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Abstract—Global optimization process can often be divided into two
subprocesses: exploration and exploitation. The tradeoff between explo-
ration and exploitation (T:Er&Ei) is crucial in search and optimization,
having a great effect on global optimization performance, e.g., accuracy
and convergence speed of optimization algorithms. In this paper, def-
initions of exploration and exploitation are first given based on infor-
mation correlation among samplings. Then, some general indicators of
optimization hardness are presented to characterize problem difficulties.
By analyzing a typical contraction-based three-stage optimization process,
Optimal Contraction Theorem is presented to show that T:Er&Ei depends
on the optimization hardness of problems to be optimized. T:Er&Ei will
gradually lean toward exploration as optimization hardness increases. In
the case of great optimization hardness, exploration-dominated optimiz-
ers outperform exploitation-dominated optimizers. In particular, random
sampling will become an outstanding optimizer when optimization hard-
ness reaches a certain degree. Besides, the optimal number of contraction
stages increases with optimization hardness. In an optimal contraction
way, the whole sampling cost is evenly distributed in all contraction stages,
and each contraction takes the same contracting ratio. Furthermore,
the characterization of optimization hardness is discussed in detail. The
experiments with several typical global optimization algorithms used to
optimize three groups of test problems validate the correctness of the
conclusions made by T:Er&Ei analysis.

Index Terms—Exploitation, exploration, global optimization, optimal
contraction theorem, optimization hardness.

I. INTRODUCTION

The tradeoff between exploration and exploitation (T:Er&Ei) has
long been a significant topic in evolutionary computation and opti-
mization. This topic exists in many fields, including machine learning
[1]–[7] and cognition [8], [9], modeling and prediction [10], [11],
search and optimization [12], [13], and many other cases in which
uncertainty exists. In learning algorithms, T:Er&Ei is a sticking point,
having a great impact on effective and efficient algorithm design
[3]. A learning algorithm makes decisions to maximize its rewards—
exploitation—but lacks the knowledge about the reward generating
process. Thus, occasionally the algorithm might introduce explo-
rations, which improves the knowledge about the reward generat-
ing process but not necessarily maximizes the current reward. This
problem is the same for search and optimization, particularly for
metaheuristics [14], while the latter is usually a more complicated
case. For all optimization methods, T:Er&Ei is crucial. An effective
T:Er&Ei helps to reduce computational cost and implement efficient
optimization. Early researches on T:Er&Ei can be sorted into two
categories. The first groups investigated methodologies which relate
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T:Er&Ei to bandit problem. In this problem, a gambler has to decide
which arm of a K-slot machine to pull to maximize his total reward in
a series of trials. The exploration/exploitation tradeoff is reflected on
one hand by the necessity of trying all alternatives, and on the other
hand by the regret suffered when trying an alternative which is not
optimal. Particularly, Holland [12] proposed a least loss criterion to
solve two-armed bandit problem as a reference for T:Er&Ei in genetic
algorithms. A few scholars [15]–[18] contributed to this research and
even extended this problem to multiarmed bandit problems. Statistics
is the most powerful tool in analyzing these problems, and many strate-
gies of controlling T:Er&Ei is based on statistical parameters which
can reflect exploration and exploitation to some extent [4]–[6]. The
direct control of T:Er&Ei belongs to the second category of researches.

T:Er&Ei in search and optimization originates from heuristics,
particularly those population-based evolutionary algorithms in which
diversity is an explicit exhibition of T:Er&Ei. It dominates the compu-
tational cost and convergence quality of such optimization algorithms.
Excessive exploitation will depress diversity and induce premature
convergence. Excessive exploration will result in slow convergence.
Thus, it is crucial to strike a proper T:Er&Ei. The effect of diversity on
the premature convergence about genetic algorithms was discussed in
[19]. Many strategies of controlling diversity were proposed for vari-
ous evolutionary algorithms in the past decade [20]–[26]. Particularly,
the diversity of solutions in multiobjective optimization is prominent
as its goal is usually to find the distributed Pareto front in the objective
space [13], [27], [28].

In practice, it is common to adjust the tradeoff dynamically by
controlling some parameters or indices related to it [4]–[6], [29],
[30]. These efforts are devoted to constructing effective and efficient
optimization algorithms. However, no explanation of the relationship
between T:Er&Ei and practical problems has been given in these
direct control methods. This actuality is mainly due to the diversity of
practical problems and detailed algorithms. Another important reason
for the difficulty of describing this relationship is the absence of a
formal and uniform definition of exploration and exploitation.

The main objective of this paper is to reveal the relationship between
T:Er&Ei and some characteristics of problems to be optimized in order
to identify the ultimate factor which determines the best T:Er&Ei. The
rest of this paper is organized as follows. In Section II, definitions
of exploration and exploitation are given, according to which the
characters of currently prevailing optimization algorithms on explo-
ration and exploitation are briefly analyzed. In Section III, several new
concepts about the optimization landscape such as optimal field and
optimal supreme cap are proposed. In this section, we also propose
the Optimal Contraction Theorem (OCT) which can quantitatively ex-
plain the relationship between T:Er&Ei and optimization problems. In
Section IV, we make some experimental analysis of the OCT for pulse
functions and several common test functions. Effects of exploration
and exploitation on the search process in optimization algorithms are
analyzed in this section. Conclusions are made in Section V.

II. ALGORITHM CHARACTERIZATION BASED ON THE

DEFINITIONS OF EXPLORATION AND EXPLOITATION

A latent viewpoint interprets exploration and exploitation as global
search and local search, respectively [13], [29], [31], [32]. This,
indeed, reflects one aspect of their characters; howbeit, it is not
reliable to distinguish exploration and exploitation only by search
scope, because there is no undisputed threshold to define the scale of
“local”. An unambiguous but meaningless measure is to strictly restrict
exploration to keep within the whole search space, and any search
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within a shrunk space will be considered as exploitation. In learning
algorithms, exploration and exploitation correspond to the acquisition
and utilization of knowledge, respectively [3]. Some scholars think that
exploration and exploitation can be distinguished by the intensity of
randomness [6]. Here, we regard exploration and exploitation as two
kinds of behavior in acquiring information about unknown problems.
For unification, the information acquisition process is treated as a
sampling process which gradually turns a “black-box” model for
optimization problems into a “white-box.”

Definition 1—exploration (er): A sampling behavior is exploration
iff its sampling point is generated independent of the information ac-
quired by historical sampling points. Mathematically, a sampling Xn

at time n is exploration iff P (Xn =X|Xn−1, . . . , X0)=P (Xn =X).
Definition 2—exploitation (ei): A sampling behavior is exploitation

iff the generation of its sampling point depends upon the informa-
tion acquired by historical sampling points. Mathematically, a sam-
pling Xn at time n is exploitation iff P (Xn = X|Xn−1, . . . , X0) �=
P (Xn = X).

In the definition of exploitation, the utilization of historical informa-
tion about the function to be optimized is emphasized. Typically, ran-
dom sampling (RS) without preference for any region in search space
is completely explorative, because sampling points generated by this
method are independent of each other. In contrast, the steepest ascent
optimizers (SAO) use gradient-based information at a point to generate
the next sampling point, so they are completely exploitative. In detail,
there are various forms of exploitation in the implementation of opti-
mization algorithms. For example, simulated annealing (SA) [33] and
genetic algorithms with proportional selection (GA:PS) [12] use differ-
ences between the function values at different points (named as chro-
mosome in GA) to adjust the sampling distribution. In particle swarm
optimizer (PSO) [34], differential evolution (DE) [35], ant colony
optimizer (ACO) [36], estimation of distribution algorithms (EDA)
[37], and genetic algorithms with ranking selection (GA:RS) [38], the
sampling is controlled according to the order in function landscapes.
In other words, these algorithms only care about whether a point is
superior to another or not, regardless of their quantitative differences.
The algorithms previously mentioned except RS utilize historical infor-
mation in a normal manner, as they tend to concentrate search on those
regions in which better solutions may hopefully exist. It is not unusual
that abnormal exploitation (AnEi) exists in some algorithms [39]–
[41]. Repulsion [40], [41] and anticonvergence [42] typically belong
to AnEi. In essence, they are the same. Obviously, the effect of AnEi
on optimization is similar to that of Er. Both AnEi and Er contribute to
increasing the probability of escaping from local optima. With a proper
structure, AnEi helps to explore the undiscovered promising regions in
search space. Therefore, in a sense, AnEi can be regarded as a special
exploration. Particularly, the crossover and mutation operators in GA
belong to Ei as they use the genic materials from parent chromosomes
to produce child chromosomes, but it is not easy to determine whether
they are normal exploitations (NEi) or not. This is because they cannot
ensure the preservation of excellent genes without proper operation
positions. A normal selection operator, such as proportional selection
and ranking selection, tends to preserve most of the excellent genes
in the whole population. Note that, for clarity, the term Ei mentioned
later is NEi. In general, the role of Er in the search process is to acquire
information, and that of Ei is to utilize the information.

Er and Ei coexist in most optimization algorithms, particularly in
global optimizers. Therefore, these optimizers cannot be classified as
Er or Ei directly. However, the Er/Ei ratios in different optimizers
appear to vary. As two special cases, RS with the preservation of
optimal solutions can be directly classified as Er, and SAO as Ei.
However, this is not the case in SA, GA, PSO, ACO, and many
other optimizers. Intuitively, SA, GA, and ACO are more explorative

than PSO since all of them base their optimization on the adjust-
ment of the probability distributions of candidate solutions, which
can be characterized by Markov chains [43]–[45]. In contrast, PSO
is an exploitation-dominated optimizer as indicated by its iteration
expressions [34]. Without two random numbers introduced into its
velocity expression, it will become a deterministic optimizer [46]. The
explorative randomness attached to PSO’s evolutionary framework just
brings more occasions of escaping from the local optima.

The combination of Er and Ei varies in different optimizers. In
TRUST [40], Er and Ei are executed alternately. Each time an SAO
is executed to find a local optimum, a “tunneling” process follows to
further improve the temporal optimum. However, there is no distinct
order between Er and Ei in PSO and GA. Generally, they are mingled
with each other. Since there are so many different optimizers available
for us to choose in practical optimization, a logical question emerges:
What kind of Er/Ei ratio and combination pattern is the best for various
function landscapes? In fact, we are not unfamiliar to this question,
as it is often discussed what algorithm is the best one for a particular
problem. The No Free Lunch theorem [47] indicates that no optimizers
can keep optimal when optimizing arbitrary problems; however, it
does not give a direct answer. The answer to this question depends
on the landscape of objective functions. For simplicity, without loss of
generality, we focus on the unconstrained maximization of functions
in bounded space with finite dimensions in the form of maxx∈B f(x),
where B is an n-dimensional Borel field, x is a vector corresponding to
a point in B, and f(x) denotes the function value corresponding to x.

III. OPTIMAL CONTRACTION THEOREM

As a preparation for the analysis of optimization process, we extract
some useful features of optimization landscapes to characterize the
optimization hardness of objective functions.

Definition 3—optimal field (of): A subspace D∗ in the whole search
space B is optimal field iff both of the following conditions are
satisfied.

1) Arbitrary point in D∗, denoted by x, satisfies f(x) > f(x′),
where x′ is a local optimum which is only inferior to global
optima among all local optima.

2) Arbitrary point in B satisfying the inequality f(x) > f(x′) is
involved in D∗.

OF can be denoted by the level set {x|∀x ∈ B : f(x) > f(x′)}.
Note that global optima are special local ones. OF does not contain any
local optima except global optima. If there is only one global optimum
in a function landscape, the section of this landscape corresponding
to optimal field is unimodal. A unimodal landscape is steepest ascent
optimizable. An illustration for optimal field and other concepts as
follows is shown in Fig. 1.

Definition 4—strict optimality ratio (sor): The strict optimality
ratio of a function landscape is the ratio of the measure of its optimal
field [denoted by σ(D∗)] to that of the whole search space [denoted by
σ(B)].

Definition 5—optimal supreme cap (osc): For each isolated global
optimum (denoted by x∗), its optimal supreme cap C∗(x∗) is the
section of function landscape that includes all points for which there
exists a steepest ascent path to reach the global optimum. Particularly,
if many global optima gather together to form a continuous field, they
will be regarded as an ensemble, and the unique OSC corresponding
to the ensemble contains all points that can reach at least one optimum
in the cap along a steepest ascent path. OSC is similar to the concept
of the attraction basin of local optima for minimization problems.

Definition 6—optimality ratio (or): The optimality ratio of a func-
tion landscape is the ratio of the measure of its OSC [denoted by

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 20, 2009 at 23:16 from IEEE Xplore.  Restrictions apply.



682 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

Fig. 1. Illustration for optimal field (OF), optimal supreme cap (OSC), and
p-inducive point. x′ is a local optimum which is only inferior to the global
optimum x∗. x1 and x2 are local optima, too. When the search reaches x1

at time t1, it can move from x1 only to the points in E(x1, t1) which is
the reachable region next time. It is easy to see that E(x1, t1) ∩R(x1) �= Φ
where R(x1) is the level set corresponding to x1 and defined as {x|∀x ∈
B : f(x) > f(x1)}. For example, as shown above, x3 ∈ E(x1, t1) ∩R(x1),
that is to say, it is possible that a point better than x1 could be found. If
the improvement of the detected objective value can continue and the global
optimum x∗ is found at last in a probability not less than p, then x1 can
be regarded as a p-inducive point. In contrast, when the search reaches x2

at time t2, the detected objective value cannot be further improved due to
E(x2, t2) ∩R(x2) = Φ. Therefore, it can be confirmed that x2 is not a
p-inducive point. All p-inducive points form the p-inducive field (piF).

σ(C∗)] to that of the whole search space [denoted by σ(B)]. Note that
C∗ =

∑
C∗(x), (x ∈ O∗), where O∗ is the set of all global optima.

Obviously, OF ⊆ OSC and SOR ≤ OR. Besides, OF = OSC and SOR
= OR iff the whole landscape is unimodal.

For exploitation-preferred optimizers, e.g., TRUST, OR is a reason-
able indicator of optimization hardness, because the steepest ascend
optimizer (SAO) embedded in them can find a global optimum once
the search enters OSC. However, for greedy search that only favors the
currently best point (denoted by x◦), even if the search enters OSC,
a point outside OSC that is superior to x◦ will be able to attract the
search to break away from OSC. Only if the search enters OF could
a global optimum be definitely found by an SAO. Thus, SOR is a
reasonable characterization of the optimization hardness of function
landscape with greedy search. As validated by the experiments in
Section IV, OR and SOR are suitable for those landscapes without
obvious macrocharacters such as “needle-in-haystack” landscapes.

In order to make a general characterization of optimization hard-
ness, we propose three novel concepts as follows.

Definition 7—p-inductive field (pif): For an optimizer, when its
search reaches a certain point (denoted by x0) at time t0, and if it
can move from x0 to a global optimum after certain steps with a

probability not less than p, then x0 is called p-inductive point. The
probability p depends on not only landscapes but also optimizers. An
optimizer has to move from x0 to a better point at first before it could
reach a global optimum. Thus, the improvement probability at x0

becomes a predeterminate factor, which can in the sense of uniformity
be expressed by

p(x0, t0) = σ (E(x0, t0) ∩ IR(x0))
/
σ (E(x0, t0))

where E(x0, t0) is the set of the points to which the optimizer may
move from x0, and R(x0) is a level set expressed by {x|∀x ∈
B : f(x) > f(x0)}. Particularly, if p(x0, t0) = 0, that is E(x0, t0) ∩
R(x0) = Φ, then it is impossible to reach a global optimum from x0.
All p-inducive points constitute the so-called p-inductive field.

Definition 8—p-inductive optimality ratio (pior): For an optimizer
and a function landscape, the p-inductive optimality ratio correspond-
ing to them is the ratio of the measure of piF [denoted by σ(piF)] to
that of the whole search space [denoted by σ(B)]. Generally, OSC ⊂
piF and OR < piOR.

Relatively speaking, for the characterization of optimization hard-
ness, SOR and OR are static, and piOR is dynamic. The analysis of
SOR and OR is easier than that of piOR for complicated landscapes or
optimizers.

Definition 9—optimization feature factor (off): Optimization hard-
ness indicator is crucial to T:Er&Ei, and it dominates T:Er&Ei to
a great extent. For unification, we call the indicator optimization
feature factor (OFF) to represent SOR, OR, piOR, or other reasonable
measures.

In essence, OFF provides a quantitative characterization of the
distribution of an “easy” local region within the whole search space.
Here, the word “easy” means that it is easy for a specific optimizer
to find global optima once the search enters the local region. For
example, unimodal problems are often regarded as a kind of easy
problems for most optimizers. Their landscapes may become a local
part of the landscape of another problem whose global optima may
be contained in the local region. This is the same case for other “easy”
problems. Therefore, OFF can be regarded as a generalized measure of
the distribution of the “easy” local region which contains global optima
in the whole search space. The optimal field (OF) and the optimal
supreme cap (OSC) are just special cases of such an “easy” local
region. In this sense, the characterization of optimization hardness
in the form of OFF depends on its opposite—the characterization of
landscapes which are easy for specific optimizers to optimize.

When search space is very large particularly in high-dimensional
function optimization, it is impossible to take an exhaustive search due
to unbearable time consumption. Therefore, the contraction of search
scope is necessary to exclude those regions which are unlikely to
contain global optima. In fact, the direct effect of normal exploitation
in search and optimization is just the contraction of search scope. For
many convergent optimizers, search scope shrinks to one point or a
point set at last. Although shrinkage and dilation may coexist in the
search process, what we discuss here is mainly a continuous shrinkage
process in which every contracted space includes OF, OSC, or other
easy local regions with a certain probability. The objective function
considered here is pulse function with its expression as follows:

f(x) =

n∏
i=1

(Ai · [Sign(xi − ai) − Sign(xi − bi)])

x = [x1, x2, . . . , xn]T ∈
n∏

i=1

(ci, di),

Ai > 0, ci < ai < bi < di for all i (1)
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Fig. 2. Illustration for three-stage search. C − I and C − II represent the
first contraction and the second contraction, respectively. C − I occurs after
the first stage and the search scope is reduced from B to a lesser local space
S, as indicated by the arrows above the symbols “C − I .” C − II occurs after
the second stage, and the search enters OF at this time. For the pulse function
described by (1), the third stage is unnecessary since each point in OF is a
global optimum. However, if there is only one global optimum in OF as shown
by the dashed curve in the pulse, then the exploitative search at the final stage
like gradient-based search is usually indispensable.

where Sign(x) = +1, 0,−1, respectively for x > 0, x = 0, and x < 0

f(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2n
n∏

i=1

Ai, if ai < xi < bi for all i

2n−m
n∏

i=1

Ai, if ∃i : num(i : xi = ai or bi) = m

and ai < xi < bi for all other i
0, otherwise

(2)

where num(i : C) denotes the number of i that satisfies the
condition C.

The pulse function is also called needle-in-a-haystack problem for
the counterpart in the research on genetic algorithms [38]. There are
three reasons for us to use the pulse function as the representative
objective function in our research on T:Er&Ei. First, any functions
can be accurately or approximately represented as a combination of
different pulse functions. The analysis on the optimization of pulse
functions is a foundation for the research on the optimization of
general functions. Second, from the viewpoint of locating OF, OSC,
piF, or other local search spaces which benefit a specific optimizer,
the primary cost of optimizing an arbitrary function is equal to that of
optimizing a certain pulse function which shares some similarity with
the arbitrary function. This is validated by the experiment on equiva-
lent optimization hardness in Section IV. Therefore, the conclusions
below are not limited to the pulse function. Finally, it is easy to get
an unambiguous optimization feature factor of pulse functions for the
quantitative analysis later.

The optimal field of the pulse function can be expressed by {x|ai <
xi < bi, i = 1, . . . , n}. Its OFF (OR or SOR) can be expressed by∏n

i=1
(bi − ai)/(di − ci). It is obvious that concentrative search in

any local space beyond OF is blind and easily leads to premature
convergence. Therefore, Er should be prior to NEi to locate OF, OSC,
or piF and lay the foundation for NEi. According to this principle, the
whole search process is divided into three stages. At the first stage,
the whole search space is explored and, finally, contracted to a lesser
space that covers OF with a certain probability. At the second stage, Er
continues in the lesser space, and finally, the search enters OF. At the
final stage, NEi comes into effect, and a global optimum is found in OF
at last. The final stage is common in most optimizers. In a sense, the
final search is similar to the optimization of a quasi-concave landscape
or a landscape with quasi-concave envelop in which abundant useful
information can be normally exploited. Relatively speaking, the search
cost at this stage is inevitable, and many local optimizers can be used at
this stage. An illustration for the three-stage search is shown in Fig. 2.

For many optimizers such as GA [48] and PSO [49], the exploration
at the first stage, usually in the form of random initialization, has a
great impact on their following exploitative behaviors and optimization
results. Since any concentrative search beyond OF easily leads to
premature convergence, uniform random sampling is preferred in the
explorative stages. Furthermore, we focus on the cost of locating OF
that is the cost of the first two stages. For brevity, denote OFF that is∏n

i=1
(bi − ai)/(di − ci) by η. In this case, the cost of the final stage,

that is the cost of exploitation, is zero since each point in OF is globally
optimal. Therefore, NEi is needless here.

After m times of sampling and evaluating at the first stage, the prob-
ability that the search enters a contracted space, denoted by S, can be
expressed as P1 = 1 − (1 − 1/M1)

m where M1 = σ(B)/σ(S) is the
contracting ratio of the first contraction. Note that the contracted space
is expected to contain OF. After n times of sampling and evaluating
in S at the second stage, the probability that the search enters OF
can be represented as P2 = 1 − (1 − M1η)n. The contracting ratio
of the second contraction is M2 = (M1η)−1. Thus, through the first
two stages, the probability that the search enters OF is P = P1 · P2 =
[1 − (1 − 1/M1)

m][1 − (1 − M1η)n]. At the third stage, the search
will continue in OF for locating a global optimum. The cost of locating
OF can be given by T = m + n. Since this cost is generated at the
explorative stages, it can be regarded as the cost of exploration. Thus,
one can get the following cost function:

T (M1, n) =n + ln {1 − P/ [1 − (1 − M1η)n]}

/ ln(1 − 1/M1)

DT = {(M1, n) | 1 ≤ M1 ≤ 1/η,

n ≥ ln(1 − P )/ ln(1 − M1η)} (3)

where DT is the definition domain of T (M1, n), ln(·) is natural
logarithm, and P can be regarded as the confidence level of entering
OF. Naturally, the following minimization problem comes forth:

minT (M1, n), (M1, n) ∈ DT . (4)

The detailed analysis of this optimization problem is presented in
Appendix A. One of the most important analysis results is that the
optimal contracting ratios of the two contractions are equal, that is to
say M∗

1 = M∗
2 . Furthermore, a generalized (k + 1)-stage contraction

process is considered. Similar to the aforementioned three-stage con-
traction process, the final stage, in this case, is also exploitative. Since
the anterior k-stage contraction subprocess can be viewed as (k − 1)
continuous two-stage contraction subprocesses, any two neighboring
contractions should have the same contracting ratio in the best case. In
other words, the optimal contraction pattern should be M∗

1 = M∗
2 =

· · · = M∗
k . Besides,

∏k

i=1
M∗

i = 1/η. Therefore, it can easily be
derived that M∗

i = (1/η)1/k for ∀i ∈ {1, 2, . . . , k}. In this case, the
minimal cost of locating OF for the (k + 1)-stage contraction process
is T (k) = k ln(1 − P 1/k)/ ln(1 − η1/k). The analysis of T (k) is
presented in Appendix B.

The following theorem sums up the results of the analysis regarding
the cost functions T (M1, n) and T (k).

Theorem 1—optimal contraction theorem:

1) OFF (↓) ⇒ k∗(↑)

k∗ = arg min {T (�− log2(η)� + 1) , T (�− log2(η)�)}

where k∗ is the optimal number of contraction stages (the final
exploitative stage not included), and �x� denotes the biggest
integer which is not greater than x. More stages are preferred
as optimization hardness increases.
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2) (3 −
√

5)/2 ≤ OFF < 1 : k∗ = 1
In the special case where (3 −

√
5)/2 ≤ OFF < 1, only one

contraction stage is needed for locating OF. This corresponds to
a very easy optimization case for specific optimizers.

3) OFF (↓) ⇒ minT (↑) : minT = T (k∗)
The minimal cost of locating OF or other “easy” regions for

specific optimizers increases as OFF is reduced, which means
that OFF is an indicator of optimization hardness. (Strictly, the
indicator should be 1 − OFF .) The proportion of exploration in
the whole samplings increases with the optimization hardness of
objective functions.

4) (OFF < 1 & P → 1) ⇒ (minT → ∞)
For stochastic contraction, strict global optimization cannot be

guaranteed if OFF �= 1. In the extreme case where OFF = 0,
global optimization is impossible for any optimizers.

5) M∗
1 = M∗

2 = · · · = M∗
k∗ = (1/η)1/k∗

, T1 = T2 = · · · =
Tk∗ = ln(1 − P 1/k∗

)/ ln(1 − η1/k∗
)

In the best case, all contractions have the same contracting
ratio which is determined by optimization feature factor. Be-
sides, all stages have the same cost. In conclusion, the uniform
contraction pattern is optimal.

For most of the prevailing optimizers, the contraction process is
discontinuous, and dilation may alternate with shrinkage. Generally,
dilation is regarded as an explorative behavior. In this case, the
contraction process can be represented by

CP =

N∏
i=1

[(
w(i)∏
k=1

Wi,k

)/(
m(i)∏
j=1

Mi,j

)]
(5)

where the whole process is divided into N stages and each stage
includes a continuous shrinkage subprocess denoted by Mi,j{j =
1, . . . , m(i)} and a continuous dilation subprocess denoted by
Wi,k{k = 1, . . . , w(i)}. Mi,j and Wi,k are, the shrinkage ratio of
the jth shrinkage and the dilation ratio of the kth dilation at the ith
stage, respectively. Both of them are real numbers not less than one.
Convergent optimizers will converge to one point or a point set in-
cluding finite elements, and their measures in the Euclidean space are
both zero. Therefore, limN→∞ CP = 0 and shrinkage dominates the
contraction process. Accordingly, the Optimal Contraction Theorem
remains valid for the generalized case.

In the aforementioned process of locating OF, contraction is in
essence a kind of momentary exploitation that is based on the ex-
plorative sampling before contraction. Therefore, strictly speaking,
the anterior k-stage contraction subprocess also has certain degrees
of exploitation. However, the way of contraction is not given above.
Typically, a viable way is to exclude inferior evaluated points and even
the small local regions that, respectively, include these points [50]–
[52]. Such exclusion-based exploitative behavior appears prudential
and conservative. For comparison, an intensified exploitative behavior
emphasizes particularly on superior evaluated points, and more sam-
pling points will be generated in the local regions which include these
superior points. Generally speaking, the exclusion-based exploitation
is slower in exploiting local landscape information, but it is beneficial
to prevent premature convergence and locate OF when optimization
hardness is great. As a particular exclusion-based exploitation, exhaus-
tive search is usually considered to be inefficient when search space
is very huge. However, exhaustive search is the unique method that
can guarantee global optimization within the whole range of optimiza-
tion hardness except for OFF = 0. When optimization hardness is
extremely great, the exhaustive search without repetitive samplings
becomes “efficient”, and an enormous cost is inevitable.

Fig. 3. 1 − OFF is a direct quantitative characterization of optimization
hardness. Er/(Ei + Er) denotes the portion of efficient exploration in sampling,
which reflects T:Er&Ei. The starting point of each curve, which corresponds to
OFF = 1, reflects the portion of efficient exploration in locating global optima
within OF, OSC, piF, or other local regions which benefit specific optimizers to
achieve global optimization.

As OFF decreases and optimization hardness increases, the amount
and proportion of exploration in sampling usually increases, and the
best sampling behavior approaches that of random sampling gradually.
Particularly, when a pulse function is optimized with finite resolution
and only one discrete point lies in the pulse, no exploitative behavior is
rational and the whole sampling process should be explorative. If the
number of discrete points corresponding to the applied resolution is
very large, the optimization hardness of this pulse function is great.
In such discrete case, the measure of search space is actually the
number of points involved in the discrete space. In any case, T:Er&Ei
depends on optimization hardness. Their correspondence relation is
roughly shown in Fig. 3. For pulse functions, once search enters
OF, at least one global optimal point will be found, and no further
exploitation is needed if it is not required to find all optimal solutions.
Thus, the correspondence relation curve for different pulse functions
approaches the curve c1 in Fig. 3. In this T:Er&Ei spectrum, each
point corresponds to a tradeoff point for the optimization of some
functions. Particularly, the tradeoff points for quasi-concave functions
(or wide pulse functions) and needle-in-haystack functions (or narrow
pulse functions) lie to the left side and the right side, respectively. For
example, the optimization of the Sphere function (see Experiment III
in Section IV) corresponds to a certain point near the lower left-hand
corner of the T:Er&Ei spectrum. This is because there is much useful
information in its landscape and the exploitative gradient-based search
will greatly benefit from this.

For the optimal contraction theorem, a reasonable definition of OFF
is crucial. OR and SOR are just suitable for pulse functions and their
analogs [such as the function shown at the top of Fig. 4(a)]. As shown
in Fig. 4(b), adding some “noise” with smaller magnitude beyond
OF into the pulse function will not obviously affect its optimization
hardness for many optimization methods, which will be validated by
the experiments in Section IV. A simple variation is shown below the
pulse function in Fig. 4(b). Different from pulse function, exploitation
is necessary for this variation after the search enters OF. This is
because a successful locating of OF does not imply the discovery of
any global optimal point. However, these function landscapes have
similar optimization hardness. For many optimizers, e.g., PSO, OR,
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Fig. 4. Characterization of optimization hardness.

and SOR are not exact indicators of optimization hardness of the
reserved funnel function shown in Fig. 4(c), because these optimizers
can easily optimize the funnellike function [49]. In this case, the
optimization hardness should be explained by new promising concepts
like piOR.

The curve plotted by a thicker solid line in the middle of Fig. 4(c)
represents a typical quasi-concave function landscape which is easy for
most optimizers. It can be optimized by SAO with guaranteed global
convergence. Below this curve is a relatively complicated landscape.
Its fluctuation is drastic, which seems to make the rugged landscape
difficult to optimize. However, the distribution of its local optima is
regular, and all of them lie on the above quasi-concave curve which can
be regarded as the envelope of this fluctuant curve. Besides, compared
with the whole search scope, the distance between neighboring local
optima is not too long. All these features are the same with the reversed
funnel function in Fig. 4(c). In contrast to the curve in Fig. 4(a), they
contribute to reducing the optimization hardness that the fluctuations
introduce into these landscapes. If the distance between the global
optimal point and its neighboring local optima is extended to some
extent, the corresponding landscapes will relatively become difficult
to optimize. This is because the improvement probability at the local
optima around the global optimal point will be reduced in this case, and
many optimizers tend to be trapped in these local optima. The concept
of p-inducive point above is useful to explain this phenomenon.
In addition, multifunnel landscapes are usually considered as quite
difficult cases [49], [53]. A reversed multifunnel landscape is shown
in Fig. 4(d). Its optimization hardness can be roughly denoted by
1 − σ(F)/σ(B), where σ(B) is the measure of the whole search space
and σ(F) is that of the funnel including the global optimal point. In
a sense, σ(F)/σ(B) can be taken as an alternative of intrinsic and

static OFF. The top envelop of this landscape is plotted with a dashed
curve, and its optimization hardness is close to that of the reversed
multifunnel landscape.

The two curves in Fig. 4(e) are more complicated as their optimiza-
tion hardness levels are embedded. The upper curve has local difficulty
embedded in an “easy” background. The quasi-concave background
helps to induce optimizers to approach OF so that exploitative sam-
plings will rapidly concentrate on the regions near OF. Furthermore,
explorative samplings are expected to be implemented on a rugged
local landscape. Accordingly, a rough but reasonable representation of
the optimization hardness for this landscape is 1 − σ(OF )/σ(L) or
1 − σ(OSC)/σ(L) where L is the local region covered by a dashed
circle in Fig. 4(e). For the bottom curve, the points in the local region
(denoted by E) covered by a dashed square have closer relations
because all of these points are superior to the points beyond this region.
Once search enters this region, more samplings will be attracted
into it, which may help to increase the probability of finding OF or
OSC. Thus, the optimization hardness of this landscape, denoted by
OH, can be estimated as 1 − σ(E)/σ(B) < OH < 1 − σ(OF )/σ(B)
or alternatively, 1 − σ(E)/σ(B) < OH < 1 − σ(OSC)/σ(B). More
general landscapes could be the combinations of the above
landscapes.

Note that the optimization hardness analysis of a landscape for
different optimizers may be implemented in different spaces. Gener-
ally, different operators correspond to different landscapes [54]. This
mainly affects the neighborhood in search space, which may change
optimization hardness. In addition, the improvement probability at the
same point in a landscape for different optimizers is usually different.
The optimization hardness analysis above is static and intrinsic for
any landscapes if only one optimal point or optimal function value
is required. If more or all optimal points are required, the distribution
of optima should be considered. In addition, as mentioned in [55], a
detailed problem hardness analysis for different optimizers may be
dynamic.

In practice, there may exist rather difficult optimization problems
particularly in the field of biology, life sciences and chemistry [56],
[57]. From the viewpoint of optimizing arbitrary functions, both deter-
ministic and stochastic optimizers are stochastic since the optimization
results and costs of optimizing various functions may be distinct.
Hence, unless the level of optimization hardness can be determined
or optimization problems are not difficult enough, optimal optimiza-
tion methods can never be constructed. It has been proven that no
omnipotent method can best solve all optimization problems with
invariant structures and parameters [47]. Some special strategies such
as interdimension cooperation [58] could reduce the computational
complexity of optimizing some problems. This is because they utilize
some particularities of special problems (e.g., separable problems),
which can be regarded as an implicit form of exploitation. For in-
terdimension cooperation, if the independent optimization process
in each dimension cannot benefit subsequent independent search to
approach global optimal points, this strategy will become ineffective.
However, it is very useful for some particular problems, although
separable problems as a special class suitable for this strategy to deal
with are not suggested as a quite reasonable test benchmark [59].
As indicated by Macready and Wolpert [15], incorporating domain
knowledge into constructing effective optimization strategies is vital.
It can in a manner reduce optimization hardness or give an indication
about T:Er&Ei.

IV. NUMERICAL EXPERIMENTS, ANALYSIS, AND DISCUSSION

In order to verify the aforementioned conclusions, six typical opti-
mizers are selected to make the following experiments. They are PSO,
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TABLE I
PARAMETER SETTINGS FOR SIX DIFFERENT PULSE FUNCTIONS

GA, SA, RS, MSHC, and BB, respectively. MSHC is the abbreviation
of multistart stochastic hill climbing. BB is the abbreviation of branch
and bound. All these optimizers have certain capability of global
optimization. BB is an exclusion-based deterministic optimizer. RS
is a complete stochastic optimizer without exploitation. PSO, GA,
and SA are exploitative stochastic optimizers. MSHC can be regarded
as a combination of RS and hill climbing which is an exploitative
deterministic local optimizer. The experiments here aim at validating
correlative conclusions rather than comparing the performances of
these optimizers. For convenience without loss of generality, low-
dimensional functions are chosen to test these optimizers. One hundred
tests are taken for each optimizer and each test function. For ease of
comparison, any optimizer will be terminated if it enters the level
set determined by a predefined threshold or its evaluation number
exceeds a predefined maximal value (105). There are two criteria
for comparison. The first one is the success ratio of locating OF or
finding an objective value better than the predefined threshold. The
second one is the average number of function evaluations in success-
ful tests.

Both PSO and GA hold a 20-sized population. The inertia factor
in PSO is set to 0.729, and its two acceleration factors are both set
to 1.494 [46]. GA uses 30-bit binary codes, proportional selection,
single-point crossover with probability 0.6, and uniform mutation with
probability 0.01. The descending of temperature in SA is proportional,
and its proportion factor is set to 0.99. Temperature descending occurs
only when the number of state acceptance at the temperature exceeds
a predefined number. The hill-climbing step in MSHC is set to α|�d ·�b|.
�d is a unit vector representing the current steepest ascending direc-
tion. �b is a vector which has the maximal vector module in search
space. α is the step factor initially set to 0.05. |�d ·�b| denotes the
absolute value of the inner product of these two vectors. Starting
points are chosen randomly. BB uses midpoint sampling for both
updating the currently known best value of the objective function
and identifying unwanted regions. The principles for branching and
deleting are similar to those used in [51]. The bounding of BB is
based on the Lipschitz constant. Note that there is no Lipschitz constant
for pulse functions and their variations, and a nominal “Lipschitz”
constant such as ten is used in BB for the optimization of these
functions.

Experiment I—Optimization of 1-D Pulse Functions With Differ-
ent OFFs: The pulse functions used here have the same form as
follows:

fp(x) = Sign(x − a) − Sign(x − b), with 0 < x < 100

where 0 < a < b < 100.
The six optimizers previously mentioned are used to maximize the

pulse functions in Table I. The performances of these optimizers are
shown in Table II.

Remark: As indicated in Table II, when optimization hardness
reaches certain degree, exploration-dominated algorithms like RS will
become the best. When pulses are wide enough, the performance of
exploitative algorithms such as PSO and GA are similar to that of
RS. In fact, it is often the initial random samplings or explorative
operators in these algorithms that contribute to the locating of optima.
For pulse functions, exploitation is almost useless, which explains why

the success ratio of the exploitation-dominated optimizer PSO trails
off with the increase of optimization hardness. For the same reason,
GA, SA, and MSHC, which depend on exploitation more or less, pay
out an extra cost for locating optimal field in contrast with RS. When
optimization hardness is not too great, the performance of BB with
midpoint sampling is excellent. In fact, the branching and deleting (ex-
cluding) subprocess of BB is an exclusion-based contraction process,
which avoids repeatedly sampling any region in search space. Usually,
BB chooses the region, whose upper bound is the biggest, as its first
processing object. Therefore, the performance of BB depends on the
accuracy and validity of its estimation of the upper bound for each
region. In an ideal case, the estimated upper bound is expected to be
the minimal upper bound. Generally, the bounding subprocess of BB
requires some global information such as the Lipschitz constant about
objective functions. However, as optimization hardness increases, it
becomes difficult to provide such information, and the estimation
loses its validity or becomes impractical gradually. In this case, the
estimation-based processing order may result in slow or premature
convergence. In addition, as indicated by Table II, the cost of each
optimizer increases with optimization hardness, which accords with
the Optimal Contraction Theorem.

Experiment II—Validation of Equivalent Optimization Hardness
About Various Functions: In order to validate the equivalent difficulty
of different functions, the following two functions are used as test
problems. The two functions are expected to have the equivalent
optimization hardness as the function fp(x) since all of them have
the same OFF.

fnp(x) = A · [2 − fp(x)] · r + fp(x), with 0 < x < 100

where 0 < A < 1 and r is a random number generated in the interval
(0, 1)

fdp(x) = [2 − fp(x)] · (x − 50)2

5000
+ fp(x), with 0 < x < 100.

fnp(x) is a noisy time-variant function. fdp(x) is a deceptive func-
tion which has two strong nonoptimal attractors at boundaries. The
curves for fp,2(x), fnp,2(x), and fdp,2(x) which have the same OFF
are shown in Fig. 5. The experimental results for the maximization of
the two functions are shown in Table III.

Remark: As indicated by Table III, for different optimizers, the
optimization cost of the same function may be different. In fact, the
minimal cost of optimizing a problem depends not only on the problem
itself but also on optimizers. This can be deciphered by the definition
of OFF. The optimization hardness mentioned here is measured by the
minimal cost. As shown in Tables II and III, with BB only considered
as a reference, the minimal cost of optimizing each function with the
above optimizers is the cost of RS. Therefore, the cost of RS is chosen
as the foundation for problem difficulty analysis. It is easy to see that
the minimal optimization costs of the functions fnp,i, fdp,i, and fp,i,
for the same i, are almost equal. Therefore, the three functions have
equivalent optimization hardness. This experiment shows that some
feature factor such as OFF determines the difficulty of optimizing a
function. For an optimizer, distinct functions may have the same rank
of optimization hardness. In addition, all optimizers except RS are
sensitive to the deceptive function fdp,5. Normal exploitation is badly
misguided in the optimization of fdp,5. Noise may be beneficial in the
optimization of fnp as it may bring useful gradientlike information.
In contrast with other optimizers, SA is obviously sensitive to the
magnitude of noise.
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TABLE II
SUCCESS RATIO AND AVERAGE COST AT SUCCESS OF DIFFERENT OPTIMIZERS IN OPTIMIZING PULSE FUNCTIONS

Experiment III—2-D Benchmark Function Tests:

fb,1(x1, x2) =x2
1 + x2

2, with −100 < x1, x2 < 100

fb,2(x1, x2) =
1

4000

2∑
i=1

(xi − 100)2

−
2∏

i=1

cos

(
xi − 100√

i

)
+ 1,

with −600 < x1, x2 < 600

fb,3(x1, x2) =100
(
x2 − x2

1

)2
+ (x1 − 1)2,

with −2.048 < x1, x2 < 2.048

fb,4(x1, x2) =0.5 +
sin2

√
x2

1 + x2
2 − 0.5

[1 + 0.001 (x2
1 + x2

2)]
2
,

with −100 < x1, x2 < 100

fb,5(x1, x2) = −
2∑

i=1

xi · sin
(√

|xi|
)

,

with −500 < x1, x2 < 500.

The above benchmark functions are 2-D Sphere, Griewank,
Rosenbrock, Schaffer, and Schwefel functions, respectively [46], [49].
fb,1, fb,2, fb,3, and fb,4 are single-funnel functions which have
obvious global features [49]. Particularly, fb,1 is unimodal. In contrast,
fb,5 is a multifunnel function which is considered to be relatively
difficult for PSO to optimize [49]. The OF-based OFFs corresponding
to the five functions are 1, 4.61e − 8, 1, 7.65e − 7, and 3.22e − 3,
respectively.

Six optimizers are expected to minimize these test functions. For
optimizers used for maximization, if they are required to minimize an
objective function, the simplest approach is to maximize the reverse of
the function. Different from pulse functions, when an optimizer locates
the optimal field of these functions successfully, it does not mean that
the optimizer has discovered a global optimal point. Some gradient
information will become an indispensable guide for exploitative opti-
mizers to find a global optimal point. In this case, the disadvantage of
random sampling in optimization accuracy will emerge since it has no
exploitation. Thus, for fairness, both the performance of approaching
global optima and that of locating optimal field about six optimizers
are considered. The experimental results for these two performance
comparisons are shown in Tables IV and V, respectively.

Remark: There is much useful gradient or gradientlike information
in the optimization of these functions, which benefits exploitative
optimizers. This is one reason for that the exploitation-dominated
optimizer PSO outperforms the other optimizers except BB in this
experiment. However, PSO is easily trapped at the local optimal points

Fig. 5. Curves for fp,2(x), fnp,2(x), and fdp,2(x).

of the Schwefel function (fb,5). This is because the optimization
of the Schwefel function depends on a preferable ability of locating
OF. Furthermore, such ability depends on exploration which is just
the weakness of PSO. Nevertheless, due to excellent exploitation
performance, PSO can achieve accurate optimization rapidly once it
locates the OF of the Schwefel function. In fact, for PSO, the OFFs
of the above five functions are not based on OF, because PSO is
not a purely explorative optimizer like RS. Thus, the OF-based OFF
cannot reflect the optimization hardness of these functions for PSO.
It is reasonable to use piOR as OFF in this case. The piORs of the
Griewank function and the Schaffer function for PSO are much larger
than that of the Schwefel function. This explains why it is relatively
difficult for PSO to optimize multifunnel functions [49].

In contrast with PSO, RS keeps its superiority in locating the OF
of the Schwefel function (fb,5), but it lacks the ability of accurate
optimization. For RS, the success ratio of locating the OF of the
Griewank function is the lowest, which accords with the indication
of OFF (SOR).

For binary-coded GA, the OF-based OFF that is SOR is also invalid
since the three operators in GA do not operate in the Euclidean space
[54]. A simple example for the irrationality of SOR for GA is shown
in Fig. 6.

In order to characterize the optimization hardness of problems for
GA, the neighborhood of the points in search space must be redefined.
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TABLE III
VALIDATION OF EQUIVALENT OPTIMIZATION HARDNESS

TABLE IV
SUCCESS RATIO AND AVERAGE COST AT SUCCESS OF DIFFERENT OPTIMIZERS IN OPTIMIZING FIVE BENCHMARK FUNCTIONS

TABLE V
SUCCESS RATIO AND AVERAGE COST AT SUCCESS OF DIFFERENT OPTIMIZERS IN LOCATING THE OPTIMAL FIELDS OF THE ABOVE FUNCTIONS

Fig. 6. Example for the irrationality of SOR for binary-coded GA. xH is the
Hamming code for x that is the binary representation of x. dH(xH, yH) denotes
the Hamming distance between xH and yH, and it is equal to the number of bits
on which xH and yH have different values. It is easy to see that x = 0 is the
global optimum of this problem. For GA, this is a unimodal monotonic problem
which is schema-GA-easy [54]. Therefore, the accurate OFF of this problem
should be 1. However, the OF-based OFF (SOR) is 0.125. The difference is
mainly caused by the different neighborhood structures in the two different
spaces—the Hamming space and the Euclidean space.

Schema theory [38] provides a reference for the optimization hardness
analysis about GA. However, it is very hard to analyze all schemata
about a complicated function defined in the Euclidean space and even
in the Hamming space. Compared with PSO, the binary-coded GA is
unsuitable for the accurate optimization of the functions in this ex-

periment. Similarly, SA also depends on a slow stochastic exploitation
which is similar to the proportional selection in GA. Therefore, it is not
unusual that SA cannot overwhelm RS in this experiment. In fact, GA,
SA, and MSHC on one hand are more exploitative than RS. On the other
hand, they are more explorative than PSO, which can be validated by
the optimization of the Griewank function.

MSHC has both the advantage of RS and that of Hill climbing,
so it performs better than RS with respect to accurate optimization.
However, it has the disadvantage of multipath redundancy, which
makes the processes of hill climbing with different paths approach
the same local optimal point. For MSHC, the starting point of each
hill climbing is provided by random sampling. Therefore, its gradient-
based exploitation depends on its exploration. Besides, once a hill-
climbing search is started, it will not stop unless it cannot find a better
solution. Therefore, the exploitation is preferential in MSHC. It seems
that OR is a suitable choice for the definition of OFF for MSHC.
However, in fact, the neighborhood for MSHC is different from that
for RS, although MSHC like RS is also built in the Euclidean space.
This is because the hill climbing in MSHC takes a fixed climbing step.
A strict definition of OFF about MSHC must take this into account.

In contrast with the other global optimizers, BB performs very
well in almost all cases, which reflects the significance of global
information [60]. Particularly, it is hard for BB to optimize the Schaffer
function accurately. It can be observed that BB approaches the subopti-
mal local optima of the Schaffer function rapidly. At this time, further
subdivision of promising regions will ignore the region which contains
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Fig. 7. Landscape of the function F (x, y). (a) It is easy to see the nature of F (x, y) in y-axis direction from the whole landscape of F (x, y). (b) Local landscape
of F (x, y) can show a rough character of F (x, y) in x-axis direction.

the OF and thus the global optimum of this function. This is because
the midpoint sampling in the region gets an inferior point and thus
leads to a poor lower bound for the region. Although BB can find this
region in theory, it will take a long time due to the processing order
of BB. For the optimization of the Sphere function and the Rosenbrock
function, a gradient-based local optimizer such as Newton’s method
is a better choice as its cost is much less. To sum up, the optimal
optimizer for a particular problem must utilize the particularity of
the problem as much as possible. The tradeoff between exploration
and exploitation for specific optimizers depends on the optimization
hardness of problems.

It should be noted that OFF only indicates the hardness of locating
the “easy” attractive region, e.g., OF and OSC, for an optimizer.
The cost of further optimization within such regions, that is the cost
of exploitation, is not included in the optimal contraction theorem.
Usually, if such cost dominates the total cost of the whole optimization
process, the problem is not very hard. For some special landscapes and
optimizers, such cost may become great due to the issue of long con-
vergence path. In this case, other optimizers may become appropriate
choices for the optimization of the special landscapes. For different
optimizers, the optimization hardness of the same problem may vary.
The intrinsic optimization hardness of a problem corresponds to the
minimal average cost for all possible optimizers [61].

V. CONCLUSION AND PROSPECT

The optimization hardness of problems dominates T:Er&Ei and the
minimal average cost of search and optimization. If a problem is very
hard for an optimizer, the T:Er&Ei for this optimizer will lean toward
exploration; otherwise, exploitation dominates the T:Er&Ei. For dif-
ferent optimizers used to solve the same problem, T:Er&Ei may be
different because of different neighborhoods and landscapes. Accord-
ing to the Optimal Contraction Theorem, it is important to construct a
certain optimizer based on the particularity of optimization problems,
which reflects the importance of utilizing instructive information to re-
duce the optimization hardness of problems. No use of such particular-
ity will cause an inevitable extra cost. In practice, many optimization
problems have more or less particularity such as convexity and single
funnelness which can be utilized. Even for complicated problems,
local or global information such as Lipschitz constant can be beneficial.
The optimal optimizer for a problem is expected to make the best of
the useful information about the problem. In a sense, prior knowledge
can transform a hard problem into a relatively easy one. In addition,

reasonable characterizations of optimization hardness are significant
to select or design a desirable optimizer for a specific problem.

Although the Optimal Contraction Theorem indicates the relation-
ship between T:Er&Ei and the problems to be optimized, it is hard
to regulate the T:Er&Ei according to an accurate optimization feature
factor (OFF). This is mainly due to the large extra computational cost
of directly obtaining an accurate or at least reliable OFF. However, it
is promising to utilize a dynamic OFF which is computed periodically
according to part of the accumulated information on objective func-
tions. The OFF can be used to regulate the T:Er&Ei dynamically. It
is significant to do a comparative research on different optimization
algorithms based on different T:Er&Ei strategies in future.

APPENDIX A
ANALYSIS OF THE COST FUNCTION T (M1, n)

For convenience of analysis, we transform the two variables of
T (M1, n) and get a more regular function as follows:

T (M1, n) =F (x, y)

= ln(1 − x · P 1/2)}/ ln(1 − y · η1/2)

+ ln(1 − P 1/2/x)}/ ln(1 − η1/2/y)

DF =
{
(x, y)|P 1/2 ≤ x ≤ P−1/2, η1/2 ≤ y ≤ η−1/2

}
(A1)

where x = [1 − (1 − M1η)n]/P 1/2 and y = M1η
1/2.

It is easy to verify that (1, 1) is an equilibrium point of F (x, y). The
point (1, 1) will be locally minimal if the following inequality can be
guaranteed:

F (2)
xx (1, 1) · F (2)

yy (1, 1)−
[
F (2)

xy (1, 1)
]2

=−
4
{
Pη+P 1/2

[
2η+η1/2 ln(1−η1/2)

]
· ln(1−P 1/2)

}
(1−P 1/2)2(1−η1/2)2 ln4(1−η1/2)

>0

where F
(2)
xx , F

(2)
yy , and F

(2)
xy are two-order partial derivatives of

F (x, y).
Since what we concern is the case in which P tends to one, the

above inequality is equivalent to 1 − η1/2 − exp(−2η1/2) > 0. It is
easy to prove that the function g(η) = 1 − η1/2 − exp(−2η1/2) has
only one zero in the interval (0, 1). Therefore, the unique solution to
g(η) = 0, denoted by η∗, determines the range of η restricted by the
above inequality. Numerically, η∗ ≈ 0.892643.
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When P = 0.9999 and η = 0.001, the landscape of F (x, y) is
shown in Fig. 7(a) and (b).

As P tends to one, the measure in x-axis direction will gradually
reduce to zero, and the variable x tends to one. The 2-D function
F (x, y) will be degraded into a 1-D function which has the same shape
and global optima with the following function:

G(y) = − 1/ ln(1 − yη1/2) − 1/ ln(1 − η1/2/y)

DG = {y | η1/2yη−1/2}. (A2)

Then, the minimization problem minG(y), y ∈ DG is solved. Since
G(y) is continuous and smooth in its domain, we can get its optimum
by evaluating all local optimal points and boundary points. It can
be proved that there are at most three equilibrium points for G(y).
One of the three points is y = 1 which is a local minimal point and
lies between the other two points. Therefore, the potential global
minimum of G(y) can only lie at y = 1 or its boundaries (y = η1/2

or y = η−1/2). Note that G(η1/2) = G(η−1/2).
If G(1) ≥ G(η1/2), the range of η can be given by (3 −

√
5)/2 ≤

η ≤ 1 and the minimum of G(y) is G(η1/2). In other words, y =
η1/2 or η−1/2 is the solution to the minimization of G(y). Cor-
respondingly, for the minimization of T (M1, n) with P → 1, the
optimal contracting ratio is M∗

1 = 1 or 1/η, which means that the
aforementioned three-stage contraction process is degraded into a two-
stage contraction process. In this case, one contraction is enough to
achieve the locating of OF. In this sense, M∗

1 = 1/η is the unique
optimal contracting ratio because the search enters OF after the first
stage, and the cost of locating OF which corresponds to M∗

1 = 1/η is
reduced to T |M=1/η = m < m + n = T |M=1.

If G(1) < G(η1/2), the range of η can be given by 0 < η < (3 −√
5)/2, and the minimum of G(y) is G(1). M∗

1 = 1/η1/2 is the
unique optimal contracting ratio. In this case, M∗

2 = (M∗
1 η)−1 =

1/η1/2 = M∗
1 . Besides, it is easy to verify that m = n = ln(1 −

P 1/2)/ ln(1 − η1/2) which means that the cost of the first stage (m)
is equal to that of the second stage (n). Therefore, the minimal cost of
locating OF is 2 ln(1 − P 1/2)/ ln(1 − η1/2). As P tends to one, the
minimal cost tends to infinity, which means the locating of OF cannot
be determinately achieved. This is because the contraction results in
the incompleteness of the information about objective functions and
makes the probability of omitting OF nonzero. Therefore, strict global
optimization is impossible for stochastic contraction process.

APPENDIX B
ANALYSIS OF THE GENERALIZED COST FUNCTION T (k)

Relax T (k) to T (z) = z ln(1 − P 1/z)/ ln(1 − η1/z) by permitting
the variable z to be any real number satisfying z ≥ 1. In order to obtain
the optimal number of contraction stages, we analyze the equilibrium
point of T (z) by solving the zero of its one-order derivative T (1)(z).
The equation T (1)(z) = 0 is equivalent to the following equation:

η1/z ln(η1/z)

(1 − η1/z) ln(1 − η1/z)
− P 1/z ln(P 1/z)

(1 − P 1/z) ln(1 − P 1/z)
= 1. (B1)

As P tends to one, the second term in the above equa-
tion [P 1/z ln(P 1/z)]/[(1 − P 1/z) ln(1 − P 1/z)] tends to 0. Thus,
(B1) equivalently becomes η1/z ln(η1/z) = (1 − η1/z) ln(1 − η1/z).
Since the curve h(t) = t ln(t) intersects h(1 − t) only at t = 0.5
in the interval (0, 1), the equilibrium point of T (z) is determined
by η1/z = 1 − η1/z , giving z = − log2(η). Therefore, the optimal
number of contraction stages denoted by k∗ is �− log2(η)� or
�− log2(η)� + 1 where �x� denotes the biggest integer which is not
greater than x. Note that z ≥ 1 requires η ≤ 0.5. Given different
values of η with P fixed at 0.9, the curve of T (k) is shown in Fig. 8.

Fig. 8. Optimal stage number increases when η is reduced. Note that each
point surrounded by a square is optimal among all points lying on the same
curve.
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