
J Optim Theory Appl (2012) 154:713–758

DOI 10.1007/s10957-012-0050-5

Optimal Control and Applications to Aerospace:

Some Results and Challenges

E. Trélat

Received: 7 March 2012 / Accepted: 17 March 2012 / Published online: 3 April 2012

© Springer Science+Business Media, LLC 2012

Abstract This article surveys the usual techniques of nonlinear optimal control such

as the Pontryagin Maximum Principle and the conjugate point theory, and how they

can be implemented numerically, with a special focus on applications to aerospace

problems. In practice the knowledge resulting from the maximum principle is often

insufficient for solving the problem, in particular because of the well-known problem

of initializing adequately the shooting method. In this survey article it is explained

how the usual tools of optimal control can be combined with other mathematical

techniques to improve significantly their performances and widen their domain of

application. The focus is put onto three important issues. The first is geometric opti-

mal control, which is a theory that has emerged in the 1980s and is combining optimal

control with various concepts of differential geometry, the ultimate objective being to

derive optimal synthesis results for general classes of control systems. Its applicabil-

ity and relevance is demonstrated on the problem of atmospheric reentry of a space

shuttle. The second is the powerful continuation or homotopy method, consisting of

deforming continuously a problem toward a simpler one and then of solving a series

of parameterized problems to end up with the solution of the initial problem. After

having recalled its mathematical foundations, it is shown how to combine success-

fully this method with the shooting method on several aerospace problems such as the

orbit transfer problem. The third one consists of concepts of dynamical system the-

ory, providing evidence of nice properties of the celestial dynamics that are of great

interest for future mission design such as low-cost interplanetary space missions. The

article ends with open problems and perspectives.
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1 Introduction: Optimal Control Problems in Aerospace

The purpose of this article is to provide a survey of the main issues of optimal control

theory and of some geometric results of modern geometric nonlinear optimal control,

with a specific focus on applications to aerospace problems. The goal is, here, not

only to report on some usual techniques of optimal control theory (in particular, Pon-

tryagin Maximum Principle, conjugate point theory, associated numerical methods)

but also to show how this theory and these methods can be significantly improved by

combining them with powerful modern techniques of geometric optimal control, of

the theory of numerical continuation, or of dynamical system theory. I will illustrate

the different approaches under consideration with different standard but nontrivial

aerospace problems: the minimal time or minimal consumption orbit transfer problem

with strong or low thrust, the minimal total thermal flux atmospheric reentry problem

of a space shuttle, and space mission design using the dynamics around Lagrange

points. Through these examples, I will attempt to put in evidence the limits of the

standard techniques of optimal control, which are in general not sufficient to provide

an adequate solution to the problem, and I will show how these techniques can be con-

siderably enhanced by combining them with some mathematical considerations that

are sometimes quite deep but are an efficient (and most of the times, superior) alterna-

tive to numerical refinement procedures or other computational efforts. In particular,

I will focus on three approaches that have been successfully combined with optimal

control and that are in my opinion of primary importance in aerospace applications.

The first one is geometric optimal control, which started to be developed in the early

1980s and has widely proved its superiority over the classical theory of the 1960s.

The main objective of geometric optimal control is to develop general techniques for

general classes of nonlinear optimal control problems, using in particular the concept

of Lie bracket to analyze the controllability properties of nonlinear control systems

and the regularity properties of optimal trajectories, and to provide optimal synthesis

results. I will show how recent results of geometric optimal control can be used to

provide a deep geometric insight into the atmospheric reentry problem and lead to an

efficient solution. The second technique focused on is the numerical continuation pro-

cedure, which is far from new but has been quite neglected until recently in optimal

control probably because of its difficulty to be implemented efficiently and quite sys-

tematically. In the last ten years however much progress has been done that permits

to understand better how this powerful procedure can be successfully applied, and I

will show its particular relevance on the orbit transfer problem. The third technique

mentioned, that I believe to be of particular interest for future aerospace applications,

is the combination with dynamical system theory. Deep mathematical results from

this theory permit to put in evidence nice properties of the celestial dynamics due to

Lagrange points and gravitational effects, which are particularly interesting in view

of designing low-cost space missions for future interplanetary exploration.

This article is addressed not only to mathematicians wanting to know more about

these geometric or mathematical issues associated with concrete applications, but also
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to engineers already acquainted with usual techniques of optimal control, wishing to

get more familiar with the more modern approaches of geometric control and other

mathematical notions that have demonstrated significant enhancements in aerospace

problems, or to experts of nonlinear control wishing to learn about applications of

this discipline to nontrivial examples in aerospace.

The mathematical notions whose combination to optimal control has proved its

relevance are mainly from (elementary) differential geometry; they are introduced

and explained step by step, although they are mostly known by many readers, and

can be skipped at the first reading.

The article is structured as follows. Section 2 surveys the most well-known theo-

retical and numerical aspects of optimal control. It is recalled how first-order neces-

sary conditions lead to the famous Pontryagin Maximum Principle and how it can be

used in practice. Second-order optimality conditions, leading to the conjugate point

theory, are then briefly surveyed. The possible numerical approaches are then de-

scribed and discussed, and their limits are underlined. Section 3 is devoted to show

how techniques of geometric optimal control can be used in order to provide an effi-

cient solution to the atmospheric reentry problem. In Sect. 4, the continuation method

is first described, and a theoretical foundation is provided in terms of sensitivity anal-

ysis. It is then shown how it can be combined with a shooting method in order to

solve different problems, such as the orbit transfer problem. In Sect. 5 the focus is

made on the properties of the dynamics around Lagrange points and on potential ap-

plications to mission design. Throughout the article, and in the conclusion (Sect. 6),

open problems and challenges are described.

2 A Short Survey on Optimal Control: Theory and Numerics

Let n and m be nonzero integers. Consider on R
n the control system

ẋ(t) = f
(

t, x(t), u(t)
)

, (1)

where f : R
n × R

m −→ R
n is C1, and where the controls are bounded and mea-

surable functions, defined on intervals [0, T (u)] of R
+ and taking their values in a

subset U of R
m. Let M0 and M1 be two subsets of R

n. Denote by U the set of admis-

sible controls such that the corresponding trajectories steer the system from an initial

point of M0 to a final point in M1. For such a control u, the cost of the corresponding

trajectory xu(·) is defined by

C(tf , u) :=
∫ tf

0

f 0
(

t, xu(t), u(t)
)

dt + g
(

tf , xu(tf )
)

, (2)

where f 0 : R × R
n × R

m −→ R and g : R × R
n → R are C1. We investigate the

optimal control problem of determining a trajectory xu(·) solution of (1), associated

with a control u on [0, tf ], such that xu(0) ∈ M0, xu(tf ) ∈ M1, and minimizing the

cost C. The final time tf can be fixed or not. If one considers the minimal time

problem, then one can choose f 0 = 1 and g = 0.

When the optimal control problem has a solution, we say that the corresponding

control (or the corresponding trajectory) is minimizing or optimal.
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2.1 Existence Results

This is not our aim to provide elaborate existence results for optimal controls. It

should just be noted that usual existence results require some convexity on the dy-

namics since their proof usually relies on weak compactness properties. We refer to

[1] for a survey of existence results in optimal control. The result given below, whose

early version was obtained by Filippov [2], is standard.

Theorem 2.1 Assume that U is compact, that there may be state constraint c1(x) �

0, . . . , cr(x) � 0, where c1, . . . , cr are continuous functions on R
n, and that M0 and

M1 are compact subsets of R
n such that M1 is accessible from M0. Assume that there

exists b > 0 such that every trajectory steering the system from M0 to M1 is bounded

by b on [0, t (u)] in C0 norm and that the set

Ṽ (t, x) :=
{(

f 0(t, x,u) + γ,f (t, x,u)
)

| u ∈ U, γ � 0
}

is convex for every t ∈ R and every x ∈ R
n. Then there exists an optimal control u

defined on [0, t (u)] such that the corresponding trajectory steers the system from M0

to M1 in time t (u) and minimizing the cost.

Even though existence results would certainly deserve many further interesting

discussions, this is not the objective of this paper to report on that subject. It can how-

ever be noted that, if the set U is unbounded, then in general existence results lead to

optimal controls that are not necessarily in L∞([0, t (u)],U). This leads to a possible

gap with the usual necessary conditions reported hereafter, which assume that the

optimal control is essentially bounded. This gap may cause the so-called Lavrentiev

phenomenon and raises the question of studying the regularity of the optimal control

(see [3, 4] where such issues are investigated).

2.2 First-Order Optimality Conditions

The set of admissible controls on [0, tf ] is denoted Utf ,Rm , and the set of admissible

controls on [0, tf ] taking their values in U is denoted Utf ,U .

Definition 2.1 The end-point mapping E : R
n × R

+ × U → R
n of the system is

defined by E(x0, T ,u) = x(x0, T ,u), where t �→ x(x0, t, u) is the trajectory solution

of (1), corresponding to the control u, such that x(x0,0, u) = x0.

The set Utf ,Rm , endowed with the standard topology of L∞([0, tf ],R
m), is open,

and the end-point mapping is C1 on Utf ,Rm (and Ck whenever the dynamics are Ck).

Note that, in terms of the end-point mapping, the optimal control problem under

consideration can be written as the infinite-dimensional minimization problem

min
{

C(tf , u) | x0 ∈ M0, E(x0, tf , u) ∈ M1, u ∈ L∞(0, tf ;U)
}

. (3)

Definition 2.2 Assume that M0 = {x0}. A control u defined on [0, tf ] is said to be

singular iff the differential ∂E
∂u

(x0, tf , u) is not of full rank.
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Singular controls are of high importance in optimal control theory. At this step

their potential influence can be stressed by noting that, in the above constrained min-

imization problem, the set of constraints is a local manifold around a given control u,

provided that u is nonsingular. It is well known in constrained optimization theory

that, in order to derive the usual necessary conditions exposed hereafter, it is in gen-

eral needed that the set of constraints is (at least locally) a manifold. Hence at this

step it can be easily understood that the existence of minimizing singular controls is

a potential source of problems.

2.2.1 Lagrange Multipliers

Assume for one moment that we are in the simplified situation where M0 = {x0},
M1 = {x1}, T is fixed, and U = R

m. That is, we consider the optimal control prob-

lem of steering system (1) from the initial point x0 to the final point x1 in time T

and minimizing the cost (2) among controls u ∈ L∞([0, T ],R
m). In that case, the

optimization problem (3) reduces to

min
E(x0,T ,u)=x1

C(T ,u). (4)

According to the well-known Lagrange multipliers rule (and using the C1 regularity

of our data), if u is optimal, then there exists (ψ,ψ0) ∈ R
n × R \ {0} such that

ψ · dEx0,T (u) = −ψ0dCT (u). (5)

Note that, if one defines the Lagrangian LT (u,ψ,ψ0) := ψEx0,T (u) + ψ0CT (u),

then this first-order necessary condition for optimality is written in the usual form as

∂LT

∂u

(

u,ψ,ψ0
)

= 0. (6)

Here, the main simplification was U = R
m, that is, we considered the case without

control constraints. In the general case the situation is more intricate to deal with con-

trol constraints and even more when there are state constraints. When there are some

control constraints, one possibility could be taking these constraints into account di-

rectly in the Lagrangian, with some additional Lagrange multiplier, as it is done, e.g.,

in [5]. This method leads however to weaker results than the Pontryagin Maximum

Principle stated hereafter. Actually the method used by Pontryagin in order to take

into account control constraints is stronger and consists of considering needle-like

variations (see also Remark 2.2).

When there are some state constraints, it is also still possible to express a first-

order necessary condition in terms of Lagrange multipliers as above but this has to

be done in distributions spaces and the Lagrange multipliers must be expressed as

Radon measures (see e.g. [6–9]).

Whatever simplified or general case we may consider, the first-order condition (6)

is in this form not much tractable for practical purposes. This first-order condition

can be in some sense parametrized along the trajectory, and this leads to the famous

Pontryagin Maximum Principle.
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2.2.2 Pontryagin Maximum Principle

The following statement is the most usual Pontryagin Maximum Principle, valuable

for general nonlinear optimal control problems (1)–(2), with control constraints but

without state constraint. Usual proofs rely on a fixed-point argument and on the use

of Pontryagin cones (see, e.g., [9–12]).

Theorem 2.2 If the trajectory x(·), associated to the optimal control u on [0, tf ],
is optimal, then it is the projection of an extremal (x(·),p(·),p0, u(·)) (called the

extremal lift), where p0 � 0, and p(·) : [0, tf ] → R
n is an absolutely continuous

mapping, called the adjoint vector, with (p(·),p0) �= (0,0), such that

ẋ(t) =
∂H

∂p

(

t, x(t),p(t),p0, u(t)
)

, ṗ(t) = −
∂H

∂x

(

t, x(t),p(t),p0, u(t)
)

almost everywhere on [0, tf ], where

H
(

t, x,p,p0, u
)

:=
〈

p,f (t, x,u)
〉

+ p0f 0(t, x,u)

is the Hamiltonian, and there holds

H
(

t, x(t),p(t),p0, u(t)
)

= max
v∈U

H
(

t, x(t),p(t),p0, v
)

(7)

almost everywhere on [0, tf ]. If moreover the final time tf to reach the target M1 is

not fixed, then one has the following condition at the final time tf :

max
v∈U

H
(

tf , x(tf ),p(tf ),p0, v
)

= −p0 ∂g

∂t

(

tf , x(tf )
)

. (8)

Additionally, if M0 and M1 (or just one of them) are submanifolds of R
n locally

around x(0) ∈ M0 and x(tf ) ∈ M1, then the adjoint vector can be built in order to

satisfy the transversality conditions at both extremities (or just one of them)

p(0) ⊥ Tx(0)M0, p(tf ) − p0 ∂g

∂x

(

tf , x(tf )
)

⊥ Tx(tf )M1, (9)

where TxMi denotes the tangent space to Mi at the point x.

The relation between the Lagrange multipliers of the previous section and

(p(·),p0) is that the adjoint vector can be constructed so that (ψ,ψ0) = (p(tf ),p0)

up to some multiplicative scalar. In particular, the Lagrange multiplier ψ is unique

(up to a multiplicative scalar) iff the trajectory x(·) admits a unique extremal lift (up

to a multiplicative scalar).

If p0 < 0, then the extremal is said to be normal, and in this case, since the La-

grange multiplier is defined up to a multiplicative scalar, it is usual to normalize it so

that p0 = −1. If p0 = 0, then the extremal is said abnormal.

It can be also noted that, in the absence of control constraints, abnormal extremals

project exactly onto singular trajectories (it is evident using (6)).
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Remark 2.1 With respect to this relation, it can be noted that in the normal case the

Lagrange multiplier ψ (or the adjoint vector p(tf ) at the final time) coincides up

to some multiplicative scalar with the gradient of the value function (solution of the

Hamilton–Jacobi equation); see, e.g., [13] for precise results.

Remark 2.2 In the case U = R
m (no control constraints), the maximization condition

(7) implies in particular that ∂H
∂u

(t, x(t),p(t),p0, u(t)) = 0 almost everywhere on

[0, tf ]. In this form, the Pontryagin Maximum Principle is exactly the parameterized

version of the first-order necessary condition (6) of the simplified case. Note that, in

the absence of control constraints, the proof is quite obvious and can be found, e.g., in

[14, 15]. Note also that the maximization condition implies as well that the quadratic

form ∂2H

∂u2 (t, x(t),p(t),p0, u(t)) is nonpositive almost everywhere on [0, tf ]. These

two conditions remain however weaker than the maximization condition (7). Indeed,

those two conditions are local, whereas the maximization condition (7) is global. In

the proof of the general version of the Pontryagin Maximum Principle, needle-like

variations of the control are the main tool in order to derive the strong condition

(7) (note that a short proof of the Pontryagin Maximum Principle is provided in the

general case, with needle-like variations and with a conic implicit function theorem,

in [16]).

Remark 2.3 The scalar p0 is a Lagrange multiplier associated with the instantaneous

cost. It may happen that it is equal to 0, and these cases are said abnormal. Ab-

normal extremals are not detected with the usual Calculus of Variations approach,1

because this approach postulates at the very beginning that, in a neighborhood of

some given reference trajectory, there are other trajectories having the same terminal

points, whose respective costs can be compared (and this leads to the Euler–Lagrange

equations). But this postulate fails whenever the reference trajectory is isolated: it

may indeed happen that there is only one trajectory joining the terminal points under

consideration (see [17]). In this case, in some sense there is no optimization to do

any more. Indeed since the trajectory joining the desired extremities is unique, then

obviously it will be optimal for every optimization criterion we may consider. These

cases may appear to be quite trivial, but actually in practice this issue is far from

being obvious because a priori, given some extremities, we are not able to say if the

resulting problem can be solved with a normal extremal (that is, with a p0 = −1). It

could happen that it is not: this is the case, for instance, for certain initial and final

conditions in the well-known minimal-time attitude control problem (see [18], where

such abnormals are referred to as exceptional singular trajectories).

Hence, when applying the Pontryagin Maximum Principle, we must distinguish

between two extremal flows: the normal flow, with p0 < 0 (and in general we nor-

malize to p0 = −1), and the abnormal one, for which p0 = 0.

In many situations, where some qualification conditions hold, abnormal extremals

do not exist in the problem under consideration, but in general it is impossible to say

1The usual framework of calculus of variations consists of solving the problem of minimizing the action
∫ 1

0 L(t, x(t), ẋ(t)) dt among all possible curves x(·). With respect to optimal control, this corresponds to

the trivial control system ẋ(t) = u(t), where all moving directions are authorized.
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whether, given some initial and final conditions, these qualification conditions hold

or not. Furthermore it can be noted that, when they exist, extremities of projections

of abnormal extremals do not fill much of the state space (see [19, 20] for precise

statements).

Remark 2.4 An ultimate remark on the multiplier p0 is about its sign. According to

the convention chosen by Pontryagin, we consider p0 � 0. If, instead, we adopt the

convention p0 � 0, then we have to replace the maximization condition (7) with a

minimization condition. This just consists in considering the opposite of the adjoint

vector.

If there is no integral term in (2) (that is, f 0 = 0), this does not change anything

for the considerations on p0. The p0 still appears in the transversality condition (9).

Note that, if M1 = R
n (no condition on the final point), then this condition leads to

p(tf ) = p0 ∂g
∂x

(tf , x(tf )), and then necessarily p0 �= 0 (otherwise the adjoint vector

(p(tf ),p0) would be zero, and this would contradict the assertion of the Pontryagin

Maximum Principle), and in that case we can normalize to p0 = −1.

2.2.3 Generalizations

The Pontryagin Maximum Principle withstands many possible generalizations.

First, it can be expressed for control systems evolving on a manifold (see, e.g.,

[12]), that is, control systems of the form (1) with dynamics f : M × N −→ T M ,

where M (resp., N ) is a smooth manifold of dimension n (resp., m). This situation

can be of interest if, for instance, the system is evolving on an energy surface (it is

often the case in aerospace) and/or if the controls take their values in the unit sphere

(this situation occurs often in aerospace as well, for instance, when the control models

a thrust of constant modulus).

The Pontryagin Maximum Principle can be generalized to wider classes of func-

tionals and boundary conditions; for instance, periodic boundary conditions (see

[12]), systems involving some delays (see [9], intermediate conditions (see [5, 21], or,

more generally, hybrid systems where the dynamics may change along the trajectory,

accordingly to time and/or state conditions (see [16, 22, 23]). In particular in this last

case, when the system crosses a given boundary, then a jump condition must hold on

the adjoint vector, which means that the adjoint vector is no more continuous (but is

however piecewise absolutely continuous). It can be also generalized to nonsmooth

systems (see [6]).

Probably the most difficult generalization is when there are some state constraints.

In that case, we impose to the trajectories to lie in a given part of the space. From

the mathematical point of view the situation is more intricate since the adjoint vec-

tor becomes a measure, evolving in some distribution space. What can be probably

considered as the most general Maximum Principle statement has been derived in

[6], which can be applied to very general (possibly nonsmooth) control systems with

state/control constraints. Note that a version of that result for smooth systems (with

state and control constraints) has been written in [24]. As explained in [25], the dif-

ficulty in practice is that since the adjoint vector is a vectorial measure, it may admit

an accumulation of atoms; in other words, the measure does not admit necessarily
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piecewise a density; for instance, there may occur an accumulation of touching points

with the boundary of the state domain. To overcome this mathematical difficulty, the

usual argument consists of assuming that, in practice, such an accumulation does not

occur, and the trajectory is a “regular” succession of free arcs (i.e., arcs inside the

authorized state domain) and of boundary arcs (i.e., arcs that are at the boundary of

the authorized state domain), with possibly some isolated touching points (at which

the trajectory touches the boundary). This regular structure was already assumed by

Pontryagin and his co-authors in their seminal book [9]; however in this book they

moreover restricted to so-called first-order constraints. In a few words, and roughly

speaking, the order of a state constraint is the number of times one must differenti-

ate the equality constraint along the trajectory with respect to time in order to make

appear the control. The general case has been treated in [26] in the case where the

Hessian of the Hamiltonian is nondegenerate and in [27] for the case where the con-

trols appear linearly in the system (note that the jump conditions have been clarified

in [28–31]). Note that a nice survey on the Pontryagin Maximum Principle for con-

trol systems with general state constraints has been written in [7]. In any case, under

this regular structure assumption, as in the hybrid situation the adjoint vector is abso-

lutely continuous by parts, with jump conditions at the boundary (the discontinuity of

the adjoint vector is along the gradient of the frontier). It can be noted however that

for state constraints of order greater than or equal to three, the bad chattering phe-

nomenon of accumulation of touching points may occur in a typical way (see [32]).

2.2.4 Practical Use of the Pontryagin Maximum Principle

In practice in order to compute optimal trajectories with the Pontryagin Maximum

Principle, the first step is to make explicit the maximization condition. A usual as-

sumption to make this step feasible is to assume the so-called strict Legendre as-

sumption, that is, to assume that the Hessian ∂2H

∂u2 (t, x,p,p0, u) is negative definite.

Under that assumption, a standard implicit function argument permits to end up, at

least locally, with a control u expressed as a function of x and p. This assumption

is, for instance, obviously satisfied for normal extremals if one considers control

affine systems with a cost that is quadratic in u. Assume, for example, that we are

in the normal case (p0 = −1). Then, plugging the resulting expression of the con-

trol into the Hamiltonian equations and defining the reduced (normal) Hamiltonian

by Hr (t, x,p) := H(t, x,p,−1, u(x,p)), it follows that every normal extremal is a

solution of

ẋ(t) =
∂Hr

∂p

(

t, x(t),p(t)
)

,

ṗ(t) = −
∂Hr

∂x

(

t, x(t),p(t)
)

,

(10)

and this leads to definition of the (normal) exponential mapping.

Definition 2.3 The exponential mapping is defined by expx0
(t,p0) := x(t, x0,p0),

where the solution of (10) starting from (x0,p0) at t = 0 is denoted as (x(t, x0,p0),

p(t, x0,p0)).
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In other words, the exponential mapping parameterizes the (normal) extremal flow.

The abnormal extremal flow can be parameterized as well, provided that there holds

such a kind of Legendre assumption in the abnormal case.

When the Hessian of the Hamiltonian considered above is degenerate, the situation

can be far more intricate. A typical example is when one considers the minimal time

problem for single-input control affine systems ẋ(t) = f0(x(t)) + u(t)f1(x(t)) with-

out control constraints. In that case, the maximization condition leads to ∂H
∂u

= 0,

that is, there must hold 〈p(t), f1(x(t))〉 = 0 along the corresponding extremal. By

the way, note that, since the optimal control takes its values in the interior of

the domain of constraints, it is necessarily singular. To compute the control, the

method consists of differentiating two times this relation with respect to t , which

first leads to 〈p(t), [f0, f1](x(t))〉 = 0 and then to 〈p(t), [f0, [f0, f1]](x(t))〉 +
u(t)〈p(t), [f1, [f0, f1]](x(t))〉 = 0, where [·, ·] denotes the Lie bracket of vector

fields. This permits as well to express the optimal control u(t) as a function of x(t)

and p(t), provided that the quantity 〈p(t), [f1, [f0, f1]](x(t))〉 does not vanish along

the extremal. The latter condition is called the strong generalized Legendre–Clebsch

condition. We refer the reader to [14] for more details on this theory. It can also be

shown that this kind of computation is valid in a “generic” situation (see [33–36]).

Remark 2.5 Note the important fact that the normal extremals are distinguished from

the abnormal ones by a binary variable, namely, the variable p0 ∈ {0,−1}. In the

case where an abnormal flow is well defined, we then have to deal with two extremal

flows. Intuitively, however, it is expected that the abnormal flow fills less space than

the normal flow, in the sense that almost every point of the accessible set should be

reached by a normal extremal. This kind of statement is however difficult to derive.

There exist some results for control-affine systems and for control-affine systems

without drift that assert that the end-points of projections of abnormal extremals fill

only a negligible part of the state space (see [19, 20, 37] for details).

Remark 2.6 Note that the Pontryagin Maximum Principle is nothing else but a far-

reaching version of the Lagrange multipliers necessary condition derived formerly. It

is thus only a first-order necessary condition for optimality, asserting that if a trajec-

tory is optimal, then it should be sought among projections of extremals joining the

initial set to the final target. Conversely, the projection of a given extremal is not nec-

essarily (locally or globally) optimal. This motivates the next section on second-order

optimality conditions.

2.3 Second-Order Optimality Conditions

Throughout this section we assume that we are in the simplified situation where M0 =
{x0}, M1 = {x1}, and U = R

m. Also, in order to consider second-order derivatives,

we assume that the dynamics are at least C2.

2.3.1 Abstract Conditions

In this simplified situation, we have seen that the usual first-order necessary condi-

tion for optimality is (6), that is, the vanishing of the differential of the Lagrangian.
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In this simplified situation where there is no constraint on the control, conditions

of order two are also standard in terms of the Lagrangian. Defining as usual the in-

trinsic second-order derivative QT of the Lagrangian as the Hessian ∂2LT

∂2u
(u,ψ,ψ0)

restricted to the subspace ker ∂LT

∂u
, it is well known that a second-order necessary con-

dition for optimality is the nonpositivity of QT (recall the agreement ψ0 � 0), and

a second-order sufficient condition for local optimality is the negative definiteness

of QT . In this form, these conditions are not convenient for practical purposes. For-

tunately, in the same way that Lagrange multipliers conditions can be parameterized

into the Pontryagin Maximum Principle, the above second-order conditions can be

parameterized as well along the extremals, and this leads to the theory of conjugate

points, briefly sketched next.

Remark 2.7 The above quadratic form is the one considered in the simplified situ-

ation. Such abstract conditions have been widely generalized in the literature (see,

e.g., [38]).

2.3.2 Conjugate Points

Under the strict Legendre assumption mentioned previously, the quadratic form QT

is negative definite whenever T > 0 is small enough. This leads naturally to the fol-

lowing definition.

Definition 2.4 The first conjugate time tc along x(·) is defined as the infimum of

times t > 0 such that Qt has a nontrivial kernel.

Under the strict Legendre assumption, there holds tc > 0, and this first conjugate

time characterizes the (local) optimality status of the trajectory. Hereafter the local

optimality is the sense of the L∞ topology on the controls, but it can be improved

(see [12, 14, 18, 39, 40]).

Theorem 2.3 The trajectory x(·) is locally optimal on [0, t] iff t < tc.

The following result is crucial for practical computations of conjugate times.

Theorem 2.4 The time tc is a conjugate time along x(·) iff the mapping expx0
(tc, ·)

is not an immersion at p0 (that is, its differential is not injective).

Its proof can be found in [12, 18, 25]. Essentially it states that computing a first

conjugate time reduces to compute the vanishing of some determinant along the ex-

tremal. Indeed, the fact that the exponential mapping is not an immersion can be

translated in terms of so-called vertical Jacobi fields. Note however that the domain

of definition of the exponential mapping requires a particular attention in order to

define properly these Jacobi fields according to the context: normal or abnormal ex-

tremal, final time fixed or not. A more complete exposition can be found in the survey

article [18], which provides also some algorithms to compute first conjugate times in

various contexts (however, always in the case where the control can be expressed as
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a smooth function of x and p) and some practical hints for algorithmic purposes (see

also Sect. 2.4.2).

2.3.3 Generalizations, Open problems and Challenges

A first remark is that the conjugate point theory sketched previously can be gen-

eralized in the case where the initial and final sets M0 and M1 are not necessarily

restricted to a single point. In that case, the notion of conjugate point must be re-

placed with the notion of focal point. The theory and the resulting algorithms remain

however similar (see [18, 25]).

It should be also stressed that the above conjugate point theory holds only in the

“smooth case,” that is, whenever the optimal controls under consideration can be ex-

pressed as smooth functions of x and p (thus, essentially, when there is no constraint

on the control, although this assumption involves some possible cases where there

are some control constraints) and without any state constraint. In this theory, the defi-

nition and the computation of conjugate points are based on second-order conditions

which do not involve in particular bang-bang situations where the control is discon-

tinuous and consists of successive arcs saturating the constraints.

In the case where the extremal controls are continuous, the literature on first-

and/or second-order sufficient conditions is vast (see also [41] and references therein),

and there exist numerical procedures to test second-order sufficient conditions that

are based on the Riccati equation (see, e.g., [42]); of course, these procedures are

equivalent to the one described previously in terms of the exponential mapping. We

refer also the reader to [17, 28, 40, 43] (and references therein) for extensions of such

theories to the abnormal case.

A conjugate time theory has been developed in the bang-bang case, and we refer

the reader to [44] whose introduction contains a brief survey unifying all (apparently

different) approaches that have been developed, such as envelope theory, extremal

fields, second-order conditions, and numerical approaches. Although this theory has

been partially extended to the case of state constraints, up to now the concept of con-

jugate point in that case has not been defined. The situation is similar for trajectories

involving both bang and singular arcs. At the moment there is no general conjugate

point theory which would involve such cases. This is therefore an open (and impor-

tant) problem to derive a complete conjugate point theory that would consist of any

possible smooth, bang, singular, or boundary arcs.

From the algorithmic point of view, note that, although the theory of conjugate

times in the bang-bang case has been well developed, the computation of conjugate

times in the bang-bang case is difficult in practice (see, e.g., [45] and references

therein). Besides, in the smooth case, as explained in the previous section, efficient

tools are available (see [18]). In [44, 46] a regularization procedure is proposed which

allows the use of these tools for the computation of the first conjugate time of a bang-

bang situation for a single-input control-affine system, by showing the convergence

of the conjugate time of the regularized system to the conjugate time of the initial

bang-bang system. This result is of interest because it provides an efficient way to

compute conjugate points in the bang-bang case. It is an open problem to extend that

kind of result to more general systems and more general situations.
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2.4 Numerical Methods in Optimal Control

It is usual to distinguish between two kinds of numerical approaches in optimal con-

trol: direct and indirect methods. Roughly speaking, direct methods consist in dis-

cretizing the state and the control and thus reduce the problem to a nonlinear opti-

mization problem with constraints. Indirect methods consist of solving numerically

the boundary-value problem derived from the application of the Pontryagin Maxi-

mum Principle and lead to the shooting methods.

2.4.1 Direct Methods

There exist many possible direct methods. In any case, one has to choose finite-

dimensional representations of the control and of the state, and then express in a

discrete way the differential equation representing the system, the minimization cri-

terion, and all constraints under consideration. Once all static or dynamic constraints

have been transcribed into a problem with a finite number of variables, one is ought

to solve the resulting optimization problem with constraints, using some adapted op-

timization method.

Let us first explain hereafter one possible very simple way of such a discretization.

Consider a subdivision 0 = t0 < t1 < · · · < tN = tf of the interval [0, tf ]. Controls

are discretized in such a way that they are piecewise constant on this subdivision

(with values in U ). Moreover, we choose a discretization process of ordinary differ-

ential equations; for instance, let us choose (to simplify) the standard explicit Euler

method. Setting hi = ti+1 − ti , we obtain xi+1 = xi + hif (ti, xi, ui). There exist of

course an infinite number of possible variants. On one hand, one may discretize the set

of admissible controls by piecewise constant, or piecewise affine controls, or splines,

etc. On the other hand, there exist many methods in order to discretize ODE’s, such

as Euler methods (implicit or explicit), middle point, Heun, Runge–Kutta, Adams–

Moulton, etc. (see, for instance, [47]). The choice of the method is guided by the

problem under consideration. Here, we choose the Euler method for the simplicity of

its writing, but in practice it should be avoided because it is too much rough, and at

least an RK2 method should be chosen. Finally, we also discretize the cost by choos-

ing a quadrature procedure. Then these discretization processes reduce the optimal

control problem to the problem of minimizing C(x0, . . . , xN , u0, . . . , uN ), where the

unknowns xi and ui are submitted to the constraints resulting from the differential

system, the terminal conditions, the state and/or control constraints. In brief, in such

a way we end up with a problem of the form min{F(Z) | g(Z) = 0, h(Z) � 0},
which is a finite-dimensional (nonlinear) optimization problem with constraints. The

dimension is of course larger as the discretization is finer.

There exist many numerical approaches to solve this kind of problem, such as gra-

dient methods, quasi-Newton, penalization, dual methods, etc. (see, e.g., [47]). Note

that in the last years much progress has been done in the direction of combining auto-

matic differentiation softwares (such as the modeling language AMPL; see [48]) with

expert optimization routines (such as the open-source package IPOPT; see [49], car-

rying out an interior point optimization algorithm for large-scale differential algebraic

systems, combined with a filter line-search method). With such tools it has become
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very simple to implement with only few lines of code difficult (nonacademic) op-

timal control problems, with success and within a reasonable time of computation.

Even more, web sites such as NEOS (http://neos-server.org/neos/) permit to launch

online such kinds of computation: codes can be written in a modeling language such

as [48] (or others) and can be combined with many optimization routines (special-

ized either for linear problems, nonlinear, mixed, discrete, etc). Note that there exists

a large number (open-source or not) of automatic differentiation softwares and of op-

timization routines; it is however not our aim to provide a list of them. They are easy

to find on the web.

There exist many possible variants of direct methods, and for an excellent survey

on direct methods with a special interest to applications in aerospace, we refer the

reader to [50, 51] (in this survey book sparsity issues, very important in practice, are

also discussed). Among these different approaches, we quote the following.

Speaking in a general way, collocation methods consist of choosing specific points

or nodes on every subinterval of a given subdivision of the time interval. From the

point of view of the discretization spaces, these methods consist of approximating the

trajectories (and/or the control functions) by polynomials on each subinterval. Then

the collocation conditions state that the derivatives of the approximated state match

exactly with the dynamics at the nodes mentioned previously. Note that Runge–Kutta

discretizations are a particular case.

In spectral or pseudospectral methods, the above nodes are chosen as the zeros

of special polynomials, such as the Gauss–Legendre or Gauss–Lobatto polynomi-

als. Equivalently, these polynomials serve as a basis of approximation spaces for the

trajectories and the controls. Since they share nice orthogonality properties, the collo-

cation conditions turn into constraints that are easily tractable for numerical purposes.

We refer the reader to [52, 53] and to the references therein for more details on these

approaches.

There exist also some probabilistic approaches, such as the method described in

[54], which consists of expressing the optimal control problem in measure spaces and

then of seeking the optimal control as an occupation measure, which is approximated

by a finite number of its moments.

Remark 2.8 Another approach to optimal control problems, which can be considered

(although it can be discussed) as a direct method, consists of solving the Hamilton–

Jacobi equation satisfied by the value function, that is, the optimal cost for the optimal

control problem of reaching a given point, which is of the form ∂S
∂t

+ Hr(x, ∂S
∂x

) = 0

(see, e.g., [55] for some numerical methods).

2.4.2 Indirect Methods

In the indirect approaches, instead of discretizing first, as in direct methods, we first

apply the Pontryagin Maximum Principle as a first-order condition to the optimal

control problem. It states that the optimal trajectory should be sought among the

extremals that achieve the required terminal and/or transversality conditions. There-

fore, denoting z := (x,p), it reduces the problem to the boundary-value problem

of determining an extremal solution of the extremal system ż(t) = F(t, z(t)) and

http://neos-server.org/neos/
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satisfying boundary-value conditions of the form R(z(0), z(tf )) = 0. Denoting by

z(t, z0) the solution of the Cauchy problem ż(t) = F(t, z(t)), z(0) = z0, and setting

G(z0) := R(z0, z(tf , z0)), this boundary-value problem is then equivalent to solving

G(z0) = 0, that is, finding a zero of G. Solving such a nonlinear system of n equa-

tions with n unknowns can be achieved in practice by using a Newton-like method.

This method is called the shooting method, and G is called the shooting func-

tion. It has many possible refinements, in particular the multiple shooting method,

which consists of subdividing the time interval [0, tf ] into N intervals [ti, ti+1], of

considering as unknowns the values z(ti), and then of imposing continuity conditions

by defining adequately the shooting function. Its interest is an improvement of the

stability of the method (see [47]).

From the practical implementation point of view, note on one hand that there exist

many variants of Newton methods, among which the Broyden method or the Powell

hybrid method are quite competitive. On the other hand, note that, as for direct meth-

ods, the shooting methods can be combined with automatic differentiation. Here, the

use of automatic differentiation can help to generate the Hamiltonian equations of

extremals. This is particularly useful when one works on a problem whose model

is not completely fixed. In [18] the authors provide the description for the package

COTCOT (Conditions of Order Two and COnjugate Times), available for free on the

web, achieving the automatic generation of the equations of the Pontryagin Maxi-

mum Principle and implementing codes for the numerical integration, the shooting

method, and the computation of conjugate times.

Remark 2.9 It must be noted that, when implementing a shooting method, the struc-

ture of the trajectory should be known in advance, particularly in the case where the

trajectory involves singular arcs (see, e.g., [56, 57]). This remark shows the impor-

tance of being able to determine at least locally the structure of optimal trajectories:

this is one of the main issues of geometric optimal control theory, as explained further

in this article (see Sects. 3.2 and 3.3).

Remark 2.10 Proving that the shooting method is feasible amounts to proving that

the Jacobian of the shooting function is nonzero. In the simplified situation of Sect.

2.3, the shooting method is well posed at time t , locally around p0 iff the exponential

mapping expx0
(t, ·) is an immersion at p0. In other words, according to Theorem 2.4,

the shooting method is feasible (well posed) iff the final time under consideration is

not a conjugate time.

This simple argument can be generalized to far more general situations. First of

all, if the initial and final sets are not restricted to single points, the above argument

still holds except that the notion of focal point has to be used instead of conjugate

point (see Sect. 2.3.3). Note that a modification of the shooting method is proposed

in [58], which consists of adding unknowns to the method (so that there are more

unknowns than equations) to overcome partially the problem of a priori structure

determination, and then the Newton method must be adapted with the use of a pseudo-

inverse. In [59] it is shown that the shooting method is well posed also in the presence

of control and state constraints, provided that a certain second-order coercivity holds;

this second-order condition is not translated in terms of conjugate points, but this
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could be probably done if the corresponding conjugate point theory would exist (see

Sect. 2.3.3).

2.4.3 An Open Problem

If we summarize the main issues of the previous direct and indirect approaches, we

realize that direct methods consist of first discretizing the optimal control problem

in order to reduce it to an usual nonlinear minimization problem with constraints

(the dimension being as larger as the discretization is finer), and second of dualizing,

by applying, e.g., a usual Lagrange–Newton method to the nonlinear minimization

problem (applying the Kuhn–Tucker and then Newton method to solve the resulting

optimality system); whereas indirect methods consist of first dualizing the optimal

control problem, by applying the Pontryagin Maximum Principle (or, equivalently,

the Lagrange multipliers necessary condition for optimality in infinite dimension),

and second discretizing the resulting boundary-value problem, by applying a shooting

method (that is, the Newton method composed with a numerical integration method).

In shorter words, direct methods consist of (1) discretizing and (2) dualizing, and in-

direct methods consist of the converse: (1) dualizing and (2) discretizing. It is natural

to wonder whether this diagram is commutative or not under usual approximation

assumptions.

It happens that, even under usual assumptions of consistency and stability (Lax

scheme), it is not. Although it is very simple to see that, under these usual assump-

tions, the indirect approach is convergent, the direct method may diverge whenever

it was not conveniently designed. That is, although one chooses a convergent method

in order to integrate the system, a convergent method in order to discretize the cost,

the consistency and stability properties of the numerical schemes are not sufficient to

ensure the convergence of the resulting direct method. Very simple counterexamples

are provided in [60].

It is not obvious to obtain simple conditions on the schemes ensuring the con-

vergence of the resulting direct method, and up to now there exist only few positive

results. The results of [60] assert the convergence for “smooth” problems, provided

that the underlying discretization method is based on a Runge–Kutta method whose

all coefficients are positive. The smoothness assumptions mean that the optimal con-

trols under consideration take their value in the interior of the authorized domain of

control (so that the maximization condition of the Pontryagin Maximum Principle

reduces to ∂H
∂u

= 0) and that coercivity second-order conditions hold, ensuring the

smoothness of the optimal controls (as in Sect. 2.3), in both continuous and discrete

cases. This is, for instance, the case for linear quadratic problems. We refer also the

reader to [61] for further comments on this result and for other considerations on

symplectic integrators. The class of Legendre pseudospectral methods is up to now

the other one for which the commutation issues have been proved (see [52, 53] and

also [62] for a detailed discussion on the commutation properties).

Apart from those few results, up to our knowledge, the situation is still open in the

general case, and there do not exist any simple criteria or any systematic method to

build adapted numerical schemes for discretizing the differential system and the cost

in order to ensure the convergence of the resulting direct method. As explained above,
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since in the smooth case the conditions ensuring the commutation of the diagram rely

on second-order conditions, the problem is clearly related to the theory of conjugate

points, in the sense that, in order to handle the general case, there is need for a general

conjugate point theory involving all possible situations (smooth, bang, singular arcs,

state constraints). The, numerical schemes should be designed to ensure coercivity

properties in the discretized second-order conditions under consideration.

It can be noted that this discrepancy in the dualization–discretization diagram

arises as well in the infinite-dimensional setting, e.g., when one is interested to carry

out practically the so-called HUM method (Hilbert Uniqueness Method), which is

roughly speaking the optimal control problem of steering an infinite-dimensional lin-

ear control system from a given point to a final point by minimizing the L2 norm

of the control (linear quadratic problem in a Hilbert space). In the case of the wave

equation a phenomenon of interference of high frequencies with the mesh has been

put in evidence, which causes the divergence of the method (see [63] and references

therein for more details and more possible remedies; see also [64] for a general re-

sult of convergence in the parabolic case). The literature is quite abundant for this

commutation problem in the infinite-dimensional framework; however the situation

is still not well understood, in particular for hyperbolic equations where the ques-

tion is raised as well of deriving a systematic way to build adapted schemes so that

discretization and dualization commute.

2.4.4 Comparison Between Methods

We can sketch a brief comparison between both direct and indirect approaches, al-

though such comments are a bit of caricatural. Anyway, it can be said that direct

methods have the following advantages on indirect methods: they do not require any

a priori theoretical study, in particular, one does not have to know a priori the struc-

ture of switchings; they are more robust, the model can be easily modified, and they

are less sensitive to the choice of the initial condition. Moreover, it is easy to take

into account some constraints of any possible kind. However, it is difficult to reach

with direct methods the precision provided by indirect methods. A direct discretiza-

tion of an optimal control problem often causes several local minima. Direct methods

require a large amount of memory and thus may become inefficient if the dimension

of the space is too large or if the problem cannot be easily parallelized or does not

have an evident sparse structure.

The advantages of indirect methods are their extremely good numerical accuracy.

Indeed since they rely on the Newton method, they inherit of the very quick con-

vergence properties of the Newton method. Moreover the shooting methods can, by

construction, be parallelized, and their implementation can thus be achieved on a

cluster of parallel computers. They however suffer from the following drawbacks:

the optimal controls are computed in an open-loop form; they are based on the max-

imum principle, which gives a necessary condition for optimality only, and thus one

should be able to check, a posteriori, the optimal status of the computed trajectory

(with conjugate point theory); the method is not soft, in the sense that, for instance,

the structure of switchings has to be known a priori. Furthermore, it is not easy to

introduce state constraints because, on one hand, this requires to apply a maximum
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principle with state constraints and, on the other hand, the presence of state con-

straints may imply a very intricate structure of the optimal trajectory, in particular the

structure of switchings. The main drawback of the shooting methods is that they are

difficult to make converge. Indeed, since they are based on the Newton method, they

suffer from the usual drawback of the Newton method, that is, they may be very dif-

ficult to initialize properly. In other words, to make a shooting method converge, one

should be able to guess good initial conditions for the adjoint vector. Indeed, the do-

main of convergence of the Newton method may happen to be very small, depending

on the optimal control problem.

There exist many solutions to overcome the different flaws of both approaches.

There is however no universal answer, and the choice of the method should be guided

by the practical problem under consideration and by the experience (see the excel-

lent surveys [50, 51, 65, 66]). Speaking however in a general way, a first idea for a

reasonable solution consists of combining both direct and indirect approaches, thus

obtaining a so-called hybrid method. When one addresses an optimal control prob-

lem, one could indeed try at first to implement a direct method. In such a way, one

can hope to get a first (maybe rough) approximation of the optimal trajectory and a

good idea of the structure of switchings and of the associated adjoint vector. If one

wishes more numerical accuracy, one can then carry out an indirect method, hoping

that the result provided by the direct method gives a sufficient approximation, thus

providing an initial point hopefully belonging to the domain of convergence of the

shooting method. Combining in such a way both direct and indirect methods, one can

take benefit of the extremely good accuracy provided by the shooting method, reduc-

ing considerably the drawback due to the smallness of the domain of convergence.

Applying first a direct method, one can obtain an approximation of the adjoint vector.

Indeed, the total discretization method consists of solving a nonlinear programming

problem with constraints. The Lagrange multipliers associated to this problem give

an approximation of the adjoint vector (see [5, 65, 67]).

By the way, among the many variants of direct and indirect approaches, we men-

tion here the possibility of designing hybrid methods, neither direct or indirect, con-

sisting of solving the boundary-value problem resulting from the application of the

PMP, not by the Newton method, but by an optimization method, in which the un-

knowns may, for instance, only consist of the initial adjoint vector, and the minimiza-

tion functional is the cost seen as a function of the initial adjoint vector (there are

many possible various formulations for such problems). Furthermore, we quote the

so-called direct multiple shooting method (see [68, 69]), based on constrained non-

linear programming, where the optimization variables are, similarly to the multiple

shooting method, the states at some nodes, and where the controls are parameterized

over the intervals between the nodes by well-chosen functions. The advantage of such

an approach is that it can be efficiently parallelized, and it has nice sparsity features

(see [51] for variants).

In the present article our aim is to focus on applications of optimal control to

aerospace, and in such problems indirect methods are often privileged because, al-

though they are difficult to make converge, they offer a very good numerical accu-

racy. Hence, in the sequel of this article we will describe several optimal control prob-

lems in aerospace, providing some methods in order to make converge the shooting

method:
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• a geometric insight (geometric optimal control tools) for the problem of atmo-

spheric reentry of a space shuttle (Sect. 3),

• the continuation method for orbit transfer problems (Sect. 4),

• dynamical systems theory for interplanetary mission design (Sect. 5).

3 Geometric Optimal Control and Applications to the Atmospheric Reentry

Problem

In this section we focus on the problem of the atmospheric reentry of a space shuttle

controlled by its bank angle, where the cost to minimize is the total thermal flux.

The engine is moreover submitted to state constraints on the thermal flux, the normal

acceleration, and the dynamic pressure. It is our aim to show how results of geometric

optimal control can help to make the shooting method converge.

3.1 The Atmospheric Reentry Problem

The precise problem under consideration is the following. We call atmospheric phase

the period of time in which the altitude of the engine is between around 20 and 120

kilometers. It is indeed in this range that, in the absence of any motor thrust, the aero-

dynamic forces (friction with the atmosphere) can be employed to adequately control

the space shuttle to as to steer it to a desired final point and meanwhile satisfying

the state constraints in particular on the thermal flux. Thus, during this phase, the

shuttle can be considered as a glider, only submitted to the gravity force and the aero-

dynamic forces. The control is the bank angle, and the minimization criterion under

consideration is the total thermal flux. The model of the control system is

dr
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(11)

Here, r denotes the distance of the center of gravity of the shuttle to the center of the

Earth, v is the modulus of its relative velocity, γ is the flight angle, L is the latitude,

l is the longitude, and χ is the azimuth. The scalar Ω is the angular rotation speed

of the planet. In the above model, the terms gv , gγ , and gχ represent the Coriolis
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Fig. 1 Constraints, and

Harpold-Graves strategy

and centripetal forces. The gravitational force is g(r) := µ0

r2 , where µ0 is the gravita-

tional constant. The aerodynamic forces consist of the drag force, whose modulus is
1
2
ρSCDv2, which is opposite to the velocity vector, and of the lift force, whose modu-

lus is 1
2
ρSCLv2, which is perpendicular to the velocity vector. Here, ρ(r) := ρ0e

−βr

is the air density, S is some positive coefficient, and CD and CL are the drag and the

lift coefficients; they depend on the angle of attack and on the Mach number of the

shuttle. Note that more specific models can be used and that in general the gravity,

the air density and the aerodynamic coefficients are tabulated (we refer to [31] for

precise tabulations used in the study and for more details).

The control is the bank angle µ; it acts on the orientation of the lift force and thus

makes the shuttle turn left or right but also acts on the altitude. It is a scalar control

that is assumed to take values in [0,π]. Note that the mass m of the engine is constant

along this atmospheric phase since it is assumed that there is no thrust. The optimal

control problem under consideration is to steer the vehicle from precise initial condi-

tions (with free initial longitude and azimuth) to some precise final conditions (with

free flight angle and azimuth); see [31] for numerical values. Moreover, the system is

submitted to three state constraints: the (instantaneous) thermal flux ϕ := Cq
√

ρv3,

the normal acceleration γn := γn0
ρv2, and the dynamic pressure P := 1

2
ρv2 have to

remain less than prescribed maximal values. They are drawn in Fig. 1 in the flight

domain, in terms of the drag d = 1
2

SCD

m
ρv2 and of v. The minimization criterion is

the total thermal flux along the flight, J (µ) :=
∫ tf

0 Cq
√

ρv3 dt .

Note that, if we approximate v̇ ≃ −d , then J (µ) = K
∫ vf

v0

v2
√

d
dv (with K > 0),

and hence for this approximated criterion, the optimal strategy is to maximize the

drag d all along the flight. This strategy, described in [70] and usually employed,

reduces the problem to the problem of finding a trajectory tracking the boundary of

the authorized domain in the following order: thermal flux, normal acceleration, and

dynamic pressure. The advantage of this method is that along the boundary arcs the

control can be easily expressed in closed-loop (feedback), which is very convenient

in view of stabilization issues and of real-time embarked implementation.

Anyway, this strategy is not optimal for the minimization criterion under consid-

eration, and it was the aim of [30, 71, 72] to solve this optimal control problem with

geometric considerations. A version of the Pontryagin Maximum Principle can be

applied to that problem, but it is then difficult to make the resulting shooting method

converge, due to the fact that the domain of convergence is very small, and getting
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a good initial condition of the adjoint vector is a real challenge. Of course, many

numerical refinements can be proposed to overcome this initialization problem, and

similar optimal control problems have been considered in a number of articles (see,

e.g., [50, 51, 66] with various approaches (direct or indirect). This is indeed a stan-

dard problem, but we insist on the fact that our objective is to show how a result of

geometric optimal control can be of some help in order to guess a good initial condi-

tion to make the shooting method converge (rather than making it converge through

numerical refinements). Note that, without the aid of such a tool, solving this problem

with a shooting method is nearly intractable.

3.2 Geometric Optimal Control Results and Application to the Problem

In this section, instead of providing a solution with computational or numerical re-

finements, our goal is to provide a rough analysis of the control system and show

how geometric control can be of some help in order to provide a better understanding

of the structure of the system and finally lead to a precise description of the optimal

trajectories, then reducing the application of the shooting method to an easy exercise.

Before that, let us first explain what is geometric control. As mentioned in the

introduction of this article, modern optimal control theory combines classical tech-

niques developed in the 1960s, typically the Pontryagin Maximum Principle, with

other powerful mathematical techniques in order to provide results on the structure

of optimal trajectories for general classes of nonlinear control systems. Literally, geo-

metric optimal control is the combination of classical optimal control with geometric

methods in system theory. More precisely, it can be described as the combination

of the knowledge inferred from the Pontryagin Maximum Principle with geometric

considerations such as the use of Lie brackets, of subanalytic sets, of differential ge-

ometry on manifolds, and of symplectic geometry and Hamiltonian systems, with the

ultimate objective of deriving optimal synthesis results, permitting to describe in a

precise way the structure of optimal trajectories. In other words, the objective is to

derive results saying that, according to the class of control systems we are consider-

ing, the optimal trajectories have a precise structure and are of such or such a kind.

Geometric optimal control has furnished a modern and uniform framework to realize

this objective.

The foundations of geometric control can be dated back, first, to the important

Chow’s theorem (see [73]) on reachable sets of integral curves of families of vector

fields, which was not part of the Calculus of Variations theory, and second, to the

articles [74, 75], where Brunovsky discovered that it was possible to derive regu-

lar synthesis results using geometric considerations for a large class of control sys-

tems, yielding a precise description of the structure of optimal trajectories. Since then,

many different tools from differential geometry have been introduced in optimal con-

trol, forming gradually a package of techniques and knowledge now identified as

geometric optimal control: the use of differentiable manifolds, extending the field of

applications of the PMP to optimal control problems naturally posed on a manifold

or on a Lie group (see, e.g., [12, 76]), very much encountered in mechanics, robotics,

aerospace, quantum control theory, etc; Lie brackets and Lie algebras, used to derive

important results on accessibility and controllability properties, to derive higher-order
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optimality conditions (see [77–79]) allowing one, as mentioned above, to restrict the

set of optimal candidates and to derive local regularity and optimal synthesis results

(see [80–82]); stratification and real analyticity theory considerations (see [83, 84]),

used as well for regularity and optimal synthesis issues; singularity theory, providing

a starting point to the classification of extremals (see [14, 30, 85–87]) and allowing

one to study how trajectories may lose optimality (see [88–90]); the use of the Miele

clock form (see [91]), widely generalized with the framework of symplectic geome-

try and methods, the latter being used to provide sufficient conditions for optimality

in terms either of conjugate points, Maslov index, extremal field theory, or of opti-

mal synthesis (see [12, 14]); fine considerations from differential geometry, e.g., the

concepts of conjugate or cut locus, of Jacobi curves or of curvature, used to provide

global optimality results (see, e.g., [92, 93]); sub-Riemannian metrics (see, e.g., [94]),

much used for applications to robotics and more recently to aerospace problems; and

many other notions and mathematical concepts, borrowed from differential geometry

and related areas.

Typically, one should keep in mind the following idea. The aim of using these ge-

ometric tools is to provide a complement to the PMP whenever its application alone

happens to be insufficient to adequately solve an optimal control problem, due to a

lack of information. As explained in details in Sect. 2, the PMP is a first-order con-

dition for optimality, and its aim is to select a set of trajectories that are candidates to

be optimal. Apart from the ultimate goal of providing a complete optimal synthesis,

one of the objectives of geometric control is to derive higher-order optimality condi-

tions in order to restrict more the set of candidate optimal trajectories. Second-order

conditions have been briefly reviewed in Sect. 2.3, and their connection to conjugate

point theory has been put in evidence. More generally, the objective of higher-order

conditions is to select among the extremals derived from the PMP those who are

candidates to be indeed optimal. When this selection is achieved in a so nice way

that there exists only one possible way to steer the system from the initial to the fi-

nal prescribed conditions, one speaks of an optimal synthesis, although this wording

underlies some more regularity properties, in particular regularity properties of the

selected extremals ensuring that they form an extremal field (see, e.g., [84]). We refer

the reader interested in a deeper insight on geometric control issues to the textbooks

[12, 14, 76, 92, 95–97] and references therein. Note that we do not mention here the

many geometric issues related with stabilization that are outside of the scope of this

article.

Let us now show how, starting from a simple remark on the structure of the control

system (11), results from geometric control theory can be applied and then help to

guess the precise structure of optimal trajectories, and ultimately make the application

of a shooting method much easier. In a first step, let us assume that the rotation of

the planet can be neglected, that is, Ω = 0. Note that, at the end, this is not the case

and the effect of the Coriolis force happens to be necessary to reach the desired final

conditions. Anyway, assuming that Ω = 0, the control system (11) gets simpler, and

in particular the three first differential equations can be written as the single-input

control-affine system in R
3

ẋ(t) = f0

(

x(t)
)

+ u(t)f1

(

x(t)
)

,
∣

∣u(t)
∣

∣ � 1, (12)
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where u := cos(µ), x:=(r, v, γ ), and

f0(x) := v sinγ
∂

∂r
−

(

g sinγ +
1

2
ρ

SCD

m
v2

)

∂

∂v
+ cosγ

(

−
g

v
+

v

r

)

∂

∂γ
,

f1(x) :=
1

2
ρ

SCL

m
v

∂

∂γ
.

Ignoring temporarily the coordinates (L, l,χ), the induced optimal control problem

is to steer the above three-dimensional control system, from a given x(0) to a final

target (γ (tf ) is free, but the two first coordinates are fixed), with a control satisfying

the constraint |u| � 1, and moreover, under the three state constraints on the ther-

mal flux, normal acceleration, and dynamic pressure (which depend only on x), by

minimizing the cost J .

Reparameterizing by the instantaneous cost (dividing the equations by ϕ :=
Cq

√
ρv3 and setting s = ϕt as a new time), we end up with the minimal time problem

for a single-input control-affine system, with the constraint |u| � 1 on the control, and

with pure state constraints of the form ci(x) � 0, i = 1,2,3.

Besides, there exist results coming from geometric optimal control theory, provid-

ing a qualitative description of minimal time trajectories for control systems of the

form (12), within small time, in small dimension (two and three), and under generic

assumptions. We refer the reader to [80, 81, 92, 98] for precise results. For instance,

in dimension three, in the absence of state constraint, it is proved in [80] that, if the

vector fields of the system are such that f0, f1, and their Lie bracket [f0, f1] are

linearly independent at x0, then minimal-time trajectories starting from x0 are locally

bang-bang with at most two switchings. Moreover, denoting by x+ (resp., x−) an

arc corresponding to the control u = 1 (resp., u = −1), the small time accessible set

is homeomorphic to a cone whose boundary consists of all trajectories of the form

x+x− and x−x+ (i.e., concatenations of two bang arcs). Furthermore, using the Miele

clock form (see [31, 91, 99] for the use of this form in the plane, and see [12, 14] for

a generalization in a symplectic context), according to the sign of some coefficient

only depending on the Lie structure of the vector fields at x0, it is shown that, lo-

cally around x0, trajectories x+x−x+ (starting from x0) are of minimal time, whereas

trajectories x−x+x− are of maximal time (or, conversely, according to that sign).

Motivated by the atmospheric reentry problem, this kind of result has been ex-

tended in [30] to the case where there are state constraints. Actually in this reference

local optimal syntheses are derived for systems in dimension two and three, with

one or several state constraints. This classification involves many cases, depending

on the order of the state constraints under consideration and cannot be sketched in

few words. In the case of the atmospheric reentry problem, all state constraints are of

order two, since one has to differentiate two times with respect to t the relations char-

acterizing a boundary arc to make appear the control. The results of [30], combined

with numerical simulations, then lead to the following result.

Proposition 3.1 The optimal trajectory for the simplified three-dimensional model

(12) is of the kind x−x+xfluxx+xaccx+, where x+ (resp., x−) is an arc corresponding

to the control u = 1 (resp., u = −1), and xflux (resp., xacc) denotes a boundary arc

saturating the constraint on the thermal flux (resp. on the normal acceleration).
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Note that, since the above-mentioned geometric results are of local nature, to

make them global, they must be combined with numerical simulations and possibly

with conjugate point arguments, as it was done for the atmospheric reentry problem

in [71]. In this latter reference, it was also shown, using perturbation arguments, how

this result in dimension three could be used in order to provide an approximation of

the optimal trajectory for the true problem in dimension six. In this perturbation ar-

gument, the parameter Ω is in some sense viewed as a small parameter, but to justify

properly the argument, it must also be observed that the simplified three-dimensional

system is almost a projection onto R
3 of the complete system in dimension six. Any-

way, what is important is that the strategies announced in Proposition 3.1 provide a

good approximation of the optimal trajectories of the complete problem in dimension

six.

Now, the point is that it is very easy to make a shooting method converge for the

simplified problem in dimension three. Indeed, since one knows precisely the struc-

ture of the optimal trajectory, the trajectory to be determined can be parameterized

only with its switching times, and hence the shooting problem reduces to a problem

with only five unknowns (which are the switching times). The resulting optimal tra-

jectory can then serve as a good initial guess for seeking the optimal trajectory of

the complete problem in dimension six. Moreover, it is possible to derive as well a

good approximation of the initial adjoint vector in dimension six, by completing the

Lagrange multiplier of the optimal solution in dimension three with zeros (it is shown

in [71, 72] that it is indeed a good approximation because for Ω = 0, the optimal tra-

jectory of the three-dimensional problem can be viewed as a singular trajectory of the

six-dimensional problem with corank three). This approximation is accurate enough

to make converge a shooting method in dimension six.

3.3 Open Challenges

It has been shown previously how a result of geometric optimal control theory on

local optimal syntheses can help to make a shooting method converge, or at least can

simplify its implementation by describing precisely the structure of the optimal tra-

jectory (e.g., as a succession of bang, singular, or boundary arcs, in a precise order).

As briefly surveyed previously, these results exist only for control-affine systems in

small dimension (essentially, two and three). Note that, in dimension three, more gen-

eral situations have been considered in [81] for single-input control-affine systems,

providing a precise local structure of optimal trajectories having a finite number of

switching times and involving possible singular arcs. These results have been gen-

eralized in the deep article [100], in which the author studies the local structure of

minimal-time trajectories for single-input control-affine systems with a starting point

in a submanifold S. It is shown that, if the codimension of S is less than or equal

to four, then generic minimal time trajectories starting from S are concatenations of

at most seven between bang and singular arcs. This result can be applied to four-

dimensional systems when S is a point. For larger dimensions, the situation is far

more intricate, not only due to the possible occurrence of singular trajectories, but

also to the generic occurrence of Fuller phenomena (see [32, 86, 101]), in which case

an infinite number of switchings may occur in a compact time interval.
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It would be however useful to derive such local optimal synthesis results for sys-

tems in larger dimensions, however necessarily under strong assumptions in partic-

ular to avoid the Fuller phenomenon, for instance, in view of providing alternative

ways of making converge the shooting method for the orbit transfer problem. Con-

cerning the latter problem, note that, in order to generate the accessible set for the

orbit transfer problems, the authors of [102] have used tools of Riemannian geometry

to determine the cut and conjugate loci on a complete two-surface of revolution in

order to infer the global structure of the extremals of the problem.

Note that the results of geometric optimal control mentioned in the previous sec-

tion essentially rely on a careful analysis of the extremal flow using second-order

conditions or a Hamiltonian approach and hence are strongly related to the concept

of conjugate time (surveyed previously in this paper). These methods should permit

to derive local optimal syntheses in larger dimension under additional assumptions

and as well for control-affine systems with more than one control (although it can be

expected that the situation is much more complicated). Note however that, accord-

ing to the results of [34–36], generic (in the Whitney sense) control-affine systems

do not admit any minimizing singular trajectory whenever the number of controls

is more than two (more precisely, it is shown in these references that such generic

control-affine systems do not admit any trajectories satisfying the Goh necessary con-

dition derived in [103]). For a first result concerning the classification of extremals

for control-affine systems with two controls, we quote the recent article [87], with an

application to the minimum time control of the restricted three-body problem.

4 The Continuation Method and Applications

4.1 The Continuation Method

The objective of continuation or homotopy methods is to solve a problem step by

step from a simpler one by parameter deformation. There exists a well-developed

theory and many algorithms and numerical methods implementing these ideas, and

the field of applications encompasses Brouwer fixed-point problems, polynomial and

nonlinear systems of equations, boundary-value problems in many diverse forms,

etc. We refer the reader to the textbook [104] or to the survey articles [105, 106] for

a complete report on these theories and methods.

Here, we will use the continuation or homotopy approach in order to solve the

shooting problem resulting from the application of the Pontryagin Maximum Princi-

ple to an optimal control problem. More precisely, the method consists of deforming

the problem into a simpler one that we are able to solve (without any careful initializa-

tion of the shooting method) and then of solving a series of shooting problems, step

by step, to come back to the original problem. In practice the choice of an adapted

parameter deformation of the problem is done according to an intuition or a heuris-

tics with respect to the physical meaning of the different parameters entering into the

problem and thus may require considerable physical insight into the problem. The

homotopic parameter λ can be a physical parameter (or several) of the problem, or

an artificial one. Some examples are provided in the sequel. The deformation should
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also be chosen to enjoy sufficient regularity conditions, making the homotopy method

converge. Notice that not only the simpler problem should be chosen according to a

heuristics, but also the path between the simpler problem and the original problem.

When the homotopic parameter λ is a real number and when the path is linear in λ

(meaning that, in some coordinates, the path consists of a convex combination of the

simpler and of the original problem, with λ ∈ [0,1]), the homotopy method is rather

called a continuation method in the literature. The continuation method consists then

of tracking a set of zeros as the parameter λ is increased monotonically from 0 to 1

(starting from the simpler known solution). Numerical continuation is well known in

numerical analysis and has been applied to a wide field of various problems. It can fail

whenever the path of zeros which is tracked has bifurcation points or more generally

singularities, or whenever this path fails to exist globally and does not reach λ = 1.

Homotopy methods generalize continuation methods, in the sense that the parameter

λ is not necessarily increased monotonically from 0 to 1, dealing with the possible

occurrence of bifurcations or singularities, and in the sense that the parameter λ is

not necessarily a real number but can be considered in more general spaces (it can be

a real number, or a vectorial number, or even a parameter evolving in some general

Banach space); furthermore, in general homotopy methods the path can be nonlinear

and considered in various spaces.

For the moment, for the sake of simplicity, we focus on the continuation method

and consider a real parameter λ ∈ [0,1] (we comment further on homotopy methods).

Let us provide shortly the basic arguments showing the feasibility of the continuation

method. From the theoretical point of view, regularity properties require at least that

the optimal solution is continuous, or differentiable, with respect to the parameter λ

that is expected to increase monotonically in [0,1]. This kind of property is usually

derived using an implicit function argument, which is encountered in the literature

as sensitivity analysis. Let us explain what is the general reasoning of sensitivity

analysis, in the simplified framework of Sect. 2.2.1, that is, assuming that M0 = {x0},
M1 = {x1}, and U = R

m. We are faced with a family of optimal control problems,

parameterized by λ, that can be as in (4) written in the form of

min
Ex0,T ,λ(uλ)=x1

CT ,λ(u). (13)

According to the Lagrange multipliers rule, if uλ is optimal, then there exists

(ψλ,ψ
0
λ) ∈ R

n × R \ {(0,0)} such that ψλ dEx0,T ,λ(uλ) + ψ0
λ dCT ,λ(u) = 0. Assume

that there are no minimizing abnormal extremals in the problem. Under this assump-

tion, since the Lagrange multiplier (ψλ,ψ
0
λ) is defined up to a multiplicative scalar,

we can definitely assume that ψ0
λ = −1. Then, we are seeking (uλ,ψλ) such that

F(λ,uλ,ψλ) = 0, where the function F is defined by

F(λ,u,ψ) :=
(

ψdEx0,T ,λ(u) − dCT ,λ(u)

Ex0,T ,λ(u) − x1

)

=
(

∂LT ,λ

∂u
(u,ψ)

Ex0,T ,λ(u) − x1

)

,

where LT ,λ(u,ψ) := ψEx0,T ,λ(u) − CT ,λ(u) is the Lagrangian, as defined in Sect.

2.2.1. Let (λ̄, uλ̄,ψλ̄) be a zero of F . Assume that F is of class C1. If the Jacobian of

F with respect to (u,ψ), taken at the point (λ̄, uλ̄,ψλ̄), is invertible, then according
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to a usual implicit function argument, one can solve the equation F(λ,uλ,ψλ) =
0, and the solution (uλ,ψλ) depends in a C1 way on the parameter λ. Note that

this standard argument from sensitivity analysis is at the basis of the well-known

Lagrange–Newton method in optimization.

Let us now analyze the invertibility condition of the Jacobian of F with respect to

(u,ψ). This Jacobian matrix is

(

QT ,λ dEx0,T ,λ(u)∗

dEx0,T ,λ(u) 0

)

, (14)

where dEx0,T ,λ(u)∗ is the transpose of dEx0,T ,λ(u), and where QT ,λ is the quadratic

form considered in Sect. 2.3.1, defined as the Hessian
∂2LT ,λ

∂2u
(u,ψ,ψ0) restricted to

ker
∂LT ,λ

∂u
. The matrix (14) (which is a matrix of operators) is called sensitivity matrix

in sensitivity analysis. It is easy to prove that this sensitivity matrix is invertible iff

the linear mapping dEx0,T ,λ(u) is surjective and the quadratic form QT is nonde-

generate. Having in mind the definitions given previously in this article, the meaning

of these assumptions is the following. The surjectivity of dEx0,T ,λ(u) exactly means

that the control u is not singular (see Definition 2.2). The nondegeneracy of QT ,λ is

exactly related with the concept of conjugate point (see Definition 2.4). Note that,

as long as we do not encounter any conjugate time along the continuation path, the

extremals that are computed are locally optimal. It follows that, to ensure the surjec-

tivity of dEx0,T ,λ(u) along the continuation process, it suffices to assume the absence

of singular minimizing trajectory. Note that, in the simplified problem that we con-

sidered, where the controls are not constrained, singular trajectories are exactly the

projections of abnormal extremals.

Therefore, we conclude that, as long as we do not encounter any minimizing sin-

gular control nor conjugate point along the continuation procedure, the continuation

method is locally feasible, and the extremal solution (uλ,ψλ) which is locally com-

puted as above is of class C1 with respect to the parameter λ. These two sufficient

assumptions are the basic ones ensuring the existence of a local solution in the con-

tinuation procedure and thus its local feasibility.

Before going to global considerations, let us make an ultimate comment on these

two assumptions. The absence of conjugate point can be tested numerically: as ex-

plained in Sect. 2.3.2, it suffices to test the vanishing of some determinant along the

extremal flow (see Sect. 2.4.2). As long as this test does not detect any conjugate

point along the continuation process, the extremals that are computed are locally op-

timal. The assumption of the absence of minimizing singular trajectories is of a much

more geometric nature. Such results exist for some classes of control-affine systems

under some strong Lie bracket assumptions (see [12, 14, 107, 108]). Moreover, as

mentioned in Sect. 3.3, generic (in the Whitney sense) control-affine systems with

more than two controls have no minimizing singular trajectory; hence, for such kinds

of systems, the assumption of the absence of minimizing singular trajectory is auto-

matically satisfied.

Remark 4.1 The implicit function argument given above is on the control, but the

continuation method is usually implemented on the exponential mapping (see Defini-
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tion 2.3) and consists of tracking a path of initial adjoint vectors doing the job. More

precisely, instead of (13), one has to solve

expx0,λ
(T ,p0,λ) = x1, (15)

where the exponential mapping is parameterized by λ. This is the shooting method in

the simplified case, and the sufficient conditions above ensure the local feasibility.

The previous implicit function arguments permit to ensure the local feasibility of

the continuation procedure, locally around a given solution (that is, locally around a

given parameter λ). Now to make it global over [0,1], we ought to ensure that the path

of zeros λ �→ p0,λ is globally defined on [0,1] and joins p0,0 to p0,1. It could indeed

happen that the path is not globally defined and either reaches some singularity or

wanders off to infinity before reaching λ = 1. To eliminate the first possibility, since

a limit of optimal controls is optimal as well (see, e.g., [16, 20]), we can make the

assumption of the absence of minimizing singular trajectory and of conjugate point

over all the domain under consideration (not only along the continuation path), and

for every λ ∈ [0,1]. As said before, the absence of singular minimizing trajectory over

the whole space is generic for large classes of systems, and hence this is a reasonable

assumption; however, the global absence of conjugate point is a strong assumption.

There exist however some other possibilities to tackle singularities.2 To eliminate the

second possibility, we ought to provide sufficient conditions ensuring that the tracked

paths remain bounded. In other words, considering (15), we have to ensure that the

initial adjoint vectors p0,λ that are computed along the continuation procedure remain

bounded, uniformly with respect to the homotopic parameter λ. This means that we

have to ensure that the exponential mapping is proper, uniformly with respect to λ.

The properness of the exponential mapping is studied in [20], where it is proved that,

if the exponential mapping is not proper, then there exists an abnormal minimizer (see

also [109] and [16, Lemma 2.16] for a more general statement). By contraposition,

if one assumes the absence of minimizing abnormal extremals, then the required

boundedness follows.

Note again that, in the simplified problem that we considered, where the controls

are unconstrained, singular trajectories are exactly the projections of abnormal ex-

tremals. Hence, we have obtained the following result.

Proposition 4.1 In the simplified case where M0 = {x0}, M1 = {x1}, and U = R
m, if,

for every λ ∈ [0,1], there is no minimizing singular trajectory nor conjugate points

over all the domain, then the continuation procedure (15) is globally feasible on

[0,1].

It is not easy to weaken the assumption of the absence of conjugate point over

all the domain. One way is to consider a smaller domain, covering the continuation

paths under consideration; in this case however one ought to ensure that the tracked

2Singularities due to conjugate points may be either detected and then handled with specific methods, or

can be removed generically by Sard arguments (see comments further, on homotopy methods).
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continuation path remains in the domain, that is, remains far from its boundary. There

does not seem to exist any simple and tractable condition ensuring this fact in general.

Note that in [110] the authors use the concept of injectivity radius in order to provide

estimations of domains in which the continuation method is globally feasible, on an

example which is however specific to Riemannian geometry.

This simple Proposition 4.1 withstands many possible generalizations. For more

general optimal control problems, Proposition 4.1 can be extended quite easily, by

adapting the above arguments, and in particular the implicit function argument (al-

though this may be a bit technical, for instance, whenever there are some state con-

straints; see [111]). In any case, this kind of result provides the mathematical foun-

dations ensuring the global feasibility of the continuation method in optimal control.

It can be noted that the feasibility of the continuation method has been much stud-

ied for other less specific issues in numerical analysis (see [104, 105] and references

therein).

In the more general case of homotopies, the parameter λ is not necessarily increas-

ing monotonically from 0 to 1, and we can encounter turning points (see [106]). One

of the methods, known as differential homotopy (or differential pathfollowing), con-

sists of tracking a path of zeros s �→ (λ(s),p0,λ(s)) satisfying (15) for every s. It is

then usual to assume that the mapping F has maximal rank (more precisely, that 0 is a

regular value of F ) so that the path of zeros evolves on a submanifold (see, e.g., [104]

for the details): this kind of implicit function argument permits to establish, as before,

the local feasibility of the method; but now the difference is that turning points3 are

allowed: the zero p0,λ is not necessarily a local function of λ. The global feasibility

issues require topological considerations such as connectedness features. Note that,

if one does not make this assumption that the mapping F has maximal rank, then one

is faced with the possible occurrence of singularities. As explained previously for the

continuation method, assuming the absence of singularities is a too strong assumption

in general. In the existing literature there are essentially two approaches to tackle this

difficulty. The first approach, of local type, consists of detecting the possible singu-

larities or bifurcations along the zero path. There is a huge literature on this problem,

and we refer to [104] for a survey on these methods applied to homotopy procedures.

The second approach, of global type, consists of considering a global perturbation of

the homotopy function, more precisely, of the simpler problem under consideration,

in order to ensure that, with probability one, 0 is a regular value of F . This vari-

ant of the method that can be proved to be globally convergent is known as globally

convergent probability-one homotopy method. It is based on nontrivial transversality

arguments, combined in [112] with Sard’s theorem and yielding to homotopy meth-

ods with a guarantee of success of probability one with respect to the choice of the

simpler problem (see [106] for a nice survey discussion and the statement of a general

result of global convergence). The “almost everywhere” statement of such a result is

used to avoid the possible singularities of the curves to be tracked in the homotopy

procedure. The last crucial requirement to ensure global feasibility is as before that

the tracked paths remain bounded, in order to ensure that the zero paths are globally

3A turning point is a point of the path of zeros at which λ(s) has a local extremum.
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well defined and do not wander off to infinity. This properness can be handled as be-

fore by assuming the absence of abnormal minimizers (see arguments of the previous

discussion). Having in mind these issues, it is then possible to derive results similar

to Proposition 4.1, according to the specific homotopy method under consideration.

Note that the mathematical foundations of the differential homotopy method ap-

plied to optimal control are studied in [113] and more deeply in [87], where the

relation between turning points of the path and conjugate points is clearly elucidated.

Note that the authors of [87], studying by homotopy a three-body problem, recom-

mend to stop following a path in case a conjugate point (resulting into a turning point)

appears, and provide some hints to jump to another path (these hints are however spe-

cific to their problem).

From the numerical point of view, there exist many methods and strategies in

order to implement continuation or homotopy methods, and one has to distinguish

between differential pathfollowing (see, e.g., [114] for applications to orbit transfer

problems), simplicial methods (see, e.g., [115] for similar applications), predictor–

corrector methods, piecewise-linear methods, etc. Extensive documentation about

path following methods with theoretical and algorithmic issues can be found in [104].

Also, many codes can be found on the web, such as the well-known Hompack90 (see

[116]) or the recent Hampath (see [113]), just to name a few.

4.2 Application to the Orbit Transfer Problem with Low Thrust

In this section we focus on the orbit transfer problem with low thrust, where the

system under consideration consists of the controlled Kepler equations

q̈(t) = −q(t)
µ

r(t)3
+

T (t)

m(t)
, ṁ(t) = −β

∥

∥T (t)
∥

∥, (16)

where q(t) ∈ R
3 is the position of the engine at time t , r(t) := ‖q(t)‖, T (t) is the

thrust at time t , and m(t) is the mass, with β := 1/Ispg0. Here g0 is the usual gravita-

tional constant, and Isp is the specific impulsion of the engine. The thrust is submitted

to the constraint ‖T (t)‖ � Tmax, where the typical value of the maximal thrust Tmax

is around 0.1 N for low-thrust engines. The orbit transfer problem consists of steer-

ing the engine from a given initial orbit (e.g., an initial excentric inclined orbit) to a

final one (e.g., the geostationary orbit). Controllability properties, ensuring the fea-

sibility of the problem, have been studied in [25, 117], based on the analysis of the

Lie algebra generated by the vector fields of the system. For this control problem,

one is interested in realizing this transfer by minimizing the transfer time or the fuel

consumption.

Let us first show how the minimal time problem of steering this control system

from any initial position to some final orbit can be solved by combining a shooting

method with a continuation procedure. On this problem one immediately realizes

that the main difficulty is the fact that the maximal thrust is very low. It is then not

surprising to observe numerically that the lower is the maximal thrust, the smaller is

the domain of convergence of the Newton method in the shooting problem. In these

conditions it is natural to carry out a continuation on the value of the maximal thrust,

starting with larger values of the maximal thrust (for which the problem is no more
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realistic, but for which the shooting method is by far easier to make converge), and

then decreasing step by step the value of the maximal thrust, down to low realistic

values.

This strategy was implemented in [118] in order to realize the minimal time 3D

transfer of a satellite from a low and eccentric inclined initial orbit toward the geo-

stationary orbit, for an engine of around 1500 kg. Their continuation procedure starts

with the orbit transfer problem with the value Tmax = 60 N, for which the domain

of convergence of the shooting function is large enough so that the shooting method

can be initialized easily. Then they decrease the value of Tmax step by step in order to

reach down the value Tmax = 0.14 N. Along this continuation procedure, the authors

prove that the minimal time tf is right-continuous with respect to the maximal thrust

Tmax; hence, in theory, it could be expected that the minimal time tf obtained at the

step k of the continuation procedure is a good initial guess for the step k + 1. How-

ever, they note that this strategy is not so much efficient numerically for low thrusts,

in the sense that, for low values of Tmax, the value of Tmax has to be decreased with

very small steps to ensure convergence. The authors then use the remarkable heuris-

tics tf Tmax ≃ Cst, which allows them to significantly improve the efficiency of their

continuation procedure and to reach down the low value of Tmax = 0.14 (for which

the resulting time of transfer is more than six months).

The minimal fuel consumption orbit transfer problem has also been solved in [119,

120]. It consists of minimizing the cost
∫ tf

0 ‖T (t)‖dt , and the problem is more dif-

ficult than the minimal time problem, because the optimal control derived from the

PMP is no more continuous. This lack of continuity implies difficulties to apply the

shooting method. To overcome this problem, the authors propose to implement a

continuation on the cost functional, parameterized by λ ∈ [0,1]. More precisely, they

propose to minimize the cost
∫ tf

0 ((1 −λ)‖T (t)‖2 +λ‖T (t)‖) dt . The case λ = 0 cor-

responds to the minimization of the energy, while λ = 1 corresponds to the original

problem (minimization of the consumption). For every λ < 1, the application of the

PMP leads to smooth controls, for which the shooting method can be applied suc-

cessfully. Also, for λ = 0, the shooting problem is easier to initialize. The authors

prove that it is possible to follow a path of solutions starting from λ = 0 and reaching

a value of λ very close to 1, which permits then to initialize successfully the shooting

method with λ = 1.

It can be noted that the heuristics tf Tmax ≃ Cst has been understood and clearly

explained in [102]. In this work, based on preliminary results of [121], where the

optimal trajectories of the energy minimization problem are approximated using av-

eraging techniques, the averaged Hamiltonian system is explicitly computed and is

shown to be a Riemannian problem. The geodesics and their integrability properties

are investigated and deeply analyzed, as well as the Riemannian metrics of the aver-

aged system. Since the averaged system is Riemannian, this means, roughly speaking,

that optimal trajectories are straight lines up to a change of coordinates. Since the av-

eraged system can serve as a good approximation of the initial system for low values

of the maximal thrust (this fact is proved in these references), the heuristics follows.

This is one more example where a geometric insight provides a good understanding

of the problem, leading to an efficient numerical solving.
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Remark 4.2 In [16] it is shown how one can moreover take into account a shadow

cone (eclipse) constraint in the orbit transfer problem. The approach is based on an

hybridization of the problem, considering that the controlled vector fields are zero

when crossing the shadow cone. A regularization procedure consisting of smoothing

the system, combined with a continuation, is also implemented (it is actually the

objective of the article to derive convergence properties of smoothing procedures).

4.3 A Continuation Approach to the Strong Thrust Orbit Transfer Problem by

Flattening the Earth

In this section we describe an alternative approach to the strong thrust minimal con-

sumption orbit transfer planification problem developed in [122], consisting of con-

sidering at first the problem for a flat model of the Earth with constant gravity and

then of introducing step by step (by continuation) the variable gravity and the curva-

ture of the Earth, in order to end up with the true model.

Of course, the fuel efficient orbit transfer of a satellite has been widely studied

with many possible approaches such as impulsive orbit transfers and direct or shoot-

ing methods (see [51], and see [122] for a list of methods and references). Here we

described shortly an unusual approach, based on the remark that the problem is ex-

tremely easy to solve whenever the Earth is flat with a constant gravity. Then we

pass continuously to the initial model. We restrict to the two-dimensional case and

consider the coplanar orbit transfer problem with a spherical Earth and a central grav-

itational field g(r) = µ

r2 . Written in cylindrical coordinates, the control system under

consideration is

ṙ(t) = v(t) sinγ (t), ϕ̇(t) =
v(t)

r(t)
cosγ (t),

v̇(t) = −g
(

r(t)
)

sinγ (t) +
Tmax

m(t)
u1(t),

γ̇ (t) =
(

v(t)

r(t)
−

g(r(t))

v(t)

)

cosγ (t) +
Tmax

m(t)v(t)
u2(t),

ṁ(t) = −βTmax

√

u1(t)2 + u2(t)2,

(17)

where the thrust is T (t) := u(t)Tmax (here in the application, Tmax is large since we

consider a strong thrust), and the control is u(t) = (u1(t), u2(t)) satisfying the con-

straint u1(t)
2 +u2(t)

2 � 1. The optimal control problem under consideration consists

of steering the above system from a given initial configuration r(0) = r0, ϕ(0) = ϕ0,

v(0) = v0, γ (0) = γ0, m(0) = m0 to some point of a specified final orbit r(tf ) = rf ,

v(tf ) = vf , γ (tf ) = γf by maximizing the final mass m(tf ). Note that the final time

tf must be fixed in this problem, otherwise the optimal control problem would not

have any solution (see [119]) since it is always better in terms of consumption to

let the engine turn more around the planet with shorter thrust arcs. The application

of the PMP to this problem leads to a shooting problem with discontinuous controls

(consisting of thrust and balistic arcs) that is not easy to solve directly because it is
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difficult to initialize adequately. In contrast, consider the very simple flat Earth model

ẋ(t) = vx(t), ḣ(t) = vh(t),

v̇x(t) =
Tmax

m(t)
ux(t), v̇h(t) =

Tmax

m(t)
uh(t) − g0,

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2,

(18)

where x denotes the horizontal variable, h is the altitude, and vx and vh are the

corresponding components of the velocity. The control (ux(·), uh(·)) must satisfy the

constraint ux(·)2 + uh(·)2 � 1. It happens that the problem of maximizing the final

mass m(tf ) (here, it makes sense to consider a free final time), with initial conditions

x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh0, m(0) = m0, and final conditions

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, is extremely simple to solve. It can even be

solved explicitly, analytically, and the shooting method can be simplified in order

to converge automatically and instantaneously, without any careful initialization (see

[122] for details). In view of that, it is tempting to try to pass continuously from

this simple model to the initial one by acting on the gravity and on the curvature of

the planet. Note that, since the coordinates used in (18) are Cartesian whereas those

in (17) are polar, at the end of the continuation procedure a change of coordinates

will be required. Evidently, this change of coordinates is x = rϕ, h = r − rT (where

rT is the radius of the Earth), vx = v cosγ , vh = v sinγ , and for the control, ux =
u1 cosγ − u2 sinγ , uh = u1 sinγ + u2 cosγ . When passing from polar to Cartesian

coordinates, note however that we not take into account an obvious physical feature:

in the absence of control (u = 0), in the flat Earth model (18) there do not exist any

horizontal trajectories (for which h(t) is constant), whereas the round Earth model

(17) does admit round (Keplerian) orbits (for which r(t) is constant). This still holds

even though we transform the flat Earth model with a variable gravity. This is of

course due to the model that is too much simplist, and we are going to modify this

model accordingly by introducing some new terms into the dynamics of the flat Earth

model, so that there may exist such horizontal trajectories with null thrust. First of all,

let us apply the above change of coordinates to the control system (17). This leads to

ẋ(t) = vx(t) + vh(t)
x(t)

rT + h(t)
, ḣ(t) = vh(t),

v̇x(t) =
Tmax

m(t)
ux(t) −

vx(t)vh(t)

rT + h(t)
,

v̇h(t) =
Tmax

m(t)
uh(t) −

µ

(rT + h(t))2
+

vx(t)
2

rT + h(t)
,

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2.

(19)

This control system is exactly system (17) expressed in cylindrical coordinates. With

respect to the flat Earth model (18), except the fact that the gravity term is variable, we

observe the presence of additional terms in the dynamics of x, vx and vh, which can

be viewed for the flat Earth model as kinds of correcting terms that permit the possible



746 J Optim Theory Appl (2012) 154:713–758

occurrence of horizontal trajectories. In view of that, in order to pass continuously

from the flat Earth model (18) to the (actually round Earth) model (19), we introduce

two parameters λ1 and λ2, the first of which is acting on the gravity, and the second

of which permits to introduce the correcting terms. Finally, we consider the family of

control systems

ẋ(t) = vx(t) + λ2vh(t)
x(t)

rT + h(t)
, ḣ(t) = vh(t),

v̇x(t) =
Tmax

m(t)
ux(t) − λ2

vx(t)vh(t)

rT + h(t)
,

v̇h(t) =
Tmax

m(t)
uh(t) −

µ

(rT + λ1h(t))2
+ λ2

vx(t)
2

rT + h(t)
,

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2,

(20)

parameterized by 0 � λ1 � 1 and 0 � λ2 � 1. Then, we implement the following

continuation procedure on the resulting family of optimal control problems. Imple-

menting a continuation on λ1, keeping λ2 = 0, we first pass from the simplified flat

Earth model (18) with constant gravity (for λ1 = λ2 = 0) to the intermediate flat Earth

model with variable gravity (for λ1 = 1 and λ2 = 0). Along this first continuation it

makes sense to consider free final times. Then, we implement a second continuation

on the parameter λ2, keeping λ1 = 1, to pass continuously to the initial model (for

λ1 = λ2 = 1). Along this second continuation, we fix the final time for the optimal

control problems under consideration to the value obtained at the end of the first

continuation.

The details of the procedure and numerical simulations are provided in [122], and

comparisons are led with usual direct methods.

To end this section, it remains to explain how the change of coordinates acts onto

the adjoint vector, in order to come back to the initial cylindrical coordinates after

the continuation procedure. Denoting by F the change of variables from Cartesian to

cylindrical coordinates, one passes from the adjoint vector in Cartesian coordinates

to cylindrical coordinates by applying the transpose of the inverse of the differen-

tial of F . This is indeed a general geometric result, whose proof is provided in the

appendix of [122].

4.4 Other Applications

We mention shortly two other applications of continuation methods.

Solving the Atmospheric Reentry Problem by Continuation Another approach to

solve the atmospheric reentry problem of Sect. 3.1 by a shooting method, imple-

mented in [123], consists of carrying out a continuation on the maximal value of the

state constraint on the thermal flux in order to introduce this constraint step by step.

The procedure automatically determines the structure of the optimal trajectory and

allows one to start from the easier problem without state constraint and to introduce

the constraints progressively. The theoretical foundations which allow one to take
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into account the change of the structure of the trajectory (and hence the number of

unknowns in the shooting method) along the continuation procedure were derived in

[111] for first-order state constraints and in [124] for second-order state constraints,

and allow one to prove that, under some appropriate assumptions, the change in the

structure of the trajectory is regular is the sense that, when a constraint becomes

active along the continuation, only one boundary arc appears. Note indeed that it

can happen that infinitely many boundary arcs appear; see, for instance, [32], where

this phenomenon is shown to be typical for constraints of order more than or equal

to three. Here however in the problem under consideration the state constraints are

of order two. To take into account this change of structure along the continuation,

the usual continuation procedure must be modified accordingly. For the atmospheric

reentry problem with a constraint on the thermal flux, this procedure is described in

details in [123] and allows one to recover in a nice way the results of [71].

General Goddard’s Problem and Singular Trajectories Variants of Goddard’s prob-

lems are investigated in [57, 125] for nonvertical trajectories. The control is the thrust

force, and the objective is to maximize a certain final cost, typically, the final mass.

Performing an analysis based on the PMP, it is proved that optimal trajectories may

involve singular arcs (along which the norm of the thrust is neither zero nor max-

imal) that are computed and characterized. Numerical simulations are carried out,

both with direct and indirect methods, demonstrating the relevance of taking into ac-

count singular arcs in the control strategy. The indirect method combines a shooting

method with a continuation method. The continuation approach leads to a quadratic

regularization of the problem similar to the one presented in Sect. 4.2 and is a way

to tackle with the problem of nonsmoothness of the optimal control. Note that this

quadratic regularization has also been used in [119]. To tackle the lack of continuity

of the optimal control u, which makes difficult the application of a shooting method,

the authors consider a family of optimal control problems indexed by a continuation

parameter λ ∈ [0,1] with minimization criterion
∫ tf

0 ((1 − λ)‖u(t)‖2 + λ‖u(t)‖) dt ,

so that the case λ = 0 corresponds to the minimization of the energy, and λ = 1 to

the original problem (minimization of the consumption) under consideration in their

articles.

5 Dynamical Systems Theory and Mission Design

5.1 Dynamics Around Lagrange Points

Consider the so-called circular restricted three-body problem, in which a body with

negligible mass evolves in the gravitational field of two masses m1 and m2 (primaries)

and is assumed to have circular coplanar orbits with the same period around their

center of mass. The gravitational forces exerted by any other body are neglected.

In the solar system this problem provides a good approximation for studying many

problems. In a rotating frame the equations are

ẍ − 2ẏ =
∂Φ

∂x
, ÿ + 2ẋ =

∂Φ

∂y
, z̈ =

∂Φ

∂z
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with

Φ(x,y, z) :=
x2 + y2

2
+ (1 − µ)

(

(x + µ)2 + y2 + z2
)−1/2

+ µ
(

(x − 1 + µ)2 + y2 + z2
)−1/2 +

µ(1 − µ)

2
.

These equations have the Jacobi first integral J := 2Φ − (ẋ2 + ẏ2 + ż2), and hence

the solutions evolve on a five-dimensional energy manifold, the topology of which

determines the so-called Hill’s region of possible motions (see, e.g., [126]).

It is well known that the above dynamics admit five equilibrium points called La-

grange points, the three first of which, denoted L1, L2, and L3, being collinear points

on the axis joining the centers of the two primaries, and the two last of which, de-

noted L4 and L5, located in an equilateral way with respect to the primaries. It must

be noted that the linearized system around these equilibrium points admits eigen-

values with zero real part, and hence the study of their stability is not obvious. It

follows from a generalization of a theorem of Lyapunov (due to Moser [127]) that,

for a value of the Jacobi integral a bit less than the one of the Lagrange points, the

solutions have the same qualitative behavior as the solutions of the linearized system

around the Lagrange points. It was then established in [128] that the three collinear

Lagrange points are always unstable, whereas L4 and L5 are stable under some con-

ditions (that are satisfied in the solar system, for instance, for the Earth–Moon system,

or for the system formed by the Sun and any other planet).

The dynamics around these Lagrange points have particularly interesting features

for space mission design. Using Lyapunov–Poincaré’s theorem, it is shown that there

exists a two-parameter family of periodic trajectories around every Lagrange point

(see [25, 128]), among which the well-known halo orbits are periodic orbits that

are diffeomorphic to circles whose interest for mission design was put in evidence

by Farquhar (see [129]). There exist many other families of periodic orbits (called

Lissajous orbits) and quasi-periodic orbits around Lagrange points (see [130]). The

invariant (stable and unstable) manifolds of these periodic orbits, consisting of all

trajectories converging to the orbit (as the time tends to ±∞), are four-dimensional

tubes, topologically equivalent to S3 × R, in the five-dimensional energy manifold

(see [131]). Hence they play the role of separatrices. Therefore they can be used

for mission design and space exploration, since a trajectory starting inside such a

tube (called transit orbit) stays inside this tube. It can be noted however that the

invariant manifolds of halo orbits (which can be really seen as tubes) are chaotic in

large time: they do not keep their aspect of tube and behave in a chaotic way, far

from the halo orbit (see [126]). In contrast, the invariant manifolds of eight-shaped

Lissajous orbits4 (which are eight-shaped tubes) are numerically shown in [132] to

keep their regular structure globally in time. Moreover, in the Earth–Moon system, it

is shown that they permit to fly over almost all the surface of the Moon, very close

to the surface (between 1500 and 5000 kilometers). These features are of particular

4Eight-shaped Lissajous orbits are the Lissajous orbits of the second kind, in the sense that they are dif-

feomorphic to a curve having the shape of an eight. They are chiefly investigated in [132].



J Optim Theory Appl (2012) 154:713–758 749

interest in view of designing low-cost space missions to the Moon. Indeed, in the

future space exploration, the Moon could serve as an intermediate point (with a lunar

space station) for farther space missions.

5.2 Applications to Mission Design and Challenges

The idea of using the specific properties of the dynamics around Lagrange points in

order to explore lunar regions is far from new but has recently received a renewal of

interest (see, e.g., [133, 134]). In [126, 135], the authors combine the use of low-thrust

propulsion with the use of the nice properties of invariant manifolds of periodic orbits

around Lagrange points in order to design low-cost trajectories for space exploration.

Their techniques consist of stating an optimal control problem that is numerically

solved using either a direct or an indirect transcription, carefully initialized with the

trajectories of the previously studied system (with no thrust). They are able to real-

ize in such a way a reasonable compromise between fuel consumption and time of

transfer, and design trajectories requiring moderate propellant mass and reaching the

target within reasonable time. In these works the previously studied circular restricted

three-body problem approximation is used to provide an appropriate first guess for

carefully initializing an optimal control method (for instance, a shooting method)

applied to a more precise model. In view of that, and having in mind the previous

methodology based on continuation, it is natural to develop an optimal planification

method based on the combination of the dynamics of the three-body problem with a

continuation on the value of the maximal authorized thrust. This idea is used in the

recent article [87], where a homotopy procedure is carried out on the maximal value

of the thrust, starting from a zero value (natural dynamics) and ending with a low

value of the thrust. The authors are then able to design minimal time trajectories with

low thrust passing from a geostationary orbit around the Earth to a circular lunar one.

This idea opens new directions for future investigations and is a promising method

for designing efficiently fuel low-consumption space missions. Although the proper-

ties of the dynamics around Lagrange points have been widely used for developing

planification strategies, up to now, and up to our knowledge they have not been com-

bined with continuation procedures that would allow one to introduce, for instance,

the gravitational effects of other bodies, or values of the maximal thrust that are low

or mild, or other more complex models. This is a challenge for potential future stud-

ies. Note that, in [136], the author implements a numerical continuation procedure

to compute minimal-energy trajectories with low thrust steering the engine from the

Earth to the Lagrange point L1 in the Earth–Moon system, by making a continuation

on the gravitational constant of the Moon. The continuation procedure is initialized

with the usual Kepler transfer, in which the Moon coincides with the point L1 and

ends up with a trajectory reaching the point L1 with a realistic gravitational effect of

the Moon.

Another challenge, which is imperative to be solved within next years, is the prob-

lem of space debris cleaning. Indeed, recently it was observed a drastic growth of

space debris in the space around the Earth, in particular near the SSO orbit and polar

orbits with altitude between 600 and 1200 km (indeed these orbits are intensively

used for Earth observation). These debris are due to former satellites that were aban-

doned and now cause high collision risks for future space flights. It has become an
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urgent challenge to clean the space at least from its biggest debris in order to stabi-

lize the debris population; otherwise it will soon become almost impossible to launch

new satellites. At present, all space agencies in the world are aware of that problem

and are currently working to provide efficient solutions for designing space debris

collecting missions. One of them, currently led at EADS (see [137]), consists of de-

orbiting five heavy debris per year, selected in a list of debris (in the LEO region)

so that the required fuel consumption for the mission is minimized. The problem to

be solved turns into a global optimization problem consisting of several continuous

transfer problems and of a combinatorial path problem (selection of the debris and of

the collecting order). It is not obvious to solve since it must combine continuous op-

timal control methods with combinatorial optimization and other considerations that

are specific to the problem. The results of [137] (which are valuable for high-thrust

engines) provide first solutions in this direction and open new problems for further

investigation. For instance, it is an open problem to design efficient space cleaning

missions for low-thrust engines, taking benefit of the gravitational effects due to La-

grange points and to invariant manifolds associated with their periodic orbits. Such

studies can probably be carried out with appropriate continuation procedures, care-

fully initialized with trajectories computed from the natural dynamics of the three-

body problem.

6 Conclusion and Final Remarks

Optimal Control and Trajectory Optimization Although the techniques of optimal

control surveyed in this article provide a nice way to design efficient trajectories,

in particular in aerospace problems, their applications require a reasonably simple

model. In practice many problems remain difficult due to the complexity of real-life

models. For instance, in the problem of low-thrust orbit transfer, many problems re-

main such as the one of taking into account the gravitational perturbations due to the

Earth or the Moon, the atmospheric drag, the constraint of crossing the Van Allen bar-

rier as quickly as possible, cone constraints on the control, eclipse constraints, taking

into account the launching phase, and the insertion of the problem in a more global

one, using multidisciplinary optimization. The eclipse constraint in particular may be

viewed as a state constraint and can be handled by modelizing the system as a hybrid

system. This problem is called the shadow cone problem. The objective is to develop

necessary optimality conditions leading to efficient computation algorithms. Usual

approaches are based on penalization methods, and there is a challenging problem

to use rather shooting methods, based on the Pontryagin approach, which are poten-

tially more efficient from the point of view of the convergence. Of course, all the

constraints mentioned above are of different nature. Some of them can probably be

treated, for instance, by using some continuation procedures, but some others are not

so well adapted to the use of indirect methods, and then, according to the problem,

one should then rather use direct methods (see discussions in [50, 51]). There is a

compromise to be found between the complexity of the model under consideration,

the robustness of that model, and the choice of an adapted numerical method to treat

the problem.
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The presence of numerous constraints on the controls or on the state makes the

trajectography problems difficult, and in certain situations as, for instance, in the

problem of atmospheric reentry, a preliminary step to optimization is an estimation

of the accessible set. A challenging question is then to combine the tools of numerical

optimal control and of stabilization with fine geometric techniques developed recently

in nonlinear control in order to design an estimation tool of the accessible set.

In many situations the system under consideration is modeled by infinite-

dimensional systems (PDEs). From the mathematical point of view, many difficulties

arise, and from the numerical point of view, one has to use sophisticated techniques

of numerical analysis (on meshes in particular). Applicative issues concern, for in-

stance, motor outflows, fuel optimal management, the minimization of electromag-

netic interferences or other perturbations (acoustic, thermic, etc). The modelization

of these problems uses optimal control of PDEs. The numerical implementation of

necessary optimality conditions (of PMP type) causes numerous difficulties, as put

in evidence, e.g., in [63]. For hyperbolic equations interference phenomena appear

between the mesh and high-frequency modes. Some remedies do exist, such as, for

instance, high-frequency filtering or the use of multigrid methods, and the objective is

to adapt and apply them to the complex systems stemming from aerospace. Note that

in certain cases the system in consideration is made of a finite-dimensional system

coupled with a “quite simple” partial differential equation, for instance, the problem

of optimizing the trajectories of planes in order to minimize noise pollution. The

model should take into account sound propagation, shock waves, and thus, wave-like

PDEs. Nowadays the control of such coupled systems is a challenging problem in

mathematics, and recently some first results have been published, which show how

nonlinear couplings may help to recover controllability properties for the system

(see [138]). Many other problems require complex models based on nonlinear PDEs:

propulsion problems, thermics, aerodynamics, etc. Due to the complexity of these

problems, every optimization procedure is in general impossible, and the questions

that arise are in general on nonlinear control, in view of applications concerning in

particular the design and dimensioning of space engines.

Pluridisciplinary Optimization In celestial mechanics many issues are still to be

investigated in the very interesting field of the dynamics around Lagrange points; in

particular, it should be done a precise cartography of all invariant manifolds generated

by all periodic orbits (not only halo or eight-shaped orbits) around Lagrange points

in view of mission design. The existence of such invariant manifolds indeed makes

possible the design of low-cost interplanetary missions. The design of trajectories

taking advantage of these corridors, of gravitational effects of celestial bodies of the

solar system, of “swing-by” strategies, is a difficult problem related to techniques of

continuous and discrete optimization (multidisciplinary optimization). It is an open

challenge to design a tool combining refined techniques of nonlinear optimal control,

continuation procedures, mixed optimization, and global optimization procedures.

Many problems are modeled by hybrid systems, that is, systems whose dynamics

may evolve with the time and contain discrete variables. An example is the problem of

shadow cone constraint, and another one is the global launcher problem in which the

dynamics change whenever modules fall down. A certain number of deep theoretical
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results do exist on Pontryagin Maximum Principle in the hybrid case (see [6, 7]),

but the question of an efficient numerical implementation is still open in general (see

[16]); indeed, when one implements a version of hybrid maximum principle, one is

then immediately faced with a combinatorial explosion. It is not clear how to adapt

efficiently tools of pluridisciplinary optimization to that difficult problem. Besides,

not so far from hybrid, the question is still open to derive a version of the PMP for

general systems that are both discrete and continuous in time (for instance, control

systems on time scales).

Another optimization problem is to determine the optimal placement of actuators,

controls, in order to minimize or maximize a certain criterion: for instance, where

the retrorockets should be optimally placed for the attitude control of a satellite, what

should be the optimal shape of tailpipes in order to guarantee the best possible fluid

outflow, where should the injectors be positioned in a motor to maximize combus-

tion, etc. This kind of problem is part of the thematic of optimal design, in which

the unknown is no more a vector but a domain. The problems of optimal locations of

sensors or actuators in linear partial differential equations have been widely consid-

ered in engineering problems (see, e.g., [139] and references therein). Usual popular

approaches consist of recasting the optimal location problem for distributed systems

as an optimal control problem with an infinite-dimensional Riccati equation and then

of computing approximations with optimization techniques. These techniques rely

however on an exhaustive search over a predefined set of possible candidates and are

limited with combinatorial difficulties due to the selection problem. We thus recover

the usual flaws of combinatorial optimization methods. Many challenging problems

fall into this category.

An important problem in aerospace is the optimal design of launchers. The ob-

jective is to optimize both the trajectory and the engine (launcher). In the optimal

design of a launcher one may seek to optimize thrust levels, the number of floors, of

tanks, or to know what type of propellant should be used. Methods usually employed

consist of splitting the global problem into subproblems handled with specific meth-

ods like genetic algorithms. The development of pluridisciplinary optimization tools

should provide some breakthroughs in this domain. Another very important problem,

which could be treated efficiently with this kind of approach, is the problem of space

cleaning mentioned previously. We indeed have at our disposal a precise catalog of

fragments, wreckage, and scraps, and one of the top priorities in the next years is

to clean the space from big fragments (essentially coming from old satellites). The

problem is to design optimally a space vehicle able to collect in minimal time a cer-

tain number of fragments, themselves being chosen in advance in the catalog in an

optimal way. This problem combines techniques of continuous optimal control in or-

der to determine a minimal time trajectory between two successive fragments, and

techniques of discrete optimization for the best possible choice of the fragments to

be collected.

Inverse Problems Having available a certain number of measures, one aims at de-

tecting flaws in the structure of an engine, which are due to shocks, thermic or elec-

tromagnetic problems. This is an inverse problem which requires a mesh adapted to

the engine, adequately placed sensors providing the measures, and this problem is

thus related to the aforementioned ones.
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The objective may be also to reconstruct the electromagnetic, thermic, or acoustic

environment of a launcher (after take-off or along the flight) from measures, in order

to protect efficiently the fragile, delicate components of the launcher like computers

for instance. This is a difficult inverse problem modeled with nonlinear PDEs. The

challenge is to develop a tool permitting to design efficiently a launcher in order to

make it more robust, less sensitive to environment perturbations. From the point of

view of numerical analysis, this requires the development of mesh methods or spectral

methods that are adapted to this specific problem. It can be noted that since fractional

derivatives appear naturally in fluid mechanics problems (acoustic in particular), for

instance, when computing a heat flux getting out from the side of a fluid outflow in

function of the time evolution of the internal source, or in the modeling of viscoelastic

materials, it is important to develop efficient numerical approximation schemes of

fractional derivatives. It is a challenge to improve fractional methods with optimal

inverse reconstruction procedures and with optimal design issues.

Finally, a last inverse problem is the one of optimal design of sensors. The problem

is to determine where the sensors should be placed in order to ensure an optimal

observation of the system, for instance, in view of ensuring the success of online

guidance processes. The applications are numerous in aerospace, and this problem is

connected to the previous ones, the measures serving also, for instance, to reconstruct

the electromagnetic or thermic environment of an engine, or to detect flaws. This

problem enters into the category of shape optimization problems. In a general way

measures are taken to reconstruct an environment. A difficult question is to determine

which measures are required in order to optimize the reconstruction and to be able to

approximate in the best possible way an inverse problem.

Combined with guidance objectives, these inverse problems may probably be re-

cast in terms of pluridisciplinary optimization, as discussed previously. This results

into difficult, complex problems and raises very interesting challenges for the future.
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