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ABSTRACT

IPTV service providers offering Video-on-Demand currently

use servers at each metropolitan office to store all the videos

in their library. With the rapid increase in library sizes, it will

soon become infeasible to replicate the entire library at each

office. We present an approach for intelligent content place-

ment that scales to large library sizes (e.g., 100Ks of videos).

We formulate the problem as a mixed integer program (MIP)

that takes into account constraints such as disk space, link

bandwidth, and content popularity. To overcome the chal-

lenges of scale, we employ a Lagrangian relaxation-based

decomposition technique combined with integer rounding.

Our technique finds a near-optimal solution (e.g., within 1-

2%) with orders of magnitude speedup relative to solving

even the LP relaxation via standard software. We also present

simple strategies to address practical issues such as popular-

ity estimation, content updates, short-term popularity fluc-

tuation, and frequency of placement updates. Using traces

from an operational system, we show that our approach sig-

nificantly outperforms simpler placement strategies. For in-

stance, our MIP-based solution can serve all requests using

only half the link bandwidth used by LRU or LFU cache

replacement policies. We also investigate the trade-off be-

tween disk space and network bandwidth.

1. INTRODUCTION

Content and network service providers are facing an
explosive growth in the demand for Video-on-Demand
(VoD) content. To counter this and to scale the distri-
bution, they are building out Video Hub Offices (VHOs)
in each metropolitan area to serve subscribers in that
area. Each of these offices has a large number of servers
to store and serve videos. These offices are inter-connected
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using a high-bandwidth backbone. To deal with the
high demand, providers currently replicate the entire
library in all the locations. This allows them to circum-
vent problems such as content popularity prediction and
overload due to flash crowds.

Despite disk space being plentiful and affordable for
today’s libraries, we believe that this approach is not
only wasteful, but also economically infeasible. The cost
of a gigabyte of storage is going down; however, the
video libraries are also growing [6]. The rate of creation
of content, the ever-increasing demand for high-quality
content (e.g., high-definition, 3-D video), and the space
needed to store them appears to be outpacing the ability
of providers to economically add storage and replicate
content everywhere.

Multiple studies [8,12] have observed “long tail” prop-
erties in the popularity of videos; this means that a large
number of videos are requested infrequently. Hence
storing copies of these videos in all locations is overkill.
Inspired by this, we consider the problem of placing
on-demand videos at the VHOs of a large-scale IPTV
system. Our goal is to treat these VHOs as part of
a large distributed store and distribute videos among
them such that we can serve all users’ requests, and do
so efficiently. The problem of placing video content in
large scale is quite challenging. It requires predicting
what content is going to be popular, when it is going to
be popular and where it is going to be requested most.

The traditional approach to address this problem is to
take advantage of the skew in request popularity and use
caches, as in applications such as DNS and Web [10,16].
When using caches, each video is replicated at a few lo-
cations. When a requested video is locally unavailable
(cache miss), the video is fetched from a remote location
that has a copy, and is then cached locally. When the
cache at a location is full, videos are replaced using a
replacement policy [15]. Thus, caches allow the system
to dynamically adjust the number of copies of videos
according to their current popularity. Caching, how-
ever, is extremely dependent on the size and stability
of the working set (i.e., items being actively accessed at
a given time). A cache miss imposes significant burden
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on the system in the context of VoD as this results in
a high-bandwidth stream transferred for an extended
period of time. Further, a video being viewed needs
to be retained in the cache for the length of the video,
thereby occupying the cache for a long period. As we
show in Section 4, the working set size can be quite large
in typical VoD deployments and changes dramatically
over time. This means that the caches have to be fairly
large for them to be useful over long periods.

Another approach to video content placement is to
employ optimization-based techniques [3, 6, 18]. How-
ever, most existing schemes are based on unrealistic
simplifying assumptions (e.g., same demand pattern from
all locations), a particular class of networks (e.g., tree
topology), or heuristics to make the problem tractable.
Also, many of them do not consider link capacity con-
straints, which is a crucial aspect in delivering high-
quality videos for an extended period of time. Without
link bandwidth constraints, the problem is a variety of
facility location [3]. Adding them introduces the aspect
of multicommodity flow [11], which makes the models
computationally much more difficult. In this paper, we
seek a general framework that can scalably find a place-
ment solution optimized for all the videos in the library

across all locations with an arbitrary network topology

and video demand pattern.

We propose to pre-position videos so as to minimize
the system resource usage while serving all requests and
satisfying all disk and link capacity constraints. Our ap-
proach also enables us to explore the trade-off between
the disk capacity requirement at each VHO and band-
width. When a requested video is not available locally,
we take advantage of the high-speed backbone to satisfy
the request from a remote VHO.

We use a mixed integer programming (MIP) formu-
lation to determine the placement of videos. The solu-
tion of the MIP tells us how many copies of each video
are needed and where each copy should be placed so
as to minimize the total network bandwidth consump-
tion. However, due to the scale of the problem, we
find that even the linear programming (LP) relaxation
of our MIP is too large for off-the-shelf software (e.g.,
CPLEX) to find an optimal solution within a reasonable
time. For instance, it took CPLEX more than 10 days
to optimally solve an instance with 5K videos and 55
VHOs. We overcome this by employing a decomposition
technique based on Lagrangian relaxation [5]. We thus
obtain a near-optimal LP solution orders of magnitude
faster (Section 5.3), and then use a rounding heuristic
to convert it into a solution for our MIP.

Our algorithm is practical to run on realistic instances,
even though there is no sub-exponential bound on the
worst-case running time of our rounding heuristic (Sec-
tion 5.4). In practice, the bulk of our running time
is spent in solving the LP, not in the rounding phase.

While producing the LP solution, our algorithm simul-
taneously proves a lower bound on the objective value of
the optimal solution, via Lagrangian relaxation. There-
fore, by comparing the objective value of our final inte-
ger solution with this lower bound, we can bound the
gap between our solution and the optimal one. For the
instances we have studied, arising from real-world large-
scale systems, we have observed that the solutions are
near-optimal (e.g., typically within 1-2%). However, we
have not proven any worst-case performance guarantee
for our rounding heuristic, so there may be some in-
stances that exhibit worse optimality gaps.

For real-world applicability of the MIP-based strat-
egy, we present a number of simple strategies to address
practical issues (Section 6). Specifically, the MIP re-
quires the demand for each video as an input. We make
use of request history to predict the demand for videos.
This, however, only lets us predict demand for videos
already in the library.1 In this paper, we use a simple
strategy where we identify a similar video in the past
(e.g., same TV series show) and use its request history
to predict the demand for a new video. Our experi-
mental results show that our simple strategy is quite
effective. To overcome errors in our prediction, includ-
ing unexpected flash crowds, we make use of a small
LRU-cache at each location.

We have performed extensive simulations using real
trace data from a nationally deployed VoD service and
synthetic trace data generated from YouTube crawls [8].
Our results show that our approach outperforms exist-
ing caching schemes (Section 7). For the same amount
of disk space, our approach only requires a little more
than half the peak bandwidth as LRU or LFU schemes.
The total number of bytes transferred is also signifi-
cantly lower. Our results confirm that the approach
scales well and can be used in practice to place libraries
with hundreds of thousands of videos.

2. RELATED WORK

Content replication has been a topic of extensive re-
search. There exists a large body of work related to
file placement, which typically focuses on a relatively
small system connected through a local area network.
We refer readers to the survey by Dowdy and Foster [9]
and the references therein. Zhou and Xu [20] consider
the problem of minimizing the load imbalance among
servers subject to disk space and network bandwidth
constraints. However, they only consider egress link ca-
pacity from servers. Our focus is different in that we
consider the link constraints inside a backbone network.

There have also been several efforts to address the
problem of content placement. Valancius et al. [18] pro-
pose an LP-based heuristic to calculate the number of

1Predicting the popularity of new videos is an active area of
research [2,14].



video copies placed at customer home gateways. Borst
et al. [6] focus on minimizing link bandwidth utilization
assuming a tree structure with limited depth. They for-
mulate an LP and observe that assuming symmetric link
bandwidth, demand, and cache size, they can design a
simple local greedy algorithm that finds a solution close
to optimal. Both proposals focus on a particular net-
work structure (e.g., tree) that is applicable for the dis-
tribution network to consumers. In contrast, our work
considers arbitrary networks with diverse disk and link
bandwidth constraints, where different locations show
different video request patterns. Our work is there-
fore applicable for content placement in the backbone
as well. We also consider popularity change over both
short and long term, which poses a significant challenge
in maintaining link bandwidth constraints.

Baev et al. [3] consider the data placement problem

where the objective is to minimize the cost without tak-
ing bandwidth into account. They prove their problem
is NP-hard via a reduction to the uncapacitated facility
location problem, and present a 10-approximation algo-
rithm for the case of uniform-length videos. They also
show that for the non-uniform case, even deciding feasi-
bility is NP-hard, so no approximation algorithm is pos-
sible unless P=NP. Our problem is strictly more com-
plex, since we also consider link constraints. Since the
data placement problem is a special case, our problem
is also NP-hard, and suffers from the same inapprox-
imability result. This motivates our decision to design
an algorithm with per-instance performance guarantees,
since proving an approximation guarantee applying to
all instances would imply that P=NP.

Content Distribution Networks have also been the fo-
cus of recent research. Qiu et al. [16] consider the prob-
lem of positioning web server replicas to minimize the
overall cost. Others have focused on ways to direct user
requests to replicated servers (also known as request

routing) [1, 4]. Most existing work, however, focuses on
minimizing latency given constraints (e.g., server capac-
ity), but do not consider replicating individual content
while taking into account backbone network bandwidth.

Peer-to-peer (P2P) based schemes that reduce the
backbone bandwidth usage have been proposed for VoD
delivery [13]. However, such peer-to-peer systems still
need to use VoD servers when content delivery from
peers is not possible. Thus, our work is complemen-
tary to these since we consider how to place content
on the VoD servers. Zhao et al. [19] focus on evalu-
ating network bandwidth requirements for a single file
when they vary tree construction and streaming deliv-
ery strategies in different network settings. By contrast,
we focus on how to consider the skew in content pop-
ularity and replicate content to minimize the backbone
network bandwidth consumption.
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Figure 1: Typical architecture for IPTV service.

3. SYSTEM ENVIRONMENT

We assume a typical IPTV network with an asso-
ciated VoD service in which the provider has offices
(i.e., VHOs) in multiple metropolitan areas that are
connected via a high-bandwidth backbone. Each office
may cover one or more cities; we use the term “metro
area” to describe all the cities serviced by a single office.
Each of these offices has a certain amount of storage,
which may be the same across all offices or may vary
based on the size of the metro area (we experimentally
study the effect of this heterogeneity.) We consider a
scenario where each office has storage space to hold only
a subset of the videos offered through the catalog. A
VHO receives and satisfies all the requests from users
in its metro area. In case a video is not available at the
local office, we assume that the system has the ability
to deliver the video from a remote office to satisfy the
user’s request transparently. In this case, we assume
a pre-determined path between the VHOs (e.g., based
on shortest path routing), which is more realistic than
arbitrary routing [11]. Figure 1 shows a typical setup.

It is important to note that the links between offices
need not be dedicated for the VoD service and may be
shared with other services. Similarly, only a portion
of storage space may be available for the VoD service.
Hence, the goal of our work is to find an optimal op-
erating point which balances the trade-off between the
amount of storage space used and the amount of net-
work bandwidth needed, while satisfying all requests.
Also note that while we have considered a typical IPTV
environment in this paper, our solution is applicable to
a CDN setting where a user’s request can be dynami-
cally directed to any CDN location.

4. CHALLENGES

In this section, we show why content placement is
challenging and provide evidence that using simple cache
replacement policies alone will not suffice. Our analysis
uses traces from a nationally deployed VoD service.
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Figure 2: Working set size during peak hours.
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Figure 3: Similarity in videos requested during

different time windows.

4.1 Large working set sizes

In Figure 2, we count the number of distinct videos
requested from each VHO (i.e., the “working set”) dur-
ing the peak hour of a Friday and a Saturday (the two
busiest days of the week). We observe that the work-
ing set size (disk space) for certain VHOs is large com-
pared to the entire library size. The maximum is around
25% of the entire library, and about 10 of the VHOs
see requests for almost an eighth of the library size.
Thus, a proportionally large cache is necessary to store
these videos. We also show the impact of a simple LRU
caching policy on the miss ratio in Section 7.

4.2 Time-varying demand pattern

We observe from VoD request traces that the demand
pattern for videos at each VHO significantly changes
even over short periods of time. To quantify this (rel-
atively rapid) change in request pattern, we use the
cosine similarity metric that is commonly used in In-
formation Retrieval.2 For a given time window size, we

2Given two vectors v1 and v2, the cosine similarity is v1·v2

|v1||v2|
.

The value is between [0, 1], with 1 indicating that the two
vectors are alike.

partition the entire time duration into multiple inter-
vals of the same size. Then, for each interval, we model
the request pattern at a VHO as a vector composed of
the request count for each video during the interval. In
Figure 3, for each VHO, we compute the cosine simi-
larity between the vector for the interval containing the
peak demand instant and the vector for the previous in-
terval. We also vary the time window size to change the
aggregation time granularity. We observe that while the
request mix is similar across days, there are significant
differences in the request mix as the time window size
decreases. This indicates that caches employing simple
replacement policies have to be provisioned carefully as
it can result in significant ‘cycling’ of the cache.

5. MIP FORMULATION

In this section we formulate the mixed integer pro-
gram (MIP) we use to determine the optimal content
placement. Given a request pattern for each video at
each VHO over a time period, our goal is to find a video
placement that minimizes the total network consump-
tion while satisfying all user requests within the link
bandwidth and disk capacity constraints.

5.1 Input parameters

Table 1 summarizes the symbols used and their mean-
ing. The top section lists the input parameters, which
our MIP treats as fixed. Let V denote the set of VHO
locations, L the set of directed links between these lo-
cations, and M the set of videos in our catalog. The set
of time slices at which we enforce the link bandwidth
constraints is T . Each VHO i has disk capacity Di,
and the size of video m is sm. For each pair of VHOs
i, j ∈ V , we assume that there is a fixed directed path
Pij from i to j. For the purposes of the MIP, only the
set of links used in the path matters (not their order),
so we take Pij ⊆ L. Serving a request locally requires
no links, so Pii = ∅. The capacity of link l ∈ L is
Bl, while the bit rate of video m ∈ M is rm (both in
Mbps). For each video m ∈ M , VHO j ∈ V receives
am

j requests during the entire modeling period, but at
any given time slice t ∈ T , the number of concurrent
streams is fm

j (t). This includes not only the requests
initiated at time t, but also those that start before t and
are still being streamed.

We denote the cost of serving one GB of video from
i to j by cij . We focus on the scenario where the cost
of remote service is proportional to the number of hops
between i and j. Specifically, we use:

cij = α|Pij | + β, (1)

where |Pij | denotes the hopcount from VHO i to VHO
j, α the cost of transferring video over any link in L,
and β a fixed cost for serving a request locally at any
VHO (e.g., lookup cost). While we expect that the



values of α and β would, in practice, take into account
the monetary cost of storing and transferring the video,
we show in Section 5.2.1 that the actual values do not
affect which solution is optimal.

5.2 MIP model

Our MIP model has just two types of decision vari-
ables. For each VHO i ∈ V and each video m ∈ M , ym

i

is a binary variable indicating whether we should store
m at i (i.e., yes, if ym

i = 1; no, if ym
i = 0). When a re-

quest for video m arrives at VHO j, it is served locally
if the video is stored at j; otherwise, it must be fetched
from some other VHO storing m. If there are multiple
such VHOs, then j chooses which one to use. The vari-
able xm

ij tells what fraction of requests should be served
from VHO i. In the event that the {xm

ij }i∈V are strictly
fractional for some m ∈ M , j ∈ V , there are multiple
approaches to implement it in practice (e.g., weighted
round-robin, interleaving, etc.). In our experiments, for
simplicity we select a server i (that has video m) at ran-
dom with probability xm

ij and fetch the entire video m

from i. If xm
jj = 1, this means that j serves the requests

itself (because it has the content locally).
Our objective for the content placement problem is

to minimize the cost of the total byte transfer, subject
to disk space and link bandwidth limits. This can be
formulated as the following MIP:

min
∑

m∈M

∑

i,j∈V

smam
j cijx

m
ij (2)

s.t.
∑

i∈V

xm
ij = 1, ∀m ∈ M, j ∈ V (3)

xm
ij ≤ ym

i , ∀i, j ∈ V, m ∈ M (4)
∑

m∈M

smym
i ≤ Di, ∀i ∈ V (5)

∑

m∈M

∑

i,j∈V :

l∈Pij

rmfm
j (t)xm

ij ≤ Bl, ∀l ∈ L, t ∈ T (6)

xm
ij ≥ 0, ∀i, j ∈ V, m ∈ M (7)

ym
i ∈ {0, 1}, ∀i ∈ V, m ∈ M (8)

The objective expressed by (2) is to minimize the
overall cost of serving all the requests, in terms of net-
work consumption, for the entire period. Constraint (3)
ensures that the total fraction of requests served locally
and remotely is 1, for each <video,VHO> pair. Con-
straint (4) captures the fact that location i can serve
video m only when it has chosen to store a copy lo-
cally. Constraint (5) reflects the limited disk space at
each VHO, while constraint (6) captures the bandwidth
limit for each link at each time slice. We include con-
straint (8) because we always store either the entire
video or none of it at a VHO. If we wanted to break up
videos into chunks and store their pieces in separate lo-
cations (as typically considered in some other studies),

parameter meaning
V set of VHOs (vertices)
L set of directed links
M set of videos (mnemonic: movies)
T set of time slices
Di disk capacity at i ∈ V (in GB)

reserved for fixed storage
sm size of video m ∈ M (in GB)
Pij set of links on path used by i ∈ V

to serve requests at j ∈ V
Bl capacity of link l ∈ L (in Mbps)
rm bitrate of video m ∈ M (in Mbps)
am

j aggregate # of requests for video
m ∈ M at VHO j ∈ V

fm
j (t) # of requests for video m ∈ M at VHO

j ∈ V that are active at time t ∈ T
cij cost of transferring one GB from i ∈ V

to j ∈ V

decision
variable meaning

ym
i binary variable indicating whether to

store video m ∈ M at VHO i ∈ V
xm

ij fraction of requests for video m ∈ M
at j ∈ V served by i ∈ V

Table 1: Input parameters and decision variables

used in the MIP

we could accomplish that by treating each chunk as a
distinct element of M . Constraints (3) and (4) combine
to ensure that every video is stored in at least one VHO.
(That is, they imply

∑
i∈V ym

i ≥ 1, ∀m ∈ M .)

5.2.1 Cost coefficients matter little

In (1), we introduce two coefficients α and β for the
cost of serving content. In fact, since all feasible solu-
tions satisfy Constraint (3), we can prove the following.
(We omit the proof for the lack of space.)

Proposition 5.1. The set of optimal solutions is in-

dependent of the values α and β in (1), provided α > 0.

5.2.2 Transfer cost due to video placement

The above objective function (2) only considers trans-
fer cost due to video requests. However, realizing a
placement solution requires transferring videos to the
location. Suppose we have a placement solution where
i stores a copy of video m. Let us assume there is an ori-
gin o for all videos and the transfer cost between o and
i is coi. We can easily account for this cost by including
a second term in our objective function:

∑

m∈M

∑

i,j∈V

smam
j cijx

m
ij + w

∑

m∈M

∑

i∈V

smcoiy
m
i , (9)

where w is a parameter that allows a different weight
given to the additional transfer cost. For example, with
w=0, (9) reduces to (2), and with w=1, we treat the
transfer due to placement the same as any transfer due
to a user request. Note that the initial placement of
videos into the library is done before being made avail-
able to users. This can be achieved in multiple ways



(e.g., using DVDs or using spare capacity, without re-
gard to real-time deadlines). However, incremental up-
dates to implement a new solution can potentially in-
cur considerable cost. We use the equation (9) when we
evaluate the impact in Section 7.8.

5.3 Finding a Fractional Solution

As mentioned in Section 2, finding an optimal so-
lution to the above MIP is NP-hard [3]. Instead, we
first solve the LP obtained by relaxing the integral con-
straint (8) to be just ym

i ≥ 0, allowing fractional values
for ym

i . Then, based on the fractional solution, we ap-
ply a rounding heuristic to obtain an integer solution,
as described in Section 5.4.

Although LPs can be solved in polynomial time, our
instances are too large to solve efficiently even with a
state-of-the-art commercial LP solver. To overcome this
challenge, we use an approach based on the potential
function method described by Bienstock [5]. This ap-
proach computes a solution to the LP that strictly sat-
isfies all of the constraints and achieves an objective
value that is provably within 1% of optimal.

The basic idea is to use Lagrangian relaxation to re-
lax the disk space and link bandwidth constraints ((5)
and (6)) and incorporate these terms into the objective
function using Lagrangian multipliers. This causes the
LP to decompose into a bunch of independent (frac-
tional) uncapacitated facility location problems [7], one
for each video. The Lagrangian multipliers are exponen-
tial in the violations of the relaxed constraints, and are
also used to define a potential function that we minimize
using gradient descent. We iteratively find solutions to
the 1-video sub-problems and update the overall solu-
tion and Lagrangian multipliers, using a line search to
improve the potential function.

In addition, after every fixed number of ordinary it-
erations, we identify a subset of variables with non-
negligible values in the overall solution. Then, we find
a feasible fractional solution from a restricted version of
the original LP consisting of only those variables, which
is typically much smaller than the full LP. Also, by us-
ing the optimal dual variables from the restricted LP,
we can obtain very good lower bounds, which allow us
to check how close our current solution is to optimal
and terminate if the gap is within the desired 1%.

On the instance mentioned earlier, while CPLEX used
over 100 GB and yet could not solve in 10 days, our code
uses 1 GB and takes about 1 hour to find a feasible frac-
tional solution whose objective is within 1% of optimal.
Both experiments were run on a machine with a 64-bit
1.5 GHz Itanium processor and 256 GB of memory.

5.4 Rounding

Based on the fractional solution, we round the frac-
tional ym

i to integer values by sequentially solving a MIP
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for each video m, processed in order of decreasing total
demand. If all of the ym

i for video m are already inte-
ger, the ym

i and xm
ij are unchanged. Otherwise they are

replaced with the solution to a MIP which minimizes
the cumulative increase (over the videos processed so
far) in the disk (5), link bandwidth (6), and objective
(2), while enforcing the service constraints (3) and (4)
and variable bounds (7) and (8). (Since our goal is to
minimize the exceedence over the disk and link capac-
ity limits as well as the fractional solution objective, a
decrease is not rewarded, but an increase is penalized.)
Since the impact of rounding ym

i on the disk constraint
(5) depends significantly on the video size sm, we main-
tain separate cumulative increases for each value of sm.

This MIP for rounding video m is an (integer) unca-
pacitated facility location problem with piecewise-linear
costs. Even though these MIPs are NP-hard, they tend
to be very easy to solve in practice. In our experi-
ments, the entire rounding process, solving a MIP for
every video m with a fractional ym

i , only took about 5
minutes. Also, although there is no guarantee for the
performance of this rounding heuristic, it only leads to
around 1-2% overage for disk, link bandwidth, and the
objective when compared to the fractional solution for
the instances we studied.

6. PRACTICAL CONSIDERATIONS

We address a number of practical considerations for
the algorithm design and parameter selection in real-
world deployments in this section.

6.1 Demand estimation

Our MIP formulation needs the demand for videos to
compute placement. This, however, is not known a pri-

ori. Our approach is to use the recent history (e.g., the
past 7 days) as a guide to future demand for the videos.
We use this history as an input to our formulation.

While history is available for existing videos, new
videos are added to the library continually. Further,



from our analysis, we find that many such newly added
videos receive a significant number of requests. Hence
we also need to address the problem of placement of
new content into the system. While demand estimation
for such new videos is an active area of research [2, 14]
and beyond the scope of this paper, we use a simple
estimation strategy. It is based on the observation that
a significant number of the newly added videos belong
to TV series, and that videos from a TV series exhibit
similar demand patterns. Figure 4 presents the daily re-
quest count for different episodes of a particular series
show during one month. Although there is some vari-
ation, we observe considerable similarity in the request
volume for each episode of the series. For instance, on
the day of release, episode 2 was requested around 7000
times, and episode 3 around 8700 times. In our system,
we base our demand estimate for a new episode of a TV
series on the requests for the previous week’s episode of
the same series (e.g., request pattern of episode 2 is
used as demand estimate for episode 3). We show the
effectiveness of our approach in Section 7.8.

We use another simple estimation strategy for block-
buster movies. From exogenous information [2], we
assume that we are informed of a list of blockbuster
movies (e.g., 1–3 movies each week). Then, we take the
demand history of the most popular movie in the pre-
vious week and use it as the predicted demand for the
blockbuster movies that are released this week.

Complementary caching: While TV shows and
blockbuster movies account for the majority of requests
for new videos — series episodes account for more than
half of the requests for new releases — we still do not
have a demand estimate for the remaining new videos
(music videos, unpopular movies, etc.). Our current
system uses a small LRU cache to handle load due to
new releases for which we do not have estimates. This
cache also handles unpredictable popularity surges to
some videos (which is often why LRU caches are used).

6.2 Time-varying demand

We observe that the request pattern changes quite
significantly over time, both in aggregate intensity and
its distribution over the individual items in the library.
For instance, users typically make significantly more re-
quests on Fridays and Saturdays, while the traffic mix
during the peak intervals on those two weekend days are
quite different. The bandwidth required to serve these
requests will correspondingly vary when they are served
from remote VHOs. The placement should be able to
handle such change and still satisfy the link constraints
throughout the entire time period that the placement
would remain before it is re-evaluated.

While accounting for link utilization at all times (e.g.,
each second during a 7-day interval) might guarantee
that we never exceed the link constraint, it makes the

problem computationally infeasible as the number of
link bandwidth constraints (6) is proportional to the
number of time slices in |T |. We find that the demand
during non-peak periods does not overload any links.
Therefore, we identify a very small number of peak de-
mand periods (typically, we use |T | = 2) for which to
enforce the link constraints. Picking the size of time
window to compute load is also critical. If we pick a
small time window, we may not capture the representa-
tive load and hence will not place videos appropriately.
If we use a large window, we may considerably over-
provision capacity for our MIP to become feasible. We
examine this consideration by experimenting with sev-
eral window sizes in Section 7.7.

6.3 Placement update frequency

Another consideration is the frequency of implement-
ing a new placement using our algorithm. While updat-
ing our placement more frequently allows the system
to adapt to changing demands and correct for estima-
tion errors more gracefully, each update incurs over-
head, both in computing the new MIP solution and mi-
grating the content. We evaluate the trade-off between
more and less frequent updates in Section 7.8.

7. EXPERIMENTAL RESULTS

We evaluate the performance of our scheme and study
various “what-if” scenarios through detailed simulation
experiments. We compare our scheme against existing
alternatives of using a least recently used (LRU) or a
least frequently used (LFU) cache replacement strategy.

7.1 Experiment Setup

We perform our experiments using a custom built
simulator. By default, we use a 55-node network mod-
eled from a backbone network of a deployed IPTV ser-
vice. The network has 70+ bi-directional links connect-
ing these locations. We assume that all these links have
equal capacity; however, we vary the actual value to
understand the trade-off between disk capacity and link
bandwidth. Similarly, we focus on the scenario where
all VHOs have equal disk space, but also present re-
sults where VHOs have heterogeneous disk capacities.
To simulate user requests, we use one month’s worth
of VoD request traces from a nationally deployed VoD
service. This trace contains requests to various types of
videos, including music videos and trailers, TV shows,
and full-length movies. For simplicity, we map these
videos to four different video lengths: 5 minutes, 30
minutes, 1 hour, and 2 hours and assume that we need
100 MB, 500 MB, 1 GB, and 2 GB respectively for stor-
ing them on disk. We assume that all videos are of stan-
dard definition and stream at 2 Mbps. We start with a
baseline scenario of a backbone network with each link
being 1 Gbps and the aggregate disk capacity across all
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Figure 5: Peak link bandwidth utilized, mea-

sured every five minutes.

VHOs being 2 times the entire library size. We then
vary many of the parameters to understand the various
trade-offs and sensitivity of the system.

In our experiments, we use our MIP formulation to
place the videos in the VHOs. Unless stated otherwise,
we update our MIP-based placement every week using
the video requests in the previous 7 days as history. We
assume time windows of 1 hour each across two time
slices to capture the link constraints. For comparison,
we simulate three alternative approaches:

• Random + LRU: For each video, we place one copy
at a randomly chosen VHO. The rest of disk space
in each VHO is used for LRU cache.

• Random + LFU: This is similar to Random +
LRU, but uses LFU instead of LRU.

• Top-K + LRU: We replicate top K videos at every
VHO. The remaining videos are assigned randomly
to one location. The remaining disk space at each
location is used for LRU cache. This is a highly
simplified version of [18].

Due to the local cache replacement in all the alternative
approaches, if a VHO does not have a local copy of a
requested video, it is difficult in practice for the VHO to
find which VHO is best to fetch the video from. In our
experiments, we assume the existence of an Oracle that
can tell us the nearest location with a copy of the video,
which is the best case for caches in terms of minimizing
the total bandwidth consumed for the transfer.

7.2 Performance of our MIP scheme

In the first experiment, we solve an MIP instance and
place the videos according to that solution. Then, we
play out the request log based on the solution. For
each week, we construct a new parameter set based on
previous week’s demand history and recompute a new
MIP instance. We use a link capacity of 1 Gbps for
MIP constraints. The aggregate disk space is around 2
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averaged over five minutes.

times the entire library size. Of this, around 5% of the
disk space at each VHO is used as an LRU cache. We
compare our scheme with the three alternatives using
the same disk space. For the top-K, we experimented
with both K=10, and K=100. We present the results
only for K=100, as K=10 was highly similar to Random
+ LRU. We use the first nine days’ requests to warm up
the caches and run the tests using the remaining three
weeks of requests.

Maximum Link Bandwidth. We identify the maximum
link usage across all links at each time instant and show
how it varies over the three-week period in Figure 5. We
observe that, for the same amount of disk space, our
proposed scheme can satisfy all requests using signif-
icantly lower peak bandwidth. Specifically, the max-
imum bandwidth needed for our case is 1364 Mbps,
while the maximum value for Random+LRU is 2400
Mbps, 2366 Mbps for Random+LFU, and 2938 Mbps
for Top-100+LRU. Note that the maximum value for
our scheme is slightly larger than 1 Gbps, which is the
link capacity provided for the MIP instance. This is be-
cause each week introduces new videos, some of which
we do not have a good estimate. While the small LRU
cache helps absorb some of the errors in estimation, we
believe a more sophisticated estimation strategy will
help even further. We confirmed this through exper-
iments assuming perfect knowledge of traffic pattern:
the maximum bandwidth in that case always stayed
within the constraint of 1 Gbps (See Table 3).

Total Bytes Transferred. We calculate the total amount
of network transfer where each video transfer is weighted
by the video size and hop count. A good placement
scheme will result in a small value because most of the
requests would be satisfied locally or by nearby neigh-
bors. We present the results in Figure 6. We calculate
the aggregate transfers across all links and calculate the
average over five minute intervals. We see similar trends
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to what was observed for the peak bandwidth. Our
scheme consistently transfers fewer bytes compared to
the other caching based schemes. LRU and LFU per-
form almost identically. Surprisingly, Top-100 + LRU
results in a higher peak utilization and total bytes trans-
ferred. We attribute this to the fact that video popular-
ity does not have a very high skew; even the less popular
videos incur significant load. With the Top-100 videos
occupying significant storage, there is less space for the
LRU cache, and hence the performance becomes worse.

To analyze this further, we present the break-up of
disk utilization in each VHO based on one solution
to our MIP formulation in Figure 7. We characterize
the top 100 videos as highly popular, the next 20% of
videos as medium popular, and the remaining as un-
popular. The highly popular videos occupy a relatively
small portion of the total disk space, while the medium
popular videos occupy a significant proportion of the
total disk space in the system (e.g., more than 30%).
We also present the number of copies for each of the
top 2000 videos in one of our MIP solutions (Figure 8).
We observe that our solution intelligently places more
copies for popular videos. This is to avoid remotely
fetching frequently requested videos, which not only in-
creases the overall cost (i.e., byte transfer), but also
leads to link capacity violations. However, in our so-
lution, even highly popular videos are not replicated
everywhere (e.g., less than 30 VHOs have a copy of the
10th most popular video). On the other hand, we ob-
serve that more than 1500 videos have multiple copies
in the entire system. These two figures indicate that
medium popular videos result in significant load and
have to be dealt with intelligently. A given movie needs
only a few copies — anywhere from 2 copies to 10 copies
— but together these videos consume significant space.
As a result, our solution carefully distributes copies of
these videos across the VHOs. Unfortunately, caching
schemes will have difficulty dealing with medium pop-
ular videos, unless the cache size is sufficiently large.

Comparative LRU Cache Performance. We performed
a simple experiment to understand the performance of

a dynamic LRU cache replacement strategy. The ag-
gregate disk space across all locations is around twice
the entire library size while each location has the same
disk space (and equal to the disk used in the MIP ex-
periments). More than half of the space in each VHO
was reserved for the LRU cache. We present the re-
sults in Figure 9. As is clear from the figure, not only
does the cache cycle, a large number of videos are not
cachable because all the space in the cache is currently
being used. Almost 20% of the requests could not be
cached locally due to this. All this results in around
60% of requests being served by remote offices.

Other results. We ran other experiments, which we only
summarize here for lack of space. We repeated the ex-
periments with the aggregate disk space being 5 times

the library size. We find that our approach still results
in lower aggregate and peak bandwidth, although the
difference between our scheme and the other approaches
is smaller. We also experimented with the case of infi-
nite link bandwidth to compare with the unconstrained
link case [3]. Then, the maximum link bandwidth used
by such a solution sometimes grows to more than twice
the link bandwidth our scheme needs. In general, since
a solution to the unconstrained problem does not have
a limit on link usage, the maximum link usage can grow
arbitrarily large, while our scheme finds the best trade-
off, given the link and disk constraints.

7.3 Trade-off between Storage and Bandwidth

To understand the trade-off between storage and band-
width, we identify how much disk space is needed to find
a feasible solution to the MIP, given the link capacity.
In Figure 10, we show the feasibility region (where we
can serve all the requests without violating disk and
link constraints) when we vary the link capacity. Note
that the minimum aggregate disk space in the system
must be as large as the entire library size, to store at
least one copy of each movie (the bottom line in Fig-
ure 10). When each link has a capacity of 0.5 Gbps,
and all VHOs have the same amount of disk (denoted
by “Uniform Disk”), we need at least 5 times more disk
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than what is needed to store one copy of each movie.
We also observe that if we increase link capacity, then
we can satisfy all the requests with much smaller disk.

We also consider the case where there are three dif-
ferent types of VHOs. Based on the number of sub-
scribers at individual VHOs, we identify 12 large VHOs,
19 medium VHOs, and 24 small VHOs. In our exper-
iments, a large VHO has twice the disk of a medium
VHO, which in turn has twice the disk of a small VHO.
The middle line in Figure 10 corresponds to the case of
non-uniform VHOs. We observe that compared to the
uniform VHO case, we need significantly smaller aggre-
gate disk space to satisfy all the requests. Specifically,
with 0.5 Gbps links, the total disk we need is less than 3
times the entire library size (vs. 5 for the uniform VHO
case). This is because the majority of requests originate
from those large VHOs and some of the medium VHOs.
With a larger disk, these VHOs can serve more videos
locally. Not surprisingly, as we increase the link ca-
pacity, the gap between uniform and non-uniform cases
decreases and converges to the library size.

7.4 Scalability

In the next set of experiments, we vary the library
size and request load and investigate how the system
resource requirement varies accordingly. In the first ex-
periment, we fix the library size and increase the num-
ber of requests, while maintaining the same popularity
distribution as the trace, which can be approximated by
a combination of zipf with an exponential drop-off [8].
We also maintain the diurnal patterns as we scale the
request intensity. In Figure 11, we plot the minimum
capacity for each link to serve all requests without vi-
olating constraints. We show three cases with different
disk capacities at each VHO. Obviously, we need larger
link capacity with smaller disk or more requests (e.g.,
larger user base). However, we observe that the growth
rate for link capacity is slightly smaller than the growth
rate of traffic intensity. This is because a local copy of
a highly popular video is able to handle many requests
without using the network.

We next experiment with growth in the VoD library.
We analyzed the logs by Cha et al. [8] and found that
the skew parameter stays similar even for the larger li-
braries (e.g., 250K videos). We simplified the process of
trace generation by only sampling from a zipf distribu-
tion rather than a combination of zipf and exponential
drop-off. We set the disk size at each VHO such that
the aggregate disk space is around 3 times the library
size. For ease of comparison, we use the same total
number of requests regardless of the library size. We
present the results in Figure 12 where we see two in-
teresting trends. First the link bandwidth needed for a
feasible solution (with 3x disk) drops as the library size
increases. This is due to the combination of increased
disk space and distribution of requests to videos. Sec-
ond, we see that the number of active flows in the peak
(i.e., total number of requests for videos) goes up with
library size. This is because as the number of videos
increases, for the same total number of requests, the
distribution of requests is more dispersed.

7.5 Complementary caching

In this experiment we examine the effect of comple-
mentary caching on the performance of the MIP solu-
tion. We vary the amount of cache as a percentage of
the disk space at each VHO and add that space to each
VHO. We run the experiment for one week’s worth of
requests and measure the peak link utilization and the
average aggregate bytes transferred. The results are
shown in Figure 13. As expected, both the peak and
the aggregate decrease with increasing cache size. The
reduction is significant as we go from no cache to 5%
cache. The reduction, however, is not as significant as
we increase the amount of cache further. This result
shows that while a cache is important to handle errors
in estimation or sudden changes in popularity, it is more
important to get the placement correct.

7.6 Topology

We investigate how different topologies affect the ca-
pacity required to meet all requests. In addition to
the backbone network used in the previous sections, we
consider two hypothetical networks: tree and full mesh

(where each pair of nodes has a direct link). We also
consider an artificial topology generated by combining
Sprint and Abovenet topologies from the RocketFuel
traces [17]. In each experiment, we use the same amount
of aggregate disk across all VHOs, set at 3x the library
size. In Table 2, we present our experimental results.
As expected, we observe that with more links, we can
serve all requests with lower link capacity. For instance,
1 Gbps capacity for each link is more than sufficient in
the backbone case, while we need more than 2 Gbps for
the tree topology. A thorough understanding of the im-
pact of topology is an interesting topic of future work.
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Feasibility
Topology # Nodes # Links Constraint (Gbps)
Backbone 55 76 0.8

Tree 55 54 2.3
Full Mesh 55 1485 0.05
RocketFuel 40 74 0.8

Table 2: Topology vs. link capacity.

7.7 Time-varying request pattern

As discussed in Section 6.2, we use only a small num-
ber of time windows over which we evaluate the peak
demand of videos requested and examine if the place-
ment ensures we remain within the link capacity con-
straints throughout the week. We performed experi-
ments to understand the trade-offs on choosing the time
window by varying it from 1 second to 1 day. Results
are shown in Table 3. Using the peak request demand
for 1-second time windows, we find that a feasible solu-
tion exists for the MIP when each link is 0.5 Gbps. We
also observe that the maximum link utilization during
the corresponding time window is 0.5 Gbps. However,
outside the peak window, some of the links are loaded
up to 0.85 Gbps. This is because the MIP solution
considers the link constraints only during the 1-second
window, and due to highly varying request mix, the re-
quest pattern during the window is not representative.
As a result, the placement solution is not able to sat-
isfy the link constraint outside of the window. Similar
conclusions apply for 1-minute windows. On the other
hand, with 1-day time windows, a feasible solution re-
quires 2 Gbps links. But we observe that all links al-
ways carry less than 1 Gbps of traffic during the entire
7-day period. Thus, 1-day windows lead to a significant
over-estimation of the required link bandwidth. With
1-hour windows, the feasible solution requires 1 Gbps
links. Correspondingly, the maximum link bandwidth
over the entire 7-day period is also less than 1 Gbps.
Thus, 1-hour windows seem to give the best trade-off
between accurate estimation of the peak window and
actual link utilization.

Link Bandwidth (in Gbps)
Window Feasibility Max during Max during

Size Constraint LP window entire period
1 second 0.5 0.5 0.85
1 minute 0.5 0.49 0.88
1 hour 1.0 0.68 0.80
1 day 2.0 0.94 0.96

Table 3: Peak window size vs. bandwidth.

7.8 Frequency of placement update and esti-
mation accuracy

Running the placement often allows us to handle de-
mand changes or estimation errors gracefully. However,
each iteration incurs computational and transfer over-
heads. We experimented with different placement fre-
quencies to see how they affect performance. In Ta-
ble 4, we show the maximum link bandwidth usage,
total data transfer, and the fraction of requests served
locally for the last two weeks. We consider both video
size and number of hops to calculate total data trans-
fer, as in (2). We do not use the complementary LRU-
cache here. We observe that if we update the place-
ment once in two weeks, then the maximum bandwidth
grows significantly. This is because with less frequent
updates, the error in demand estimation accumulates
over time, as the current placement does not adapt to
changes in the demand pattern. We observe that com-
pared to weekly updates, daily updates only modestly
improves the maximum bandwidth usage or miss ratio.
However, by utilizing the most recent request history
information, we can achieve around 10% improvement
in terms of total data transfer. Using a 14-day history
with weekly placement updates, we did not find any
meaningful differences compared to a 7-day history.

In Table 4, we quantify the error in our estimation of
demand for new videos by presenting the performance
when we have perfect knowledge. When we have perfect
knowledge, our MIP-based solution always maintains
the link utilization below capacity (< 1 Gbps), serves
all the requests while using less total network band-
width, and serves a majority of requests locally. On
the other hand, without any estimation for new videos,



Max BW Total Transfer Locally
(in Gbps) (TB × hop) served

once in 2 weeks 2.23 3284 0.545
weekly 1.32 2776 0.575
daily 1.30 2448 0.585

perfect estimate 0.97 2052 0.606
no estimate 8.62 7042 0.144

Table 4: Impact of update frequency on the

placement performance

we observe that the maximum bandwidth grows to over
8+ times the link capacity, and the resulting placement
results in lots of remote transfers. Our simple estima-
tion strategy, while not perfect, allows for performance
comparable to when we have perfect knowledge.

Cost of placement updates: One aspect to con-
sider when determining the frequency of updates is the
network transfer cost due to video migration for a new
placement. We can slightly modify equation (9), such
that we consider the cost of migration based on the pre-
vious mapping (refer Section 5.2.2). In our experiments
with this modified objective term, we find that around
2.5K videos need to be transferred between two place-
ments. We argue that this is a small cost compared to
the number of requests (e.g., 100Ks per day) and hence
is quite manageable. In practice, we can even lower
the update costs by piggybacking on requests. That is,
when a new placement requires a particular VHO i to
store video m, i can wait until a user requests m, fetch
it and store a copy in the pinned portion of disk. We
plan to investigate this aspect further in the future.

8. CONCLUSIONS

To meet the growing need for on-demand content, we
considered the problem of placing video content across
distributed offices of a VoD provider connected via a
high-bandwidth backbone. Our mixed integer program
formulation considers the constraints of disk space and
link bandwidth to scalably find a near-optimal place-
ment solution optimized for all the videos in the library,
across all locations in an arbitrary network topology,
and video demand pattern. For real-world applicability,
we presented a number of simple strategies to address
practical issues. For instance, we made use of the re-
quest history over a one-week period to place content
at the VHOs to serve requests over the next week.

We performed extensive experiments using trace data
from an operational nationwide VoD service. Our pro-
posed scheme significantly outperforms existing schemes,
including LRU and LFU-based caching schemes. We
also investigated the performance trade-offs and sensi-
tivity when we vary disk space, link bandwidth, request
volume, and library size. Our replication strategy scales
with the growth of VoD service and the orders of mag-
nitude speed-up due to our solution approach makes it
eminently suitable for practical deployment.
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