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OPTIMAL CONSTRUCTIONS
OF EVENT-NODE NETWORKS (*) (")

by Maciej M. SysLo (?)

Abstract. — There are two types of networks in the scheduling and planning which represent a project
i. e., the activities together with their precedence relations, namely, the activity networks and the event
networks. For each project, there exists a unigue activity network without redundant arcs but since
there is an infinite number of different sized event-networks, the problem is to find an event network with
the minimum number of dummy activities. The motivation behind this problem is to minimize the time of
the analysis of a network which is proportional to the number of activities, including the dummy ones.
Krishnamoorthy and Deo proved that this problem is NP-complete. In sections 2 and 3 we characterize
activity networks for which there exist event networks without dummy activities and we show that the
question whether a given activity network requires dummy activities in the event network can be
answered in polynomial time. We review some algorithms for finding an optimal event network and a new
approach is presented which gives rise to an approximate algorithm and can lead to an optimal branch-
and-bound method. Some generalizations of this real-world problem are also considered.

Key words i phrases: Complexity, line digraph, network construction, network analysis (4.M.S.
classification: 05C20, 05C35, 68C25, 68E10, 90C35; C.R. categories: 5.32).

Résumé. — Ii existe dans Pordonnancement et la planification deux types de résequx qui
représentent un projet, c’est-d-dire les activités avec leurs relations de précédence : les réseaux
d’activités et les réseaux d’événements. Pour chague projet, il existe un seul réseau d’activité sans arc
redondant, mais, puisqu’il y @ un nombre infini de réseaux d’événements de tailles différentes, le probléme
est de trouver le réseau d’événements avec le plus petit nombre d’activités artificielles. La motivation de
ce probléme est de minimiser le temps d’analyse d’un réseau, temps qui est proportionnel au nombre des
activités, artificielles incluses. Krishnamoorthy et Deo ont montré que ce probléme est NP-complet.
Dans les paragraphes 2 et 3 nous caractérisons les réseaux d’activités pour lesquels il existe des réseaux
d’événements sans activités artificielles et nous montrons que I'on peut répondre en un temps polynomial
a la question de savoir si un réseau donné dactivités exige des activités artificielles. Nous passons en
revue quelques algorithmes pour trouver un réseau optimal d’événements, et nous présentons une
nouvelle approche qui améne & un algorithme approché et peut conduire & une méthode arborescente
optimale. Nous considérons également quelques généralisations de ce probléme concret.

{*) Received May 1980.

(') The first draft of this paper has been written when the author was with University of Tokyo asa
Mombusho Scholarship Student in 1975-1976 and it has been completed when he visited
Washington State University as a Visiting Computer Scientist in July 1979.

(?) Institute of Computer Science, University of Wroclaw, P1. Grunwaldzki 2/4, 50-384 Wroclaw,
Poland. :

R.A.LR.O. Recherche opérationnelle/Operations Research, 0399-0559/ 1981/241/5& 5.00
© AFCET-Bordas-Dunod



242 M. M. SYSLO

1. INTRODUCTION

In the scheduling and planning, there are two types of networks which
represent a project, i. e., the activities together with their precedence relations,
namely the activity-node networks and the event-node networks. The former are
sometimes called simply the activity networks and the latter the PERT, project,
or event networks. In this paper, we shall use the names activity network and
event network, resp. An activity network is a digraph D in which the nodes
correspond one-to-one with the given activities and there is an arc (4, v) in D if
activity u precedes activity v. There exists a unique activity network without
redundant arcs for each project. In an event network E which corresponds to an
activity network D, the given activities are represented by a subset of arcs of E
and the precedence relations are preserved. In general, dummy activities (arcs
of E) are introduced to satisfy the last requirement and, since there is an infinite
nuimber of differeiit sized eveni neiworks for each project, the probiem is to find
for a set of activities and their precedence relations, an event network with the
minimum number of dummy activities. The motivation behind this problem is to
minimize the time of the analysis of a network which is proportional to the
number of arcs, including those which correspond to dummy activities.

Krishnamoorthy and Deo proved in [9] that the problem of finding the
minimum number of dummy activities in the event network which correspond to
a given set of activities and their precedence relations is NP-complete. In
section 2 and 3, we characterize the precedens relations for which there exists an
event network without dummy activities and show that the question whether a
given precedence relations require dummy activities in the event network can be
answered in polynomial time.

In section 4-6, we review some algorithms for finding the event network with
the minimum number of dummy activities and in section 7, a new approach is
presented which gives rise to an approximate algorithm and can lead to an
optimal branch-and-bound method.

The precedence relations of a real-world set of activities are consistant, that is
the corresponding activity network and the event network contain no circuit.
Cantor and Dimsdal [2] generalized the problem for not necessarily acircuit
digraphs and we investigate and explore here some graph-theoretic relations
between two pairs of digraphs, namely between an activity network and its event
network and a digraph and its line digraph.

For graphical terms not defined in this paper we referred to [7].
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OPTIMAL CONSTRUCTIONS OF EVENT-NODE NETWORKS 243

2. DEFINITIONS. THE PROBLEM

Let D=(V, A) denote a directed graph (simply, digraph), where V is the set of
nodes and A4 is the set of arcs, that is, ordered pairs of nodes. An arc is denoted by
(4, v). To avoid misunderstandings, the set of nodes and the set of arcs of D are
sometimes denoted by V(D) and 4 (D). Let us define

I'py v={ueV (D): (v, u)c A (D)}
Iytv={ueVD):(u,v)e4(D)},
where v € V(D). Notice that we allow D to have loops, that is, arcs of the form
(u, u). I{ in addition we allow D to have parallel arcs that is, arcs which connect
the same nodes, then D is called a multidigraph and A should be considered as a
family of pairs. .

Hug, uy, ... ,ulk=1)arenodes of D and (;.,,u; )€ A(D)fori=1,2, ...,k
then we denote u, — u, and say that there exists a path from u, to u,. A digraph
D is acircuit if it contains no uy — u,. Notice that an acircuit digraph has no
loops. Let a; =(u,, v) and a,=(w, u,). If v=w or v — w then we denote a, — a,.

and

Let D be an activity network of a given project which consists of a set of
activities and precedence relations among them, that is there exists a one-to-one
correspondence between the nodes of D and the activities, and (u, v) € 4 (D) if
activity u precedes activity v. D is an acircuit digraph. The problem of
constructing an event network for D with the minimum number of dummy
activities is to find a digraph E such that (1) there exists a one-to-one
correspondence o : ¥ (D)} — B, where B& 4 (E) such that u — v in D if and only if
a{u) — a(v) in E for any u, ve V (D), and (2) the set of dummy activities (arcs)
A(E)—B has the minimum number of elements among all digraphs which
satisfy (1). ' .

Cantor and Dimsdal [2] dealt with the problem for digraphs which are not
necessarily acircuit, Let D be a digraph. The pair (E, f), where E is a digraph and
f V(D) — A(E)is an arc-dual digraph of D if for any pairu,, u, € ¥{D), we have
t, = u, in D if and only if f (4, ) — f(u,) in E. The arcs in 4 (E)— f(V (D)) are
called dummy arcs of E. If Eis a digraph, then the pair (D, g), where D is a digraph
and g : A (E)— V(D) is a node-dual digraph of E if for any pair a,, a, € A(E) we
haveq; — a,in Eifand onlyifg(a;) — g (a,)in D.Itis easy to see thatin the class
of acircuit digraphs, D may be considered an activity network and E a
corresponding event network.

Let S be a finite set. The family of subsets {S,}, of S some of which may be
empty is called an improper cover of S if \ ) S;=S. If additionally for every k, le 1,

el
ifk#[then S, N S,=Q, then { S, },is called an improper partition of S. Let F be a
digraph. Then {{ U}, { W,1),, where { U;}, and { W}, are improper covers
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244 M. M. SYSLO

(partitions) of V (F) is called an improper cover (partition) of a digraph F if

A (Fy=1\) U,x W,, where xdenotes the cartesian product of sets. Every
ief

digraph D has an improper cover, for instance if A (D)={e,, e,, ..., e, } and

e;=(u;, v;) then U;={u;}, and W;={v,},, where I={1,2, ..., m}, see also

theorem 2.1.

We shall also consider line digraphs. If E is a multidigraph then the line
digraph & (E) of E is defined as follows V (& (E))=A (E) and if a, =(u,, v,),
a,=(u,, v;), a,, a,e A (E) then (a,, a,) € A (£ (E)) if and only if v, =u,.
A digraph D is said to be a line digraph or reversible if there exists a multidigraph
E such that D =% (E). There exist several characterizations of line digraphs and
here we shall make use of the following.

THEOREM 2.1 [6): A digraph D is a line digraph if and only if there exists an
improper partition of D. [
It is easy to show that the last theorem is equivalent to the following.

TueOREM 2.2[12): A digraph D is a line digraph if and only if Tp v, nTp v, #Q
then T'p vy =1p vy, where vy, v, €V (D). [0

COROLLARY TO THEOREM 2.2: A digraph D is a line digraph if and only if there
exists an improper partition { V; }sof V(D) such that for eachve V(D) there exists
keJ such that Tpoo=V,. [

If E is a multidigraph then . (E) is a node-dual digraph of E. In this case, gis a
bijection and £ (E) need not be a node-dual digraph of E with the minimum
number of vertices. Figure 2.1 (a) shows a digraph E and its line digraph, and
the node-dual digraph of E with the minimum number of nodes is shown in
figure 2.1(b).

ae 4 J
c
b h
e
E Z(E)
(a)
Uy u; U Uy
——>ro—>ro—>9

gl@)=g®)=u,, glc)=u,, gd)=gle)=u;, g(f)=gh)=u,

(b)
Figure 2.1.
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OPTIMAL CONSTRUCTIONS OF EVENT-NODE NETWORKS 245

If D is a line digraph, i. e., when there exists a digraph E such that & (E)=D
then (E, h™1) is an arc-dual digraph of D and in this case h™! is a bijection
between V(D) and A (E), that is, E contains no dummy arcs. Figure 2.2 (a)
shows a digraph D which is not a line digraph and for which there exists the arc-
dual digraph (E, /) without dummy arcs see figure 2.2 (b) [f; denotes f (u;)].
Notice, that &£ (E) is isomorphic to D', where V' (D')=V (D) and

A (D)=A (D) {(ug, us) } —{(u;, ua) }.

Since our goal is to minimize the number of dummy activities in an arc-dual
digraph (E, f ) of D, first we should characterize a digraph D such that there exists
a map f which maps V (D) onto A (E) (f is not necessarily to be bijective).

Ug

221 Uy

/3

D E
(a) (b)

Figure 2.2,

If D is a digraph then let D denote the transitive closure of D, i. e., ¥ (D)= V(D)
and (4, v) € A (D)if and only if u — vin D. A digraph D" is the transitive reduction
of D if (1) D' is a spanning subdigraph of D, i. e.:

V(D'Y=V (D) and E (D')<E (D),
(2) D’ =D, and (3) D’ has the minimum number of arcs among all digraphs which
satisfy (1) and (2).
THEOREM 2. 3: A digraph D has an arc-dual digraph (E, f Ywithout dummy arcs if
and only if there exists a digraph D' such that D’ is a line digraph and D=p.

Proof: If for a digraph D there exists an arc-dual digraph (E, '} such that f
maps V(D) onto 4 (E) then we can construct the digraph D’ such that D" is a line
digraph, (E. f) is also an arc-dual digraph of D', and D'=D. Let V' (D")=V (D).
Then (4, u,)e A (D’) if and only if, if f (u, )=(v,, w,) and f (u,) =(v,, w,) then
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246 M. M. SYSLO

w; =v,.Itis easy to verify that D’ is a line digraph. By the construction, we have
u—vin D" if and only if f (u) - f(v) in E, therefore (E, f) is also an arc-dual
digraph of D' and therefore D'=D. The proof of the converse we leave to the
reader as an exercise. [

In a digraph D, an arc (u, v) is redundant if there exists a path u — v consisting
of at least three vertices. If D is an acircuit digraph then we have the following.

LemMA 2.1: If D is an acircuit line digraph then D has no redundant arcs.

Proof: Let ug, uy, ..., u,€ V(D), (u;_;,u;)e A(D) (i=1,2, ...,1,1=2) and
suppose that (ug, u;)€ A (D). Henceu, e Tpuy nTpu,_andu, e Tpug—THhu,_,,
therefore, by theorem 2.2, D is not a line digraph. [

THEOREM 2.4: If D is an acircuit digraph then D has an event network without
dummy activities if and only if the transitive reduction D' of D is a line digraph.

Proof: If D is acircuit then every digraph D' such that D'=D is a spanning
subdigraph of D and by lemma 2. 1, if D' is a line digraph then D’ is the transitive
reduction of D. [

in the next section we shall use theorems 2. 3 and 2.4 to show that the problem

of finding whether there exists an event network without dummy activities can be
solved in polynomial time.

g h
a d
b e
b s
c i
k J
1 m
(a)
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We conclude this section with an example which shows that in spite of the
results in [3] and [10], the number of nodes and the number of arcs in an event
network cannot be minimized simultaneously even if there are no parallel
activities (i. e., activities with the same sets of predecessors and successors).

The set of activities and their precedence relations are shown in figure 2.3 (a).
Figure 2.3 (b) shows the event network E of D with the minimum number of
nodes, and figures 2.3(c) and 2.3(d) show how to decrease the number of
dummy activities in E by increasing the number of nodes.

3. THE COMPUTATIONAL COMPLEXITY OF THE PROBLEM

Krishnamoorthy and Deo proved in [9] that the problem of finding whether
there exists the event network with the number of dummy activities less than k for
a given set of activities and their precedence relations is NP-complete. In fact,
they proved a stronger rosult, that this problem is NP-complete even if we
restrict our attention only to the event networks with the minimum number of
nodes. The result of Krishnamoorthy and Deo follows from the fact that the
node-cover problem in simple graphs with vertices of degree two or three is
polynomially transformable to the problem considered here.

Applying the results of the previous section we show now that the problem of
testing whether for a given digraph not necessarily acircuit there exists an arc-
dual digraph without dummy arcs, i. €., when k=0, can be solved in polynomial
time.

Let consider first the real-world problem. The following algorithm checks
whether for a given acircuit activity network D there exists an event network with
no dummy activities.

ALGORITHM 3.1:

1. Find the transitive reduction D’ of D.

2. If D' is a line digraph then there exists an event network of D which has no
dummy activities. O

THEOREM 3. 1: Algorithm 3.1 tests in polynomial time whether an acircuit
activity network D has an event network with no dummy activities.

Proof: The correctness of the algorithm follows from theorem 2.4. Regarding
the complexity, step 1 needs O (n*) time or less, where n= | V' (D)| (see [1]) and
we encourage the reader to show that applying corollary to theorem 2.2, step 2
can be implemented in O (m) time, where m= | A(D)|. [

R.A.LLR.O. Recherche opérationnelle/Operations Research
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In general, when D is an arbitrary digraph, the problem of testing whether D
has an arc-dual digraph with no dummy arcs can be reduced to that for the
condensation D* of D. The vertices of D* are in a one-to-one correspondence
with the strongly connected components of D and (u*, v*)€ A (D*), whete u¥,
v*e ¥ (D*) if and only if there exist u, ve V(D) such that u and v belong to the
strongly connected components ¥* and v* of D, resp., and (u, v)e A(D).

ALGORITHM 3.2:

1. Find the condensation D* of D.

2. If| V(D*)l > 1 then remove all arcs (4}, uf) of D* such that there exist 4§,
uf, ..., ufeV (D*), ., u})e AD¥*)(i=12,...,])and

(a) I>2, 0r

() 1=2, and
the component u* consists of one vertex u, € ¥ (D), and (uy, u,)¢ 4 (D).

3. If| ¥ (D*)}| =1 or D* is a line digraph then there exists an arc-dual digraph
of D which has no dummy arcs. [J

THEOREM 3, 2: Algorithm 3.2 tests in polynomial time if a given digraph has an
arc-dual digraph with no dummy arcs.

We shall use the following lemmas to prove theorem 3.2.
LemMa 3. 1: If D is a strongly connected digraph then D is a line digraph. [

LemMa 3.2: Let D be a line digraph, ug, uy, ..., u € V(D) (u;.q,u;) € A (D)
(i=1,2, ..., 1) 123, and uy, u, and at least two vertices in {uty, Uy, -, Uy, }
belong to different strongly connected components of D then (ug, u,)¢ A(D).

Proof: If(uy, u,)e A(D)thenwu;e Ipupg nIpu;. and uy efpuo—-rpu,-,,since'
u, and u,; and least two vertices in { u,, ..., u,_, } belong to different strongly
connected components of D, Therefore I is not a line digraph. [0

Proofof theorem 3. 2: First, notice that if a strongly connected component of D
consists of at least two vertices u and v then they have the same sets of
predecessors and successors and (u, u), (v, v)e 4 (D). Therefore the problem of
finding a digraph D’ such that D' = D can be reduced to that for the condansation
D* of D. The correctness of step 2 follows from lemmas 3.1 and 3.2, and step 3
is based on theorem 2.3 and lemma 3. 1. Regarding the complexity of algorithm
3.2, the condensation D* of D can be found in O (m) time, where m= {4 (D}|,
step 2 is a partial transitive reduction of D* therefore it can be done in time
bounded by O(n®), where n=|¥ (D)| and step 3 needs O(m*) time, where
m*={4(D*)|. O

Notice that the problem of testing whether for a given activity network there
exists an event network without dummy activities is also significant from a
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250 M. M. SYSLO

practical point of view. The result of Krishnamoorthy and Deo suggests that a
polynomial approximate algorithm rather than an exact one should be used in
practice. However the former can produce some dummy activities even if they
are not necessary. Therefore, the testing if a given activity network has an event
network without dummy activities should be the first step of any method
designed to minimize the number of dummy activities, and, as it has been shown,
it can be done very efficiently.

4. A GENERAL APPROACH TO THE CONSTRUCTION OF OPTIMAL EVENT
NETWORKS

In this and in sections which follow only acircuit digraphs are considered.

The results of the previous section suggest the following general scheme of any
algorithm which intends to minimize the number of dummy activities in the
event network corresponding to a given activity network D.

IniTiALIZATION: Remove all redundant activities from D.

Main steP: If D is a line digraph then there exists an event network of D
without dummy activities, otherwise apply an algorithm which minimizes the
number of dummy activities. [

There are several algorithms that have so far been proposed and can be
incorporated in the main step. We review some of them in the next section and
here we present only some basic results which lead to the minimization of the
number of nodes in the event networks, since all the algorithms reviewed intend
also to minimize that number.

Let { g, } be the set of activites, and P (i) and S (i) denote respectively the set of
immediate predecessors and the set of immediate successors of a; and P (i) and
S (i) denote respectively the set of all predecessors and the set of all successors
of a;.

The following lemmas when applied to a set of activities and precedence
relations among them produce the event network with the minimum number of
nodes (for proofs see {2], [3] and [10}).

Lemma 4. 1: Activities { and j may start at the same node if and only if
P@=P (). O

LEMMA 4.2: Activities i and j may end at the same node if and only if
S@=S(j) DO

R.A.I.R.O. Recherche opérationnelle/Operations Research



OPTIMAL CONSTRUCTIONS OF EVENT-NODE NETWORKS 251

LEMMA 4.3: The terminal node of activity i may be the initial node of activity j if
and only if
N Sk)=S8@), where ieP(j). O

ke P())

5. A SHORT REVIEW OF ALGORITHMS FOR FINDING AN OPTIMAL EVENT
NETWORK

We start this section with an example of an activity network which appears to
be very hard for most of the algorithms.

Figure 5.1 (a) shows the activity network D, and the event network produced
by most of the algorithms and the network with the minimum number of dummy
activities are shown in figure 5.1 (b) and 5.1 (c¢), resp.

3 S
1 6
2 7
4

D

(a) (b)

Figure 5.1.
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The first algorithm was proposed by Dimsdal [4] and a counterexample that it
does not always produce an event network with the minimum number of nodes
and dummy activities is given in [5]. It fails also for the network D of figure 5. 1.

The algorithm proposed by Fischer et al. [5], contrary to the authors’ claim,
also fails to create the event network with the minimum number of dummy
activities (for instance, for the activity network shown in figure 5.1 (a), see also
[3]). For some activity networks it produces also dummy loops and some parallel
dummy activities.

The algorithm presented by Hayes [8] is a set of operations which should be
performed to give an event network with the minimum number of dummy
activities but, as in the case of two previous algorithms, there is no proof of its
correctness and optimality. However it is mentioned in [8] that the number of
dummy activities can be decreased by increasing the number of nodes in the
event networks.

Cantor and Dimsdal [2] presented the algorithm which for a given digraph
constructs the arc-dual digraph with the minimum number nodes but their

aloanrithrm intradiisss radinndant A v antivitiac {ocnn tha avamnls in mn and
ulé\ll‘tlllll lLAtL\I\Ju\IUO L\luul‘uullt uullujl] WLl Y AviwO \Jvo [ UI\“ALA AW ARA LALiNS

fails to produce the digraph E for the digraph D of figure 5.1. The algonthm for
finding the node-dual digraph with the minimum number of nodes is also
presented in [2].

Corneil, Gotlieb and Lee [3] (see also [10]) state that if an activity network does
not contain parallel activities then the number of nodes and the number of arcs in
an event network can be minimized simultanously and that to minimize the
latter number we may first minimize the former one and then minimize the latter.
Figure 2.3 shows however that in general these statements are not true.

The algorithm of Sterboul and Wertheimer [11] minimizes the number of
nodes in the event networks by using the operations which follow from lemmas
4.1-4.3.

6. APPROXIMATE ALGORITHMS WHICH ARE OPTIMAL IN A CERTAIN CLASS OF
METHODS

While constructing an event network if we do not intend to minimize neither
the number of nodes nor the number of activities then the following event
network F can be created immediately. Let D denote an activity network. Then

V(F)={u,,u,jueV(D)}  and A(F)y=4, U A,,

R.A.LLR.O. Recherche opérationnelle/Operations Research
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where:
Ay={(uy, u)|ueV(D)} and  A,={(uy, v;)|(u, v)EA(D)}-_

A, is the set of dummy activities.

If D is a digraph then D’ is called a subdivision of D if it can be obtained from D
by a sequence of arc subdivisions. D’ is the complete subdivision of D if every arc
of D has been subdivided. It is easy to see that £ (F} is isomorphic to the
complete subdivision of D and that the dummy activities of F correspond one-to-
one with the nodes introduced to D by subdivisions. Evidently, if D is a line
digraph then we do not have to subdivide any arc of D to find the digraph F
such that % (F)=D. Otherwise, some subdivisions are necessary and the
following question arises immediately: for a digraph D, what is the minimum
number of arc subdivisions which produce a subdivision D' of D such that D' isa
line digraph. This question is answered in [12}, where an algorithm for finding D’
in polynomial time is also presented. In general, even the minimum number of
subdivisions in an activity network produces a great number of dummy activities
in the corresponding event network. To improve the method, an arc set
subdivision has also been defined in [12] which introduces one new node for a
subset of arcs which form a complete bipartite subdigraph of D. D’ is called
a general subdivision of D if it can be obtained from D by a sequence of arc set
subdivisions. Paper [12] contains a polynomial time algorithm for finding a
general subdivision of D which is a line digraph and has the minimum number of
new nodes.

1t is easy to see that both operations preserve the precedence relations. Once
the minimum subdivision or the minimum general subdivision D' of D has been
found, the event network F such that . (F)= D’ can easily be constructed. Since
both operations: the arc subdivision and the arc set subdivision, and %!
preserve the precedence relations, the algorithms in [12] produce the
approximate solutions to the problem and these solutions are optimal in the
classes of all solutions which can by obtained by performing the arc subdivions
and the arc set subdivisions, resp.

7. A NEW ALGORITHM FOR FINDING AN OPTIMAL EVENT NETWORK

The approach proposed in this section results from the relations between
reversible digraphs and arc-dual digraphs, and leads to the method which can
produce the event networks with the minimum number of dummy activities.
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We shall make use here of improper covers and improper partitions of a
digraph defined in section 2, where we have pointed out that every digraph has
an improper cover and a digraph has an improper partition if and only if it is a
line digraph.

Notice that in fact every method which for a given activity network constructs
an event network E transforms an improper cover of D into an improper
partition of a digraph D’ such that V{D)g V(D’) and for every pair u, ve V' (D),
u—vin D’ if and only if u— v in D. The elements of the set V{D'}— V(D)
correspond to the dummy activities of the event network E, and E satisfies
Z(E)y=D".

Such a transformation consists of a sequence of node insertions which preserve
the precedence relations. The nodes inserted correspond to dummy activities of
the resulting event network. Now we shall consider the reverse transformation to
find a general form of this operation of a node insertion. Suppose that for an
acircuit activity network D with no redundant arcs we are given an event
network E. If possible, we take E with the minimum number of dummy activities

+ IV o Cﬂ(l?‘\ X7 et
and suppose that E contains some dummy activities. Let D' =2 (E}. Verticos in

V{(D')— V(D) correspond to dummy activities in E. Since D’ is a line digraph, it
has an improper partition and we take the following one {{U}}, { W;}),,
where:

Ui={(u, v;) : (u, v;)e A(E), ue V(E) },
={(v;, u): (v;, u) eA(E), ue V(E)}
and:

V(E):{UL:UZe-'wum}» '1={1,2,...,m}.

In other words, a pair (U; W) consists of vertices of D’ which correspond to arcs
coming to and going out of v;, where v; € V'(E). Since D is acircuit, so is E and D’,
we may assume that the pairs {(U; W})} ; are topologically sorted that is if
ve Wi and ve U] then i< j. The following algorithm transforms the improper
partition {{ U}, { W;} ), of D’ into an improper cover of D.

Arcoritem EA (from Event network to Activity network):

L Set W;=W, j=1,2,

2. Find maximal index i, such that W, contains a dummy arc v. If no such i,
exists, then go to 6.

3. Suppose v is in U} (jo>1iy). Replace W; by W, — {v} U W,.

4. Scan if the redundancy has been introduced by step 3. If there exist ve U, ,
u, we W, and index k, such that ue U, and we W, then remove w from W, .

iy

5. Goto 2.
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6. Remove all dummy arcs from the sets { U; }, U;=U| and remove all pairs
(U;; W;) such that U;= @ except the pair for which U;= @, W+ ¢ and
Ip!W,;= B . Let< {U},{W.} >, whereI={1, 2, ..., n}denotes the created
family of sets. [J

The following properties of ({U,}, { W} ), follows from the relations
between digraph D and digraphs E and D', and from Algorithm EA.

PROPERTY 7. 1: The pairs {(U;: W)}, are topologically sorted. 3

Property 7.2: For every maximal set Q={u,ve V(D): Tpu=T,v} and R={u,
veV(D): Ty u=Ty"'v} there exist k, lel such that Q=U, and Rc W,
resp. [

PrOPERTY 7.3: The families { U, }, and { W, }, constitue an improper partition

and an improper cover of V (D), resp., and AD)=JU;xW,. O
iel

Now we are ready to present an algorithm which for a given improper cover of
an activity network D creates an improper partition of a line digraph D' and
tends to minimize the number ¥ (D')— V(D). The digraph (or multidigraph) E
which satisfies & (E)=D" is the event network corresponding to the activity
network D.

Let D be an activity network. The algorithm starts with the improper cover
{U;}, {W,}), of D, where U, is the maximal set of vertices with the some
successors and W; =T, U, iel={1,2, ..., n}. Thefamilies { U, }, and { W},
satisfy property 7.3 and the algorithm transforms them into two improper
partitions of a set which contains V(D). The transformation counsists of a
sequence of node insertions which are created when some nodes of D occure in
more than one set W, By lemma 4.1, the activities with the same set of
predecessors appear in the same set W and they may be considered together in
the algorithm and by lemma 4.3, an activity je W, for which there exists an
activity ie U, such that i and j satisfy the condition of the lemma need not be
moved from W, such an activity j is said to be stable in W;. .

The algorithm works in the direction opposite to that of Algorithm EA,
therefore we assume that (1) the pairs {(U;; W,)}, are topologicaly sorted. i.e.. if
ue W;andue U theni< j;(2)letue W, be a stable activity in W;. If there exists
is jsuchthatue W theni< j;and (3)if W;c= W then i< j. Notice that rules (1)-
(3) do not order {(U; W)}, uniquely.

ALcoritHM AE (from Activity network to Event network).

I'nitialization : Let D be an acircuit digraph without redundant arcs.

vol. 15. n" 3. aoit 1981



256 M. M. SYSLO

1. Form two families { U, }, and { W, }, of subsets of V(D) such that U, is the
maximal set of nodes with the same set of successors and W, =I, U; (iel). If
{ W}, is an improper partition of ¥ (D) then go to 9.

2. Order the pairs { (U;; W;)}; according to the rules (1)«(3) given above. Set
h=0.

Node insertions:

3. Find minimal index i, such that W, contains a node which belongs to
another set W;(j>1i,). If no such i, exists then go to 9.

4. Find a minimal number of sets W, , W, ..., W, (k;>i,) which either
cover non-stable activities of W, or cover non-stable activities of W, and some
activities which are immediate successors of activities in W, . If W, or a part of it
cannot by covered in such a way then go to 7.

5. Introduce new nodes z; 4 ;, Zy+ 3, - - -, Zp+ p as follows. Replace non-stable

covered nodes of W, by zy.y, Zy42, - - -, Zp+p and set Uy =U, U {2z, ;} for
j=19 27 "'9p- Seth=h+p
6. Go to 3.

S SN R Rapteis I Y ¥ QPR SRR, SN S, T AUV T DI ~ YIJ
f. CHIQG a 11axuiidl SusSGL I Ol aCuviucs wiiiCii arc f10u-stauvic i
W,, ..., W, and qis maximal. Introduce new nodes z; 4y, Zy+ 2, - - -, z,+ganda
new pair (Zy4y, Zp+zs ---» Zn+g Y) as follows. Replace Y by z,.; in
W.(i=1,2, ..., g) and locate the new pair immediately after the i -th pair,
where i,;=max{i;:j=1,2, ...,q}.Set h=h+gq.

8. Go to 3.

Termination:

9. Let {(U; W)}, denote the family of pairs created in step Node
Insertions. (O

It is easy to prove the following properties.

PropertY 7.4: If {(U}; W)}, is the family of pairs created by algorithm AE,
then: (1) JYUi=U Wy (i) {U}}, and {W))}, are improper partitions of

ieJ ieJ
X =\ Ui, (iil) if D’ denotes the digraph for which V(D')=X and {{ U}, { Wi} >,
ieJ

is an improper partition, then the digraph E such that & (E)=D’ is an event
network of D; (iv) E is acircuit, and {(v) E contains no redundant arcs. [

The last property 7.4 (v) follows from the fact that D has no redundant arcs
and that in step 4 we cover activities which are in distance of at most 2 from
activities in U, .

In general, Algorithm AE produces only a suboptimal solution (see examples
7.4 and 7.5) however one can easily verify that it needs only polynomial time.
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Since the problem of finding an event network with the minimum number of
dummy activities is NP-complete, it is unlikely that any polynomial time
algorithm can produce an optimal solution for every input. However it is not
difficult to show how using slightly modified versions of steps 4-5 and 7 to design
a branch and bound algorithm which will always solve the problem. To this end
we should take into consideration that the initial order of pairs {(Ui; W) }, isnot
unique and that the result of the algorithm depends on the order of steps 4 and 7
in the sequence of node insertions. The details are left to the Reader since our
goul was only to present an approach which can lead to the optimal solution and
to give an approximate algorithm, and the generalization is straigthforward. We
conclude this section with a number of examples which illustrate the main steps
and features of Algorithm AE.

Example 7.1: Let consider the activity network D shown in figure 5.1 (a).

TABLE 7.1.

i U, W, i U; W, i U; W
1., 1] 1,2,3,4 1.. 1,2,3,4 "L, 1} 1,2,3,4
2... 1 5,6,7 2.. 1 5, z,- 2.. 1 5, z,
3... 2 , 7 3.. 2, 24 6,7 3. 2, 2, Z3, Z3
4... 3 6 4,. 3 6. 4. 3,2z,

5. -4 1 5... 4 a s | 4z 7
6...| 56.7 0 '6...| 56,7 0. 6..| 5,6,7 1] ‘

The first three columns of table 7.1 show the families { U, } and { W} after
two steps of Initialization. The stable activities are underlined. First, the
algorithm (step 3) finds i, =2 and two non-stable activities 6 and 7 which can be
covered by W,. Columns 4-6 of table 7. 1 show the families { U; } and { W, } after
the insertion of node z,. In the next interation (step 3), W, can be covered by W,
and W,. The last three columns show the improper cover of a digraph D" which
corresponds to the event network with the minimum number of dummy
activities. [

Example 7.2: Table 7.2 in the first three columns contains ordered pairs of
subsets of the improper cover of a network and the last three columns contain the
solution obtained by applying step 7 of the algorithm.

TaBLE 7.2
i U, W, i U W,
1..... 1] a,d ) P "] a, d
2 e b efig |2.0...., b e, z;
30 c, d figh 3.0 c,d z,, h
T e, f, g, h 0 4, .. ..., Zy, 2, fg
S5.vieenl ) &figh )
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Example 7.3: Let now consider the activity network D which corresponds to

the node-cover problem for the graph shown in figure 7.1 (see also [9]).

c 4 f
d g
b 3 e S
G
Figure 7.1.

The set of activities of D consists of the nodes and the edges of G and one
additional activity x. Precedence relations of D are as follows:

v<u if either edge v is incident with node u

or vis an edge and u=x, v, ue V(D).

Paper [9] contains the proof that the minimum node-cover problem in graphs
with vertices of degree two or three, which is NP-complete, is polynomially
transformable to the problem of finding the event network with the minimum
number of dummy activities for the activity network constructed above. Let
apply Algorithm AE to the activity network corresponding to the graph G of

figure 7.1.
TABLE 7.3.
U; W, i U, W, i U, W,
1... ¢ ab, ...,g| 1. 1] ab,...,g| 1.. 0 ab,....g
2... a 1,2, x 2.. a 1, z, 2.. a Z4y 294
3.. b 1,3, x 3. b 1, z; 3.. b Z., 25
4... c 2,4, x 4.. c 4, z, 4:. Zy4s Z15 1
5... d 3,4, x S.. 24, Zs 2, x 5.. ¢ zs, Zg
6... e 3,5 x 6.. d 4, z, 6.. Z4, Zs 2,2y,
7... f 4,6, x" 7.. e 5, z3 7. Z5, Zg
8... g 5,6, x 8. Zy, 23, 23 3, x 8. e Z3, 246
9...11,2,...,6,x 0 9.. f 4, z, 9.. Zy, Z2, Z3 y 212
10.. g S, z4 10.. . Zgs 210
11.. Zg, 29 6, x 11.. Zg, Zg, Z1g
12.. 11,2, ...,6,x 0 12.. g 24, Z17
13.. Z16r 217
. 14.. Z2gs Z7 6, 2,3
15.. ] 214, 242, 243 x
16.. , 2, .., 6,x (1]
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The first three columns of table 7.3 contain the improper cover of D after
Initialization. Step 4 cannot be performed for any W, and in step 7 we first find
Y={3, x} which belongs to W,, W, and W, and then Y={2, x} and
Y={6, x} are found. Columns 4-6 show the families {U;} and { W;} after
performing these three node insertions. In the next steps we have Y= {4},
Y={x},Y={1}and Y={5}, and finally we obtain the improper cover of D’
which is shown in the last three columns of table 7.3. The node-cover
corresponding to the event network E such that % (E)=D’ consists of three
vertices { 2,3,6}.Itis a minimum cover and therefore, by the results of [9], E has
the minimum number of dummy activities. [

Example 7. 4: Consider now the activity network D shown in figure 2.3 (@) and
its improper cover (8; a, b, b', ¢, g, k, 1), (a; h, g),(b; d, e, £,1),(b"; d, e, f,m),(c; 4, f,
), (g; d), (k; e), (i; £), and (d, e, f, h, i, j, m; B). Following precisely the steps of
algorithm AE, we obtain the event network E shown in figure 2.3 (b). Suppose
however that we perform step 4 for activity ein W,,step 7 for Y={d,e,f } in W,
and W, and then step 4 for successive sets I, if necessary. Finally we obtain the
event network with the minimum number of dummy activities described at the
end of section 2. One can easily verify that if step 7 is all the time performed before
step 4 then we get the event network which has also the minimum number of
dummy activities however it has one more node then the previous one. [J

Example 7.5: Let an activity network be given by its improper cover shown in
the first three columns of table 7.4. W, can be covered by W; and W,. W, is
contained in WU W4 and ge(W, U Wy)— W, is an immediate successor of
ke W, therefore W, can also be covered by W5 and W. Columns 4-6 of table 7.4
show the improper cover after these two steps. Next, activity g in W, can be
covered by W, because activities w and m are the immediate successors of s. The

TABLE 7.4.

i U, W, i U, W, i U, W,
1.. @ c.d.h,pov] L. @ c,d,hpol| L. '] e, d, bop,v
2.. c g ks 2. ¢ zy, 2, 2.. ¢ 2y, 2y
3. d r,s 3. zy, d r,s 3. z, d r, Zg
4., P q, ks 4. . 23, P 23, 24 4. . 25, P Z3, Z4
5.. v k,s S.. Z3, 0 k, s 5. z3, U k, zg
6... h g, 9,8 6. . 24, h 4,9, 5 6. . 2, k q; Zs, 210
7.. k g, w, m 7.. k g,w,m 7o .. ¥ 28, 20, 230 s
8... s Tw,m 8. . s w,m 8. . Zs, k g, Ze
9... q m 9.. q m 9.. Zg, S w, z4

10.. g, m, r, w 1] 10. . g, m,r,w @ 10. . 27, q m
11. . g, m, r,w g
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non-stable activities w and n in W, can be covered by Wy, and min Wy —by W,.
Finally we apply step 7to Y = { s }. The last three columns in Table 7.4 show the
solution obtained by Algorithm AE.
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