential, the multipole moments are determined by the

partitioning method of Vigné-Maeder and Claverie.53 A further

partitioning method that has grown from SIBFA is the

Gaussian electrostatic model (GEM),54,55 though it relies on

density fitting rather than multipole moments.

Here we partition the electron density, denoted by r,

according to the method of the quantum theory of ‘‘Atoms

in Molecules’’,56–58 which is part of the quantum chemical

topology (QCT) approach. A justification for QCT is given in

ref. 59 and the appendix of ref. 60. QCT defines topological

atoms by the so-called gradient paths in r. Gradient paths

originating at infinity follow the direction of steepest ascent.

Typically, they terminate at nuclei. An atomic volume is

defined by the three-dimensional bundle of gradient paths that

terminate at a given nucleus. A different (two-dimensional)

bundle of gradient paths form an interatomic surface that

marks the boundary between two atoms. It is important to

note that there are no gaps between topological atoms.

Secondly, collectively the atoms take up all space. Integration

of property densities over the atomic volume yields the atomic

properties. If the integrand of the volume integral is a regular

spherical harmonic multiplied by r, then the corresponding

electrostatic multipole moment emerges.

Eqn (1) expresses the electrostatic interaction energy

between two topological atoms,61

EAB ¼
X1
lA¼0

X1
lB¼0

XlA
mA¼�lA

XlB
mB¼�lB

TlAmA lBmB
ðRÞQlAmA

ðOAÞQlBmB
ðOBÞ

ð1Þ

where the multipole moments of atom A, QlAmA
(OA), and atom

B, QlBmB
(OB), interact through the tensor T(R). R is the vector

from nucleus A to nucleus B, which are the origins of the local

frames of atoms A and B. It is convenient to collect the terms

of eqn (1) by their power of R = |R|, gathering terms of the

same rank, L, defined as cA + cB + 1, where c is the rank of

the multipole moment. For example, R�4 dependence consists

of interactions between a monopole moment (c = 0) and an

octupole moment (c = 3) and a dipole moment (c = 1) and a

quadrupole moment (c = 2). We monitor the convergence

of the multipole expansion by varying L. We implemented

Hättig’s recurrence formula62 to enable calculation of inter-

action tensors of arbitrarily high rank. The exact Coulomb

interaction energy can be obtained via a six-dimensional

integration over the two participating atoms,

EAB ¼

Z

OA

drA

Z

OB

drB
rtotðrAÞrtotðrBÞ

rAB

ð2Þ

where rAB is the distance between two infinitesimally small

charge elements, and rtot is the total charge density (which

includes the nuclear charge). Obviously, eqn (2) does not

impose a convergence condition, and can hence be used as a

point of reference for eqn (1), which does not necessarily

converge. Secondly, we have made a distinction before63

between the terms ‘‘electrostatic’’ and ‘‘Coulomb’’. The former

6366 | Phys. Chem. Chem. Phys., 2009, 11, 6365–6376 This journal is �c the Owner Societies 2009



term is only well defined in the context of (long range)

intermolecular perturbation theory, while the latter applies

to the interaction of any charge densities, whether in an intra-

or intermolecular context. Since we will sample the electron

density from atoms in supermolecules (i.e. water clusters) we

are not working in a perturbation context and hence the term

Coulomb is more appropriate. However, some texts use the

two terms interchangeably.

QCT multipole moments are successful in MD simulations

of liquid hydrogen fluoride and water16,64,65 and aqueous

solutions of imidazole as well as neat liquid imidazole.66

2.3 Polarisation

Polarisation causes anywhere up to a 70% increase in the

dipole moment of water, and it is often quoted that B15%

of the total interaction energy67,68 is due to polarisation.

However, energy contributions have been stated as being as

high as 50%.69 Polarisation can easily be incorporated into a

model implicitly by fitting the model parameters so that the

experimental bulk phase properties are recovered. This way of

including polarisation fails when a dynamic anisotropic

response of the electron density is required, when the molecule

is in heterogeneous environments. Polarisation can be modelled

by polarisable point dipoles. This method can suffer from the

‘‘polarisation catastrophe’’, where the dipoles respond in such

a way that the interaction energy becomes infinite. This is

prevented by a damping function, which limits the response

of the dipole moments.70–73 This method of representing

polarisation is popular and appears in a number of force

fields.17,51,74–77 A second method is the charge-on-spring

method.78–81 Here polarisation is modelled by a negative point

charge connected by a harmonic spring to another site that

bears a positive charge. Finally, the fluctuating charge method

models the polarisation by allowing the charges at atomic sites

to change in response to the external field. This method is seen

in a modification of the TIP4P water model, in the POL5

model82,83 and in the SIBFA model.84

In the context of QCT, we should mention here that

topological distributed (multipole) polarisabilities85 have been

computed and analysed before for the water dimer.86 In this

work, we abandon this route for the current alternative of

machine learning, capturing how multipole moments respond

to variations in their environment. The latter approach does

not yield polarisabilities; instead, the polarisation is embedded

in the mapping between input (environment coordinates) and

output (multipole moments) provided by the machine learning

solution. Previously, Houlding et al. proposed a novel method

for including polarisation within a simulation of a hydrogen

fluoride dimer24 using dynamic QCT multipole moments.

MLPs were trained on the ab initio data of thousands of HF

dimer configurations. The MLPs then predicted the atomic

multipole moments of HF in response to changes in the local

orientation of the HF molecules. Building upon this new

methodology, we demonstrated that the same method could

be used in the construction of a polarisable water potential.26

In that work, polarisation was modelled for a water molecule

in centre of water dimer, trimer, tetramer, pentamer and

hexamer clusters. In conjunction with the water model, we

also presented a method25 to tackle intramolecular polarisation

in a similar manner. Here polarisation was the electronic

response of the molecule to changes in the molecular

geometry, for N-methylacetamide and glycine.

Here we introduce two new machine learning methods,

RBFNNs and Kriging, which are both capable of modelling

polarisation for water clusters. We also compare the ability of

these two new methods and MLPs, to correctly predict multi-

pole moments that reproduce the correct electrostatic interaction

energies. The relative merits and limitations of all three methods

are discussed. We consider the option of a ‘best of all worlds’

approach for constructing the best possible model.

2.4 Radial basis function neural networks (RBFNN)

In previous work26 MLPs were used for the prediction of the

multipole moments in water. Here we use an RBFNN,87,88

which is a three-layer feedforward artificial neural network.

The RBFNN performs a nonlinear mapping between the

d-dimensional feature space and a hidden layer, followed by

a linear mapping from the hidden layer to the output. A

feature is a descriptor of the system whose properties are being

predicted. In our case the features are the angles and distances

that fully define a water cluster configuration; the value of d

depends on the number of water molecules in the cluster, and

how the features are represented—see section 3.2 for more

details. Fig. 1 shows the architecture of an RBFNN, suitable

for a water dimer. There are six input nodes (or neurons) in the

input layer, four nodes in the (single) hidden layer and one

node in the output layer. The connections between the nodes

are associated with adjustable weights. During training, the

weights of the linear mapping are varied so as to minimise the

difference between the known output values (in the training

set) and their predicted values. However, exact interpolation

of the training data can be achieved as we show in the ESI,

Section A.w

Fig. 1 Diagram of a feedforward neural network with one hidden

layer. The pink squares are input nodes, the green diamonds hidden

nodes and the purple pentagon is an output node. In this work, the

output is a multipole moment of a given atom and the inputs are the

polar and Euler coordinates of the neighbouring water molecules,

shown here for the water dimer.
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2.5 Kriging

Kriging89,90 (also known as Gaussian Process regression91) is a

machine learning method that models observations as realisations

of an underlying probabilistic model. This method is rarely used

in computational chemistry but featured in QSAR recently.92 In

our case, the observations are values of a particular multipole

moment. In this work, the probabilistic model is a probability

density function (PDF) that gives the probability of observing a set

of values of a particular multipole moment within a certain

domain. We assume that two moment values arising from

different water cluster configurations are correlated in a way that

may be expressed through the difference in feature values of the

configurations of the two water clusters. The parameters of the

PDF are chosen to be most consistent with the training data, i.e.

they are chosen to maximise the likelihood of the model given the

observed data. The likelihood can be described as follows. Let

f(y|H) denote the PDF that gives the probability of observing

an m-dimensional vector of data y = (y1,y2,. . .,ym), given

the parameter H. This parameter is a vector defined in a

k-dimensional parameter space, H = (H1,H2,. . .,Hk). Given a

particular set of parameter values, the PDF will be higher for

some sets of observations than others. In other words, given

a probabilistic model, and a set of parameters for that model,

some sets of observations will be more probable than others.

However, the data have already been observed, i.e. the moment

values have already been determined for a range of water cluster

configurations. Hence there is no point in finding a most probable

set of observations given a particular model (with a fixed set of

parameters). Instead, we solve the following problem: given the

set of observed multipole moments and a probabilistic model of

interest (shortly to be defined), find the one PDF (i.e. H) that is

most likely to have produced the data. The likelihood function,

defined as L(H|y) = f(y|H), allows us to solve this problem. It

gives the ‘‘likelihood’’ of the parameterH given the observed data

y. Note that the PDF f(y|H) is a function of the data y, given a

particular parameter vector H. However, the likelihood L(H|y) is

a function of the parameters of the probabilistic model, given a

particular set of observations.

Returning specifically to Kriging, N observations (of a

particular multipole moment) are modelled as N observations

coming from Gaussian random variables indexed over feature

space (a Gaussian process). In other words, the training data are

modelled as a realisation of an N-variate Gaussian distribution.

By maximising the likelihood of the training data, the optimal

parameters of this multivariate Gaussian distribution are found.

Using the master formula eqn (B12), given and derived in Section

B of the ESI,w predictions can be made for unseen combinations

of features. This means that, in our case, moment values may be

predicted for unseen configurations of water molecules.

The following section deals with some of the computational

details behind the methods discussed, such as the selection of

appropriate training sets and feature selection.

3. Computational details

3.1 Molecular local frame

Multipole moments allow for an anisotropic description of

the electron density of atoms. Multipole moments must be

correctly aligned in space relative to each other because the

electrostatic interaction between moments is orientation

dependent. In our previous work25 on glycine and N-methyl-

acetamide we introduced an atomic local frame (ALF). In this

work we use a molecular local frame (MLF) because the water

molecules are considered to be rigid bodies. As a result the

atomic multipole moments for a particular water molecule all

have the same local frame. Fig. 2 shows the details of a MLF

installed on a central water molecule, at the origin, in a water

dimer. The MLF is simply defined by aligning the positive

y-axis along the HOH bisector, with both hydrogen atoms in

the positive y direction. The yz-plane is then defined by the

HOH plane, with the H2 hydrogen atom lying at the negative

side of z-axis. The angles y and f, which will be discussed

below, enable the positioning of the second water molecule

(or in general, other non-central water molecules).

This orientation convention determines both the generation

of the training data for the machine learning methods and the

prediction of the moments by them. The MLF defines

the rotation of the moments from the MLF into the global

frame. The training data, that is, the multipole moments, are

generated with respect to the MLF for every training example.

Consequently, the machine learning methods will predict

moments with respect to the MLF. This means that the

orientation of the MLF is embedded in the training data.

3.2 Feature representation and feature selection

The inputs for the machine learning methods are generated

using a transformation from the Cartesian coordinates of the

cluster to a set of non-redundant coordinates following

the method laid out by Stone.29 For systems of rigid and

non-linear molecules only 6(N � 1) coordinates are needed,

where N is the number of molecules. For example, a water

trimer is completely described by 6(3 � 1) = 12 coordinates,

and a dimer by only 6(2� 1) = 6 coordinates. With the central

molecule at the origin of the MLF and aligned as described

above (see Fig. 2), the position of the neighbouring water

molecule is described by three polar coordinates and three

Euler angles. The polar coordinates (referred to in Fig. 1)

are the distance ROO between the central water oxygen atom

and the oxygen atom of the neighbouring water, the angle

y spanning the vector ROO and the z axis, and the angle f

spanning the (positive) x axis and the projection of the vector

Fig. 2 The molecular local frame (MLF) of a central water molecule.

The left frame defines the angle y while the right frame defines the

angle f, subtended by the x axis and the projection of the line segment

connecting the two oxygen atoms onto the xy plane. These two polar

angles appear as features in Fig. 1.
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ROO onto the xy plane. The three Euler angles, a, b and g

describe the water neighbouring the central water molecule as

follows. Position the neighbouring water in the axis system of

the central water such that the HOH plane lies in the xz plane,

with the hydrogen atoms in the negative z direction. Then

a succession of three rigid body rotations corresponding to the

three Euler angles is applied. Finally this water is translated by

ROO. This procedure can be easily generalised to an arbitrary

number of neighbouring water molecules.

After defining the internal coordinates of each configuration

(for a given cluster size), the data are normalised, that is,

transformed to lie between 0 and 1, for subsequent exploitation

by the machine learning methods. Training operates on these

transformed input and output data. As the number of features

increases with cluster size, the training of the machine learning

methods becomes computationally more expensive. For

RBFNNs, the radial distances that need to be calculated between

training points become computationally more expensive. In

Kriging, the situation is worse, as training is an optimisation

problem with 2d variables, where d is the number of features

describing the water cluster in question. Therefore, for a water

cluster of N molecules, constructing a Kriging model becomes

an optimisation problem with 2d*6(N � 1) = 12d(N � 1)

variables. To alleviate this increase in computational cost

for both RBFNNs and Kriging models, feature selection—the

identification and removal of unimportant features—is

applied.

With RBFNNs, the backward sequential selection method

was used.93 Starting with all features present, an RBFNN is

built and the mean absolute error (MAE) on an external test

set is evaluated. Then, each feature is removed in turn, and the

RBFNN rebuilt. The feature whose absence leads to the

largest decrease in MAE is then removed permanently from

the set of features. Then the process iterates: features are

sequentially removed, until no further improvements in

MAE are gained. The set of features that minimises the

MAE is the set used to build each RBFNN. This process is

applied to each RBFNN built, so different features may be

selected for different moments. The backward sequential

selection method is an example of a ‘‘wrapper’’ approach:

each iteration in the search for the optimal subset of features

involves retraining and then using the machine learning model

(in this case RBFNN) to determine the performance of a

particular subset.

With Kriging, due to the computational cost of building

each model, a wrapper approach was not appropriate. Instead,

a method involving the analysis of the Kriging parameters94

was used. At a relatively early stage during the sequential

building of a Kriging model, when the training set size is 250,

the values of the Kriging parameter h are examined. Recall

that associated with each feature is a component of the vector

h. In our application all features have the same range (between

0 and 1). When this is the case, the relative values of h reflect

the relative importance of the features.94 After optimisation of

the Kriging parameters h and p, components of h whose value

are very small relative to the other components indicate that

the features they correspond to are relatively unimportant,

and are thus removed. More precisely, after optimisation, the

components y1,y2,. . .,yd of h are examined in turn. If each

feature is equally important, then y1 = y2 =� � �= yd, i.e.,

yi ¼
1
d

Pd
j¼1

yj , where i = 1,2,. . .,d. However, if for some i the

following holds yio
e
d

Pd
j¼1

yj (where 0 o e { 1) then the value

of yi is set to zero, corresponding to the removal of the i-th

feature. The threshold used in this paper is e = 0.01.

3.3 Data generation and selection of training sets

Previously,26 configurations were taken from molecular

dynamics simulations66 of pure liquid water at ambient

conditions performed with non-polarised (gas phase)

QCT multipole moments. For each water molecule in the

simulation, the nearest neighbours were found that would

form the water dimer, trimer, tetramer, pentamer or hexamer

clusters. Thus, the clusters were built in a hierarchical manner

about a central water molecule, and as a consequence, the

dimer clusters lie within their trimer clusters, the trimer

clusters lie within the tetramer clusters, and so forth. The

program GAUSSIAN0395 generated wavefunctions at

B3LYP/aug-cc-pVTZ level, for each cluster configuration,

without geometry optimisation. However, due to the modular

nature of the approach, the electron density may be obtained

from wavefunctions generated at other levels of theory,

possibly more advanced, future computing power allowing.

For the central water molecule (which lies in the MLF as

described above) the program MORPHY96–98 generated the

multipole moments for each of the atoms.

The number of cluster configurations (or geometries) produced

for the training in our previous work60 was determined by the

MLP’s architecture, more specifically, the number of weights. We

applied the rule of thumb to have approximately 10 training

examples (i.e. cluster configurations) for every weight being

trained, giving rise to data-sets of around 5000 configurations

for each cluster size. It is from these data-sets that appropriate

training sets are to be chosen for the RBFNN and Kriging

models.

Fig. 3 Schematic of the sequence of processes followed to generate

and test the models.
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Fig. 3 shows a schematic of the sequence of processes

followed to generate and test the models. The starting point

in this scheme is the upper left corner, where the training

and test configurations are sampled from the same MD

simulation. Wavefunctions are computed for the training

configurations (‘‘Gaussian of Central Cluster’’) and for

the test configurations (‘‘Gaussian of Central + Neighbour

Clusters’’). The atomic multipole moments are then computed

from the wavefunctions via the electron density (‘‘MORPHY’’).

The training data for the machine learning methods (both

input and output) are then normalised prior to training

(‘‘Training Data Normalisation’’). Subsequently, the training

data are used to train a machine learning method for

each moment of each atom. Note that the machine learning

methods predict the multipole moments solely based upon

the coordinates of the nearest neighbours of a given water

molecule. The predicted moments are then compared with the

true moments for a given test configuration (middle right of

diagram in Fig. 3). The quality of the training is then assessed

by the correlation between the predicted and true moments,

and atom-atom electrostatic interaction energies.

Following suggestions in ref. 99, we use a method of

sequential selection for the construction of the training sets.

This procedure is valid for both Kriging models and

RBFNNs. The SS1040 approach is ambiguous as to what size

the initial training set should be, how many rebuilds to carry

out, and what stopping criteria to use. Indeed Rennen

concludes99 that the scope remains ‘‘to develop methods which

dynamically determine a suitable subset size’’. Thus we use the

following variation:

1. Define a space-filling set of points S in the feature-space

using a Sobol100 sequence of size 50, and determine the points

in the data-set that are closest to the points in S. Use these

points to construct an initial training set.

2. Construct a Kriging (or RBFNN) model using the

training set. For each point not in the training set, calculate

the absolute value of prediction error.

3. Determine the 200 points with highest absolute prediction

errors, and from these, use a MAXMIN algorithm to select

50 well-spaced points. The MAXMIN algorithm attempts to

maximise the minimum distance between any 2 of the 50

points chosen. Add these 50 points to the training set, and

go to step 2, until the training set size exceeds 1000.

4. Twenty rebuilds have taken place in total, giving rise to

20 models (each built using a training set of a different size).

The model with the lowest mean absolute error (MAE)

(calculated using all the points not in the training set), is the

model chosen for use.

3.4 External validation

For external testing of the performance of the machine learn-

ing methods, a further 1000 configurations were generated.

For the dimer clusters, the moments for each of the molecules

were generated. These are the true moments. Using these

moments we can judge the ability of the machine learning

methods to predict moments for the water molecules for

a given dimer configuration and also the electrostatic inter-

action energy. For larger clusters we follow the procedure in

ref. 26, the main points of which are summarised here for

convenience.

For the trimer clusters and larger, 1000 clusters of

50 molecules were generated to act as the test configurations.

The arbitrary number 50 turned out to be large enough to

ensure that each water molecule that is a member of the central

clusters we investigate (trimer, tetramer, etc.) can see its own

first solvation shell. For the central water, the n � 1 nearest

neighbours are identified (n Z 3 where n is the total number

of molecules in the cluster). From the coordinates of the

central molecule and these neighbours the true moments are

found for the central water molecule. The process is then

repeated for each of the n� 1 neighbours of the central cluster,

where for these neighbours we find their own nearest neigh-

bours and predict moments for these clusters. This ensures

that we have the true moments for each of the water molecules

based upon their own n � 1 nearest neighbours as these are

the configurations that are seen when the machine learning

methods predict multipole moments for each water molecule

in the central cluster of n molecules. For further details, the

reader is referred to ref. 26.

The performance of the machine-learning methods are to

be judged not on the accuracy of the multipole moment

predictions themselves, but rather on the more meaningful

total and individual atom-atom electrostatic interaction

energies, the values of which emerge as a consequence of the

machine-learning predictions. Upon making predictions

over an external set of 1000 configurations, statistical values

relating to the accuracy of the methods may be deduced.

3.5 Computational cost of predictions and Pareto-optimal

selection of models

Recall that in order to predict electrostatic energies using

multipole moments up to rank 5, we need 75 machine learning

models in total (25 for each atom in the water molecule). In

this paper, three different machine learning methods are being

used to predict multipole moments: RBFNNs and Kriging

models, along with the previously investigated MLPs. Using

only one particular machine learning method to build all

75 models offers three different approaches, each representing

a different compromise between accuracy and speed. However,

nothing restricts us to using just one type of machine learning

method to build all 75 models; rather, we have the freedom to

use any combination of the machine learning methods at

our disposal. Indeed, as shall be seen in section 4, using

combinations of different machine learning methods allows

combinations to be formed which dominate (see below for a

definition) the three ‘‘one-model only’’ compromises, and so is

a worthwhile exercise. The question arises then, how to

determine the best combinations.

In terms of making predictions, Kriging models have a com-

putational overhead that depends on both the number of pointsN

in the training set, and on the dimension d of feature space,

O(Nd). Both MPLs and RBFNNs have a computational over-

head that depends on the number of nodes in the hidden layerM

and on the number of features d, O(Md). For RBFNNs, the

number of nodes in the hidden layer is equal to the size of

the training set M = N, giving a computational cost of O(Nd).

6370 | Phys. Chem. Chem. Phys., 2009, 11, 6365–6376 This journal is �c the Owner Societies 2009



For MLPs, however, M a N in general. This discrepancy in

computational effort (O(Nd) versus O(Md)) to make a prediction

can be exploited along with any discrepancy in accuracies between

the models, to give combinations of their use such that predictions

of electrostatic energies are both accurate and fast. The problem

to be solved is thus a combinatorial multi-objective optimisation

problem (MOOP): determine which machine learning method to

use to predict each multipole moment on each atom in the water

molecule, such that the time taken to predict electrostatic energy is

minimised, whilst the accuracy of the predictions is maximised.

We define the 90th energy error percentile, E90, as the error

in energy that 90% of predictions are within, as determined

over a set of predictions of approximately 1000 configurations.

Formally, the 90th energy error percentile of the electrostatic

energy predictions is a function of 75 different models, or

E90(m1,m2,. . .,m75). Each model corresponds to a particular

moment on a particular atom: in our case there are 3 atoms

each with 25 moments, hence leading to a total of 75 different

models. The average time taken to make one energy prediction

is also a function of these models, or T(m1,m2,. . .,m75). We

now want to solve the following:

Minimise E90(m1,m2,. . .,m75) and T(m1,m2,. . .,m75)

where each of m1,m2,. . .,m75 are MLPs, RBFNNs or Kriging

models. The models m1,m2,. . .,m75 are the decision variables

of the problem whilst E90 and T are the competing objectives.

In our case there are 375 different possible combinations

of machine learning models to search over (75 separate models

are to be built with 3 different types of methods). Such a large

search space would lead to difficulties for conventional

algorithms such as the NSGA-II algorithm,101 so we simplify

the problem in two ways. First, the same method is used for all

multipole moments sharing the same rank c. For example,

all three components of the dipole moment must be modelled

by say Kriging. This reduces the number of decision variables

per atom from 25 to 5, since c adopts values between 0 and

4. Hence, the total number of decision variables is reduced

from 75 (=3 � 25) to 15 (=3 � 5). Secondly, for each

particular moment, the same method is used for each atom.

This further reduces the total number of decision variables

from 15 (=3 � 5) to 5 (=1 � 5). With these two simplifications,

the search space is reduced to 243 (=35) combinations,

which is small enough to perform an exhaustive search. To

understand the set of solutions returned, the definition of

Pareto-optimality is required, which itself requires the

definition of dominance:

A solution x1 to a MOOP is said to dominate another

solution x2 if and only if x1 is strictly better in one objective

than x2 and no worse in the remaining objectives. For any two

solutions x1 and x2, it is the case that either x1 dominates x2, x2
dominates x1, or neither solution dominates the other, in

which case they are said to be equivalent. The concept is

illustrated for a two-objective problem in Fig. 4.

If, for a particular solution x* to a MOOP, no other

solution exists in the entire search space which dominates it,

then x* is said to be Pareto-optimal. The set of all such

solutions is called the Pareto-optimal set, and its image in

objective-function space is called the Pareto-optimal front.

Fig. 4 illustrates the concept of dominance for two

solutions, A and B, to a two-objective problem, where both

objectives f1 and f2 are to be minimised (‘‘lower is better’’). For

example, solutions that fall within the bottom left hand box in

objective function space have both f1 and f2 values less than

those of both A and B. Thus, solutions in this region dominate

both A and B. In the box immediately above it, both the

objective function values are still less than those of A, and so

solutions in this box also dominate A. However, solutions in

this region do not dominate B as their f2 values are not better

than those of B; as their f1 values are better than those of B, B

does not dominate these solutions either. Hence solutions in

this region are equivalent to B. Similar logic can be applied to

each of the regions to determine whether a solution dominates,

is equivalent to, or is dominated by another solution.

Thus, our search attempts to identify the Pareto-optimal set

of combinations of machine-learning methods to predict the

multipole moments with. The selection of which particular

combination to use is then determined by individual prefer-

ence of the level of trade-off between accuracy and speed.

4. Results and discussion

Table 1 shows the performance of the three machine learning

methods when predicting the multipole moments of the central

water molecule in the dimer, trimer, tetramer, pentamer

and hexamer clusters. For the central water molecule all the

multipole moments of each atom in the molecule are predicted

using the same machine learning method. We can judge the

performance of each machine learning method in two ways:

accuracy and the time it takes for the method to predict

the multipole moments. The accuracy of each method is

determined using the 50th, 90th and 99th interaction energy

error percentiles (E50, E90, E99) when using approximately

1000 test configurations. The total interaction energy error is

the absolute value of the difference between the total inter-

molecular electrostatic interaction energy when using the

predicted moments and the true moments for a particular

configuration. The time, T, is the average time it takes for the

Fig. 4 Illustration of the concept of dominance in multi-objective

optimisation. Depending on where a given solution lies in objective

function space in relation to another solution (in this case A or B), a

solution is worse than A (‘‘is dominated by A’’), is better than A

(‘‘dominates A’’), or is equivalent to A (‘‘neither dominates A, nor is

dominated by A’’). Similarly for B.
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prediction and evaluation of the multipole moments and total

interaction energy of a single configuration (note that all times

quoted are using an Intel Core 2 Quad Q6600 @ 2.40 GHz

with 3.25 GB of RAM). We find that E99 is not the most

suitable judge of the performance of the prediction method

since this percentile is almost equivalent to finding the

maximum energy error for each method. Very high percentiles

(e.g. E99, E98, E95) can be heavily influenced by a low number

of very poor predictions. This means that E99 is not the best

discriminator to use when determining which method is most

accurate. However, the other two percentiles E50, E90 are far

more useful. Qualitatively, for all cluster sizes we find that

Kriging gives lower (energy) errors than RBFNN, which in

turn gives lower errors than MLP. This trend is not followed

for the dimer cluster. The general trend in performance is

reversed when we consider the time it takes to perform

a prediction of the multipole moments. MLP is faster

than RBFNN, which is faster than Kriging. Thus Kriging

sacrifices speed compared to MLP and RBFNN but it is more

accurate. Quantitatively, beyond the dimer, there is a 40–67%

improvement in E50 (i.e. a 40–67% decrease in median energy

error) using Kriging models, taking the MLP performance as

baseline. The improvements are greater for greater cluster size:

for example, for the trimer there is a 40% decrease in

the median (E50) energy error (1.2 kJ mol�1 compared to

2.0 kJ mol�1), whilst for the hexamer there is a 67% decrease

in the median energy error (4.9 kJ mol�1 compared to

15.0 kJ mol�1). With the exception of the tetramer, there is a

14–26% improvement in E50 using RBFNNs. At the E90 level,

the improvement is 38–52% for Kriging (again with greater

improvements for greater cluster sizes), whilst for RBFNNs

the improvement is in the range 10–17%. The penalty paid for

these improvements is a slowdown factor of 6.5–8.5 for

Kriging models (again, taking MLPs as a baseline), and a

typical slowdown factor of 2.5–3 for RBFNNs. The choice of

which model to use, and thus the exact trade-off between

accuracy and speed, is ultimately subjective. A more precise

balance involving combinations of different methods, is

discussed later.

We can also judge the performance of each method by

considering the accuracy of the dipole moments for each water

molecule, given in Table 2. Using each prediction method the

molecular dipole moment of the central water molecule in the

pentamer cluster is reconstructed from the predicted atomic

multipole moments. In general we find that Kriging shows a

lower average and maximum absolute error, followed by

RBFNN and then MLP. Quantitatively, Kriging shows an

8% improvement in the average absolute error, and a 16%

improvement in the maximum absolute error, compared to the

MLP. The prediction of the molecular dipole moment is a

good test as it relies on the prediction of the atomic monopoles

and dipole moments. These moments account for the majority

of the electrostatic interactions in water. This is because the

interaction L is equal to cA + cB + 1, and c values of 0 and 1

appear in more combinations making up all L values.

For example, c = 0 and c = 1 can appear together in

L = 2, L = 3, L = 4 and L = 5. Conversely, c = 3, for

instance, can only appear in L = 4 and L = 5. A detailed

study102 on the long-range convergence behaviour of multi-

pole expansions with topological atoms yielded a relationship

between the internuclear distance, the rank L, atom types and

the energy accuracy. Finally, we note that the accurate

prediction of molecular dipole moment is critical for accurate

simulation of water due to the important influence of the

dipole moment of water on the bulk liquid thermodynamic

and structural properties.

Fig. 5a shows all the energy error percentiles (En, 0o nr 100)

in the water dimer. The typical S-shaped curves complete

the information shown in Table 1. Fig. 5 presents the S-shaped

curve associated with the best MLP achieved by varying

all training parameters and training, early stopping and

validation sets to obtain the net with the best generalisation

and performance. Fig. 5 also shows the curves found using the

unpolarised QCT model and TIP3P, from our previous

work.26 We also show the best S-shaped curves when using

the RBFNNs and Kriging methods. RBFNN and Kriging

models outperform the unpolarised QCT model and TIP3P.

All three machine learning methods give models that show

a similar performance, with Kriging showing the better

accuracy. The inset of Fig. 5 highlights that the relative

performance of Kriging, RBFNN and MLP remains

conserved in the very high percentiles (E488).

Fig. 5b is the equivalent plot of Fig. 5a but now for the

pentamer. In our previous work26 we had found that

the unpolarised QCT and TIP3P models showed a better

performance than MLP. Further investigation into the

Table 1 The 50th, 90th and 99th energy error percentiles E50, E90, and E99 (kJ mol�1), and the time taken for one energy prediction T (s), using the
three different types of machine learning methods, for the water dimer, trimer, tetramer, pentamer and hexamer

Dimer Trimer Tetramer Pentamer Hexamer

Method E50 E90 E99 T E50 E90 E99 T E50 E90 E99 T E50 E90 E99 T E50 E90 E99 T

Krig 0.4 1.0 3.4 0.11 1.2 3.3 8.5 0.32 2.3 6.3 12.5 0.68 3.7 10.0 16.7 1.41 4.9 13.4 29.6 2.06
RBFNN 0.4 1.4 3.1 0.06 1.6 4.4 9.3 0.14 4.6 10.2 18.5 0.25 8.5 19.0 27.5 0.46 11.0 23.0 39.7 0.66
MLP 0.4 1.2 3.6 0.01 2.0 5.3 11.4 0.05 4.3 11.4 21.3 0.09 9.9 21.0 30.6 0.18 15.0 27.7 41.9 0.24

Table 2 Errors (a.u.) in the dipole moment of the central water
molecule in pentamer clusters for different machine learning methods

Machine learning method Ave Absa Max Absa

Kriging 0.066 0.307
RBFNN 0.071 0.309
MLP 0.072 0.366
Pareto 1 (Kriging, RBFNN)b 0.068 0.336
Pareto 2 (RBFNN, RBFNN) 0.071 0.309
Pareto 3 (Kriging, RBFNN) 0.068 0.336
Pareto 4 (RBFNN, MLP) 0.071 0.342
Pareto 5 (Kriging, RBFNN) 0.068 0.336

a Average and maximum of the absolute values. b Models used for

each Pareto combination are (charge model, dipole model).
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interaction energy errors revealed that the S-shaped curves

were misleading for the pentamer. When we consider the

energy errors for the individual atom pair intermolecular

interactions we find that the unpolarised QCT and TIP3P

models are on average in error by 50%. However, this error

disappears for the total interaction energies in the cluster due

to fortuitous cancellation of individual errors. However,

non-polarisable models are only useful for simulations of

water in the bulk liquid and not in other heterogeneous

conditions. It would appear that the pentamer cluster mimics

the bulk liquid (a central water molecule surrounded by 4

nearest neighbours is much like a water molecule with its first

solvation shell). However, Fig. 5b shows that Kriging and

RBFNN models show a dramatic improvement in the pre-

diction of the total interaction energies while having accurate

atom pair intermolecular interaction energies.

Using a selection of energy error percentiles we are able to

summarise all the S-shaped curves for all three methods. Fig. 6

shows the 50th and 90th energy error percentiles (E50 and E90)

for each method for each cluster size. From Fig. 6 it is clear

that Kriging has a shallower slope, followed by RBFNN and

MLP. This figure highlights that Kriging is less affected by

increasing cluster size. This means that Kriging methods are

better suited to larger dimensional input spaces compared to

the other two methods.

From Table 1 it was clear that the Kriging method, though

accurate, was slower than the other two methods. Trading off

accuracy for computational speed, we have developed a

variety of models that use different combinations of methods

for the prediction of all the multipole moments (as discussed at

the end of section 3). Fig. 7 shows the performance for all the

model combinations investigated for the water dimer and

pentamer, in terms of the time to predict the multipole

moments of a single water molecule, and the accuracy of the

model given by the 90th energy error percentile. The green

crosses denote dominated models while red crosses are the

Pareto-optimal models. Among the 243 combinations in each

figure, the three which use only one particular type of machine

learning method to build all 75 models are highlighted. With

the exception of the combination that uses MLPs for every

model (which always has the fastest speed, and so is never

dominated), these combinations are not Pareto-optimal, thus

justifying the investigation into combining the use of the three

different machine learning methods. The Pareto-optimal

models represent a series of models from which we can select,

depending on how quick or accurate we wish our predictions

to be. Of course we wish our models to be more accurate than

the unpolarised QCT and TIP3P models. This means that the

Pareto models must fall below this upper energy error marked

in Fig. 7b (pentamer).

Fig. 8a shows the S-shaped curves for 5 Pareto models for

the water dimer, selected from Fig. 7a. These Pareto models

show a range of speed and accuracy. Going from left to right

on the inset of Fig. 8a, the accuracy of the Pareto models

Fig. 5 The energy error percentiles for the water (a) dimer and (b) pentamer.

Fig. 6 The energy error percentiles (a) E50 and (b) E90 (kJ mol�1) versus cluster size for Kriging, RBFNN and MLP.
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increases as the time of a single prediction increases. This is

reflected by the S-shaped curves. Moving from left to right in

the inset, the S-shaped curves move from right to left, i.e. the

models get more accurate. This means that accuracy and speed

of the model for a given cluster size can be tailored to

the problem for which the model is required. Considering

Pareto combination 4 in the inset of Fig. 8a, we can see for the

dimer that a 58% increase in speed may be obtained relative

to a pure Kriging approach (0.028 s vs. 0.068 s for a single

energy prediction), without a decrease in performance in E90

(0.970 kJ mol�1 vs. 0.978 kJ mol�1). Fig. 8b shows the same

information as Fig. 8a but now for the pentamer, but with the

addition of the unpolarised QCT and TIP3P energy errors in

the inset graph. This time, a 26% increase in speed may be

obtained relative to a pure Kriging approach (1.033 s vs.

71.389 s for a single energy prediction), without a decrease

in performance in E90 (9.921 kJ mol�1 vs. 9.961 kJ mol�1).

The Pareto models can also be assessed by the predicted

molecular dipole moment that they give for the central water

molecule of the pentamer. Table 2 also shows average and

maximum absolute errors for the molecular dipole moment for

each of the Pareto models. The models that show the lowest

average absolute error are the models that have the charge of

the atoms predicted by Kriging and the dipoles by RBFNN.

However, the models that show higher average errors but

lower maximum errors use RBFNNs to predict the mono-

poles. Pareto models 1 and 5, though the same with regard to

dipole moment prediction, differ in speed because model 1 uses

less demanding models to predict the higher order multipole

moments compared to model 5. The largest dipole moment

maximum error is found when using a model, Pareto model 4,

where the charge is found using RBFNN and the dipole

moments are predicted using MLPs. Thus, our search attempts

to identify the Pareto-optimal set of combinations of machine-

learning methods with which to predict the multipole

moments. The selection of which particular combination to

use is then determined by individual preference of the level of

trade-off between accuracy and speed.

Finally, we should mention that we have implemented the

Kriging formula (eqn B13 in the ESIw) in the molecular

dynamics program DLMULTI.103 This development facili-

tates the availability of our potentials to other interested users.

5. Conclusions

The atomic polarisation of water inside water clusters is

investigated according to a novel scheme. There are three

key ingredients to this polarisation model. First, the

Fig. 7 The trade-off between the speed of predictions and the 90th energy error percentile (E90) using combinations of different machine learning

methods for the water (a) dimer and (b) pentamer.

Fig. 8 The energy error percentiles for a selection of the Pareto-optimal combinations of models for the water (a) dimer and (b) the pentamer. The

number in parentheses in the key denotes the time taken (s) for one energy prediction.
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polarisation is expressed via atomic multipole moments,

by focusing directly on how they change rather than by

introducing polarisabilities. Secondly, the atoms are defined

as finite portions of space, which change their shape and hence

multipole moments in response to a changing environment.

Thirdly, machine learning methods model this change. The

inputs consist of coordinates of water molecules neighbouring

the central water of interest, while the outputs are the atomic

multipole moments. Here we compare the performance of

three machine learning methods: multilayer perceptrons,

radial basis function neural network and Kriging. Water

clusters, sampled from multipolar MD simulations, are

generated at B3LYP/aug-cc-pVTZ level, from the water dimer

up to the hexamer. Kriging is the most accurate method to

predict interatomic Coulomb interaction energies. It displays a

superior performance for both small and large clusters and

can therefore be used to model water in bulk as well as a

heterogeneous context. Furthermore, it is observed that its

prediction errors increase linearly with cluster size. However,

this comes at an increase in computational cost compared to

the two other methods. By modelling the trade-off between

prediction accuracy and speed as the three methods are used in

combination, a range of Pareto-optimal combinations can be

identified. This enables force field designers to pick the optimal

balance between these objectives, according to their own

priorities.
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