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ABSTRACT

We consider the intertemporal problem of optimally consuming
a natural resource and exploring for new sources of supply of
that resource. Resource consumption yields social utility while the
exploration effort controls the uncertainty in the timings of dis-
coveries as well as their magnitudes. The objective is to choose
an optimal consumption and exploration policy so as to maximize the
expected discounted utility of consumption net of the exploration
cost over an infinite planning horizon. We present a contrélled
storage process model of the problem and under reasonable conditions
we characterize the existence and the properties of optimal policies

and prices.






OPTIMAL CONSUMPTION AND EXPLORATION OF
NONRENEWABLE RESOURCES UNDER UNCERTAINTY

S.D. Deshmukh and Stanle& R. Pliska

1, INTRODUCTION:

Economic planning in the presence of a nonrenewable natural
resource raises a number of special and interesting problems of inter-
temporal choice. Since Hotelling's [12] classic work, a considerable

amount of recent literature that exists in this area is exemplified

by the papers in the 1974 symposium of the Review of Economic Studies.
Although it is bécoming recognized that uncertainty plays a crucial
role in the problems of dynamically managing a nonrenewable resource,
only a few of the studies reported so far have explicitly incorporated
uncertainty into their models. Gilbert [10] and Loury (15] have
analyzed optimal consumption rates when the total resource stock is
uncertain and learning about the true stock size takes place only
through the extraction process. Assuming the total stock size to be
known, Dasgupta and Heal [7] and Dasgupta and Stiglitz [8] determine
optimal resource consumption patterns whenithere is uncertainty about
the (exogenously determined) time at which a perfect, producible sub-
stitute becomes available. MacQueen [16,17] permits the resource

stock on hand to change by random quantities at random times that are

. beyond the planner's control. For a fixed consumption rate, he then

characterizes a strategy for choosing among these randomly arising
gambles, éo as to maximize the probability of survival or the expected
time until the Doomsday.

We consider a socially managed economy with a natural
resource (such as oil, mineral deposits or, more generally, energy)
which is essential and which can be stored without depreciation over

the planning horizon. Although the resource cannot be produced, the
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amount on hand may be increased by exploring and searching for new
sources of supply of the resource. The exploration process involves
uncertainty regarding the time until a successful discovery as well
as regarding the magnitude of supply gained upon discovery. This
uncertainty can be partially controlled by the amount of costly ex-
ploration effort (search intensity) selected by the central planner.
A larger exploration effort costs more but is also more likely to
result, on average, in a more prompt discovery of a larger supply.
In addition to the possibility of increasing the stock on

hand through exploration, this stock may be depleted through consumption.
A higher éonsumption rate’yields a greater immediate social utility
(although at a diminishing rate) but also leaves less quantity of the
resource for future consumption. Thus, current consumption and explor-
ation decisions affect not only the immediate utilities and costs but
also the uncertain future stock and theréfore all future décisions and
payoffs. At each instant of time, given the amount of proven reserves
of the resource on hand, the central planner's problem is then to deter-
mine optimal consumption and exploration rates so as to maximize the
total expected discounted value of the utility of consumption less

the exploration cost over the infinite planning horizon, taking into
account the uncertainties and the intertemporal considerations
involved.

Recently and independently of our work, Arrow [l] has re-

ported some preliminary work on a similar problém. He has proposed

a dynamic programming model and has used heuristic arguments to obtain
some partial results. Our approach is to develop a Markov process

model for the level of the proven reserves and then to apply Markov
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decision theory to obtain the optimal control results. In Section

2 we provide a precise formulation of our problem within the
framework of controlled storage processes. Specifically,

we model the resource stock on hand as a storage process that is con-
trolled by a policy which specifies the consumption and the exploration
rates, at each instant of time, as a function of the stock on hand.
Storage processes, as Markovian models of dams, have been studied by
Moran [20], Cinlar and Pinsky [4,5], and Harrison and Resnick [11],
among others., The general theory of continuous-time Markov decision
processes.has been developed by Howard [13], Miller [18], Kakumanu
[14], Doshi [8] and others, while optimal control of storage processes
has been the subject of Morais [19] and Pliska [21].

'In Section 3, we employ Dynkin's [9] theory of weak infinitesi-
mal generators of Markov processes to characterize the total expected
discounted return from any consumption and exploration policy in terms
of a functional equation. We also provide the dynamic programming
functional equation and show that it has a unique, nonnegative, increas-
ing, concave and differentiable solution, which turns out to be the
maximum expected discounted return fullowing an optimal policy. Since
our storége process differs in several details from those studied in
the literature, the probabilistic results of Seétion 3 are also of
independent interest; however, due to the technical nature of the

proofs, we provide them in the Appendices.

In Section 4, we prove the existence of an optimal consumption
and exploration policy and we characterize its economially meaningful
structure, Specifically, we define a policy that is determined through

the dynamic programming functional equation of Section 2 and we show
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that this policy is admissible, that its associated return is the
solution of this functional equation, and that it is in fact the maxi-

mum attainable return. In this process of proving the existence of an

optimal policy, we also show that, as a function of the positive
resource stock on hand, the optimal consumption fate is strictly
positive and nondecreasing, while the optimal exploration rate is
nonincreasing, in the level of proven reserves.

Section 5 studies the dynamics of the shadow prices. There
we demonstrate the stochastic analog of the classical result that
the shadow price of the resource rises at the social rate of
discount.

Finally, Section 6 concludes with some additional remarks,

interpretations and possibilities for future research.

2. MODEL FORMULATION

Let Xt > 0 denote the level of proven reserves of a natural
resource at time t > 0. It represents the stock of the resource
that is known to exist at time t and is measured in physical
units (such as the number of barrels of oil or, more generally,
the number of BTU's of energy). We do not distinguish between
known reserves in the ground and extracted reserves held in inven-
tory. We call X_ the state of the process at time t and (I{+,E+)
the state space, where ]R+_= [0,*) and E+ is the Borel o-field on
R,.-

At each time t > 0, the central planner observes X and de-
termines the consumption rate Ce (measured in physical units per

unit time) at which the resource stock is consumed.. (In particular,

this allows for the case where the resource is extracted and
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consumed directly and not held in inventory, so that Cp also
equals the extraction rate.) Let ¢ < @ be an upper bound on the

rate at which the resource can be consumed. Thus we require

]

cte(l

only admissible decision whenever Xt = 0.

[0,c], and we shall also stipulate that c_ = 0 is the

In addition to the consumption rate, the planner also

determines the exploration rate e which is the intensity of

£?
search effort he expends in order to discover additional sources
of supply of the resource. The exploration effort can be

measured in physical units (such as the geographical area searched
per unit time, as in Arrow [l]) or in dollars per unit time.

Let e < = be an upper bound on the rate at which exploration

can be carried out, using the available technology. Thus, we
require et’éElE [0,e]. We shall sometimes use the notation

d = (c,e) for the vector of the consumption and exploration

decisions and D = CXE for the decision space-

These decisions are selected according to a policy which
specifies the consumption and exploration rates as functions of
the resource stock on hand. For technical reasons, we shall
place some restrictions on the policies to be considered by making

the following

Definition 1. An admissible policy is a Borel - measurable function

m(+) = (c(-), e(+)) mapping R, into D such that (i) ¢(0) =0,
(ii) ﬁ(') is left continuous and (iii) for any x5 > 0, there exists

some ¢ > 0 such that c(x) > e for all x > X,.
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Let A denote the set of all such admissible policies. Using w € A

means that the decisions n(x) are made whenever the process is in state

x. The functions c(*) and e(-) will be called the consumption and the

exploration policies, respectively. In Definition 1, the measurability

and left continuity requirements are essential for technical reasons,
while ¢(0) = 0 is a natural condition. The requirement (iii) has been
made to rule out troublesome and uninteresting cases where the resource
stock is not allowed to decrease below some positive level. Later on
it will be seen that a policy that is optimal in A is also optimal in
the larger class of policies in_which (iii) is not required. To avoid
confusion, we will'writé the consumption and exploration policies as
c(*) and e(-) and the corresponding aecisions as ¢ and e, respectively.

Each © € A gives rise to a Markov process {Xt;tz 0} which is

governed by the storage equation

t
(2.1) X =%y + I, - fo c(Xg)ds , t >0,

(3

where I. is the total quantity of the resource that has been discovered
t .

during [0,t]. Equation (2.1) simply says that the resource on

hana at any time is composed of the jnitial stock level and the addi-

tional amount discovered less the total(amount consumed so far.

The consumption policy c(-) affects the resource level deter-
ministically through the integral term in (2.1), while the exploration

policy e(-) affects the discovery process {Is; t > 0} which involves

uncertainty. An exploration rate e € E determines the probabilistic
rate A(e) at which discoveries take place, as well as the distribution
G(e,-) of the size of a discovery if it occurs. In precise terms,

the discovery rate is specified by a continuous function A: E+ R,
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while the discovery size 1is speéified by a Markov kernel

G:E x E+ -+ [0,1] such that (i) for every e € E, G(e,-) is a pro-
bability measure on E+ and (ii) for every B € E+, G(:-,B) is a con-
tinuous function on E. Roughly speaking, if the exploration rate
is e € E when a discovery takes place, ﬁhen G(e,B) is the proba-
bility that the size of the discovery is equal to some element of
the Borel sét B; in particular, G(e,[O,y]) is the distribution
function of the discovery size evaluated at y > 0. With these
specifications, the stochastic discovery process {It; t > 0} has
almost surely nondecreasing right-continuous paths of the pure
jump type and only finitely many jumps in any finite time interval,
where the jump rates and the jump size distributions are dependent
upon the exploration rate decisions. Each jump corresponds to a
discovery and the magnitude of a jump equals the size of the
discovery.

It is reasonable to éssume that a positive exploration rate
is essential to make a discovery and that a higher exploration rate
promotes. quicker discoveries of larger supplies; in a probabilis-
tic sense. To make this precisevand for future convenience we

introduce the notation

B(e,*) = A(e) G(e,-),

so that B(e,B) is the probabilistic rate, under e € E, at which dis-
coveries of a size equal to some element of B € E+ occur. The

stochastic dominance requirement is then our
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Assumption 1. For each fixed y > 0, the continuous mapping

e + B(e,[y,®)) is nondecreasing with B(0,[y,=)) = 0.

This says that for any y i 0, the probabilistic rate of discoveries
of size in excess of y is nondecreasing.in the exploration rate e.
- Since the discovery rate A(e) = B(e,[0,®)), an immediate consequence
of Assumption 1 is that A(0) = 0 and that A(e) is nondecreasing
on E. An example of a measure B which satisfies Assumption'l is
B(e,dy) = A(e) F(dy), where A(-) is continuous nondecreasing on E
and F(+) is a fixed probability distribution. Here the exploration
effort directly affects the discovery rate but not the size of a
discovery. Another example is obtained by taking B(e,dy) = KF(e-ldy).
for e > 0, so that the discovery rate A > 0 is unaffected by the
exploration rate but increasing the exploration rate shifts the
discovery size distribution to the right.

For any particular cbnsumption and exploration policy n € A,
the resource stock level process [Xt; t > 0} evolves in a simple

manner. -Following Cinlar [3], let, for t > 0, x > 0,

inf {y > 0: jx [1/c(z)]dz < t} if x>0
q(x’t)={0 I 4

if x = 0,

so that q(x,t) is the resource level at time t if the initial level
is x and no new discoveries occur in [0,t]. Let Tl’TZ""“"' be the
successive (random) times at which discoveries occur with Yl, YZ""

the (random) magnitudes of the corresponding discoveries. Then
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and

XTn+1 = q(XTn’ Tn+1—Tn) + Yn+1 = 0,1,2,-0-..00 3

where Tp=0 and Xy is the initial resource level. The probability
distribution of Y, is governed by G(e(XTn-), *). As to the probability
-distributions of times between successive discoveries, we have, for

s >0 and x >0,

P{Tn+1 = *n =< SIXTn=x3 =1- exp["Jj A (e(q(x,u)))dul

Note that if the exploration policy e(-) or the exploration rate ) (-) '
is constant, the interdiscovery times will be exponentially distributed.
In particular, the sojourn time in state 0 is exponentially distributed
with parameter A(e(0)).

To complete the description of the storage process (2.1) under
the policy m € A, we define

X
R(x) = fi[l/c(z)]dz 0 <X <=

4

so that, for 0 <y < X < », the quantity R(x)-R(y) is the time required
to deplete the resource level from x to y if no new discoveries occur.
Note that the admissibility requirement '(iii) of Definition 1 implies

- that 0 < R(x)-R(Yy) < « whenever 0 <y <X < », even though perhaps

R(0) = ~«. If R(0) = -=, then state 0 is inaccessible, i.e.,given any

positive resource level, the Doomsday will, almost surely, never come
following that policy. Otherwise R(0) >-« and state 0 is accessible;
we have to allow for both possibilities under poiicies m € A. This
and some other aspects distinguish our storage process from the ones
studied in the existing literature. However, it is straightforward

to show, as in Cinlar and Pinsky [4,5] and Morais [19], that, under
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any n € A, the stochastic process {X;3t > 0} constructed above is a
strong Markov process with stationary transition probabilities and
with sample paths which are right-continuous, have left-hand limits at
each t > 0 and have only a finite number of discontinuities in any
finite interval,almost surely.

In order to compare different policies in A and to choose the
best one, it remains to specify the utilities and costs associated with
the consumption and exploration decisions. Let u: C - R denote the

consumption utility rate function and we assume it to be continuous,

concave and nondecreasing with u(0) = 0 and with a finite positive
derivative at ¢ = 0. Whenever the consumption rate is c, the
economy earns utility at a rate u(c), measured in money units.

Finally, we denote the exploration cost rate function as h:E - R,

and assume it to be continuous nondecreasing with h(0) = 0; when-
ever the exploration rate e is selected, the cost is incurred at
the rate h(e). Let p > 0 be the social rate of discount. Note
that, by our assumptions, the net benefit rate u(c)-h(e) is bounded
and continuous on D and that we have not made any differentiability
assumptions other than that u(-) is differentiable at the origin. The
assumption u’(0) < @ is not restrictive, for if u'(O) = » (as, for
example, in Dasgupta and Heal [6]), then by the concavity and con-
tinuity assumptions, u can be uniformly appfoximated by a sequence
of concave, continuous functions {un} with ué(O) < =,

We should also point out that we are not treating any
extraction costs explicitly, because we are assuming such costs

are independent of the resource level and amount of discoveries
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to date. Hence the extraction costs are incorporated in the utility
rate function, so that u(-) is the utility rate of consumption net

of extraction costs, as if the extraction rate equals c, at each

point in time. Note that our assumption that u(-) is nondecreasing

on C is not restrictive, for if, alternatively, u(-) were maximized

* . . . . .
at ¢ , say, in.the interior of C, then it would never be optimal to

choose a consumption rate in excess of ¢ , so one could simply re-

to

-— Py
define ¢ = ¢ .

Corresponding to each consumption and exploration policy

nm € A, we are interested in the infinite horizon expected discounted

return Vn(x) as a function of initial resource level Xg=x » 0. Thus,
(2,2) V_(x) = En[jbexp(-pt)[u(c(Xt))-h(e(Xt))]dt[X0=x], x > 0.

V(x) = sup V_(x) x >0
Let néA T ’

. . . . *
be the maximum expected discounted return function. Define 1 € A

to be an optimal policy if

(2.3) V_*(x) = V(x) for all x > 0 .

The balance of the paper is concerned with the study of existence,

*
uniqueness and properties of V_, V and m
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3. THE EXPECTED RETURN FUNCTIONS:

We are first interested in characterizing the expected return
function Vo for any policy m € A. This is done by expressing Vv, as
the unique solution of the functional equation in Theorem 1 below,
The proof of this theorem uses the weak infinitesimal generator of
the underlying Markov process (see Dynkin [9] and Morais [19]). and

we postpone it to Appendix A,

Theorem 1. For any €A with R(0) = - =, Vﬁ'is the unique bounded
function which is absolutely continuous on (0,=), which has a
left-continuous left-derivative V! on (0,2) with V. (*) c(+)

bounded on (0,®), and which satisfies

(3.1) pV(x) = ulc())-h(e() + JO [V, Gety) -V (x) 18 (e (x) ,dy)

-'Vé(x)c(x),x >0
and

(3.2) »V;(0)

-h(e(0)) + jo [V, (5) -V, (0) 18 (e(0) ,dy),

I

For anf ﬂAelA with R(Q) > - =, V1T is the unique bounded function
which satisfies these same conditions and is continuous at O.
Prodf: See.Appéndix A.

Our next major objective is to obtain a similar, functional
equation characterization of the maximum expected discounted return
function V. Following standard Markov decision theory, this is
accomplished in three steps, the first of which is easy: we write

down the dynamic programming functional equation (see (3.3) and
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(3.4) below). The second step is considerably more difficult: we
verify that there exists a solution to this dynamic programming
functional equation, and we investigate the solution's properties.
These results, presented in Theorem 2 below, are based upon the
theory of functional differential equations and generalize the
results obtained by Pliska [21]. The final step, deferred untilv
the next section, is to confirm that this solution is indeed equal

to the maximum expected discounted return function.

Theorem 2. There exists a unique bounded, continuous function v

which is differentiable on (0,®) and satisfies

I

3.3) v sgg {c-l[u(c)—h(e) + fO [v(xty)-v(x)]8 (e,dy)
c
e€E

-pV(X)]}, x>0,

sup {-h(e) + [o [v(y)-v(0)18 (e,dy)} .

(3.4) »pv(0)
e€E

Moreover, V is nonnegative, concave, and strictly increasing,

lim v(x) = u(c)/p, and v is continuously differentiable on ma+;
X9

Proof. See Appendix B.

In the next section, we shall prove that the solution v of
the functional equation (3.3) - (3.4) is in fact identical with
the maximum expected discounted return function V, and we shall
characterize an optimal consumption and exploration policy n

which yields this maximum value.
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4, OPTIMAL POLICTES:

We begin by stating and interpreting the main result of
this paper on the existence and the economic properties of an

optimal consumption and exploration policy.

Theorem 3. The maximum expected discounted return function V is

the unique solution of (3.3) and (3.4). There exists an optimal
* * * )

consumption and exploration policy n (+) = (c (+),e (+)) in A

such that

% L. *
(1) the consumption policy ¢ (-) satisfies ¢ (0) =0,
c*(x) > 0 whenever x > 0, and ¢ (+) is nondecreasing on

R,; and

+’
(ii) the exploration policy eh(-) is nonincreasing on R with

lim e (x) = O.
X468

Note that Vﬁ* = V = v, so that all of the conclusions about v of
Theorem 2 apply to V. Also, by (i), it is optimal to consume the
resource at a positive rate whenever possible, and the larger the
resource stock on hand the greater is the optimal consumption rate,
as to be expected. Similarly, the lower the resource level the
greater should the exploration rate be in seérching for new supplies,
while exploration becomes unnecessary if the resource stock is

large enough. Vn*(x) is the expected value (net of extraction and
exploration costs) following an optimal policy as a function of the
initial resource level on hand; this value is nonnegative (since

c(*) = e(+) = 0 is an admissible policy yielding zero total benefit),
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and it cannot exceed the maximum possible discounted utility from
consumption u(c)/p. Also, by Theorem 2 this expected value increases
with the initial reséurce level but at a diminishing rate. Note
that Vé*(x) = V' (x) = v/ (x) is the contribution of the marginal
unit of proven reserves X to the maximum expected discounted return
and is therefore the shadow rent on x. Thus, the shadow rents are
decreasing in x (since V is concave) and their behavior is smooth
although that of the utilities and the exploration costs may not

be so. We will examine the behavior of shadow rents through time

in the next section. Although Theorem 3 characterizes properties
of n* and Vﬁ*, their numerical computations from (3.1)-(3.4) may
be, of'course, formidable.

The balance of this section is devoted to the proof of
Theorem 3; this is carried out in a sequence of lemmas. Briefly,
we first define a consumption and exploration pélicy n through
the functional equation (3.3)-(3.4). We then show by Lemmas 2

and 4 that this policy is in fact an admissible one in the sense

-t ots
~

of Definition 1, i.e., ® € A. In doing this, we show that m has
the desired monotonicity properties. The next step is to show
(Lemma 5) that the expected discounted return Vn* following this
policy is in fact identical with the unique solution v of the
functional equation (3.3)-(3.4) asserted in Theorem 2. The final
task is then to show that Ve * 2 Vo for all m € A, thereby allowing
us to conclude n is optimal and possesses the economically

meaningful properties asserted in Theorem 3.
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To begin this plan, consider the functional equation
(3.3)-(3.4) possessing the unique solution v as in Theorem 2., For
each x > 0 define c*(x) € C and e*(x) € E as the decisions which
attain the supremum on the right hand side of (3.3); similarly,
define e*(O) € E as the decision attaining the supremum in (3.4),
and define c*(O) = 0, By continuity of u, h, B and v and by com-
pactness of C and E, the suprema are attained. 1In case of ties,
define c*(x) as the smallest and e*(x) as the largest such rates.
Thus, ﬁ*(-) = (c*(-),e*(-)) is a well-defined function from I{+
into C x E.

To show that ﬁ* thus defined is an admissible policy and
that it has the desired properties, it is convenient to introduce

the notation

®
£

(4.1) L(x,e) = -h(e) + J, [v(ty)-v(x) 18 (e,dy)-pv(x),

(x,e)€ R, xE

and

(4.2) K(x) = sup L(x,e), x>0
e€E

so that, exploiting separability of equation (3.3), it may be re-

written in an equivalent form as

(4.3) -K(x) = sup {u(c)-cv’' (%)}, x>0,
c€C

while (3.4) is equivalent to

(4.4) K(0) = 0.

Then ck(x) and ex(x) satisfy
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%.5) u(e @) -c v (x) = -K(x), x>0
and
(4.6) K(x) = L(x,e (x)) x>0 .

We summarize some properties of the function K as

Lemma 1. The map x -+ K(x) is bounded, continuous, and strictly

decreasing on [0,®) with K(0) = O.

Proof: By our previous results and assumptions, L(x,e) is
continuous on [0,®) x E and, therefore, by Theorems 1 and 2 in
Berge [2,p.115-116], K(*) is continuous. Next, for each e € E,
_concavity of v implies that Ja [yﬁx+y)-v(x)]8(e,dy) is nonincreas-
ing, while -pv(x) is strictlyodecreasing in x. Therefore L(-,e)
is strictly decreasing on R, and, hence, so is K(+). We have
already remarked wiyy K(0) = 0. Finally, by continuity and

boundedness of v and L we have

Lim K(x) = sup lim L(x,e)
X e€E x-®

-p lim v(x) > - u(c).
X8
Lemma 2. The consumption policy c%(-) is left-continuous and non-
% *
decreasing on H{+ with ¢ (0) = 0 and ¢ (x) > 0 for all x > 0. It

is, therefore, also admissible in the sense of Definition 1.

Proof: Since -K(x) > 0 for all x > 0 and u(0) = 0, it is clear from
(4.5) that ck(x) > 0 for x > 0. Also, v‘(x) is nonincreasing

in x, so it is straightforward to compare (4.3) and (4.5) and
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%*
check that ¢ (x) 1is nondecreasing in x. By a selection theorem
in Berge [2,p.116], ¢ (°) is lower semi-continuous, so together
%
with its monotonicity, this implies that.c (+) must be left-

continuous, and this proof is completed,

Digressing for a moment in the proof of Theorem 3,
if u is also differentiable, then, by concavity of u(c)-cv’(x),

*
it is necessary and sufficient for ¢ (X) to satisfy

(4.7) u'(c*(x)) = v’/ (x) if c*(x) < ¢, and
u’(©) > v/ (x) if c*(x) =c

As will be shown later, v’(x) is the shadow rent on proven re-
serves and c*(x) is the optimum consumption rate. Equation (4.7)
is then the stochastic analog of the familiar condition that,
under an optimal consumption policy, at each instant of time
the shadow rent must equal the marginal utility of consumption
(the competitive price when the consumers are on their demand
curves).

In order to investigate properties of the exploration

rate function e%(-) we need the following.

Lemma 3. Let f be any nonnegative, nondecreasing, continuous

function on I{ w1th f f(y)s (e, dy) < » for all e€ E. Then

under Assumption 1 the mapping e - J f(y)B(e,dy) is nondecreas-
0

ing on E.
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Proof: First consider a sequence of functions of the form

>
k. y2y

(4.8) g, (¥) =
0=y <y,

for any kn >0, Yp = 0, n=1,2,440,

.

Then, for each n=1,2,..., | gn(y)B(e,dy) = knB(e,[y,@]), which
0

is nondecreasing in e, by Assumption 1. It follows that if

{gl,...,gn} is a collection of functions as in (4.8) and if
n -]

f = = g., then the mapping e - j f (y)B(e,dy) is also non-

n ;5% o B

decreasing on E. By a suitable choice of the sequences {kn}

and {yn}, we may define (gn} and {fn] so that £ 1t f. By the

monotone convergence theorem, we then have

n

J f(y)B(e,dy) = lim I
0 n+e ~ 0

£ (y)8(e,dy), e€E
and, since the limit of nondecreasing functions is also nonde-
creasing, the desired result follows.

Lo

Lemma 4. The exploration policy e%(') is left-continuous and

with lim e (x) = O.
xX-®

nonincreasing on Ii+

Proof: For any x; > x, > 0, we have

L(x,,e) - L(xy,e) = fo £(y)8(e,dy) ~ pv(x,) + ov(x;)
where we have defined

E(y) = [v(aty) ~v(xy)] = [v(xpty) -v(xp]s v 2 0.
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By continuity, concavity and monotonicity of v, £ is nonnegative,
nondecreasing and continuous on R and, since v is bounded and

B(e,I{+) <wo, e€E, f is also integrable. Therefore, by Lemma 3, the

L]
map e - j f(y)p(e,dy) is nondecreasing on E and, hence, so is the

* P
map e - L(xz,e) - L(xl,e). However, this implies e (xl) < e‘(xz),

because, if not, we would have
| 1)) - Llxg.e (x)) 2 Llxyae (5)) = Lixpse’ (x))
L(xpse (x1)) - L{xpse (1)) 2 Lixp.e (% 1°¢ (%)

which would contradict the fact that e*(xl) and e*(xz) maximize
L(xl,e) and L(x2,e), respectively, over e € E. Hence, e*(c) is
nondecreasing on I{+. In addition, by a selection theorem in
Berge [2,p.116], e*(-) is upper semi-continuous on (0,®2), so
e*(-) must be left-continuous. |

Finally, boundedness and concavity of v implies that,
for any y > 0, [v(xty) - v(x)] is nonincreasing in x and tends to
0 as x » ®, An application of the monotone convergence theorem
now yields

lim L(x,e) = -h(e) - p lim v(x).
X X®

Continuity of K(-) and L(-,e), the fact that h(e) > 0, and the
definition of eh(x) in (4.2) now imply that lim ex(x) = 0, thereby
X%
completing this proof.
In particular, if the expoloration cost rate function h(e)
is convex and if the discovery rate measure B(e,dy) satisfies

a second order stochastic dominance condition (viz., e-=*B(e,[y,®))
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is nondecreasing and concave over E),then it is easy to show that
L(x,e) is concave in e€E for all x > 0. 1In addition, if the func-
tions involved are differentiable , then e*(x) may be found by
setting the partial derivative of L(x,e) with respective to e to

* . . . < e
zero, so that e (x), 1f in the interior of E, satisfies

-
0 60 = [ e ve)ls e,

i.e., the marginal exploration cost balances the marginal expected

improvement in the maximum attainable return.

To summarize where we stand in the proof of Theorem 3, the
consumption and exploration policy ﬁ*(-) = (c*(-), e*(-)) defined
by (4.5) and (4.6) is admissible and possesses meaningful proper-
ties. The next two results prove that ﬂ*(-) is in fact an optimal

policy.

Lemma 5. The expected discounted reward V;* = v, where v is as in

Theorem 2.

Proof: By (4.5) and the definition of ﬂ*, it is apparent that v
satisfies (3.1) and (3.2). Note that v is bounded and continuous
on [0,2) and v’ is continuous on (0,®). 1In addition, v'(e)c*(')

is bounded on (0,®), because (4.5) holds and u and K are bounded.
Since Vn* is the unique function which satisfies all these require-

ments by Theorem 1, it must be that Vo = v.
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Lemma 6. For any policy‘ﬁ\EA, Vp S V,*. Hence V"* =V and m° is

an optimal policy.

Proof: Let m€A be arbitrary and subtract the equation (3.1) with
. oL o * L '

m(+) = (¢ (*),e (-)) from that with m(.) = (c(-),e(+)) to yield
p[Vﬂ(x),- Vﬁ*(x)]

= u(c(x))—h(e(x>>+jotv"<x+y)—vn<x)]s<e<x>,dy>-v;<x>c<x>
-u(c*(x)>+h(e*(x))-jotvﬂ*<x+y>-vﬁ*<x3s<e*<x>,dy)+vﬁ*<x>c*<x>

- {U(C(X))'h(e(x))+IO[Vﬁ(X+Y)-Vn(X)]B(e(X),dY)‘Vé(X)C(X)}

3]

1] 1 eay) 00180 (0,80 Vi () e ()

# UV GV (018 (0,80 V14 (00 ()
= {u(e*(x))-h(e*(x) )+g[Vn.k (xty) -V _(x)18(e*(x),dy) -V , (x)e*(x) ],

where we have added and subtracted the same term.

Thus, we have

(4.9) ptvn<x>—vﬂ*<x>1=g<x>+jjo LIV Gaby) =V_* (xby) 1= [V,, () =V, () 1}

Ble(x),dy) - [Vi(x) - Vi*(x)]e(x), x>0
where (recall v = Vﬂ* by Lemma 5)

w

(4.10) g(X)Eg[V(X‘*'Y) -v(x)1p (e (x),dy)-v' (x)c(x)tu(c(x))-h (e (%))

- [ty Gey) =y () 18 (e () ,dy) o () e () ~u (%)) Hh(e* () -
0 ‘ .
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A similar computation for the boundary equation (3.2) yields

4.11) (v (0)-V_%(0)) = g(0) + jo IV, (9) -V (7)1 = [V (0)

- V%(0)138(e(0) ,dy)
‘where, with Vak =V, we have defined

4.12) g(0) = fo [v(y)-v(0)18 (£(0) ,dy) ~h(e(0))

- jo [v(y)-v(0)18 (" (0),dy)+h (e (0)).

We note that g defined by (4.10) and (4.12) is bounded and left-

: * *
continuous. Moreover, by the definitions of ¢ (x) and e (x) as
the functions attaining the maxima in (4.2) and (4.3), we conclude

that g(x) < 0 for all x > 0.

Now, with f = Vi = Viw» We see that £ is absolutely con-
tinuous with a left-continuous derivative on (0,2), If R(0) > -=
under"ﬁ; then Ve and hence f, are continuous at 0. Since V;(-)c(-)
and v’ (-) are bounded on (0,®) (see Theorem 1, Theorem 2, and
Lemma B.10), the same property holds for f’(-)c(-). Comparing (4.9)
and (4.11) with (3.1) and (3.2), respectively, we conclude by Theorem
1 that Vﬁ"VE% is the expected discounted réturn under policy & A
when the immediate return function is given to be g as defined by
(4.10) and (4.12). Since g < 0, we must have Ve < Vo Since M€ A

is arbitrary, m* is an optimal policy and this proof is completed.

Combining Lemmas 2, 4, 5, and 6, we note that the proof of

Theorem 3 is now complete,
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5. DYNAMICS OF THE SHADOW PRICES

As described previously, Cy is thenrate at time t at which
the resource is consumed whiie u(ct) is the utility rate earned

net of any extraction costs. Therefore V(x) is the optimal present
value of future consumption after deduction of extraction and
exploration costs and V' (x) is the shadow price (net of extraction
and exploration costs) of the initial resource deposits of size x.
In absence of any exploration possibilities and uncertainties,

it is well known that the shadow price of the resource (net of

any extration costs) rises at the social rate of discount; see
Hotelling [12], Dasgupta and Heal [6], Solow [22]. Allowing for
resource exploration and the associated uncertainties, the stochas-
tic analog of this result in our model would be that the_expected
rate of increase of the shadow price V'’ equals the discount rate p,

that 1is

E %[V (X)) |X,=x]-V’ (x)
(5.1) 1im — tt o7x = oV (x), x>0 .
t10

By Markov process theory, the limit in (5.1) exists if V'’
is in the domain of the infinitesimal generator of the Markov
process under ﬁ*, in which case this 1limit equals this infinitesimal
generator evaluated at V' (x). Hence this stﬁdy of the dynamics of
the shadow prices proceeds in two steps. First we provide in Lemma 7
some additional assumptions which ensure that V' is in the domain of

4 %, the weak infinitesimal generator of the Markov process under 7",

Then we show in Theorem 4 that &W*V'(x) = pV’'(x) for all x > 0.
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Lemma 7. Suppose u(-) (respectively, h(+)) is continuously twice
differentiable and strictly concave (convex) on C(E). Further-
more, suppose that there exists a weakly continuous kernel B’ (e,dy)

such that

@) =] V) -vI8(e,dy) = | [V(xty)-V(x)18’ (e,dy), and
de 0 0

(ii) —%E I [V(x+y)-V(x)]8' (e,dy) is continuous in e and nonpositive,
0

Then V' is in the domain of }n*' Moreover, c*(') and e*(-) are
continuously differentiable, except possibly at those points
- where their values change from the boundary to the interior of

their range.

Proof: See Appendix C.

The assumptions in Lemma 7 are satisfied in a variety of
simple situations. For example, suppose B(e,dy) = A(e)F(dy),
where X”(-) exists and is continuous and nonpositive. Then B'(e,dy) =
A“(e)F(dy) and the desired properties are satisfied. For a second
example, suppose B(e,dy) = Af(e,y)dy, where X is a positive constant
and f 1is a nonnegative function which is, for each fixed e, a
density function. . If %g is continuous and integrable, then we can
set B’ (e,dy) = X%é(e,y)dy and (i) holds. If, in addition, %zg is

continuous, nonpositive, and integrable, then (ii) holds.

We are now ready to prove
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Theorem 4. Under the assumptions of Lemma 7,

E +[V (X)) |Xs=x]-V' (x)
lim — L0 = V' (x) x> 0.
ti0

Proof: Since V' is in the domain of &ﬂ* by Lemma 7, our objective

is to show that &n*V'(x) = pV’'(x). By Markov process theory and
Appendix A, we know that

(5.2) éﬂ*V'(x) = IO [V'(x+y)—V'(X)]B(e*(x),dy)-c*(x)V'(x), x > 0.

Since V = V% and (3.1) holds, we also know that

(5.3) V() =u(c¥(x))-c¥(x) V' (x)-h(e*(x)) +I0[v<x+y>-v<x>]s<e"‘<x> ,dy) .

By the differentiability assumptions and Lemma 7, we may differen-

tiate (5.3) with respect to x and rearrange the terms to yield,
for x > 0,

(5.4) PV (x) = c*' (x)[u’ (c*(x))-V'(x)]

+ex ([0 (@) + [ Vo)V 18" (4 (0)2dy)]

* {f IV Gey) U (8 (o5 () dy) - ) ¥ <x>} :

We know c*(x) € (0,c]. Let Xg = inf {x : c*(x) =c) < =, If x < x4,

then u’(c*(x)) - V/(x) = 0, by the optimality condition which ¢™(x)

must satisfy. On the other hand, if x > x, the montonicity of c*()
implies c*(x) = c, c#'(x) = 0, Hence,in either case the first term

on the right hand side of (5.4) is zero. By a similar argument,
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the second term is also zero. Consequently, upon comparing (5.2)

with (5.4), it is apparent that we have the desired result.

Thus, the expected scarcity rent on proven reserves rises
exponentially in time at rate p, as in Hotelling [12]. Of course,
in contrast with deterministic models, the actual rents may de-
crease by random amounts at random times (whenever new resource
deposits are discovéred), which is an explanation of why the prices

of natural resources have not always followed Hotelling's theory.

6. CONCLUSION AND EXTENSIONS

We have considered the problem of optimal social management of
the stock of a natural resource when the resource stock on hand
can be increased through exploration but the exploration process
involves uncertainty. Under mild conditions, we have shown that
there exists an optimal policy of consumption and exploration
which maximizes the net expected discounted social benefit. As
functions of the éize of known deposits of the resource, the
optimal consumption rate is shown to be stfictly positive (whenever
possible) and nondecreasing, while the optimal exploration effort
- rate is nonincreasing. We have also studied and characterized
the properties of the optimal net present value and the shadow
prices representing the scarcity rents on the resource deposits.
It would have been interesting to show that, under an optimal policy,
the Doomsday will almost surely never come, i.e., state 0O is inacces-

sible, but we were unable to do this.
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Throughout this paper, our primary emphasis has been on pre-
senting and analyzing a model which explicitly incorporates the
possibilities of and the uncertainties involved in the exploration
process of searching for new resource stocks. In order to focus
on this aspect of economics of natural resources, we have made some
simplifications. Specifically, we have taken the social benefit
function to be separable in the consumption utility and the
exploration costs (as in Arrow [l], Dasgupta and Stiglitz [8]
and Gilbert [10]), which facilitates proving the structure of
optimal policies. Similarly, we do not have any penalty for running
out of the resource, since a requirement such as u(0) = -® leads
to techhical difficulties which we are unable to resolve. We
have also assumed that the various functions representing the con-
sumption utility, extraction costs, exploration costs and the
uncertainties in the exploration process remain time invariant,
which is essential to obtain time invariant optimal policies.

Most importantly, we have assumed that the discovery process depends
only on the exploration effort, regardless of the total resource
stock discovered so far (or of some other measure of the history

of past successes). Consequently, if the total resource stock is
finite, then we are ruling out any possibilities of learning about
its true size and sf revising the expectations of future exploratory
gains on the basis of the amounts discovered thus far, Our

feeling is that over an intermediate planning horizon this seems

reasonable, whereas over longer planning horizons the discount factor
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will diminish the learning effects.

A more accurate model might involve a discovery rate
measure which depends not only on the exploration effort rate e,
but also on the total amount I, discovered so far. This would
require the state of the process to be (Xt,it) with values in Bii,
Unfortunately, a theory of controlled storage przocesses of this
type is not available at present, and we shall pursue this approach
elsewhere. See also Arrow [l]} for an attempt to incorporate
learning in his model.

In conclusion, we have modelled and studied some natural
resource management issues such as the consumption, the necessary
explorétory activity, and the inevitable uncertainties involved.
However, some aspects, such as exhaustibility of the resource and
the learning involved in exploration, are not captured satisfac-

torily, so we hope that the methodology employed in this paper will

be useful in analyzing more complete models of this problem.
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APPENDICES

APPENDIX A - PROOF OF THEOREM 1

The proof of Theorem 1 is based upon the theory of the weak
infinitesimal generators of Markov processes (see Dynkin [9]). The
case where R(0) > - =, that is, where state zero is accessible, has
already been worked out by Morais [19]. Here we are concerned with
an arbitrary policy n€A under which R(0) = = =,

Consider the Markov process {Xt;tzﬁﬂ corresponding to'n; and
let £ be the class of bounded, measurable functions f on ﬂi+ such
that Exf(Xt) @ f(x) as t {0 for all xéIR+,where Exf(Xt) =
E[f(Xt)IXO==x]. Define £ to the set of f€£ such that {Exf(Xt)-f(x)3/t
converges boundedly pointwise on R, ast } 0 to a function (denoted
as #f) in £. Then & is called the weak infinitesimal generator
with domain £ and range £. The main step in thé proof of Theorem 1
is to characterize %, 4, and £. We do this by following the general
method used by Harrison and Resnick [ll, Propositions 3 and 4],
paying attention to just those points where the arguments differ
due to our more general situation.

It is apparent that £ consists of the bounded measurable

functions which are left continuous. Moreover f€# if and only if
5}
(L) £ = B[ exp(-p)g (X )deIX = x]

for some g€<£ and p > 0, so to characterize 5 we shall analyze (Al)
for arbitrary g&€£ and p > 0. 1I1If we condition on Tl’ the time of the

first jump, and denote

t

UG,t) = | exp(-ps)g(qlx,s))ds
(o}



and

W) = [ £(y+z)6(e(y),dz),
(o]

then (Al) becomes, for x > 0,

£(x) = E [U(,Ty) X, =x] + E_[exp(-pT)W(q(x,T1))[X =x]
*® t

= [ A, ))expl-] Aelq(x,5)))ds][UGk,t) +
(o] (o]

exp (_—p_t)w(q(x,t))]dt

X . R(x)-R(7)
= [ CcoNTe@)expl-] A(e(q(x,5)))dsIn(x,y)dy,
(o] (o]

where

m(x,y) = U(x,R(x)-R(y)) + exp[-p (R(x)-R(y))]W(y)

and we have made the change of variable y = q(x,t), so that
t = R(x)-R(y) and -dt = dy/c(y). Now although the variable x appears
in the integrand, the boundedness of m and the absolute continuity
of R and U can be used to demonstrate the absolute continuity of f
on (0,®2). Moreover, a straightforward computation demonstrates
that the left-derivative f’ of f exists and is left-continuous.

| At this point, the steps in the proof of Proposition 4 in
Harrison and Resnick [11l] can be followed fairly closely, the
primary difference being the more general density function associated
with the time T, until the first jump. We thereby conclude that &
consists of all bounded functions f which are absolutely continuous
on (0,®) and have left-continuous left-derivatives f’ on (0,®) such

that c(-)f’(+) is bounded on (0,®). Furthermore, for f&J5,
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i

$£(x) = A(e(x)) I [£(x+y) - £(x)16(e(x),dy) ~c(®)f' (x), x > 0,
o]

2£(0) = A(e(0) | [£(y) - £(0)1G(e(0),dy).
o

Having characterized &, £, and £, the proof of Theorem 1 is
virtually complete. The function u(c(-)) -h(e(-)) 1is bounded and
left-continuous; therefore it is an element of £. By Markov process

theory, V. is the unique element of b satisfying

pV, = u(c) ~h(e) + &Vﬁ'.

Substituting our expression for &, we see that we are done.

APPENDIX B - PROOF OF THEOREM 2

Theorem 2 is very similar to the main result in Pliska [21].
One might suppose, in fact, that his results can be applied to
Theorem 2, but this is not true for two reasons. First, if the state
is positive, then in Pliska [21] the release rate (using storage
process terminology) as a function of the action is bounded away from
zero, whereas here the release rate dictated by the dynamic program-~
ming functional equation can be any element of the interval [0,c].
Second, in Pliska {21], but not here, the cost rate function is
continuous on R x D at the state x = 0.

The basic outline of this proof is the same as in Pliska [21]

and is presented in four lemmas. For each finite number s > 0, define
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B(e,dy), y<s=-x, x<s
Bs(xsede) = B(e’ [S-X,“)), Yy =8 = Xy X <s
0, otherwise

This amounts to defining a new jump measure that depends explicitly
on the state so that jumps which would have landed to the right of
s are transformed into jumps to the point s. This measure is used

in the following.

(B.1) LEMMA. For each pair of finite, positive numbers s and 6 < c

there exists a unique, differentiable function v, on [0,s] which

satisfies
' _ -1

(B.2) V() = sup Lo v, Gety) - v ()18 (x,e,dy)

e€E

- py (%) +u(c) ~h(e)l}, x€(0,s]

and
(8.3) pv (0) = sup ([Iv () - v_(0)18,(0,e5dy) - h(e)}.

e

Moreover, \Q;is nonnegative concave increasing on [0,s] with

v (s) < u(@/e.

Proof. First we observe that by the argument immediately following

Lemma 6 in Pliska [21] there exists a differentiable function v

on [0,s] satisfying (B.2) and (B.3) with vs(s) < u(c)/p. This

solution is unique by the argument used for Theorem 1 in Pliska [21].
Theorem 3 in Pliska [21] is based on a contraction fixed point

theorem, so to show Vg is concave increasing we shall use a successive
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approximations argument, In other words, if f is any concave increas-
ing function on [0,s] with £f(s) = vs(s), then it suffices to show that

- the mapping

x+  sup_ {c [ [[£G+y) - £()] B (x,e,dy) - PE(x) +u(c) - h(e)}
c€[6,c] .
e€E
is nonnegative decfeasing on [O,s].
Now £(x) < u(c)/p, so taking e = 0 when x = s we see the

nonnegativity assertion follows from the decreasing assertion.

Clearly -pf is decreasing. To show the mapping
(B.4) x = [ [£(x+y) - £(x)] B_(x,e,dy)

is decreasing, we shall define for each x > 0

" f(x), x<s
g(x) = {

£(s), x>s,

so that

JIEGety) - £ 18 (x,e,dy) = [[8Gety) - g(x)18 (e, dy)

for all x€[0,s]. Hence 0 < Xy < x, < s implies

2

g(xyty) - 8(x)) 2 g(x,ty) - g(x,)

for all y > 0, so the mapping in (B.4) is decreasing in which case

v, 1ls concave increasing. Finally, taking e = 0 in (B.3) we see

6

that vs(O) > 0, so ve 2 0 and this proof is completed.
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(B.5) LEMMA. For each positive 8 < ¢, there exists a unique bounded,

continuous, real-valued function v, on [0,®) satisfying

8

(B.6) vi(x) = sup_ {c '[[lv, Gxty) - v ()18 (e, dy)
§<c<c

e€E
- pv (x) fu(e) -h(e)]}, x>0

and

(8.7) 5v,(0) = sup (v, (9) - v, (0)18(e,dy) - h(e)}.
e

Moreover, v, has a continuous derivative on (0,®), Vs is nonnegative,

8

concave, and nondecreasing, and vé(x) < u(c)/p for all x > 0.

Proof. Although the boundary condition (B.7) is slightly different,
we can proceed exactly as in Pliska [21,Section 4]. Briefly, for

each s » 0 we define the function

where v is from Lemma (B.l). Then by Pliska's arguments we conclude ;s

converges uniformly as s # ® and the limit v, is the unique solution of

5

(B.6) and (B.7). The continuity properties of v, and its derivative

are by-products of Pliska's arguments. The remaining conclusions

of this lemma follow immediately from Lemma (B.1).

(B.8) LEMMA. For each x > 0, lim v, (x) exists. The function

)
540
v on [0,®) defined by v(x) = lim vé(x) is nonnegative, concave,
510

and nondecreasing with v(x) < u(c)/p for all x > 0. Moreover, v has

a continuous derivative on (0,®) and satisfies (3.3) and (3.4).

Proof. Although the boundary condition (B.7) is slightly different,
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we may use the methods in Morais [19, Chapter IV] to conclude that

. v, may be interpreted as the maximum expected discounted reward for

6
a problem that is identical to the one we formulated in Section 2
except that the consumption rates are restricted to being greater
than or equal to &6 for all values of x > 0. Hence, as we enlarge
the set of admissible controls, the maximum expected discounted

reward will increase, that is, v, is decreasing in 6. Since

6
Véi u(c) /e, %%g Ve exists. In view of Lemma (B.5), this limit v is
nonnegative, concave, and nondecreasing with v(x) < u(c)/p for all
x > 0.

It remains to show v has a continuous derivative and satisfies
(3.3) and (3.4). Let € > 0 be fixed and consider, for t > €, the
equation
(B.9) v, (t) = v, (&) + J; £, (x)dx,
where fé(x) equals the right-hand side of (B.6). Now fé(x) con-
verges to f(x), which is defined to be equal to the right-hand side
of (3.3), as 6 | 0. The sequence {fﬁ(é)} is bounded (or else con-
cavity and 0 < v, = u(c)/p would yield a contradiction), so {féj

is bounded on [€,t]. Hence by the bounded convergencé theorem we

can let 6 | 0 in (B.9) and conclude
: t
v(t) = v(€) + J f(x)dx.
€
In other words, v satisfies (3.3) and has,since f is continuous, a

continuous derivative on (0,®). Letting 6 ¢ 0 in (B.7) demonstrates

(3.4), so this proof is completed.
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We do not know yet whether v is continuous at x = 0 nor whether
(3.3) and (3.4) have a unique solution. These matters are clarified

in the following.

(B.10) LEMMA. The function v of Lemma (B.8) is continuously dif-

ferentiable on Ii+ and is the unique solution of (3.3) and (3.4).
Proof. If we emulate (4.1)-(4.3) and Lemma 1 by defining

R, (x) = sup {[[v, Gety) - v, (x)]8(e,dy) - ov, (x) ~h(e)}, x > 0,
e€E
then we see that Ké(x) < 0 and (B.6) is the same as

Ké(x)+u(c)

C

vg(x) =  sup_
6<c<c

Hence, vé(x) < sup_ {u(c)/c} < u’(0) by the concavity of u, so
§<c<c

vg(O) exists and is bounded above by u’(0) for all & > 0. Since

v, t vas 6 | 0, it follows that v is continuous at x = 0. 1In

8

addition, since v’(-) is nonincreasing, lim v’ (x) exists, so v’ (-)
x40
must also be continuous at x = 0. Finally, uniqueness follows as

in Pliska [21, Theorem 2].

Except for the strictly increasing property of v, all of
Theorem 2 now follows from the preceding lemmas. To see that this
remaining property holds, suppose not. Then there exists some
X > 0 with v/ (x) = 0 and v(x) = v(x) for all x > X. By functional
differential equation theory, this implies v(x) = v(x) for all x > 0.

Hence, looking at (3.3), we see that v must satisfy
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. _
G(x) = max [ [V(xty) - V(x)18(e,dy) - h(e)}.
e€E o
We know e*(x), the value which attains this maximum, is nonincreasing
' * —
with respect to x, so for some 0 < X < X, < = we have e (x) = e on

K — % —
[O,xl], 0 < ek(x) < e on (xl’XZ)’ 0 <e (XZ) < e, and ex(x) = 0 on

(xz,“). On [O,xl] we have
©.4) 6 @) = [ [V GHy) -V @18 &x),dy),
(o}

so G'(+) is bounded and continuous on [O,xl) by property (C.1l).
The same result holds on (xz,a). On (xl,xz], finally,we know

by the hypotheses of Lemma 7 that ex(x) satisfies

[ tvaety) - v 187 (¥ () ,dy) ~h' (e (x)) = 0
(o}

and that the implicit function theorem can be applied to conclude

o,

eﬁ(-) is continuous with a continuous derivative and G'(x) is given
by (C.4). Hence, in summary, e*(‘) and G’ (+) are bounded and con-
tinuous on all of R, whereas the derivative of e*(°) is continuous
on R, except, possibly, at Xy and X,

The next step in the proof of Lemma 7 is to make a similar
analysis of c*(°). We know that c*(') is nondecreasing and c*(x)
is the value which attains the maximum in

(€c.5) V'(x) = max {‘szlggﬁgl }

c€C

2

where K(x) = G(x) - pv(x) was defined in (4.2). 1In this case there

exists some X3 < ® such that 0 < ck(x) < ¢ on (O,x3) and cx(x) =c

on [x3,ﬁ). On [x3,“) we must have



- 40 -

.6) V'(x) = B

c (x)

' *
On the other hand, for xé(O,x3) we know that ¢ (x) satisfies

€.7) < @)u’ (¥ (x)) -Kx) -uc ®)) = 0,

so applying the implicit function theorem we conclude ch(~) is
continuously differentiable on (0,x3) with lim cﬂ(x) = c.
X9X
3

Hence ¢ (*) is continuous on R, with a derivative that is con-
tinuous except, possibly, at x,. Substituting c*(x) in (C.5), dif-
ferentiating, and then using (C.7), we see that (C.6) must be
satisfied on all of I{+. Noting by the preceding paragraph that
R'(-) is bounded and continuous, we conclude that V' satisfies

properties (C.2) and (C.3), thereby completing the proof of Lemma 7.
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