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Abstract

I explicitly derive the optimal dynamic incentive contract in a standard continuous-
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1 Introduction

The paper explicitly solves the optimal contracting problem in a standard Brownian frame-
work. This continuous-time setting models a dynamic principal-agent relationship where
some asset (a firm, a project etc.) owned by a risk-neutral principal is contracted out to a
risk-neutral agent to manage. The asset’s variable cash flow is driven by Brownian motion.
The profitability of the asset is influenced by the hidden actions of the agent. At any mo-
ment in time, the agent can either choose the high action or the shirking action. Shirking
hurts asset performance but gives the agent extra utility. The principal owns the cash flow.
To properly motivate the agent, the principal writes a contract which stipulates a suggested
course of action, a cash compensation plan and a termination clause.

Previous progress towards the resolution of the optimal contracting problem has been
made by DeMarzo and Sannikov (2006). That paper derives the optimal contract subject to
the agent never shirking and the conditions under which the no-shirking restriction is without
loss of generality. I call this contract the optimal Baseline contract. The paper also describes
conditions under which the optimal contract involves the agent shirking forever. In my paper,
I show that, in addition to the two forms described by DeMarzo and Sannikov (2006), the
optimal contract can take on two more forms, for a total of four optimal contractual forms.
See Theorems 2 and 3. Unlike the Baseline form, the two new forms both include phases
when the agent frequently shirks.

Theorems 1 and 2 characterize the optimal value function and formally solve the optimal
contracting problem. Theorem 3 then interprets the results and shows how all four optimal
contractual forms can be thought of as different realizations of a single general optimal
contractual form. In this general form, the principal picks good and poor performance
thresholds and there is a rating tracking the agent’s performance. Over time, the rating
moves according to the performance of the underlying asset. When the rating is strictly
between the thresholds, the agent does not shirk. Whenever the rating reaches the good
performance threshold, the agent is rewarded and possibly shirks, and whenever the rating
drops to the poor performance threshold, the agent is punished and possibly shirks. I then
argue there are four different ways to reward and punish the agent at these thresholds, giving
the four different optimal contractual forms.

One of the two new forms is called the Quiet-Life form. In a Quiet-Life contract, after
sustained good performance, a relaxed “Quiet-Life phase” is triggered. During this phase
the incentives of the contract are frequently (though not always) unresponsive to asset per-
formance. One can think of the principal as frequently ignoring the performance of the
asset. This causes the agent to frequently shirk. After the Quiet-Life phase concludes, the
incentives return to being sensitive to asset performance all the time, and the agent applies
high action all the time again. Then either sustained good performance brings about an-
other round of the Quiet-Life phase or sustained poor performance triggers termination. In a
Quiet-Life contract, the Quiet-Life phases represent a form of hidden compensation reward-
ing the agent after he reaches the good performance threshold. In Section 6.1, I compare
Quiet-Life contracts with Baseline contracts. I find that the hidden compensation packages
of Quiet-Life contracts tend to be less lucrative than the cash compensation packages of
Baseline contracts. Termination also tends to be delayed in Quiet-Life contracts. These
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advantages that come with letting the agent shirk imply that the optimal contract may take
the Quiet-Life form even when shirking is inefficient. See Theorems 1 and 2.

The other new form is called the Renegotiating Baseline form. In this model, there is
no renegotiation and the principal is fully committed. However, a contract like the optimal
Baseline contract can be improved with a renegotiation that is unanticipated by the agent.
Specifically, every time the optimal Baseline contract calls for termination, the principal
can surprise the agent with an offer to forgive him for his poor performance and to move
his performance rating up away from the poor performance threshold. Both parties would
be better off under this incentive-incompatible arrangement. The Renegotiating Baseline
contract is so named because it is an incentive-compatible approximation of that arrange-
ment. A Renegotiating Baseline contract starts out just like a Baseline contract. However,
sustained poor performance does not trigger termination, but instead, a suspension phase
during which cash compensation is postponed, the principal frequently ignores asset per-
formance and the agent frequently shirks. Afterwards, the agent is forgiven for his poor
performance and the contract behaves like a Baseline contract again. Some Renegotiating
Baseline contracts are renegotiation-proof. In certain cases, the optimal contract, which a
priori need not be renegotiation-proof, is a renegotiation-proof Renegotiating Baseline con-
tract. See last corollary in Section 6.2.

In related work, DeMarzo and Sannikov (2006) considers a continuous-time financial
contracting model where the agent may divert cash for personal gain. The paper then derives
the optimal contract subject to the agent never diverting cash. This restriction is without
loss of generality: a constant dead-weight cost of diversion and the unlimited ability to divert
imply that the revelation principle holds. Biais, Mariotti, Platin, and Rochet (2007) and
DeMarzo and Fishman (2007) consider discrete-time versions of the cash diversion model and
He (2009) considers the Geometric Brownian setting. There is a close connection between
these cash diversion models and the effort model considered in my paper. As Biais, Mariotti,
and Rochet (2011) notes, the models are isomorphic if the agent is asked to never shirk in
the effort model. Indeed, DeMarzo and Sannikov (2006) Section III shows that the optimal
contract in the cash-diversion model is also the optimal contract in the effort model subject
to the agent never shirking. Biais, Mariotti, Rochet, and Villeneuve (2010) considers a
continuous-time Poisson version of the effort model.

In general, the no-shirking condition is with loss of generality and the action process of
the unconstrained optimal contract in the effort model will not be a priori known. Grossman
and Hart (1983) demonstrates that simultaneously determining the optimal action level and
the associated optimal incentive scheme is complex even in single period principal-agent
models. My paper builds upon the martingale techniques introduced by Sannikov (2008) to
deal with the technical problems of the effort model.

My paper is part of the literature on dynamic contracting using recursive methods. Early
contributions include Green (1987) and Spear and Srivastava (1987). There is also a small
but growing literature on continuous-time contracting. Holmstrom and Milgrom (1987) is
an early example. More recent papers not previously mentioned include Sannikov (2005)
and DeMarzo and Sannikov (2008). Also, some of my optimality results have connections
with the hurdled-calibrated contracts of Chassang (2011).
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2 Setting

The model is inherited from DeMarzo and Sannikov (2006) (from now on DS), Section
III. The principal contracts an agent to manage an asset belonging to the principal. The
agent affects asset performance by selecting a hidden costly action at each moment in
time. Formally, there is a probability space Ω equipped with a filtration {Ft}t≥0 and an
Ft-measurable stochastic process {Zt}t≥0. Additionally, there is a binary agent’s hidden
action set {0, A > 0} and a mapping from action processes1 a = {at}t≥0 to measures P µ−a

on Ω. Asset performance is then characterized by the following condition on the mapping:
under P µ−a, the stochastic process {Zt}t≥0 representing asset cash flows is Brownian motion
plus a drift term (µ− at)dt. The µ is a constant parameter of the model.

A contract for the agent specifies a cash compensation I = {It}t≥0 for the agent, a
termination clause τ and an action process a that the principal recommends for the agent.
The Ft-measurable process I tracks the cumulative cash compensation received by the agent.
It is assumed to be non-decreasing and I0 = 0. The termination clause τ is a stopping time.
The hidden action 0 is called the high action and the hidden action A is called the shirking
action. Whenever the agent shirks, he receives an extra utility flow λAdt where λ is a positive
constant.

Fix a contract (I, τ, a) and suppose the agent follows the principal’s recommended action
process a. The agent discounts at rate γ and receives an outside option worth R ≥ 0 once
the contract is terminated. Therefore, the agent’s total expected payoff from the contract
at date 0 is

W0 = EPµ−a

[∫ τ

0

e−γs (dIs + λasds) + e−γτR

]
.

More generally, define the contract’s promised value Wt to the agent after a history Ft to be
the random variable:

Wt = EPµ−a

[∫ τ

t

e−γ(s−t) (dIs + λasds) + e−γ(τ−t)R

∣∣∣∣ Ft] t ≤ τ.

The principal discounts at rate r < γ. Once the contract is terminated, he receives a
liquidation payoff L < µ

r
. The principal’s expected profit at date 0 is

b0 = EPµ−a

[∫ τ

0

e−rs (dZs − dIs) + e−rτL

]
.

A contract (I, τ, a) with date 0 expected agent payoff W0 is incentive-compatible if Wt ≥ R
for all times t ≤ τ and W0 ≥ EPµ−â

[∫ τ
0
e−γs (dIs + λâsds) + e−γτR

]
for all alternative action

processes â. The optimal contracting problem is to find an incentive-compatible contract
that maximizes the principal’s date 0 expected profit.

1An action process is an Ft-measurable stochastic process taking values in the binary agent’s hidden
action set {0, A}.
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3 Fundamentals

In this section I summarize the solution method employed up to the derivation of the fun-
damental HJB-equation characterizing optimality. I also discuss some partial optimality
results. Much of the material in this section is taken from DS, sections I.B.1 and III. The
analysis of the HJB-equation, which represents the main technical contribution of the present
paper, is covered in the succeeding sections and the Appendix.

The agent’s incentives can be captured by a single state variable: the contract’s promised
value Wt. Fix a contract (I, τ, a), Equation (1) below characterizes the evolution of the
contract’s promised value.

Lemma 3.1. At any moment in time t ≤ τ , there is an Ft-measurable sensitivity βt of the
contract’s promised value to asset performance such that

dWt = γWtdt− dIt − λatdt+ βt(dZt − (µ− at)dt) (1)

Proof. See proof of DS Lemma 2.

One would expect the agent to not shirk at some time t only if the contract is suffi-
ciently sensitive to asset performance at t. This suggests that there may be a way to char-
acterize incentive-compatibility by looking at the contract’s underlying sensitivity process
β = {βt}t≥0. The following lemma formalizes this intuition.

Lemma 3.2. A contract (I, τ, a) with sensitivity process β is incentive-compatible if and
only if for all t ≤ τ , Wt ≥ R and

at =

{
0 ⇒ βt ≥ λ

A ⇒ βt ≤ λ
(2)

Proof. See proof of DS Lemma 3.

From now on, a contract is assumed to be incentive-compatible. Define B(W ) as the
payoff to the principal of the optimal contract subject to delivering value W to the agent. The
function B is defined on the domain [R,∞). The solution to the optimal contracting problem
is closely related to the characterization of B around a sufficiently large neighborhood of the
arg max of B. I will use dynamic programming to prove that B is the solution to some
HJB-equation. The arguments made here will be informal. For example, I will assume that
B is concave rather than prove concavity. Formal justifications appear in the Appendix.

Since the principal always has the option of a lump sum transfer dI > 0, it must be
that B(W ) ≥ B(W − dI) − dI. Therefore B′ ≥ −1 everywhere. Define ωB as the lowest
W such that B′(W ) = −1. The concavity of B then implies that it is optimal to pay
dI = max{W − ωB, 0} to the agent. As DS notes, “these transfers, and the option to
terminate, keep the agent’s promised value between R and ωB.” Between R and ωB, Ito’s
Lemma implies that the sum total of the principal’s expected cash flow and changes in
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contract value is given by

E[dZ + dB(W )] =

(
µ− a+ (γW − λa)B′(W ) +

β2

2
B′′(W )

)
dt (3)

where the action a and the sensitivity β satisfy Equation (2). Dynamic programming then
implies

rB(W )dt = max
a,β s.t. Eq. (2)

E[dZ + dB(W )] =

max
a,β s.t. Eq. (2)

µ− a+ (γW − λa)B′(W ) +
β2

2
B′′(W ). (4)

Since B is concave, B′′ ≤ 0. Therefore, whenever a = 0, it is optimal to set sensitivity to
β = λ and whenever a = A, it is optimal to shut down sensitivity: β = 0. The intuition is
that volatility of the agent’s incentives should be as low as possible while still maintaining
incentive-compatibility since lowering the volatility delays or avoids inefficient termination.
Therefore, between R and ωB, the principal’s value function satisfies the following HJB-
equation:

rB(W ) = max

{
µ+ γWB′(W ) +

λ2

2
B′′(W ), µ− A+ (γW − λA)B′(W )

}
(5)

The quantity µ + γWB′(W ) + λ2

2
B′′(W ) (alternatively, µ − A + (γW − λA)B′(W )) is the

principal’s normalized instantaneous return when the agent applies action a = 0 (alterna-
tively, a = A). When rB(W ) = µ + γWB′(W ) + λ2

2
B′′(W ) ≥ µ − A + (γW − λA)B′(W ),

it is optimal to induce action 0 and the principal cannot do better by inducing action A
instead. Likewise, when rB(W ) = µ−A+ (γW − λA)B′(W ) ≥ µ+ γWB′(W ) + λ2

2
B′′(W ),

it is optimal to induce shirking and the principal cannot do better by inducing high action
instead.

Is there ever a situation where it is optimal to never induce shirking? Intuitively, if
shirking is inefficient (λ < 1) and sufficiently strong (A � 0), it is optimal to never induce
it. Define the agent’s and principal’s payoffs when the agent shirks forever:

ws =
λA

γ
and bs =

µ− A
r

Call (ws, bs) the shirking payoff. The following result, taken from DS, characterizes pre-
cisely when it is optimal to never induce shirking and what the corresponding optimal value
function looks like.

Lemma 3.3. DS Propositions 1 and 8. There exists a unique function b defined over
[R,∞) and a unique ω ≥ R such that the following conditions are simultaneously satisfied:

• b(R) = L, rb(ω) = µ−γω, rb(W ) = µ+γWb′(W )+λ2

2
b′′(W ) on (R,ω], and b′(W ) = −1

on [ω,∞)

• b is globally concave and twice continuously differentiable.
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b(W )
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(w̃s, b̃s)

R = 0
0

µ/r

f(W )

(ŵs, b̂s)

Figure 1: Taken from DS. When shirking is inefficient and sufficiently strong, the optimal contract
never induces shirking.

The value b(W ) is the payoff to the principal of the optimal contract subject to delivering
value W to the agent and subject to the agent never shirking.

Never inducing shirking is optimal (i.e. B ≡ b) if and only if

bs ≤ f(ws) where f(z) ≡ min
W≥R

b(W ) +
γ

r
(z −W ) b′(W ). (6)

Given λ < 1, this condition implies a lower bound on A.

Figure 1 graphically summarizes the necessary and sufficient conditions for never inducing
shirking to be optimal. The function f defined in Equation (6) is concave and lies strictly
below b except at their common maximum. Fixing the degree of inefficiency, λ, of shirking
fixes a linear track on which the shirking payoff (ws, bs) can be located. As the strength of
the shirking action, A, increases, (ws, bs) slides further down the track. At some point, it will
cross below the function f and the optimal contract will never induce shirking. For example,
in Figure 1, this occurs when ws ≥ ws. Conversely, if ws < ws, the optimal contract will
involve shirking after some histories.

Indeed, for A sufficiently small, such as in the case of (w̃s, b̃s) in Figure 1, the optimal
contract is to simply let the agent shirk forever. The intuition is that the gain from never
having to terminate more than makes up for any (small) loss in letting the agent shirk.

Definition. The optimal contract subject to the agent never shirking will be called the optimal
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Baseline contract. The optimal contract subject to the agent shirking at all times will be called
the optimal Static contract.

We now know that the optimal contract can take on at least two different forms, depend-
ing on the fundamentals: the Baseline and the Static forms. Are there any others? Consider
the case when A takes an intermediate value, so that the shirking payoff is (ŵs, b̂s) in Figure
1. Since b̂s > f(ŵs), DS Proposition 8 implies that the optimal contract will employ shirking.
However, b̂s < max b. So letting the agent shirk forever certainly is not the optimal contract.
Therefore, the optimal contract must employ shirking, but only temporarily.

When does the optimal contract employ shirking temporarily? How many of these op-
timal contractual forms are there? How are they designed? The rest of the paper answers
these questions, solving the optimal contracting problem.

Sections 4 and 5 form the technical heart of the paper. Theorem 1 provides tight upper
bounds on B and Theorem 2 uses these upper bounds to deduce the dynamics of the optimal
diffusion Wt. This formally solves the optimal contracting problem. Section 6 then interprets
these results. Readers have the option of going directly to Section 6.

4 Tight Upper Bounds on B

Overview of the Next Two Sections.
In this section I explain how the differential structure of B can be used to infer the incentive
structure of the optimal contract. Thus, solving the optimal contracting problem reduces to
solving for B. I then produce a function b∗ that is a tight upper bound on B in the sense that
there exists an interval E containing arg maxB such that b∗|E = B|E. In the next section,
I show that E can be made large enough so that the optimal diffusion Wt stays within E.
This allows me to deduce the optimal contract directly from b∗ instead of B. Throughout
this section and the next, I assume the optimal contract subject to the agent never shirking
does not involve terminating immediately. This is equivalent to assuming b′(R) > 0. I will
also assume the agent’s outside option R = 0. The optimality results (Theorems 1 and 2)
continue to hold when these two assumptions are removed. See Appendix, subsection 8.3.
Also, see Appendix, subsection 8.2 for a complete characterization of B.

Recall, characterizing the optimal contract means specifying a cash compensation I, a
termination clause τ and an action process a. In the previous section, I summarized DeMarzo
and Sannikov’s argument that the optimal cash compensation must be dI = max{Wt−ωB, 0}
where Wt is the agent’s promised value in the optimal contract. Such a compensation creates
a reflecting boundary at ωB and keeps Wt ≤ ωB for t > 0. Moreover, termination occurs
only when Wt drops down to R.

Therefore, to characterize the optimal contract, it suffices to determine two processes
between R and ωB: 1) the optimal action process at = a(Wt) and 2) the contract’s promised
value Wt. These two processes are simultaneously determined by the differential structure
of B. In particular, no additional public randomization is needed.2 On [R,ωB), the function

2This is because all of my conjectured value functions are concave.
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B is a solution to the HJB-equation of (5):

ry = max

{
µ+ γxy′(x) +

λ2

2
y′′(x), µ− A+ (γx− λA)y′(x)

}
The form of the HJB-equation requires that solutions be constructed by pasting together
solutions to two ODEs: the high action ODE ry(x) = µ + γxy′(x) + λ2

2
y′′(x) and the

shirking action ODE ry(x) = µ− A+ (γx− λA)y′(x). Once the optimal pasting of B is
determined, the two processes of interest - at,Wt - can be simply read off:

at = a(Wt) =

{
0 if rB(Wt) = µ+ γWtB

′(Wt) + λ2

2
B′′(Wt)

A if rB(Wt) = µ− A+ (γWt − λA)B′(Wt)
(7)

and

dWt =

{
γWtdt+ λ(dZt − µdt) if rB(Wt) = µ+ γWtB

′(Wt) + λ2

2
B′′(Wt)

γWtdt− λAdt if rB(Wt) = µ− A+ (γWt − λA)B′(Wt)
(8)

I now describe some relevant properties of the HJB-equation’s component ODEs. The
high action ODE is a very well-behaved 2nd-order linear differential equation. All coefficients
trivially admit globally convergent Taylor series expansions and therefore, so do all solutions
to the high action ODE. Fix a point (X, Y ), X ≥ 0 and Y < µ

r
. Figure 2 shows some

solutions to the high action ODE with starting point (X, Y ) in the region below the line
y = µ

r
. Solutions do not intersect beyond the starting point. The higher the initial slope,

the greater the initial concavity. There exists a constant M(X,Y ) > 0 such that if the initial
slope of the solution ≥ M(X,Y ) then the solution hits the line y = µ

r
.3 If the initial slope is

strictly between M(X,Y ) and rY−µ
γX

then the solution starts out concave, stays below y = µ
r
,

and eventually inflects and becomes permanently decreasing, convex.4 Finally, if the initial
slope ≤ rY−µ

γX
the solutions starts out decreasing, convex and remains decreasing, convex.

Pick an arbitrary solution starting at some point (X, Y ) with initial slope strictly between
M(X,Y ) and rY−µ

γX
< M(X,Y ), say g in Figure 2. Then g must inflect at some point. Call

this point (ωπ(X,Y ), g(ωπ(X,Y ))) where −π is the slope of g at its inflection. Next, attach the

concave portion of g with the half-line starting at (ωπ(X,Y ), g(ωπ(X,Y ))) with slope −π and call

this engineered function bπ(X,Y ). It is C2 and concave. The higher the initial slope g′(X), the

lower is the π. By varying g′(X) between M(X,Y ) and rY−µ
γX

< M(X,Y ), b
π
(X,Y ) is defined for

all π ∈ (0, µ−rY
γX

). In addition, for π ≥ µ−rY
γX

, define bπ(X,Y ) to simply be the half-line starting

at (X, Y ) with slope −π.
Each bπ(X,Y ) admits a natural contractual interpretation. Suppose the model is altered

so that there is a distortionary tax 1−π
π

on cash. That is, for every dollar delivered to the

3Technically speaking, this is not quite true. The solution with initial slope M(X,Y ) asymptotically
approaches y = µ

r . See Figure 2. However, I consider this function as hitting y = µ
r at infinity.

4In particular, the solution is already decreasing at the inflection point.
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Figure 2: Solutions to the high action ODE.

agent, the principal must pay π dollars.5 And suppose the outside options of the agent
and principal are X and Y instead of R and L. Then bπ(X,Y ) is the value function of the

optimal Baseline contract in the altered model. That is, for every W ≥ X, bπ(X,Y )(W ) is the
payoff to the principal from the the optimal contract subject to delivering W to the agent
and subject to the agent never shirking. Given the differential structure of bπ(X,Y ), it is clear
that the optimal Baseline contract in the altered model and the optimal Baseline contract
in the actual model share the same incentive scheme.6 I can now state a generalization of
DS Propositions 1 and 8. Define Bπ

(X,Y )(W ) as the payoff to the principal of the optimal
contract subject to delivering value W ≥ X to the agent in the altered model.

Lemma 4.1. Fix any π ∈ (0,∞). The function bπ(X,Y ) defined over [X,∞) and the value
ωπ(X,Y ) ≥ X are uniquely determined by the following conditions:

• bπ(X,Y )(X) = Y , rbπ(X,Y )(ω
π
(X,Y )) = µ − πγωπ(X,Y ), rb

π
(X,Y )(W ) = µ + γWbπ(X,Y )

′(W ) +
λ2

2
bπ(X,Y )

′′(W ) on (X,ωπ(X,Y )], and bπ(X,Y )
′(W ) = −π on [ωπ(X,Y ),∞)

• bπ(X,Y ) is concave and twice continuously differentiable.

Suppose the model is altered so that there is a distortionary tax 1−π
π

on cash and the agent’s
and principal’s outside options are X and Y respectively. Then the value bπ(X,Y )(W ) is the

5The distortionary tax can be a subsidy: π can be less than 1.
6Formally, the diffusions Wt implied by the two value functions are identical up to changes in the termi-

nating and cash compensation thresholds.
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(ws, bs)

(x1, y1)
(x2, y2)

Figure 3: Solutions to the shirking action ODE.

payoff to the principal of the optimal contract subject to delivering value W to the agent and
subject to the agent never shirking.

Never inducing shirking is optimal (i.e. Bπ
(X,Y ) ≡ bπ(X,Y )) if and only if

bs ≤ fπ(X,Y )(w
s) where fπ(X,Y )(z) ≡ min

W≥X
bπ(X,Y )(W ) +

γ

r
(z −W ) bπ(X,Y )

′(W ). (9)

Given λ < 1, this condition implies a lower bound on A.

Proof. This is a straightforward extension of DS Propositions 1 and 8.

Remark. From now on, whenever π = 1, the superscript of bπ(X,Y ) will be dropped; and

whenever (X, Y ) = (R,L), the subscript of bπ(X,Y ) will be dropped. The same convention will
also be applied to Bπ

(X,Y ), ω
π
(X,Y ) and fπ(X,Y ). This way the notation of Lemma 4.1 remains

consistent with the earlier notation of Lemma 3.3. Furthermore, with a simple relabeling of
objects, Figure 1 which summarized Lemma 3.3, can be reused to summarize Lemma 4.1.

The shirking action ODE admits analytic solutions:

y =
µ− A
r

+ α

(
x− λA

γ

) r
γ

α ∈ R (10)

These solutions comprise a family of functions branching from the shirking payoff (ws, bs).
Pick an arbitrary branch and two points (x1, y1), (x2, y2) on the branch. See Figure 3.
Suppose (x2, y2) is further down along the branch and represents the payoff to the agent and
principal from some contract C. Then (x1, y1) admits a contractual interpretation. It is the
payoff to the agent and principal from the contract C̃ which, before enacting C, allows the
agent to shirk for a period of length T where:

T =
1

γ
log

(
x2 − λA

γ

x1 − λA
γ

)
=

1

r
log

(
y2 − µ−A

r

y1 − µ−A
r

)

During the shirking period, the agent’s promised value is not sensitive to asset performance.
There are many ways to piece solutions to the two ODEs into a value function for the

principal. In certain cases, a carefully put together value function using solutions to both the
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∗

θ(ŵs,b̂s)
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Figure 4: Graphical Representation of Theorem 1. The V -curve and f divide D, the domain of the
shirking payoff, into four distinct regions. In the right region, B ≤ bπ

∗
. In the left, B ≤ b(R,L∗).

The inequalities are tight and π∗ and L∗ are functions of the shirking payoff. The two remaining
regions are when the optimal contract takes the Baseline and Static forms.

high action ODE and the shirking action ODE may imply the existence of a contract that
dominates the optimal Baseline and Static contracts. These are precisely the cases when the
optimal contract temporarily induces shirking. But before looking into these cases, I first
characterize precisely when the optimal contract takes the Baseline and Static forms.

In general, the shirking payoff (ws, bs) can lie anywhere in D = {(x, y)|x > 0 and y < µ
r
}.

DS shows that the optimal contract takes the Baseline form if and only if bs ≤ f(ws). The
optimal contract takes the Static form if and only if the shirking payoff is located on or inside
a V -shaped curve above b. See Figure 4. The following lemma characterizes this V -curve:

Lemma 4.2. Let VLeft denote the locus of points (X ≥ 0, Y < µ
r
) such that Y ≥ b(X)

and b′(X,Y )(X) = 0. VLeft is a strictly decreasing, continuous curve starting on the vertical

boundary x = 0 and ending at (arg max b,max b).
Let VRight denote the locus of points {(arg max bπ,max bπ)|π ∈ (0, 1]}. Then VRight is a

strictly increasing, continuous curve starting at (arg max b,max b), with a horizontal asymp-
tote y = µ

r
.

Definition. The V-curve is defined to be VLeft ∪ VRight.

Notice, f and the V -curve divide D into four regions. The bottom and top regions
determine two forms of the optimal contract: Baseline and Static. As we shall see in the next
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section, the left and the right regions determine the two remaining and as yet uncharacterized
forms of the optimal contract.

Suppose the shirking payoff is a point in the right region. For example, consider the
case when the shirking payoff is (ŵs, b̂s) in Figure 4. Pick the unique solution to the high
action ODE going from (R,L) to (ŵs, b̂s). Call this value function θ(ŵs,b̂s). Any point

(W, θ(ŵs,b̂s)(W )) on this value function is the payoff of a contract whose structure is implied
by the construction of θ(ŵs,b̂s). Each member of this particular family of contracts can

be thought of as a “tenure” contract. If (W, θ(ŵs,b̂s)(W )) = (ŵs, b̂s), the implied contract
simply lets the agent shirk forever. Now suppose, W < ŵs. This portion of θ satisfies the
high action ODE. Therefore, Equation (7) implies that the contract initially calls for high
action from the agent and Equation (8) implies that the agent’s promised value initially
evolves according to dWt = γWtdt + λ(dZt − µdt). This incentive scheme is maintained
until either Wt hits R and the contract is terminated, or Wt hits ŵs and the contract enters
the permanent shirking (or tenure) phase. Finally, since max θ(ŵs,b̂s) > max b, the contract

C implied by θ(ŵs,b̂s) delivering payoff (arg max θ(ŵs,b̂s),max θ(ŵs,b̂s)) dominates the optimal
baseline contract. While this represents an improvement, θ(ŵs,b̂s) lies below B and C is not
the optimal contract.

Continuing with the example, consider the following counterfactual: suppose there was a
distortionary tax subsidy 1−π

π
on cash (that is, π < 1). One can show that for all sufficiently

high subsidies, the optimal contract subject to delivering any value W ≥ R to the agent
never induces shirking. That is, Bπ = bπ for al sufficiently low π > 0. Since increasing the
tax subsidy makes cash compensation more attractive while leaving the effect of shirking
unchanged, it must be that

Bπ1 = bπ1 ⇒ Bπ2 = bπ2 ∀π2 < π1 (11)

So let π∗ be the largest π such that Bπ = bπ. It must be a subsidy: π∗ < 1. Otherwise,
Equation (11) implies B = b, contradicting the assumption that the shirking payoff does not
lie in the Baseline region. Moreover, since any decrease in tax increases overall efficiency in
the model, it must be that

Bπ1 ≤ Bπ2 ∀π2 < π1

Therefore, B ≤ Bπ∗
= bπ

∗
. In fact, this bound is tight and the process (Wt, B(Wt)) of the

optimal contract will always lie on bπ
∗
.7

Now suppose the shirking payoff is a point in the left region. For example, consider the
case when the shirking payoff is (w̃s, b̃s) in Figure 4. Consider another counterfactual: this
time, suppose the principal’s outside option value L̃ > L is very high. Again, one can show
that the for all sufficiently high principal outside options, the optimal contract subject to
delivering any value W ≥ R to the agent never induces shirking: B(R,L̃) = b(R,L̃). Let L∗ > L
be the smallest such principal’s outside option. Then B ≤ B(R,L∗) = b(R,L∗), and in fact,
b(R,L∗) is a tight upper bound on B.

The following theorem summarizes the previous observations.

7Obviously, B cannot equal bπ
∗

everywhere. For example, B′(W ) = −1 < −π∗ = bπ
∗ ′(W ), for all

W ≥ max{ωB , ωπ∗}.
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Theorem 1. The V -curve and f separate D into four regions. If the shirking payoff lies in
the right region, there exists a maximal π∗ (< 1) such that B∗ ≤ b∗ ≡ bπ

∗
. If the shirking

payoff lies in the left region, there exists a minimal L∗ (> L) such that B ≤ b∗ ≡ b(R,L∗).
In both cases, the concave optimal Baseline value function b∗ is a tight upper bound on B.
Finally, if the shirking payoff lies in the bottom and top regions, the optimal contract takes
the Baseline and Static forms respectively.

Proof. See Appendix, subsection 8.1.

5 Resolution of the Optimal Contracting Problem

In the previous section I explained that the optimal contracting problem is solved once B
is characterized, since B immediately implies the optimal contract’s Wt and a(Wt). I then
proved Theorem 1, which provided a tight upper bound on B.

In this section, I show how the tight upper bound b∗ of Theorem 1 is sufficient to imply
the optimal contract’s Wt and a(Wt). This completes the solution to the optimal contracting
problem. The optimal contracting result is then summarized in Theorem 2.

Recall, the optimal contract takes the baseline form if the shirking payoff lies below the
graph of f . See Lemma 3.3 and Figure 1. More generally, if the agent and principal’s outside
options are (X, Y ) and there is a distortionary tax 1−π

π
on cash, then the optimal contract

takes the baseline form if the shirking payoff lies on or below the graph of fπ(X,Y ). See Lemma
4.1.

Now suppose the shirking payoff is some point in the right region of D, say, (ŵs, b̂s).
Then Theorem 1 implies the existence of a tight upper bound on B of the form bπ

∗
. The

maximality of π∗ implies that b̂s = fπ
∗
(ŵs). So,

b̂s = bπ
∗
(W ∗) +

γ

r
(ŵs −W ∗) bπ

∗ ′(W ∗) for some W ∗ > R, (12)

and
b̂s ≤ bπ

∗
(W ) +

γ

r
(ŵs −W ) bπ

∗ ′(W ) for all W ≥ R. (13)

Let h be the solution to the shirking action ODE going through (W ∗, bπ
∗
(W ∗)). Together,

Equations (12) and (13) imply

bπ
∗ ′(W ∗) = h′(W ∗) and bπ

∗ ′′(W ∗) = h′′(W ∗) (14)

See Figure 5. Together, Equations (14) and the fact that (ŵs, b̂s) is in the right region imply

arg max bπ
∗
< W ∗ < min{ωπ∗

, ŵs} (15)

Now define the value function Bopt ≡ bπ
∗|[R,W ∗)∪ (W ∗, h(W ∗)) over the interval [R,W ∗].8

8Set theoretically, bπ
∗ |[R,W∗) ∪ (W ∗, h(W ∗)) is clearly equivalent to bπ

∗ |[R,W∗]. However, as a value func-

tions that encodes the structure of its implied contract, bπ
∗ |[R,W∗)∪ (W ∗, h(W ∗)) is distinct from bπ

∗ |[R,W∗].
By separating (W ∗, h(W ∗)) from the rest of bπ

∗ |[R,W∗], the value function bπ
∗ |[R,W∗)∪(W ∗, h(W ∗)) explicitly
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∗
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W ∗

(R,L)

Figure 5: The smooth pasting and super contact at some W ∗ between bπ
∗

and a solution h to the
shirking action ODE. Shirking payoff (ŵs, b̂s) lies in the right region of D.

Any point (W,Bopt(W )) is the payoff of a contract whose structure is implied by the differ-
ential properties of Bopt. In particular, since maxBopt = max bπ

∗ ≥ maxB, the structure of
the optimal contract is implied.

Fix a point (W0, B
opt(W0)). To achieve this payoff, start the contract’s promised value

at W0. When Wt ∈ (R,W ∗), the local differential structure of Bopt and Equation (7) imply
that the contract induces high action from the agent. Equation (8) then implies that the
contract’s promised value evolves according to dWt = γWtdt+λ(dZt−µdt). When Wt = W ∗,
since (W ∗, h(W ∗)) represents the contribution of the shirking action ODE to Bopt, Equation
(7) implies that the contract induces shirking from the agent. Together, Equations (8) and
(15) then imply that the contract’s promised value evolves according to

dWt = (γW ∗ − λA)dt < 0dt (16)

Lastly, the contract is terminated when Wt = R.
The dynamics of the diffusion Wt merit discussion. On (R,W ∗), Wt is stochastic with

volatility λ. But whenever Wt = W ∗, the volatility disappears, and Wt deterministically
moves downwards for an instant (see Equation (16)), after which, it enters (R,W ∗) again.
The implied motion is Brownian with a slow reflection at the reflecting boundary W ∗. For-
mally, this type of diffusion is well-defined and is termed Sticky Brownian Motion.9 See
Lemma 6.1. The stickiness captures the property that, conditioned on Wt reaching W ∗, the
set of times when Wt = W ∗ (almost surely) has positive measure. This is in direct contrast
to regular reflecting Brownian motion. However, like regular reflecting Brownian motion,
the set is nowhere dense and perfect.

Now suppose the shirking payoff is in the left region of D. By mimicking the arguments
made previously, the optimal contract can again be deduced from the tight upper bound on
B provided by Theorem 1. Specifically, the minimality of L∗ implies the existence of a value
W ∗ and a solution h to the shirking action ODE satisfying:

b(R,L∗)(W
∗) = h(W ∗) and b′(R,L∗)(W

∗) = h′(W ∗) and b′′(R,L∗)(W
∗) = h′′(W ∗) (17)

instructs the implied contract to switch to the shirking when Wt = W ∗.
9For a thorough discussion of Sticky Brownian Motion, see Harrison and Lemoine (1981).
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ω(R,L∗)W ∗

h

(R,L∗)

(w̃s, b̃s)
f(R,L∗)

b(R,L∗)

Figure 6: The smooth pasting and super contact at some W ∗ between b(R,L∗) and a solution h to

the shirking action ODE. Shirking payoff (w̃s, b̃s) lies in the left region of D.

Together, Equation (17) and the fact that (w̃s, b̃s) is in the left region imply

w̃s < W ∗ < arg max b(R,L∗) < ω(R,L∗) (18)

Bopt is now defined to be (W ∗, h(W ∗))∪ b(R,L∗)|(W ∗,ω(R,L∗)]. When Wt ∈ (W ∗, ω(R,L∗)), the
agent applies high action, dWt = γWt + λ(dZt − µdt), and cash compensation is triggered
whenever Wt = ω(R,L∗) causing Wt to reflect downwards. When Wt = W ∗, the agent shirks,
dWt = (γW ∗ − λA)dt > 0dt, and volatility disappears causing Wt to deterministically move
upwards for an instant, after which, it enters (W ∗, ω(R,L∗)] again. Therefore, Wt remains in
the interval [W ∗, ω(R,L∗)] permanently, slowly reflecting upwards at the sticky boundary W ∗

and reflecting downwards at the non-sticky boundary ω(R,L∗).
The optimal contracting problem is now solved and the following theorem summarizes

the results.

Theorem 2. Suppose the shirking payoff is in either the right or the left region of D and
let b∗ = bπ

∗
or b(R,L∗) be the tight upper bound of B from Theorem 1. Then there exists a

unique W ∗ ∈ (R, ω∗ = ωπ
∗

or ω(R,L∗)) and a unique solution h to the shirking action ODE
such that the following smooth pasting and super-contact conditions are satisfied:

h(W ∗) = b∗(W ∗) and h′(W ∗) = b∗ ′(W ∗) and h′′(W ∗) = b∗ ′′(W ∗)

Suppose the shirking payoff is in the right region of D. Then arg max bπ∗ < W ∗ and the
contract that maximizes the principal’s profit and delivers the value W0 ∈ [R,W ∗] to the
agent takes the following form:

• When Wt ∈ (R,W ∗), the agent applies high action and dWt = γWt + λ(dZt − µdt).

• When Wt = W ∗, the agent shirks and dWt = (γW ∗ − λA)dt < 0dt.

The utility the agent receives during the contract comes exclusively from shirking when Wt =
W ∗. This implies that I ≡ 0 and that Wt slowly reflects downwards at W ∗. Since Wt is Sticky
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Brownian motion near W ∗, the contract spends a non-trivial expected amount of time at W ∗.
The contract is terminated when Wt reaches R. The principal’s expected payoff at any point is
given by a concave function defined over [R,W ∗]: Bopt ≡ bπ

∗ |[R,W ∗)∪(W ∗, h(W ∗)) = B|[R,W ∗].
Now suppose the shirking payoff is in the left region of D. Then W ∗ < arg max b(R,L∗) and

the contract that maximizes the principal’s profit and delivers the value W0 ∈ [W ∗, ω(R,L∗)]
to the agent takes the following form:

• When Wt ∈ (W ∗, ω(R,L∗)), the agent applies high action and dWt = γWt+λ(dZt−µdt).

• When Wt = W ∗, the agent shirks and dWt = (γW ∗ − λA)dt > 0dt.

The utility the agent receives during the contract comes from both shirking when Wt = W ∗ and
from receiving cash payments dIt when Wt = ω(R,L∗). This implies Wt slowly reflects upwards
at W ∗ and reflects downwards at ω(R,L∗). Since Wt is Sticky Brownian motion near W ∗, the
contract spends a non-trivial amount of time at W ∗. Since Wt stays bounded between W ∗

and ω(R,L∗), termination never occurs. The principal’s expected payoff at any point is given
by a concave function defined over [W ∗, ω(R,L∗)]: B

opt ≡ (W ∗, h(W ∗)) ∪ b(R,L∗)|(W ∗,ω(R,L∗)] =
B|[W ∗,ω(R,L∗)].

In both cases, Bopt contains the maximum of B. Therefore, the optimal contracting
problem is solved.

Theorem 2 only characterizes the optimal contract subject to delivering value W to
the agent when W is in the domain of Bopt. While this is sufficient to solve the optimal
contracting problem, one may be interested in optimal contracts that deliver higher payoffs
to the agent. The Appendix provides a full characterization of B. The next section interprets
the new optimal contractual forms and compares them with the Baseline form.

6 The Four Forms of the Optimal Contract

Fix any contract (I, τ, a). In Section 3, I defined the contract’s promised value process
Wt. This process captures the contract’s incentives. Only when Wt is sufficiently sensitive
to the performance dZt of the underlying asset will the agent be induced to apply high
action. The contract’s level of sensitivity at any time t can be deduced using the Martingale
Representation Theorem and is called βt. The sensitivity threshold for inducing high action
is λ. I then argued whenever the principal wants to induce high action, βt should be set to λ;
and whenever the principal wants to induce shirking, βt should be set to 0. This effectively
pins down the two stochastic laws that will govern the incentives of the optimal contract:

Definition. Suppose at some time t, the principal is not paying the agent.10 If the optimal
contract stipulates high action, the contract’s promised value follows the high action law:

dWt = γWtdt+ λ(dZt − µdt)
10Cash compensation times will be dealt with separately.
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which says to induce high action, the contract’s promised value needs to be sensitive to asset
performance, and in expectation, needs to compound at the agent’s discount rate.

Similarly, when the optimal contract stipulates shirking, the contract’s promised value follows
the shirking law:

dWt = γWtdt− λAdt

which says the contract’s promised value is not sensitive to asset performance, and in expec-
tation, compounds at the agent’s discount rate less the utility λAdt the agent automatically
receives from shirking.

I can now state the main theorem characterizing the four possible forms of the optimal
contract. It is an interpretation of Theorem 2.

Theorem 3. The optimal contract has the following structure. The principal selects two
thresholds: a poor performance threshold W poor and a good performance threshold W good. The
contract’s promised value Wt is started between the two performance thresholds. Whenever
Wt is strictly between the two performance thresholds, it follows the high action law

dWt = γWtdt+ λ(dZt − µdt)

While following this law, Wt is sensitive to asset performance and serves as a dynamic
rating of the agent’s managerial performance. When good performance pushes the rating up
to W good the principal rewards the agent. The two options are cash compensation or hidden
compensation by inducing shirking. When poor performance pushes the rating down to W poor

the principal punishes the agent. The two options are termination or suspension of the agent
which leads to shirking.

The four different ways to reward and punishment the agent produce the four possible
forms of the optimal contract. They are summarized in the table below:

Upoor/U good cash compensation shirking
termination Baseline Quiet-Life

shirking Renegotiating Baseline Static

Baseline contracts never induces shirking. Static contracts always induce shirking. The
Quiet-Life and Renegotiating Baseline contracts both induce shirking non-permanently in
between periods of high action.

Static contracts induce shirking forever and may supplement the agent with a fixed salary
sdt. Consequently, there is no performance evaluation, the good and poor performance
thresholds always coincide, and the agent’s continuation payoff is permanently fixed at this
value: W poor = Wt = W good = λA+s

γ
. The optimal static contract supplements the agent

with a salary sdt just enough to prevent him from quitting: s = max{0, γR − λA}. The

payoff to the agent is max{λA
γ
, R} and the payoff to the principal is min{µ−A

r
, µ−A−(γR−λA)

r
}.

The cash payments dIt of Baseline and Renegotiating Baseline contracts are designed
to reflect Wt downwards at W good. Quiet-Life contracts do not use cash compensation: all
utility received by the agent comes from shirking. The rest of this section is concerned with
the Quiet-Life form and the Renegotiating Baseline form.
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6.1 Interpreting Quiet-Life Contracts

All Quiet-Life contracts satisfy W poor = R and W good < λA
γ

. The equality holds because
termination occurs at W poor. The strict inequality comes from two observations. First,
W good cannot be greater than λA

γ
because such a threshold would constitute a promised

payoff greater than what shirking alone can deliver. Second, W good cannot be equal to
λA
γ

since that would imply permanent shirking when Wt reaches W good, contradicting the
property that Quiet-Life contracts induce shirking non-permanently.

What Wt ≤ W good < λA
γ

implies is that when the agent finally reaches the good per-
formance threshold, he receives a utility flow from shirking, which, if extended indefinitely,
would represent a payoff greater than anything the contract actually promises. Thus shirking
in Quiet-Life contracts serves to reward the agent, as a form of hidden compensation.

What does a typical hidden compensation package look like? Let H denote the nonde-
creasing hidden compensation process (similar to the cash compensation process I), where
Ht is the amount of shirking utility received by the agent up to time t. At every moment
when Wt = W good the agent receives a fixed shirking utility flow λAdt. This implies:

dHt =

{
0dt Wt < W good

λAdt Wt = W good

Thus to characterize H it suffices to characterize the random set of hidden compensation
times T (W good) = {t|Wt = W good}.

Away from the good performance threshold W good, the promised value and performance
rating Wt of the agent follows the high action law:

dWt|Wt<W good = γWt + λ(dZt − µdt)

which is sensitive to asset performance. At the good performance threshold W good, Wt follows
the shirking action law:

dWt|Wt=W good = (γW good − λA)dt

and is no longer sensitive to asset performance. Consequently, the principal can ignore the
agent’s performance. The following lemma characterizes the implied incentive scheme:

Lemma 6.1. Consider the following SDE:

dWt =


0dt if Wt = R

γWt + λ(dZt − µdt) if Wt ∈ (R,W good)

(γW good − λA)dt if Wt = W good < λA
γ

The solution is well defined and is a member of a class of diffusions called Sticky Brownian
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t

Figure 7: A sample sequence of hidden compensation times.

Motion or slowly reflecting Brownian motion. Its infinitesimal generator is

A =


0 d
dx

if x = R

γx d
dx

+ λ2

2
d2

dx2
if x ∈ (R,W good)

(γW good − λA) d
dx

if x = W good

Proof. See Harrison and Lemoine (1981).

The implied mixture of sensitivity and no sensitivity of Wt to asset performance near
W good produces a set of hidden compensation times with the following properties:

Corollary 6.2. Conditional on Wt reaching W good, the set of hidden compensation times
T (U good) (almost surely) has positive measure. Moreover, T (U good) is nowhere dense and
perfect.11 See Figure 7.

The positive measure property conforms with economic intuition. A fixed utility flow over
a set of times of measure 0 amounts to no utility at all. If a Quiet-Life contract’s hidden
compensation times were actually trivial then it would not be incentive-compatible. The
nowhere dense and perfect properties of the hitting times of W good are standard symptoms
of Wt being driven by an underlying Brownian motion.

Definition. Fix ε > 0 and let ts0 = te0 = 0. Then recursively define the random times
tsn = inf{t > ten−1|Wt = W good} and ten = inf{t > tsn|Wt ≤ W good− ε}.12 Each interval [tsn, t

e
n)

where n ≥ 1 and tsn < τ is defined to be a Quiet-Life phase.

A Formal Description of Quiet-Life Contracts.
I can now give a more precise description of the dynamics of a Quiet-Life contract. In a
Quiet-Life contract the promised value and performance rating Wt initially follows the high
action law and is sensitive to asset performance. As a result, the agent initially applies
high action all the time. Sustained good performance then pushes the performance rating
up to the good performance threshold W good. At this point the contract enters a Quiet-Life
phase. Shirking is now permitted as a form of hidden compensation, and the agent frequently
shirks. Here, frequent shirking means that the agent spends a non-trivial though not full
portion of the Quiet-Life phase shirking. It also means that both immediately before and
after a shirking time, (almost surely) there are infinitely many other times when the agent is
shirking and infinitely many other times when the agent is not shirking. Therefore, during
the Quiet-Life phase the principal frequently ignores the agent’s performance. Also, during
each Quiet-Life phase, the rating stays close to W good and is frequently at W good.

11The random set of cash compensation times of a Baseline contract is also nowhere dense and perfect,
but has zero measure. A set is perfect if it contains all of its limit points, and has no isolated points.

12Since the contract almost surely terminates, define inf{�} =∞.
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Eventually, poor performance brings the rating back down and the contract exits the
Quiet-Life phase. The principal no longer ignores the agent’s performance and the agent
resumes applying high action at all times. This dynamic remains until sustained good
performance triggers another round of the Quiet-Life phase or sustained poor performance
finally triggers termination.

Theorem 2 implies that it is possible for the optimal contract to take the Quiet-Life
form even when shirking is inefficient (λ < 1). The implication is that frequently ignoring
the agent’s performance and letting him shirk has intrinsic advantages. I now highlight this
advantage by comparing Quiet-Life contracts against Baseline contracts, which never induce
shirking.

Fix a Quiet-Life contract Q with some good performance threshold W good and agent
payoff W0. I can design the companion baseline contract B with the same threshold W good

and the same agent payoff W0. Let WQ
t denote Q’s promised value process and define

WB
t similarly. Obviously, these two contracts exhibit a large amount of structural similarity:

they have the same performance thresholds,13 the promised value process of the two contracts
follow the same high action law on the open interval (W poor = R,W good), and both contracts
terminate at W poor = R. The only structural difference is at W good where Q induces shirking
as a form of hidden compensation and B delivers cash.

Formally, the contractual similarity of Q and B is captured by the fact that the in-
finitesimal generators of WQ

t and WB
t are identical except at W good. DS shows that WB

t

is a reflecting Brownian motion.14 Therefore, Lemma 6.1, which says that WQ
t is a Sticky

Brownian motion, implies the following result:

Corollary 6.3. The incentive scheme of the Quiet-Life contract Q is slower than that of the
Baseline contract B. Call this slower incentive scheme of Q sticky incentives. Formally,
Let S(t) be the non-decreasing process that keeps track of the total amount of time that the
agent has shirked in Q up to time t. Let Z be the unique process satisfying Z(t)−S(Z(t)) = t.
Then Z(t)− t is non-negative, non-decreasing, and

WQ
Z(t) =d W

B
t

Moreover, Z(t)− t increases if and only if the agent shirks.

Let HQ
t =

∫ t
0
λAdS(t) denote the hidden compensation process of Q, and τQ denote the

termination time of Q. Similarly, let IB
t denote the cash compensation process of B, and τB

denote the termination time of B. The following formalizes the value of sticky incentives:

Corollary 6.4. A sticky incentive scheme implies that hidden compensation is more modest
than cash compensation:

HQ
Z(t) =d I

B
t ⇒ E[HQ

t ] < E[IB
t ] for all t > 0.

13Their poor performance thresholds are both R by assumption.
14Also see Biais, Mariotti, Plantin, and Rochet (2007), which gets a reflected Brownian motion in the

continuous-time limit.
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Furthermore, inefficient termination is delayed:

τQ =d Z(τB) ≥ τB

When the optimal contract takes the Quiet-Life form, the aforementioned advantages of
sticky incentives outweigh possible inefficiency concerns with regards to shirking. In this
case, Theorem 1 provides a useful quantification of how much the principal values having
the freedom to allow the agent to shirk.

Corollary 6.5. Suppose the optimal contract is a Quiet-Life contract. There exists a unique
distortionary tax subsidy on cash such that at any time during the optimal contract, the prin-
cipal is indifferent between continuing with the contract in the current setting and switching
to a setting where he is restricted to induce the agent to never shirk but is compensated with
the tax subsidy.15

6.2 Interpreting Renegotiating Baseline Contracts

Definition. The underlying Baseline contract of a Renegotiating Baseline contract R is the
Baseline contract with the same good performance threshold as R.

In this model, the principal is fully committed, and there is no renegotiation. The name
Renegotiating Baseline comes from the following observation, which I will show shortly: a
Renegotiating Baseline contract’s promised value behaves like that of its underlying Baseline
contract under repeated renegotiations that are unexpected by the agent. Contracting with
a naive agent that does not expect renegotiations can certainly lead to arrangements that
improve the principal’s payoff. A Renegotiating Baseline contract represents an incentive-
compatible approximation of such an (incentive-incompatible) arrangement.

In a Renegotiating Baseline contract, shirking is induced at some poor performance
threshold W poor which need not equal R. The dynamics of a Renegotiating Baseline con-
tract’s promised value at W poor is the mirror image of the dynamics of a Quiet-Life con-
tract’s promised value at W good. Therefore, Quiet-Life concepts like frequent shirking and
sticky incentives translate over. However, the role of shirking is different in Renegotiat-
ing Baseline contracts. Unlike in Quiet-Life contracts, in Renegotiating Baseline contracts
λA
γ
< W poor ≤ Wt. This means that when the promised value and performance rating Wt

drops down to the poor performance threshold W poor, the agent receives a utility flow, which
if extended indefinitely, would represent a value strictly less than anything the contract ac-
tually promises. Thus shirking times in Renegotiating Baseline contracts serve to punish the
agent.

This is not to say the agent dislikes shirking. On the contrary, shirking is simply the best
the agent can do for himself in this arrested phase of the contract. The canonical example
of this phenomenon is suspension. During a suspension, the agent’s compensation is frozen,
and he does not work. Despite the agent’s fondness for not working, he would rather be
working hard and receiving cash compensation then be stuck in this low state.

15Recall from Section 4, a distortionary tax subsidy means for every dollar received by the agent, the
principal pays less than one dollar.
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The idea of contractual punishment is not new. A termination clause serves the same
purpose. So why not just terminate like in a Baseline contract?

In many Baseline contracts (including the optimal one), when the performance rating is
near the poor performance threshold W poor and termination is probabilistically imminent,
the principal is better off giving the agent some more slack. The principal can achieve this
by breaking the terms of the contract and simply shifting the performance rating upwards,
removing it from the vicinity ofW poor. This renegotiated Baseline contract effectively forgives
the agent for his poor performance. Each time this is done the principal increases his own
payoff as well as that of the agent. However, the value of this renegotiation is predicated on
the agent not expecting to be forgiven and applying high action throughout. Unfortunately,
if the agent expects that the principal will renege on termination, then the incentives to apply
high action will be destroyed. Thus such a renegotiation is not incentive-compatible, and it
is imperative that the principal commits to terminate as the contract originally dictates.

However, the potential losses due to a premature end to the principal-agent relation-
ship may be great. Thus it is potentially profitable for the principal to find an incentive-
compatible contract that mimics the above incentive-incompatible arrangement: a contract
that induces high action most of the time but still is able to back out of termination during
periods of poor performance. The Renegotiating Baseline contract achieves this by picking
a poor performance threshold and inducing shirking there as a suspension phase.

From our discussion of Quiet-Life phases we know two things will happen when the
principal induces shirking at W poor:

1) Wt will eventually leave the vicinity of W poor after the end of the suspension phase.

2) The contract will spend a nontrivial amount of time at W poor.

That the Renegotiating Baseline contract pushes the rating upwards after poor performance
means that its incentive scheme is qualitatively similar to that of a Baseline contract under
repeated renegotiations that are unexpected by the agent. But since this push happens
only after a suspension phase, the high action incentives of the underlying baseline contract
are not compromised. The agent doesn’t get the extra slack for free. By having to first
suffer through suspension every time his performance rating drops to W poor, the agent effec-
tively buys the principal’s forgiveness through the postponement of the cash compensation
promised by the underlying Baseline contract.

A Formal Description of Renegotiating Baseline Contracts.
A Renegotiating Baseline contract begins as its underlying baseline contract, inducing high
action and paying cash whenever the promised value and performance rating Wt hits the
good performance threshold W good.

However, when poor performance pushes the rating down to the poor performance thresh-
old W poor, a suspension phase - similar to a Quiet-Life phase - is triggered. During suspen-
sion, the principal frequently ignores the agent and the agent, lacking proper incentives to
work, frequently exerts low effort. As a result, the rating sticks or is “pegged” around W poor

for a period of time, following the dynamics of Sticky Brownian motion. In particular, the
rating is frequently at W poor.
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Eventually, suspension ends, the agent is forgiven for some of his poor performance, and
Wt is allowed to float again as the agent receives more slack. The contract restarts the high
action incentives of the underlying Baseline contract which induces the agent to never shirk
and rewards sustained good performance with cash. This dynamic remains until sustained
poor performance triggers suspension again.

The avoidance of termination through shirking/suspension phases is a clear advantage
that Renegotiating Baseline contracts have over Baseline contracts. It is a primary reason
why the optimal contract is sometimes a Renegotiating Baseline contract. In these cases,
Theorem 1 provides a useful quantification of how much the principal values having the
freedom to allow the agent to shirk. This quantification is different than the one given for
optimal Quiet-Life contracts.

Corollary 6.6. Suppose the optimal contract is a Renegotiating Baseline contract. There
exists a unique upgraded principal’s outside option L∗ > L, such that at any time during
the optimal contract, the principal is indifferent between continuing with the contract in the
current setting and switching to a setting where he is restricted to induce the agent to never
shirk but is compensated with the higher outside option L∗ upon termination.

Moreover, since a Renegotiating Baseline contracts “embeds” a portion of the renegotiable-
ness of its underlying Baseline contract, it is not surprising that some Renegotiating Baseline
contracts are renegotiation-proof. In fact:

Corollary 6.7. Under some realizations of the model’s parameters, the optimal contract,
which a priori need not be renegotiation-proof, is a renegotiation-proof Renegotiating Baseline
contract. Moreover, unlike optimal renegotiation-proof contracts that never induce shirking,
all Renegotiating Baseline contracts never terminate and do not use public randomization.

Proof. See proof of Theorem 2, general case, in the Appendix.

7 Conclusion

In this paper I explicitly solve for the optimal contract in a standard dynamic agency model
where the agent can shirk. While inducing the agent to never shirk is a good benchmark, in
general, the optimal contract may involve shirking. Indeed, many real life arrangements do
not induce high action at all times.

I find that the optimal contract takes on one of four forms depending on fundamentals,
including two that involve temporary shirking: the Quiet-Life form and the Renegotiating
Baseline form. A Quiet-Life contract induces shirking as a form of hidden compensation.
During Quiet-Life phases, the agent is frequently shirks and the agent’s performance rating
sticks around the contract’s good performance threshold. A Renegotiating Baseline contract
mostly induces high action but periodically triggers suspension phases as a form of punish-
ment. During these phases, cash compensation is postponed, the agent frequently shirks and
the agent’s performance rating sticks around the contract’s poor performance threshold.
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A common theme shared by the two new optimal contractual forms is the value of slowing
down incentives. By slowing down incentives, I show how the Quiet-Life contract can delay
termination and how the Renegotiating Baseline contract can mimic the dynamics of a
beneficial but incentive-incompatible renegotiation arrangement in an incentive-compatible
way. I also investigate connections between taxes, optimal contracting and renegotiation.
Lastly, I solve the optimal contracting problem when the agent can bargain for higher payoffs.

8 Appendix

Lemmas 8.1 and 8.2 describe basic regularity properties of solutions to the high action ODE and are stated
without proof.

Lemma 8.1. Let f1 and f2 be two distinct solutions to the high action ODE and x∗ ≥ 0. Then

f1(x∗) ≤ f2(x∗) and f ′′1 (x∗) ≥ f ′′2 (x∗) =⇒ f ′′1 (x) > f ′′2 (x) for all x ∈ (x∗,∞)

and
f1(x∗) ≤ f2(x∗) and f ′′1 (x∗) ≤ f ′′2 (x∗) =⇒ f ′′1 (x) < f ′′2 (x) for all x ∈ [0, x∗)

Proof. The straightforward, albeit tedious, proof of this lemma involves Euler’s Method. Fix a set of initial
conditions for the first-best action ODE: (x∗, f(x∗), f ′(x∗)) with x∗ ≥ 0. Then

f ′′(x∗) =
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2

and by Euler’s Method, we have
f(x∗ + ∆x) ≈ f(x∗) + f ′(x∗)∆x

f ′(x∗ + ∆x) ≈ f ′(x∗) +
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2
∆x

f ′′(x∗ + ∆x) ≈ rf(x∗ + ∆x)− µ− γ(x∗ + ∆x)f ′(x∗ + ∆x)

φ2/2

=
r(f(x∗) + f ′(x∗)∆x)− µ− γ(x∗ + ∆x)(f ′(x∗) + rf(x∗)−µ−γx∗f ′(x∗)

φ2/2 ∆x)

φ2/2

=
(1− γ(x∗ + ∆x) ∆x

φ2/2 )[rf(x∗)− µ− γx∗f ′(x∗)]− (γ − r)∆xf ′(x∗)
φ2/2

=

[
1− γ(x∗ + ∆x)

∆x

φ2/2

]
f ′′(x∗)− (γ − r)∆xf ′(x∗)

φ2/2

Now let f1 and f2 satisfy the hypothesis of the first half of the lemma at x∗ and fix an arbitrary upper
bound D with x∗ < D. Let ∆x be small enough so that 1 − γ(D + ∆x) ∆x

φ2/2 > 0. The assumptions imply

f ′2(x∗) > f ′1(x∗), and then it is easy to see that the Euler approximations of f1 and f2 satisfy the hypothesis
of the first half of the lemma at x∗ + ∆x as well. In fact, the second derivative of the Euler approximation
of f2 is now strictly less than that of the Euler approximation of f1 at x∗ + ∆x. Then induction shows that
the second derivative of the Euler approximation of f2 is strictly less than that of the Euler approximation
of f1 at x∗ + n∆x, so long as x∗ + n∆x ∈ (x∗, D]. Letting ∆x→ 0, we have

f ′′1 (x) > f ′′2 (x) for all x ∈ (x∗, D]
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Since D was arbitrary, the first half of the lemma holds.

Now suppose f1 and f2 satisfy the hypothesis of the second half of the lemma. If f1 < f2 on [0, x∗) then the
second half of the lemma must hold. Suppose not, then there is some x̃ ∈ [0, x∗) such that f ′′1 (x̃) ≥ f ′′2 (x̃).
But then the first half of the lemma implies that f ′′1 (x∗) > f ′′2 (x∗). Contradiction.

So it suffices to prove f1 < f2 on [0, x∗). The hypothesis of the second half of the lemma immediately
implies that f1 lies below f2 in a left neighborhood of x∗. This means that if it is not true that f1 < f2 on
[0, x∗) then there must be some point x̃ such that f1(x̃) = f2(x̃) and f ′1(x̃) < f ′2(x̃). But then this implies
that f ′′1 (x̃) > f ′′2 (x̃) and once again the first half of the lemma implies a contradiction.

Lemma 8.2. Let f1 and f2 be two distinct solutions to the high action ODE and x∗ ≥ 0. Then

f1(x∗) ≤ f2(x∗) and f ′1(x∗) ≤ f ′2(x∗) =⇒ f ′1(x) < f ′2(x) for all x ∈ (x∗,∞)

and
f1(x∗) ≤ f2(x∗) and f ′1(x∗) ≥ f ′2(x∗) =⇒ f ′1(x) > f ′2(x) for all x ∈ [0, x∗)

Proof. If f1 and f2 satisfy the assumptions of the second half, then f ′′1 (x∗) < f ′′2 (x∗). Then the second half
result follows from the second half of Lemma 8.1.

Now suppose f1(x∗) ≤ f2(x∗) and f ′1(x∗) ≤ f ′2(x∗) and there exists an x ∈ (x∗,∞) such that f ′1(x) ≥
f ′2(x). Without loss of generality, we may choose x so that f1(x) < f2(x). But then the second half of the
lemma implies a contradiction.

Corollary 8.3. Fix X ≥ 0, µ
r > Y1 ≥ Y2, π1 ≥ π2 > 0 such that (Y1, π1) 6= (Y2, π2) and ωπ2

(X,Y2) > X. Then

bπ1

(X,Y1)
′(W ) < bπ2

(X,Y2)
′(W ) for all W ∈ [X,ωπ2

(X,Y2)) and ωπ1

(X,Y1) < ωπ2

(X,Y2).

Proof. First suppose π1 > π2 and Y1 = Y2 = Y . Since the principal is worse off with π1 than with
π2, bπ1

(X,Y )(W ) < bπ2

(X,Y )(W ) for all W > X. Therefore, bπ1

(X,Y )
′(X) < bπ2

(X,Y )
′(X). Lemma 8.2 and the

inequality −π1 < −π2 then imply bπ1

(X,Y )
′(W ) < bπ2

(X,Y )
′(W ) for all W ∈ [X,∞) and the high action ODE

implies bπ1

(X,Y )
′′(X) > bπ2

(X,Y )
′′(X). Now suppose ωπ1

(X,Y ) ≥ ω
π2

(X,Y ). Lemma 8.1 implies

bπ1

(X,Y )
′′(ωπ2

(X,Y )) > bπ2

(X,Y )
′′(ωπ2

(X,Y )) = 0

Contradiction, since bπ1

(X,Y ) is concave. Therefore, ωπ1

(X,Y ) < ωπ2

(X,Y ).

Next, suppose π1 = π2 = π and Y1 > Y2. If ωπ(X,Y1) = X then clearly, ωπ(X,Y1) < ωπ(X,Y2) and

bπ(X,Y1)
′(W ) = −π < bπ(X,Y2)

′(W ) for all W ∈ [X,ωπ(X,Y2)). So suppose ωπ(X,Y1) > X. DS shows that

whenever ωπ(X,Y ) > X the point (ωπ(X,Y ), b
π
(X,Y )(ω

π
(X,Y ))) lies on the line ry + πγx = µ. Since the principal

is better off with Y1 than with Y2, bπ(X,Y1)(W ) > bπ(X,Y2)(W ) for all W ≥ X. This means bπ(X,Y1) reaches the
line ry + πγx = µ first, and therefore, ωπ(X,Y1) < ωπ(X,Y2). Since

−π = bπ(X,Y1)
′(W ) < bπ(X,Y1)

′(W ) for all W ∈ [ωπ(X,Y1), ω
π
(X,Y2))

Lemma 8.2 implies bπ1

(X,Y1)
′(W ) < bπ1

(X,Y2)
′(W ) for all W ∈ [X,ωπ(X,Y2)).

Corollary 8.4. limπ↓0 ω
π
(X,Y ) = ∞ and b0(X,Y ) ≡ limπ↓0 b

π
(X,Y ) is well-defined. b0(X,Y ) <

µ
r , is everywhere

increasing, solves the high action ODE and asymptotically approaches µ
r .

Proof. The previous corollary implies ω0
(X,Y ) ≡ limπ↓0 ω

π
(X,Y ) is well defined. Suppose ω0

(X,Y ) <∞. Let g be

a solution to the high action ODE starting at (X,Y ) that intersects y = µ
r . For each W > X, as π decreases,

bπ(X,Y ) monotonically increases and remains bounded above by µ
r , bπ(X,Y )

′(W ) monotonically increases and

remains bounded by g′(X), and bπ(X,Y )
′′(W ) monotonically decreases and remains bounded below by g′′(X).

Therefore b0(X,Y ) ≤
µ
r is a well-defined function that solves the high action ODE on [X,ω0

(X,Y )]. Moreover,
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b0(X,Y )
′(ω0

(X,Y )) = limπ↓0 b
π
(X,Y )

′(ωπ(X,Y )) = 0 and b0(X,Y )
′′(ω0

(X,Y )) = limπ↓0 b
π
(X,Y )

′′(ωπ(X,Y )) = 0. This

forces b0(X,Y )(ω
0
(X,Y )) = µ

r . But the only solution g to the high action ODE satisfying initial conditions g(x) =
µ
r and g′′(x) = 0 is g ≡ µ

r . Contradiction. Therefore ω0
(X,Y ) =∞ and b0(X,Y ) <

µ
r and solves the high action

ODE. b0(X,Y ) is everywhere non-decreasing. However, if there exists a W such that b0(X,Y )
′(W ) = 0, then since

b0(X,Y )
′′(W ) < 0, b0(X,Y )

′(W ′) < 0 for all W ′ > W . Contradiction. So b0(X,Y ) is everywhere increasing. Since

it is bounded above, it must asymptotically approach some value α ≤ µ
r . Since limW→∞ b0(X,Y )

′(W ) = 0,

the high action ODE implies that 0 = limW→∞ b0(X,Y )
′′(W ) = rα−µ

λ2/2 . Therefore, α = µ
r .

8.1 Proofs of Theorems 1 and 2

In this subsection, I assume b′(R) > 0.

Proof of Lemma 4.2. Recall I assume R = 0. The R > 0 case is proved separately.
Basic regularity properties of the high action ODE imply that VLeft is closed and connected. Notice

b′(0) > 0 and from DS, we know limY ↑µr b
′
(0,Y )(0) = −1. By the Intermediate Value Theorem, there exists

an L′ ∈ (L, µr ) such that b′(0,L′)(0) = 0 and therefore, (0, L′) ∈ VLeft. Clearly (arg max b,max b) ∈ VLeft. Let

(X,Y ) ∈ VLeft. Then Corollary 8.3 implies b′
(X,Ỹ )

(X) ≷ b′(X,Y )(X) if Ỹ ≶ Y . Thus (X, Ỹ ) /∈ VLeft. Now

suppose that b′
(X̃,Ỹ )

(X̃) = 0 and X̃ > X. Since b′
(X̃,b(X,Y )(X̃))

(X̃) = b′(X,Y )(X̃) < 0, Corollary 8.3 implies

Ỹ < b(X,Y )(X̃) < Y . This simultaneously implies that VLeft is a strictly decreasing curve and that it ends
at (arg max b,max b).

Basic regularity properties of the high action ODE imply that VRight is connected. Clearly (arg max b,max b) ∈
VRight. Let (arg max bπ1 ,max bπ1) and (arg max bπ2 ,max bπ2) ∈ VRight. Suppose x∗ = arg max bπ1 =
arg max bπ2 . Since bπ1 ′(x∗) = bπ2(x∗) = 0, if bπ1(x∗) 6= bπ2(x∗) then Lemma 8.2 implies that bπ1(0) 6= bπ2(0).
Contradiction. Now suppose x∗ = arg max bπ1 < arg max bπ2 . Then bπ1 ′(x∗) = 0 < bπ2 ′(x∗). If
bπ1(x∗) ≥ bπ2(x∗) then Lemma 8.2 implies that bπ1(0) > bπ2(0). Contradiction. Therefore, max bπ1 =
bπ1(x∗) < bπ2(x∗) < max bπ2 . This implies that π1 > π2 and VRight is strictly increasing. It remains to be
shown that VRight has a horizontal asymptote y = µ

r . Since we now know arg max bπ and max bπ are both
decreasing functions of π, define m = limπ↓0 arg max bπ and M = limπ↓0 max bπ. If m <∞, then b0 ′(m) = 0.
Contradiction. Thus VRight is defined over [arg max b,∞). Finally, note µ

r ≥M ≥ sup b0 = µ
r .

Proof of Theorem 1. Recall, I assume R = 0. The R > 0 case is proved separately.
Suppose the shirking payoff (ws, bs) is in the right region. Then by assumption, (ws, bs) lies strictly

below some point (arg max bπ
′
,max bπ

′
). Thus fπ

′
(ws = arg max bπ

′
) = max bπ

′
> bs. Now Lemma 4.1 and

π′ < 1 imply B < Bπ
′

= bπ
′
. Let π∗ be the largest π such B ≤ bπ and define b∗ = bπ

∗
.

Suppose the shirking payoff (ws, bs) is in the left region. Then by assumption, (ws, bs) lies strictly below
some point (ws, VLeft(w

s)). Extend b(ws,VLeft(ws)) leftwards following the high action ODE to some point
(0, Y ′). Since b(ws,VLeft(ws))

′(ws) = 0 < b′(ws), Lemma 8.2 implies that Y ′ > L. Then f(0,Y ′)(w
s) =

f(ws,VLeft(ws))(w
s) = VLeft(w

s) > bs. Now Lemma 4.1 and Y ′ > L imply B < B(0,Y ′) = b(0,Y ′). Let L∗ be
the smallest Y such B ≤ b(0,Y ) and define b∗ = b(0,L∗).

By definition b∗ = bπ
∗

or b(0,L∗) is an upper bound of B. Tightness will follow from the proof of Theorem
2.

When the shirking payoff lies on or below f , Lemma 3.3 implies that the optimal contract takes the
Baseline form.

Finally, it needs to be shown when the shirking payoff (ws, bs) lies inside the V -curve then the optimal
contract is Static. DS has shown that if b′(ws,bs)(w

s) ≤ 0 and g′(ws) ≥ 0 where g is the unique solution to the

high action ODE going from (0, L) to (ws, bs), then B = g|[0,ws)∪(ws, bs)∪b(ws,bs)|(ws,∞). Consequently, the

optimal contract is Static. See (w̃s, b̃s) in Figure 1. I now show that if the shirking payoff (ws, bs) lies on or
inside the V -curve then it satisfies the aforementioned two differential properties. Suppose ws ≤ arg max b.
If g′(ws) < 0, then since b′(ws) ≥ 0, Lemma 8.2 implies that g(0) > b(0). Contradiction. Therefore,
g′(ws) ≥ 0. Also, since bs ≥ VLeft(w

s), Corollary 8.3 implies that b′(ws,bs)(w
s) ≤ b′(ws,VLeft(ws)(w

s) = 0.
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Now suppose ws > arg max b. Using similar arguments, one can again conclude that the two differential
properties are satisfied.

Proof of Theorem 2. Recall, I assume R = 0. The R > 0 case is proved separately.
Suppose (ws, bs) is in the right region and b∗ = bπ

∗
. If bs < fπ

∗
(ws), then the basic regularity properties

of the high action ODE imply that one can increase π∗ slightly to some π′ and still have bs < fπ
′
(ws),

contradicting the maximality of π∗. Therefore, bs = fπ
∗
(ws). This then immediately implies the existence

of W ∗ > R and h satisfying h(W ∗) = b∗(W ∗) and h′(W ∗) = b∗ ′(W ∗). Now suppose h′′(W ∗) < b∗ ′′(W ∗).
Then pick a slightly higher solution h̃ to the shirking action ODE. h̃ crosses b∗ transversally exactly twice
in a small neighborhood of W ∗, once from below and once from above. Let W̃ be the point at which h̃
crosses b∗ from above. Then bs > b∗(W̃ ) + γ

r (ws − W̃ )b∗ ′(W̃ ). Contradiction. Similar arguments rule out
h′′(W ∗) > b∗ ′′(W ∗). Therefore, h′′(W ∗) = b∗ ′′(W ∗). Since b∗ ′′(ω∗) = 0, W ∗ < ω∗. Similar arguments
work when (ws, bs) is in the left region and b∗ = b(0,L∗).

Again, suppose (ws, bs) is in the right region. Since bs = fπ
∗
(ws), π∗ is strictly greater than the π′

considered in the proof of Theorem 1. Now Corollary 8.3 implies that arg max bπ
∗
< ws. Since h′(W ∗) =

bπ
∗ ′(W ∗) implies W ∗ must lie between arg max bπ

∗
and ws, it is also the case dWt|W∗ = (γW ∗−λA)dt < 0dt.

Similar arguments imply that when (ws, bs) is in the left region, ws < W ∗ < arg max b(0,L∗) and dWt|W∗ =
(γW ∗ − λA)dt > 0dt.

The only thing left to show is that the contracts defined in the theorem imply Bopt is attainable.
Define Gt =

∫ t
0
e−rs(dZs − dIs) + e−rtb∗(Wt). From Ito’s lemma,

ertdGt =

(
µ− at + (γWt − λat)b∗

′
(Wt) +

1

2
β2
t b
∗′′(Wt)− rb∗(Wt)

)
dt

−(1 + b∗
′
(Wt))dIt + (1 + βtb

∗′(Wt)) (dZt − (µ− at)dt)

At any moment in time, either b∗
′
(Wt) = −1 or dIt = 0. Moreover, at = A⇒ βt = 0 and at = 0⇒ βt = λ.

Thus,

ertdGt =

{
(µ+ γWtb

∗′(Wt) + 1
2λ

2b∗
′′
(Wt)− rb∗(Wt))dt+ (1 + λb∗

′
(Wt))(dZt − µdt) if Wt 6= W ∗

(µ−A+ (γW ∗ − λA)b∗
′
(Wt)− rb∗(Wt))dt+ (dZt − (µ−A)dt) if Wt = W ∗

In each case, the drift term is 0 and so Gt is a semimartingale. For all t <∞,

E

[∫ τ

0

e−rs(dZs − dIs) + e−rτL

]
= E

[
Gt∧τ + 1t≤τ

(∫ τ

t

e−rs(dZs − dIs) + e−rτL− e−rtb∗(Wt)

)]

= E[Gt∧τ ] + e−rtE

[
1t≤τ

(∫ τ

t

e−r(s−t)(dZs − dIs) + e−r(τ−t)L− b∗(Wt)

)]
Rearranging,

E

[∫ τ

0

e−rs(dZs − dIs) + e−rτL

]
−E[Gt∧τ ] =

e−rtE

[
1t≤τ

(∫ τ

t

e−r(s−t)(dZs − dIs) + e−r(τ−t)L− b∗(Wt)

)]
≥ e−rt1t≤τ [L+R−Wt − b∗(Wt)]

The last inequality holds because the principal can always guarantee himself a payoff of L+R−Wt subject
to delivering Wt to the agent by paying a lump sum Wt − R to the agent and terminating immediately.
Since t∧ τ is a bounded stopping time, E[Gt∧τ ] = G0 = b∗(W0) for all t. Since Wt is bounded for all t, so is
L+R−Wt − b∗(Wt). Taking t→∞ gives E

[∫ τ
0
e−rs(dZs − dIs) + e−rτL

]
≥ b∗(W0).

Proof of Theorems 1 and 2 along with characterization of V -Curve when R > 0. When R > 0, Theorems 1
and 2 both hold upon a slight redrawing of the boundaries between the regions of D. Clearly, any such
redrawing of boundaries will only involve the area of D strictly to the left of the vertical line X = R. In
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particular, the two boundaries that the Quiet-Life region shares with the Static and Baseline regions remain
unchanged.

So suppose ws ≤ R. If bs ≤ f(ws), then by Lemma 3.3 the optimal contract takes the Baseline form. So
suppose bs > f(ws). Introduce the Baseline value function b(R,max{µ−γRr ,bs}). It is a straight line:

b(R,max{µ−γRr ,bs})(W ) = max

{
µ− γR

r
, bs
}
− (W −R) for all W ≥ R

It is straightforward to check that bs ≤ f(R,max{µ−γRr ,bs})(w
s). Therefore, b(R,max{µ−γRr ,bs}) is an upper bound

on B. Let L∗ > L be the lowest upgraded principal’s outside option such that b(R,L∗) is an upper bound on

B. When bs ≥ µ−γws
r (equivalent to when λ ≥ 1), one can explicitly verify that L∗ = µ−A−(γR−λA)

r ≥ µ−γR
r .

The Static contract with salary γR − λA delivers payoff R to the agent and payoff µ−A−(γR−λA)
r to the

principal. Therefore B = b
(R,

µ−A−(γR−λA)
r )

and the optimal contract is the Static contract with salary

γR− λA.
Finally, suppose bs ∈ (f(ws), µ−γw

s

r ). One can explicitly verify that bs < f(R,µ−γRr )(w
s). So let L∗

be the lowest Y such that b(R,Y ) is an upper bound on B. Then L∗ ∈ (L, µ−γRr ) and ω(R,L∗) > R. The
minimality of L∗ implies the existence of a value W ∗ ∈ [R,ω(R,L∗)) and a solution h to the shirking action
ODE satisfying:

b(R,L∗)(W
∗) = h(W ∗) and b′(R,L∗)(W

∗) = h′(W ∗) and (19)

b′′(R,L∗)(W
∗) = h′′(W ∗) if W ∗ > R

When R > 0, it is possible for W ∗ = R. Such a smooth pasting at the boundary need not satisfy the super-
contact condition. However, if W ∗ > R, then the same arguments used in the proof of the R = 0 case apply
and b′′(R,L∗)(W

∗) = h′′(W ∗). In either case, ws < W ∗ < arg max b(R,L∗), so dWt|W∗ = (γW ∗ − λA)dt > 0dt.

Using the same arguments as in the R = 0 case, Bopt = h(W ∗) ∪ b(R,L∗)|(W∗,ω(R,L∗)] is attainable and the
optimal contract is a Renegotiating Baseline contract.

8.2 Characterization of B

In this subsection, I continue to assume b′(R) > 0.

Definition. The high action inequality and shirking action inequality are defined to be

ry ≥ µ+ γxy′ +
λ2

2
y′′ and ry ≥ µ−A+ (γx− λA)y′

respectively.

Clearly, a function satisfies the HJB equation if and only if it satisfies both the high action and shirking
action inequalities and satisfies at least one of them with equality.

Definition. Let (u, v) be a point not equal to the shirking payoff. Let h(u,v) denote the unique solution to
the shirking action ODE which goes through (u, v).

Lemma 8.5. Suppose g and h are solutions to the high action and shirking action ODEs respectively,
satisfying

g(u) = h(u) and g′(u) = h′(u) and g′′(u) = h′′(u) < 0 for some u

Then

g(u) = h(u) = S(u) ≡ µ−A
r

+
γ

rλ

(u− λA
γ )2

λ
2A (1− r

γ )− (u− λA
γ )

and u ∈
(
−∞, λ

2A
(1− r

γ
) +

λA

γ

)
The function S is a differentiable, convex function with unique interior minimum point equal to the shirking
payoff (λAγ ,

µ−A
r ). Call the graph of this function the U-curve.
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Corollary 8.6. Fix a point (X,Y ) satisfying X ≥ 0, X 6= λA
γ and Y < µ

r . Let g be the unique solution

to the high action ODE satisfying g(X) = Y and g′(X) = h′(X,Y )(X). Then g′′(X) is strictly greater/lesser

than h′′(X) if and only if (X,Y ) lies strictly inside/outside the U -curve.

Corollary 8.7. Let (X,S(X)) 6= (λAγ ,
µ−A
r ) be a point on the U curve. Then between X and λA

γ , h(X,S(X))

satisfies the high action inequality.

Lemma 8.8. Let 0 ≤ X < λA
γ and Y < µ

r . Then there exists at most one point (W ∗, S(W ∗)) satisfying

W ∗ ∈ (X, λAγ ) and g′(W∗,S(W∗))(W
∗) = h′(W∗,S(W∗))(W

∗). Here, g(W∗,S(W∗)) denotes the unique solution to

the high action ODE starting at (X,Y ) and going through (W ∗, S(W ∗)).

Proof. Suppose there were two W ∗1 < W ∗2 . The convexity of the U -curve and the shirking action ODE imply
h′(W∗2 ,S(W∗2 ))(W

∗
2 ) > h′(W∗1 ,S(W∗1 ))(W

∗
1 ). Then by assumption, g′(W∗2 ,S(W∗2 ))(W

∗
2 ) > g′(W∗1 ,S(W∗1 ))(W

∗
1 ). More-

over, by definition of the U -curve, g′′(W∗2 ,S(W∗2 ))(W
∗
2 ), g′′(W∗1 ,S(W∗1 ))(W

∗
1 ) < 0. So certainly, g(W∗2 ,S(W∗2 ))(W

∗
1 ) <

S(W ∗1 ) = g(W∗1 ,S(W∗1 ))(W
∗
1 ). Moreover, g′(W∗2 ,S(W∗2 ))(W

∗
1 ) > g′(W∗2 ,S(W∗2 ))(W

∗
2 ) > g′(W∗1 ,S(W∗1 ))(W

∗
1 ). But then

Lemma 8.2 implies that g(W∗2 ,S(W∗2 ))(X) < g(W∗1 ,S(W∗1 ))(X). Contradiction.

Lemma 8.9. Let g and h be solutions to the high action and shirking action ODEs respectively, satisfying

g(u) = h(u) > S(u) and g′(u) = h′(u) and u <
λA

γ

Suppose g(x) > S(x) and x < λA
γ . Then

x ≷ u⇒ g′(x) ≷ h′(x,g(x))(x) (20)

Proof. Since Corollary 8.6 implies g′′(u) > h′′(u), Equation (20) holds for all x sufficiently close to u.
Suppose the lemma is false for some value to the right of u. Let x ∈ (u, λAγ ) be the smallest such value.

The minimality of x implies both g′(x) = h′(x,g(x))(x) and g(x̃) < h(x,g(x))(x̃) for all x̃ ∈ (u, x). These two

observations then imply that g′′(x) ≤ h′′(x,g(x))(x). Contradicting Corollary 8.6. Using similar arguments,
one can prove the lemma for when x < u.

Corollary 8.10. Let (X,S(X)) be a point on the left arm of the U -curve (i.e. X < λA
γ ). Suppose

b′(X,S(X))(X) < h′(X,S(X))(X). Then there exists a unique R∗ ∈ (X, λAγ ) satisfying b′(R∗,h(X,S(X))(R∗))
(R∗) =

h′(X,S(X))(R
∗).

Proof. Existence follows from the Intermediate Value Theorem and the fact that

lim
x↑λAγ

h′(X,S(X))(x) = −∞ < −1 ≤ b′(x,h(X,S(X))(x))(x).

Suppose there were two: R∗1 < R∗2. Lemma 8.9 implies that b(R∗1 ,h(X,S(X))(R
∗
1))(R

∗
2) > h(X,S(X))(R

∗
2) =

b(R∗2 ,h(X,S(X))(R
∗
2))(R

∗
2). Now, extend b(R∗2 ,h(X,S(X))(R

∗
2)) leftwards following the high action ODE. Call the

extended function g. Then Lemma 8.9 implies that g(R∗1) > h(X,S(X))(R
∗
1) = b(R∗1 ,h(X,S(X))(R

∗
1))(R

∗
1). This

implies that g and b(R∗1 ,h(X,S(X))(R
∗
1)) must have intersected at some point x ∈ (R∗1, R

∗
2). Contradiction.

Corollary 8.11. Let (X,Y ) be a point on or inside the left arm of the U -curve and let π be the unique tax
such that bπ(X,Y )

′(X) = h′(X,Y )(X). Then bπ(X,Y ) satisfies the shirking action ODE.

Proof. Lemma 8.9 implies that the concave portion of bπ(X,Y ) that lies to the left of λA
γ satisfies the shirking

action ODE. Moreover, on bπ(X,Y )|[λAγ ,∞) is a decreasing, concave function with starting point (λAγ , Y ) where

Y > µ−A
r . It is straightforward to check that any such function defined over [λAγ ,∞) satisfies the shirking

action ODE. Therefore, if ωπ(X,Y ) >
λA
γ , all parts of bπ(X,Y ) have been accounted for and bπ(X,Y ) satisfies the
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shirking action ODE. If ωπ(X,Y ) <
λA
γ , then the linear part of bπ(X,Y ) starts at some (x, y) with slope greater

than h′(x,y)(x) and with x < λA
γ . Again, it is straightforward to check that any such half-line satisfies the

shirking action ODE.

Theorem 4. Suppose the shirking payoff lies in the right region of D. Then there exists a tax subsidy
π∗ ∈ (0, 1) and two agent promised values R < W ∗ < R∗ < λA

γ that are uniquely determined by the following
conditions:

• bπ
∗
(W ∗) = S(W ∗), bπ

∗ ′(W ∗) = h′(W∗,S(W∗))(W
∗) and bπ

∗ ′′(W ∗) = h′′(W∗,S(W∗))(W
∗)

• h′(W∗,S(W∗))(R
∗) = b′(R∗,h(W∗,S(W∗))(R∗))

(R∗).

B = bπ
∗ |[R,W∗) ∪ h(W∗,S(W∗))|[W∗,R∗] ∪ b(R∗,h(W∗,S(W∗))(R∗))|(R∗,∞). This function is concave since each

component is concave and the pastings are all smooth. However, the pasting at R∗ does not satisfy the
super-contact condition and so B is C1 but not C2.

Proof. Existence of π∗ and W ∗ are provided by Theorems 1 and 2. Uniqueness of π∗ and W ∗ follow from
Lemma 8.8. Existence and Uniqueness of R∗ is provided by Corollary 8.10. Denote by B̃, the conjec-
tured B̃ of the Theorem. The first component of B̃ satisfies HJB-equation by construction. The second
component of B̃ satisfies the HJB-equation because of Corollary 8.7. The third and final component of
B̃ satisfies the HJB-equation because of Corollary 8.11. Clearly, B̃ is C1 and is C2 everywhere except
R∗. Moreover, fix any starting point W0 ≥ R, the SDE implied by B̃ keeps Wt bounded. Specifically,
Wt ≤ max{W0, ω(R∗,h(W∗,S(W∗))(R∗))) for all t ≤ τ . Therefore, one can recycle the martingale technique used

in the proof of Theorem 2 to prove that every point (W0, B̃(W0)) is in fact the payoff of a contract. Finally,
since B̃ < µ

r , a slight modification of the same martingale technique can also be used to prove that B̃ is an

upper bound on B. Therefore B = B̃.

When the shirking payoff is in the left region, it is very straightforward to describe B beyond ω(R,L∗).
Simply extend b(R,L∗)|(W∗,ω(R,L∗)] to b(R,L∗)|(W∗,∞). Extending B leftwards from W ∗ to R is more compli-
cated. However, these payoffs are all Pareto-dominated by the payoff to the optimal contract. An approach
similar to the one used in the proof of Theorem 4 can be used to prove the following complete characterization
of B when the shirking payoff is in the left region.

Theorem 5. Suppose the shirking payoff lies in the left region of D. Then there exists a unique W̃ ∗ such
that

h′
(W̃∗,S(W̃∗)

(W̃ ∗) = b′
(W̃∗,S(W̃∗))

(W̃ ∗) and h′′
(W̃∗,S(W̃∗)

(W̃ ∗) = b′′
(W̃∗,S(W̃∗))

(W̃ ∗)

Suppose W ∗ > R. If λA
γ > R or if L > h(W̃∗,S(W̃∗)(R), then there exists a unique X∗ ∈ (R, W̃ ∗) such

that
h′

(W̃∗,S(W̃∗))
(X∗) = g′(X∗,h

(W̃∗,S(W̃∗))(X
∗))(X

∗).

Here, g(X,Y ) denotes the unique solution to the high action ODE starting at (R,L) and going through (X,Y ).
Then B = g(X∗,h

(W̃∗,S(W̃∗))(X
∗))|[R,X∗) ∪ h(W̃∗,S(W̃∗))|[X∗,W∗] ∪ b(W∗,S(W∗))|(W∗,∞).

Suppose W ∗ > R. If L ≤ h(W̃∗,S(W̃∗)(R), then B = h(W̃∗,S(W̃∗))|[R,W∗] ∪ b(W∗,S(W∗))|(W∗,∞).
Suppose W ∗ ≤ R. Then there exists a unique L∗ > L such that

h′(R,L∗)(R) = b′(R,L∗)(R)

And B = (R,L∗ = h(R,L∗)(R)) ∪ b(R,L∗)|(R,∞).

8.3 Characterizing B when b′(R) ≤ 0

Recall Vleft is characterized by Lemma 4.2 on [R,∞) and is the straight line segment {(x, µ−γxr )} on (0, R).
When b′(R) ≤ 0, the portion characterized by Lemma 4.2 collapses to the single point (arg max b,max b) =
(R,L). So, VLeft = (R,L) ∪ {(x, µ−γxr )|x ∈ (0, R)}.
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The shape of VRight is not much different than before - strictly increasing, continuous curve starting at
(arg max b,max b) = (R,L), with a horizontal asymptote y = µ

r . However, there is still some degeneracy.
Specifically, there is a π̃ < 1 such that (arg max bπ,maxπ) = (R,L) for all π ∈ [π̃, 1].

The function f is still well defined and like before, it lies below b on [R,∞] and meets b at a single point:
(arg max b,max b) = (R,L).

The four regions of D are now well-defined. The Baseline and Static domains require no comment. When
the shirking payoff lies in the right region, Theorem 4 holds completely. Specifically, both forms of B are
possible. When the shirking payoff lies in the left region, only the last form of B in Theorem 5 is possible.
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