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1. Introduction

Epidemiology is the study of the spread of dis-
eases with the objective to trace factors, which
are responsible for or contribute to their occur-
rence. Mathematical modeling of the spread of
infectious diseases continues to become an impor-
tant tool in understanding the dynamics of dis-
eases and in decision making processes regard-
ing diseases intervention programs for disease in
many countries. Controlling infectious diseases
has been an increasingly complex issue in recent
years. Media awareness program is an impor-
tant strategy for the elimination of infectious dis-
eases [1, 2]. The field of stochastic modeling of
biological and ecological systems [3] is currently
undergoing considerable development as of com-
plex stochastic models by simulation methods are
more feasible. Mathematicians have contributed
a range of papers which can be found in the liter-
ature of probability theory and statistical physics
characterizing the theoretical properties of a large
variety of stochastic models.

Optimal control theory has found wide-ranging
applications in biological and ecological problems.
Specifically, there have been various studies of epi-
demiological models, where optimal control meth-
ods have been applied [4, 5]. Optimal control
theory is a systematic approach to controller de-
sign where by the desired performance objectives
are encoded in a cost function, which is subse-
quently optimized to determine the desired con-
troller [6]. There are two underlying and universal
themes i.e., dynamic programming and filtering.
Dynamic programming is one of the fundamental
tool of optimal control, the other being Pontrya-
gins principle. Dynamic programming is a means
by which candidates optimal control can be ver-
ified optimally. The procedure is to find a suit-
able solution to dynamic programming equation
(DPE), which denotes the optimal performance
and to use it to compare the performance candi-
dates control may be determined from Pontrya-
gins Maximum Principle [7] and later developed
by Fleming and Rishel [8] is successfully applied
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in a number of studies, to explore optimal con-
trol theory in some mathematical models for in-
fectious diseases. Epidemic models are inevitably
affected by environmental white noise, which is an
important component in realism, because it can
provide an additional degree of realism in compar-
ison to their deterministic counterparts. Many
stochastic model for epidemic populations have
been developed in literature [9,10]. For SDE mod-
els in epidemiology, optimal control has not been
studied extensively. One of the reasons for this
could very well be the difficulty with high dimen-
sionality of the resulting partial differential equa-
tion (PDE) for the value function (See, Sulem and
Tapiero [11]), for instance, a four-compartmental
SIVR model such as in [12, 13] could easily lead
to a PDE having the time variable together with
three state variables. In control problems, the
aim of the study is to characterize the control vari-
able on a finite time interval, which minimizes the
number of infected individuals balanced against
the cost of controlling the epidemic.

In the present study it is proposed and developed
optimal control policies for deterministic and sto-
chastic SIR epidemic model with awareness pro-
grams by media. The aim of this model is to de-
pict how the provision of awareness modifies the
contact structure and thereby affects the future
course of an epidemic. In the absence of any phar-
maceutical intervention, to control the spread of
disease at the population level needs to change
the individual activities, which in turn depends
on information being provided to the individu-
als about the epidemic. If the susceptibles are
aware about the preventive measures for emer-
gent disease, they are likely to modify their activi-
ties. The study contracts on disease which spread
through interaction between susceptible and in-
fective, i.e. direct contact. Therefore to control
the outbreak of any epidemic, it is informed to
avoid contact, by which some can contract infec-
tion and minimize the possibility of contracting
infection. In vision of this, it is assumed that
when awareness is propagated by media about the
disease, susceptible form a separate class within
the population i.e., to avoid being in contact with
other members of the population. Another im-
portant aspect of this study is to check whether
size of the infectious population is directly pro-
portional to awareness campaigns by media. The
explicit inclusion of awareness campaigns by me-
dia in the modeling process are assumed to be
proportional to the size of infectious individuals
in the population. This study differs from other
epidemic modeling by performing the stochastic
optimal control analysis, which is rarely studied

by researchers like [6,14] in the field of epidemics
and by including the transmission of infection in
two modes in the model, A.K. Misra [1], has dis-
cussed the epidemic model with media awareness
and stability analysis for deterministic model by
considering single transmission parameter β, in
the present study, the transmission of infection
is considered by two modes i.e. transmission be-
tween unaware susceptible and infectives and the
transmission between hospitalized individuals and
unaware susceptible denoted by by β1 and β2 re-
spectively. It is assumed that the rate of contact
of susceptible with infectives who are on treat-
ment is much less than the infectives who are
not on treatment (β2 ≪ β1). This is so because
on hospitalization of infectives for treatment their
contact with susceptible group of a population is
reduced and may contribute little to the spread of
infection. In the numerical analysis of the deter-
ministic and corresponding stochastic model, it
is discussed the comparison of deterministic and
stochastic solution and also shown, how the con-
trol variable vary for different values of a param-
eters. The rest of the work is organized as fol-
lows: Section 2 deals with deterministic model
framework and optimal control analysis, while in
Section 3 formulation of stochastic model with
constant controls and optimal control analysis is
carried out. Section 4, consist of numerical sim-
ulations and discussion of results and principle
findings of the paper are discussed in Section 5.

2. Deterministic Model

In this section, deterministic nonlinear SIR model
is considered by taking media awareness and
treatment into account. The variables and pa-
rameters of the model are described in Table 1
and Table 2 respectively.

Table 1. Description of variables of
the model.

Variables Explanation
X(t) The number of susceptible

at time t;
Y (t) The number of infectives

at time t;
Xm(t) The number of aware

susceptible at time t;
T (t) The infectives who are on

treatment at time t;
Z(t) The recovered population

at time t;
M(t) The cumulative density

of awareness programs
driven by media in the
region at time t;
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To model the situation considered a region with
total population N(t) at any instant of time t. By
taking into account the aforementioned consider-
ations, the system of equations that capture the
dynamics of the infectious disease is designed and
the ordinary differential equations of the system
(1) is as follows.

Table 2. Description of parameters
of the model

Parameters Description
β1 The contact rate of susceptible

with infectives;
β2 The contact rate of susceptible

with hospitalized infectives;
Q The constant rate of immigration

of susceptible;
π The dissemination rate of

awareness among susceptible due to
which they form a separate group;

π0 The rate of transfer of aware
susceptible to susceptible;

γ The recovery rate;
δ The disease induced death rate;
δ1 The natural death rate from

each class;
σ1 The modification parameter due

to treatment for recovery;
σ2 The modification parameter for

disease induced death rate due
to treatment;

µ The rate at which awareness
programs has being implemented;

µ0 The depletion rate of awareness
programs due to infectiveness,
social problems in population;

γ0 The loss rate of immunity of
recovered individuals;

φ The rate at which infective are
hospitalized for treatment;

dX

dt
= Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X

dY

dt
= β1XY + β2XT − (δ + γ + φ+ δ1)Y

dXm

dt
= πXM − π0Xm − δ1Xm (1)

dT

dt
= φY − σ1γT − δ1T − σ2δT

dZ

dt
= γY + σ1γT − γ0Z − δ1Z

dM

dt
= µ(Y + T )− µ0M

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0 and
M ≥ 0.

To show the existence of the feasible set of a sys-
tem (1) which attracts all solutions initiation in
the interior of positive orthant, it has to prove
that the system (1) is dissipative, i.e., all solu-
tions are uniformly bounded in a proper subset
Ω ∈ ℜ6

+. Let (X,Y,Xm, T, Z,M) ∈ ℜ6
+ be any

solution with non-negative initial conditions. By
adding first five equations of system (1) it is ob-
tained

dN

dt
= Q− δY − σ2δT − δ1N

≤ Q− δ1N (2)

After solving equation (2), we have

N(t) ≤ N(0)e−δ1t +
Q

δ1
(1− e−δ1t) (3)

where N(0) is the sum of initial values
X(0), Y (0), Xm(0), T (0), Z(0). Now from

equation (3) as lim t → ∞, N → Q
δ1
, then Q

δ1
is

the upper bound of N . Also from last equation
of system (1), it is shown

dM

dt
= µ(Y + T )− µ0M

dM

dt
≤

µQ

δ1
− µ0M (4)

⇒ 0 < M(t) ≤ M(0)e−µ0t +
µQ

µ0δ1
(1− e−µ0t)

and above result that Q
δ1

is the upper bound of

N it can deduced that lim t → ∞ M → µQ
µ0δ1

.

Therefore the region of attraction is given by the
set:

Ω =
{

(X, Y, Xm, T, Z, M) ∈ ℜ6
+ : (5)

0 ≤ X, Y, Xm, T, Z ≤ N ≤
Q

δ1
,

0 ≤ M ≤
µQ

µ0δ1

}

and attracts all solutions initiation in the interior
of positive orthant.

2.1. Deterministic optimal control

problem

In this section it is formulated and solved for de-
terministic version of control problem. The con-
trol variable in the model system (1), where im-
plementation rate of awareness campaigns (µ) is
represented by a Lebesgue measurable function
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u(t), on a finite time interval [0, Tf ]. In the model
u(t) represents the some part of susceptible pop-
ulation has media awareness at time t. Our aim
is to obtain optimal media awareness programs
u∗(t), which minimizes the number of infectives
and on the other hand cost of infection (treat-
ment) during the infectious period [0, Tf ]. To in-
vestigate the optimal level of efforts that would be
needed to control the disease, the objective func-
tion J is formed. Since objective of the spread
of disease control is to decrease the infected indi-
viduals and infected individuals who are on treat-
ment and increase the aware susceptible popula-
tion. Hence the problem of minimizing the cost
functional is,

J(u) =

∫ Tf

0

{

AY +BT − CXm +
C1

2
u2

}

dt

(6)
subject to

dX

dt
= Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X

dY

dt
= β1XY + β2XT − (δ + γ + φ+ δ1)Y

dXm

dt
= πXM − π0Xm − δ1Xm (7)

dT

dt
= φY − σ1γT − δ1T − σ2δT

dZ

dt
= γY + σ1γT − γ0Z − δ1Z

dM

dt
= u(t)(Y + T )− µ0M

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0
and M ≥ 0. A, B and C are the positive weights.
The term C1

2 is the cost associated with u(t). An
optimal control u∗(t) is such that

J(u∗(t)) = min
u∈U

J(u(t)) (8)

where control set is defined as

U = {u(t) : 0 ≤ u(t) ≤ 1, 0 ≤ t ≤ T, (9)

u(t) is Lebesgue measurable} .

2.2. Existence of deterministic optimal

control problem

The existence of optimal control can be proved by
using the result from Fleming and Rishel [8] .

Theorem 1. For the optimal control problem (6)
and (7) on a fixed interval [0, Tf ], there exist an
optimal control u∗(t) ∈ U .

Proof. The boundedness of solution of system
(7) asserts the existence of solution to control
system using results by [15], therefore, set of
controls and corresponding state variables are
non- empty. The control set is closed and con-
vex by definition. The solution of system (7)
are bounded above by linear function in con-
trol and state. The integrand in cost functional,
AY +BT − CXm + C1

2 u2, is convex on control
set U . Further, there exists p, q > 0 and
b > 1 such that, AY +BT − CXm + C1

2 u2 ≥

p + q|u(t)|b, where p depends upon the upper
bound of Y (t), T (t) and Xm(t) and q = C1.
Hence the existence of an optimal control is es-
tablished. �

2.3. Characterization of optimal control

The Pontryagin’s Maximum principle converts
the problem of minimizing the cost functional
subject to state variables into minimizing the
Hamiltonian with respect to the controls at each
time t. For the purpose of simplicity it is in-
troduced the functions f1, f2, f3, f4, f5 and f6, to
right side expressions of equations (7).

f1(t) = Q− β1XY − β2XT − πXM

+π0Xm + γ0Z − δ1X

f2(t) = β1XY + β2XT − (δ + γ + φ+ δ1)Y

f3(t) = πXM − π0Xm − δ1Xm

f4(t) = φY − σ1γT − δ1T − σ2δT

f5(t) = γY + σ1γT − γ0Z − δ1Z (10)

f6(t) = u(t)(Y + T )− µ0M

Therefore Hamiltonian H is,

H = AY +BT − CXm +
C1

2
u2

+ λ1f1(t) + λ2f2(t) + λ3f3(t)

+ λ4f4(t) + λ5f5(t) + λ6f6(t) (11)

where λi for i = 1, 2...6 are adjoint functions
associated with their respective state variables.
The necessary conditions that an optimal control
problem must satisfy Hamiltonian H comes from
the Pontryagins maximum principle [7]. Given an
optimal control and corresponding states, there
exists adjoint variable λi satisfying the following
equations:
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λ
′

1 = −
∂H

∂X
= β1Y (λ1 − λ2) + β2T (λ1 − λ2)

+πM(λ1 − λ3) + λ1δ1

λ
′

2 = −
∂H

∂Y
= −A+ β1X(λ1 − λ2) + λ2(δ+δ1)

+φ(λ2 − λ4) + γ(λ2 − λ5)− λ6µ

λ
′

3 = −
∂H

∂Xm
= C + π0(λ1 + λ3) + λ3δ1

λ
′

4=−
∂H

∂T
= −B + β2X(λ1 − λ2) + λ4σ2δ

+σ1γ(λ4 − λ5) + λ4δ1 − λ6µ

λ
′

5 = −
∂H

∂Z
= λ5(γ0 + δ1)− λ1γ0

λ
′

6 = −
∂H

∂M
= πX(λ1 − λ3) + λ6µ0 (12)

with transversality conditions λi(T ) = 0, for
i = 1, 2...6. The transversality conditions are zero
because the objective functional is independent of
states at the final time.

The Hamiltonian is minimized with respect to
u(t) at the optimal value u∗(t) . Since

H = AY +BT − CXm +
C1

2
u2

+λ6{u(t)(Y + T )}+ terms without u(t),

differentiating H with respect to u and accord-
ing to Pontrygins Maximum Principle, the unre-
stricted optimal control u∗(t) satisfies ∂H

∂u
= 0 at

u(t) = u∗(t). So it is given by

u∗(t) = min

[

max

(

0,−
λ6(Y + T )

C1

)

, 1

]

(13)

Therefore we have the following theorem.

Theorem 2. The optimal control u∗(t) of a sys-
tem (7), which minimizes the objective functional
(6) is characterized by (13).

Due to a priori boundedness of the state and ad-
joint system functions and the resulting Lipschitz
structure of the ODE’s, it is obtained the unique-
ness of the optimal control for small T. The state
system coupled with the adjoint system, with the
initial conditions, the transversality condition to-
gether with the above characterization of the con-
trol form the optimality system.

3. Stochastic Model

In this section a non-linear stochastic SIR type
epidemic model is proposed by introducing a noise

in system (7), and transformed the deterministic
problem into a corresponding stochastic problem.
The noise can induce non-trivial effects in physi-
cal and biological systems. The presence of noise
source modifies the behavior of corresponding de-
terministic evolution of the system to stochastic
system. The real spread of infectious disease, due
to variation in the environment and the weather
will exhibit some kinds of random fluctuation in
the infection and other variables. Here it is con-
sidered the perturbed transmission coefficients β1
and β2 in system (7), and hence the infection rate
is replaced by

β1 → β1 + ǫη(t) β2 → β2 + ǫη(t) (14)

where η(t) represents the Gaussian white noise
with zero mean and unit co-variance and ǫ is a
constant. The relation between the Wiener pro-
cessW (t) and Gaussian white noise η(t) such that
dW (t) = η(t)dt, then the stochastic version of the
corresponding deterministic system (7) takes the
following form:

dX = [Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X] dt− ǫX(Y + T )dW (t)

dY =[β1XY + β2XT − (δ + γ + φ+ δ1)Y ]dt

+ ǫX(Y + T )dW (t)

dXm =[πXM − π0Xm − δ1Xm]dt

dT =[φY − σ1γT − δ1T − σ2δT ]dt

dZ =[γY + σ1γT − γ0Z − δ1Z]dt

dM =[u(t)(Y + T )− µ0M ]dt (15)

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0
and M ≥ 0.

In this process, it is assumed that W (t)
is one dimensional real Wiener process de-
fined on a filtered complete probability space
(Ω,F , {Ft}t≥0, P ). For some n ∈ N , some x0 ∈
ℜn, and an n-dimensional Wiener process W (t),
consider the general n-dimensional stochastic dif-
ferential equation,

dx(t) = F (x(t), t)dt+G(x(t), t)dW (t), x(0) = x0.
(16)

A solution to the above equation is denoted by
x(t, x0). It is assumed that F (t, 0) = G(t, 0) =
0 ∀ t ≥ 0, so that the origin point is an equilib-
rium of (16). Let us denote by L the differential
operator associated with the function displayed in
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(16), defined for a function U(t, x) ∈ C1,2(ℜXℜn)
by

LU =
∂U

∂t
+F trp∂U

∂x
+

1

2
Trc

[

Gtrp∂
2U

∂x2
G

]

. (17)

Here trp denotes the transpose and Trc means
trace of a matrix. In view of Ito’s formula,
if x(t) ∈ ℜd, then dU(x, t) = LU(x, t)dt +
Vx(x, t)g(x, t)dW (t).

3.1. Existence and uniqueness of positive

solutions

In this section, using Lyapunov analysis method
(mentioned in refs. [16,17]), we show that the so-
lution of system (15) is positive and global.

Theorem 3. There is a unique solution
X(t), Y (t) Xm(t), T (t), Z(t), M(t) of sys-
tem (15) on t ≥ 0 for any initial value
(X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈ ℜ6

+ and
the solution will remain in ℜ6

+ with probability 1,
namely, (X(t), Y (t) Xm(t), T (t), Z(t), M(t)) ∈ ℜ6

+

for all t ≥ 0 almost surely.

Proof. Since the coefficient of the equation are
locally Lipschitz continuous for any given initial
value

(X(0), Y (0), Xm(0), H(0), Z(0), M(0)) ∈ ℜ6
+,

there is a unique local solution

X(t), Y (t), Xm(t), T (t), Z(t),M(t)

on t ∈ [0, τe), where τe is the explosion time
(see Ref. [18]). To show that this solution
is global, we need to show that τe = ∞
a.s. Let k0 ≥ 0 be sufficiently large so that
X(0), Y (0), Xm(0), T (0), Z(0) and M(0) all lie
within the interval [1/k0, k0]. For each integer
k > k0, define the stopping time

τk = inf {t ∈ [0, τe) : min{X, Y ,Xm , T , Z ,M }

≤
1

k
or max{X ,Y ,Xm , T , Z ,M } ≥ k

}

,

where throughout this section, we set inf ∅ =
∞(as usual ∅ denotes the empty set). Accord-
ing to the definition, τk is increasing as k → ∞.
Set τ∞ = lim

k→∞
τk, whence τ∞ ≤ τe a.s. If we

can show that τ∞ = ∞ a.s., then τe = ∞ and
{X(t), Y (t) Xm(t), T (t), Z(t), M(t)} ∈ ℜ6

+ a.s.
for all t ≥ 0. In other words, to complete the
proof, all we need to show that τ∞ = ∞ a.s. If

this statement is false, then there exist a pair of
constants τ > 0 and ǫ1 ∈ (0, 1) such that

P{τ∞ ≤ τ} > ǫ1. (18)

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ τ} ≥ ǫ1 ∀ k ≥ k1. (19)

For t ≤ τk, we can see, for each k,

dN(t) = [Q−δ(Y+σ2H)−δ1N(t)]dt ≤ [Q−δ1N ]dt

and also

dM = [µ(Y + T )− µ0M ]dt ≤

[

µQ

δ1
− µ0M

]

dt

and since
dM

dt
≤

µQ

δ1
− µ0M

and so,

N(0) = X(0) + Y (0) +Xm(0) + T (0) + Z(0)

N(t) ≤







Q/δ1, if N(0) ≤ Q/δ1,
:= P

N(0), if N(0) ≥ Q/δ1

M(t) ≤

{

µQ
δ1µ0

, if M(0) ≤ µQ
δ1µ0

,

M(0), if M(0) ≥ µQ
δ1µ0

Define a C2-function V : ℜ6
+ −→ ℜ−

+ by

dV = (X − 1− log X) + (Y − 1− log Y )

+(Xm − 1− log Xm) + (T − 1− log T )

+(Z − 1− log Z) + (m− 1− log M)

dV =

(

1−
1

X

)

dx+
1

2X2
(dx)2 +

(

1−
1

Y

)

+
1

2Y 2
(dy)2 +

(

1−
1

Xm

)

dxm

+

(

1−
1

T

)

dh+

(

1−
1

Z

)

dz

+

(

1−
1

M

)

dm

= LV dt+ ǫ(Y −X)dW (t), (20)

where LV : ℜ6
+ → ℜ+ is defined by
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LV =

(

1−
1

X

)

f1(t) +
1

2
ǫ
2(Y + T )2

+

(

1−
1

Y

)

f2(t) +
1

2
ǫ
2
X

2

+

(

1−
1

Xm

)

f3(t) +

(

1−
1

T

)

f4(t)

+

(

1−
1

Z

)

f5(t) +

(

1−
1

M

)

f6(t)

= Q− β1XY − β2XT − πXM + π0Xm + γ0Z

−δ1X −
Q

X
+ β1Y + β2T + πM −

π0Xm

X
−

γ0Z

X

+δ1 +
1

2
ǫ
2(Y + T )2 + β1XY + β2XT

−(δ + φ+ γ + δ1)Y − β1X

−
β2T

Y
− (δ + φ+ γ + δ1)

+
1

2
ǫ
2
X

2 + πXM − π0Xm − δ1Xm

−
πXM

Xm

+ π0 + δ1 + φY − σ1γT − σ2δT

−δ1T −
φY

T
− σ1γ + σ2δ + δ1 + γY

−σ1γT − γ0Z − δ1Z −
γY

Z
−

σ1γT

Z
+ γ0 + δ1

+µ(Y + T )− µ0M −
µ(Y + T )

M
+ µ0

≤ Q+ 5δ1 + (β1 + β2 + π + 2µ+ δ)P + δ

+γ + φ+ µ0 +
5

2
ǫ
2
P

2

:= D̃ (21)

Therefore

E [W{X(τk ∧ τ), Y (τk ∧ τ), Xm(τk ∧ τ), T (τk ∧ τ),

Z(τk ∧ τ),M(τk ∧ τ)}]

≤ W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)}

+ E

[

∫ (τk∧τ)

0
dtD̃

]

≤ W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)}
(22)

+ D̃τ

Set Ωk = (τk ∧ τ) Note that for ev-
ery ω ∈ Ωk, there is at least one of
X(τk, ω), Y (τk, ω), Xm(τk, ω), T (τk, ω), Z(τk, ω)
and M(τk, ω) that equals k or 1/k and hence
W {X(τk), Y (τk), Xm(τk), T (τk), Z(τk), M(τk)}
is no less than k − 1 − log k or 1/k − 1 − log k
consequently.

W {X(τk), Y (τk), Xm(τk), T (τk), Z(τk), M(τk)}

≥ k − 1− log k ∧ 1/k − 1− log k

It is then follows (19) and (22) that

W {X(0), Y (0), Xm(0), T (0), Z(0),M(0)}+ D̃τ

≥E [1Ωk
(ω)W {X(τk), Y (τk), Xm(τk), T (τk),

Z(τk), M(τk)}]

≥ǫ [k − 1− log k ∧ 1/k − 1− log k]

W {X(0), Y (0), Xm(0), T (0), Z(0),M(0)}+ D̃τ

≥E [1Ωk
(ω)W {X(τk), Y (τk), Xm(τk), T (τk),

Z(τk), M(τk)}]

≥ǫ [k − 1− log k ∧ 1/k − 1− log k]

where 1Ωk
(ω) is the indicator function of Ωk.

Let k → ∞ leads to the contradiction ∞ >
W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)} +D̃τ =
∞. So we must therefore have τ∞ and hence the
proof. �

Remark 1. From theorem 3 for any initial
value (X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈

ℜ6, there is a unique global solution
X(t), Y (t) Xm(t), T (t), Z(t), M(t) ∈ ℜ6 al-
most surely of system (15). Hence

dN(t) ≤ [Q − δ1N(t)]dt, and N(t) ≤ Q
δ1

+

e−δ1t(N(0)) If N(0) ≤ Q
δ1
, then N(t) ≤ Q

δ1
a.s.

so the region

Ω∗ = {(X,Y,Xm, H, Z,M) : X > 0, Y > 0 Xm > 0

T > 0, Z > 0 M > 0, N(t) ≤
Q

δ1
a.s.

}

is a positively invariant set of system (15)
on Ω∗, which is similar to Ω of system
(1). From now on, we always assume that
(X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈ Ω∗.

3.2. Stochastic optimal control problem

In this section stochastic version of the optimal
control problem (1) is formulated and discussed.
For stochastic control theory refer [19] of Ok-
sendal. Here the objective is to find an optimal
media awareness programs u∗(t) which minimizes
the objective functional with an initial state x0 is
defined by

E0,x0

[
∫ Tf

0

{

AY +BT − CXm +
C1

2
u2

}

ds

]

(23)

Here the expectation is obtained on the initial
condition of the state (at time t = 0) system is
x0. For the deterministic problem of earlier, it is
assumed that there is a fixed constant u(t) ≤ 1
with u(t) ≤ u (a.s.). The class of admissible con-
trol laws is
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A = {u(.) : u is adapted, and 0 ≤ u ≤ u a.s.} .

(24)

To solve this stochastic control problem, the per-
formance criterion is defined as follows:

J(t, x;u) = Et,x

[

∫ Tf

t

{

AY +BT − CXm + C1

2 u2
}

ds
]

,

(25)

where the expectation is conditional on the state
of the system being a fixed value x at time t. The
value function is define as

U(t, x) = inf
u(.)∈A

J(t, x;u) = J(t, x;u∗). (26)

It is determined a control law that minimizes the
expected value J : A → ℜ+ given by (26). Now
the stochastic analogue of the optimal control
problem is formulated, subsequent to which the
solution formulae is presented.

Problem: Given the system (16) and given A as
in (24) with J as in (25), find the value function

U(t, x) = inf
u∈A

J(t, x;u), (27)

and an optimal control function

u∗(t) = arg inf
u∈A

J(x;u(t)) ∈ A. (28)

An expression for the optimal media awareness
program u∗(t) is computed through the following
theorem.

Theorem 4. A solution to the optimal media
awareness program problem stated in problem (24)
is of the form

u∗(t) = min

[

max

(

0,

[

−UM (t)(Y + T )

C1

])

, u

]

.

(29)

Proof. To determine u∗(t) through the dynamic
programming approach it is necessary to calculate
LU(t) i.e. by using (17):

LU(t) = f1(t)UX(t) + f2(t)UY (t) + f3(t)UXm(t)

+f4(t)UT (t) + f5(t)UZ(t) + f6(t)UM (t)

+
1

2
(ǫX(Y + T ))2UXX(t)

+
1

2
(ǫX(Y + T ))2UY Y (t) (30)

−
1

2
(ǫX(Y + T ))2UXY (t).

Applying the Hamilton-Jacobi-Bellman theory
(see, for instance, [19])

inf
u∈A

[

AY +BT − CXm +
C1

2
u2 + LU(t)

]

.

(31)

To compute the equation (31) it requires to derive
partial derivative of the below given expression
with respect to u, and equating to zero.

AY +BT − CXm +
C1

2
u2 + LU(t). (32)

This leads to the equation:

C1u(t) + UM (t)(Y + T ) = 0

u∗(t) = min

[

max

(

0,
−UM (t)(Y + T )

C1

)

, u

]

.(33)

�

In the following section numerical analysis of the
results are discussed.

4. Numerical Simulations

The feasibility of analysis regarding deterministic
optimality and stochastic optimality conditions
are simulated numerically over t = 30 units of
time. All parameter values in the computations
are the same in both scenarios. The common
parameter values used in the computations are
Q = 2, β1 = 0.000007, β2 = 0.000000006, π =
0.0000025, γ = 0.15, γ0 = 0.0002, φ =
0.005, δ = 0.0001, δ1 = 0.00005, µ0 = 0.5, σ1 =
2, σ2 = 0.5, π0 = 0.02, A1 = 200, B = 250, C =
1, C1 = 230, ǫ = 0.0002, while the initial condi-
tions are X = 1, 00, 000, Y = 200, Xm = 0, T =
0, Z = 0, M = 0.

An iterative scheme of fourth order Runge-Kutta
method is used for solving the deterministic op-
timality system. This method of numerically in-
tegrated ordinary differential equations by using
trial step at midpoint of an interval to eliminate
lower order errors terms. The algorithm is the
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forward-backward scheme; starting with an initial
guess for the optimal controls, the state variables
are then solved forward in time from the dynam-
ics of system (1) using a Runge-Kutta method of
the fourth order. Then, those state variables and
initial guess for the controls are used to solve the
adjoint equation (12) backward in time with given
final conditions (13), again employing a fourth or-
der Runge-Kutta method. The controls are up-
dated and used to solve the state and then the
adjoint system. This iterative process terminates
when current state, adjoint, and control values
converge sufficiently (See, [4, 5]).

Numerical simulation to the system comprising
state system (15) compelled with the proxy ad-
joint system (12) with transverslity conditions
and characterization of the control variable u∗(t)
in equation (29) are carried out using forward
backward algorithm. The state system (15), i.e.,
stochastic differential equations were first sim-
ulated using forth order Range-Kutta method
by introducing noise through Euler Maruyama
method [20] and then adjoint system (12) are sim-
ulated backward in time with final conditions(See,
Witbooi et al. [14]). In particular, we use as
a proxy for λ6(Y + T ) in the calculation of u(t)
in this case. We note that the presence of Y (t)
makes u(t) into a stochastic variable even with
the said proxy (in the stochastic case).

Figure 1 shows the time series plot to illustrates
the variation of the number of individuals in each
compartment of the population and number of
awareness campaigns with respect to time (in
weeks) and Figure 1(a) shows time series plot for
the deterministic epidemic model under the time
dependent control u(t) where as Figure 1(b) rep-
resenting the control profile of the same model.
Further it is evident from the Figure 1(b) that it
is optimal to run awareness campaigns up to 29
units of time at maximum rate and lower down
afterwords.
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Figure 1. Simulation of determinis-
tic model solution (a) and control pro-
file u(t)(b).
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Figure 2. Simulation of Stochastic
model solution (a) and control profile
u(t)(b).

Figure 2 illustrates the stochastic model solutions
using the same parameter values and initial con-
ditions as that of deterministic model parame-
ters used in the illustration of Figure 1 and the
corresponding control profile u(t) for stochastic
model. It is observed that stochastic model solu-
tion also depicts same scenario as that of deter-
ministic model solution under the time dependent
control u(t) and also control profile u(t) exhibits
same state of affairs as that of deterministic con-
trol profile. An important point to note about
our approximation is that it fully accommodates
the stochasticity (embodied and concentrated in
the factor Y of the expression u∗(t)).

To investigate how optimal control depends upon
different parameters of the deterministic and sto-
chastic model, control profile is plotted for differ-
ent values of transmission rate β1 and recovery
rate γ in Figures 3 and 4 respectively. It is ob-
served from Figure 3(a) that for higher value of
transmission rate β1, to achieve the optimal sce-
nario awareness campaign must be implemented
with maximum rate up to to 28 units of time.

However for lower value of β1 i.e., β1 = 0.000001,
and β1 = 0.0000001, the optimal scenario can be
obtained by implementing awareness campaigns
with maximum rate only for initial 21 and 14 units
of time, respectively. The stochastic control pro-
file Figure 3(b) also depicts similar state of af-
fairs, but the optimal scenario can be obtained
by implementing awareness campaigns with max-
imum rate only for initial 7 and 8 units of time, for
β1 = 0.000001, and β1 = 0.0000001 respectively,
then onwards implementation of awareness cam-
paigns will be guided by stochastic control profile.

These course of remedies are observed for the rea-
son that when the transmission of disease is slow,
less people get affected and hence less awareness
campaigns are needed to control the disease.



Optimal control analysis of deterministic and stochastic epidemic model with media awareness programs 33

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time

(a)
u
(t

)

 

 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time

u
(t

) 

(b)

 

 

β
1
=0.000007 β

1
=0.000001 β

1
=0.0000001

Figure 3. Simulation of Determinis-
tic (a) and Stochastic (b) control pro-
file for different values of β1.

Similarly optimal scenario will change from im-
plementing awareness campaigns with maximum
rate up to 28 units of time to 16 and 6 units of
time for the change in recovery rate γ = 0.15 to
γ = 0.8 and γ = 1 respectively (Figure 4(a)).
Again stochastic control profile Figure 4(b) also
depicts similar state of affairs, but the optimal
scenario can be obtained by implementing aware-
ness campaigns with maximum rate only for ini-
tial 6 and 7 units of time, for γ = 0.8 and
γ = 1 respectively, then onwards implementation
of awareness campaigns will be guided by stochas-
tic control profile.
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Figure 4. Simulation of Determinis-
tic (a) and Stochastic (b) control pro-
file for different values of recovery rate
γ.

Figure 5 shows the effect of transmission rate β1
on infected population for the deterministic and
stochastic models. Increase in the transmission
rate β1 leads increase in number of infections, and
hence it requires to continue the implementation
of awareness campaigns at maximum rate.
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Figure 5. Simulation of Determinis-
tic (a) and Stochastic (b) Infectives
for different values of β1.
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Figure 6. Simulation of Determinis-
tic and Stochastic Cost (a) and Media
campaigns (b).

Figure 6(a) shows the simulation of deterministic
and stochastic cost function and cumulative den-
sity of awareness programs 6(b). From the Fig-
ures 6(a) and 6(b) it is clear that cost and aware-
ness programs are proportional to each other,
which implies that, as number of media awareness
programs increases cost of control for epidemic is
also increasing.
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Figure 7. Simulation of solution of
each states for different values of per-
turbation parameter ǫ.

Figure 7 shows the difference in the number of
individuals in each state of a system (15) for dif-
ferent values of perturbation parameter ǫ. From
Figure 7(a) it is observed that the number of un-
aware susceptible are decreasing as ǫ increases ini-
tially up to 12 units of time and then increasing
till final time. In case of infectives as perturba-
tion increases number of infections are increasing
up to 8 units of time later it is decreasing till
final time see Figure 7(b) and from Figure 7(c)
it is clear that as perturbation increases, aware
susceptible are increasing till final time. Figure
7(d),7(e),7(f) are varying in the same direction as
that of infectives, as ǫ increases.
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Figure 8. Simulation of control pro-
file for different values of C1.

To investigate how the optimal control varies de-
pends upon the positive weight C1, it is plotted
the control profile for different values of C1. It is
observed from the Figure 8(a) that as the posi-
tive weight C1 increased up to 5000 the optimal

scenario is achieved in 25 units of time and when
C1 = 230 it is sufficient to implement control on
awareness programs at maximum rate up to 29
units of time. For stochastic optimal control it is
observed from Figure 8(b) that when C1 = 5000
it is enough to implement optimality at maximum
rate up to 22 units of time and for lower value of
C1 = 230 it is necessary to continues the imple-
mentation of awareness programs up to 27 units of
time at maximum rate. This indicates that as the
weight of control (awareness programs) increases,
the disease can be controlled in a minimum time.

5. Conclusion

Media campaigns and epidemics are closely re-
lated to each other. The bases of this associa-
tion is human behavioral responses. The present
study considered the optimal control analysis of
both deterministic differential equation model-
ing and stochastic differential equation model-
ing of infectious disease by taking effects of me-
dia awareness programs and treatment of infec-
tives on the epidemic into account. Optimal
media awareness strategy under the quadratic
cost functional using Pontrygin’s Maximum Prin-
ciple and Hamiltonian-Jacobi-Bellman equation
are derived for both deterministic and stochas-
tic optimal control problem respectively. The
Hamiltonian-Jacobi-Bellman equation is used to
solve stochastic system, which is fully non-linear
equation, however it ought to be pointed out that
for stochastic optimality system, it may be dif-
ficult to obtain the numerical results. For the
analysis of the stochastic optimality system, the
results of deterministic control problem are used
to find an approximate numerical solution for the
stochastic control problem. Outputs of the sim-
ulations shows that media awareness programs
place important role in the minimization of infec-
tious population with minimum cost. The model
analysis further shows that awareness programs
through the media campaigning are helpful in de-
creasing the spread of infectious diseases by isolat-
ing a fraction of susceptible from infectives. Nu-
merical simulation of stochastic optimal control
problem enables to measure the feasibility of op-
tion followed. A formal approach to the numerical
simulation of the stochastic optimal control prob-
lem is far more complex and labour intensive and
our method is a workable approximate alterna-
tive.
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