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1. Introduction We consider an n-dimensional signal process x(t) =

(Xl(t),---,xn(t)) and a 1-dimensional observation process y(t), obeying

the stochastic differential equations

(1.1) dx = b[x(t)]dt + a[x(t)]dw

(1.2) dy = h[x(t)]dt + dw, y(O) = 0,

with w, w independent standard brownian motions of respective dimensions

n, 1. (The extensions to vector-valued y(t) need only minor modifications.)

The Zakai equation for the unnormalized conditional density q(x,t) is

(1.3) dq = A qdt + hqdy, t > O,

where A is the generator of the signal process x(t) . See [3] for

example. By formally substituting

(1.4) q(x,t) = exp [y(t)h(x)]p(x,t)

one gets instead of the stochastic partial differential equation (1.3) a

linear partial differential equation of the form

(1.5) Pt = tr a(x)p x + Vg(x,t)p, t > 0,

with p(x,O) = p (x) the density of x(O). Here

a(x) = a(x)a(x)' , P =(P li "u )

n
tr a(X)Pxx p aij(X)Px.x.'

i,j=l 1

Explicit formulas for gY, VY are given in §6. Equation (1.5) is the

basic equation of the pathwise theory of nonlinear filtering. See [2] or
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[9]. The superscript y indicates dependence on the observation trajectory

y = y(.). Of course, the solution p = pY also depends on y

We shall impose in (l.l)the nondegeneracy condition that the n x n

matrix a(x) has a bounded inverse a (x). Other assumptions on b,

a, h, p0 will be stated later. Certain unbounded functions h are

allowed in the observation equation (1.2). For example, h can be a

polynomial in x = (Xl,---,Xn) such that h(x)J + o as Ix +-o .

The connection between filtering and control is made by considering the

function S =--log p. This logarithmic transformation changes (1.5) into

a nonlinear partial differential equation for S(x,t), of the form (2.2)

below. We introduce a certain optimal stochastic control problem for

which (2.2) is the dynamic programming equation.

In §3 upper estimates for S(x,t) as ixi + - are obtained, by

using an 'easy Verification Theorem and suitably chosen comparison controls.

Note that an upper estimate for S gives a lower estimate for p = -log S.

A lower estimate for S(x,t) as Jx[ + X is obtained in §5 by another

method from a corresponding upper estimate for p(x,t). These results are

applied to the pathwise nonlinear filter equation in §6.

2. The logarithmic transformation. Let us consider a linear parabolic

partial differential equation of the form

(2.1) Pt = 2tra(x)p + g(x,t) + V(x,t)p, t > 0,

p(x,O) = p (x).

When g = gY, V = VY this becomes the pathwise filter equation (1.5), to



which we return in §6. By solution p(x,t) to (2.1) we mean a

"classical" solution p E C2'1, i.e. with PX. xx' Pt continuous,

i, j - l, ,n.

If p is a positive solution to (2.1), then S = -log p satisfies

the nonlinear parabolic equation

(2.2) St =-Ly Qx)Sx + H(xt,S,) t > 0

S(x,O) = S (x) = -log p (x),

H(x,t,S) = g(x,t)- S -1-S' a(x)Sx - V(x,t).

Conversely, if S(x,t) is a solution to (2.2), then p = exp(-S) is a

solution to (2.1).

This logarithmic transformation is well known. For example., if

g = V = 0, then it changes the heat equation into Burger's equation [8].

We consider 0 < t < tl, with tl fixed but arbitrary. Let Q = Rn

x [O,tl]. We say that a function 7 with domain Q is of class - if

P is continuous and, for every compact K E Rn, P(it) satisfies a

uniform Lipschitz condition on K for 0 < t < t1. We say that 4

satisfies a polynomial growth condition of degree r, and write 1 E r'

if there exists M such that

P(x,t)I < MI(l+lxlr), all (x,t) E Q.

Throughout this section and §3 the following assumptions are made.

Somewhat different assumptions are made in § 's 4,5 as needed. We assume:

-1 n
~(2.3) a , a are bounded, Lipschitz functions on R
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For some m > 1

(2.4) g E2 n, v E nff m
m. 2m

For some > _ O

(2.5) SO c2 n .

For some M1,

(2.6) V(x,t) < M S (x) > -M

We introduce the following stochastic control problem, for which

(2.2) is the dynamic programming equation. The process i(t) being

controlled is n-dimensional and satisfies

(2.7) dC = u(Q(q),T)dT + a[C(:T)]dw , 0 < c < t,

i(0) = x.

The control is feedback, Rn-valued:

(2.8) u(T) = u((T),T) .

Thus, the control u is just the drift coefficient in (2.7). We admit

any u of class snfl 1 . Note that u E.1 implies at most linear

growth of fu(x,t) I as fxj Xo . For every admissible u , equation

(2.7) has a pathwise unique solution i such that EIKI I X for every

r > 0. Here I| l t is the sup norm on [0,t].

Let

1 a-1(2.9) L(xt,u) - (u-g(x,t))'a (x)(u-g(x,t)) - V(x,t).



For (x,t) E Q and u admissible, let

(2.10) J(x,t,u) = E J L[C(T),t-T u(T)]dT + S M[I(t)] 

The polynomial growth conditions in (2.4), (2.5) imply finiteness of

J . The stochastic control --problem is to find u° P minimizing J(x,t,u).

Under the above assumptions, we cannot claim that an admissible u ° P

exists minimizing J(x,t,u). However, we recall from [7,Thm. VI 4.1] the

following result, which is a rather easy consequence of the Ito differential

rule.

Verification Theorem. Let S be a solution to (2.2) of class

C2 1 n with S(x,O) = S O(x). Then

(a) S(x,t) < J.(x,t; u) for all admissible u

(b) If u0P = g - aSX is admissible, then S(x,t) =

J(x,t; u°P).

In §3 *we use (a) to get upper estimates for S(x,t), by choosing

judiciously comparison controls. For u° P to be admissible, in the sense

we have defined admissibility, [Sxl can grow at most linearly with Ixi ;

hence S(x,t) can grow at most quadratically. By enlarging the class of

admissible controls to include certain u with faster growth as IxI + -o

one could generalize (b). HIowever, we shall not do so here, since only part

(a) will be used in §3 to get an estimate for S.

In §4 we consider the existence of a solution S with the polynomial

growth condition required in the Verification Theorem.

As in [6] we call a control problem with dynamics (2.7) a problem of
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stochastic calculus of variations. The control u(;(T),T) is. a kind

of "average" time-derivative of i(T), replacing the nonexistent derivative

i(Tl) which would appear in the corresponding calculus of variations

problem with a = 0.

Other control problems. There are other stochastic control problems

for which (2.2) is also the dynamic programming equation. On choice,

which is appealing conceptually, is to rcquire instead of (2.7)that C(T)

satisfy

(2.11) - d = {g[(T) ,T] + u[.(T),T] J dT + c[C(T)]dw

with i(0) = x. We then take

1 -1
(2.12) L(x,t,u) = a u'a (x)u - V(x,t).

The feedback control u changes the drift in (211) from g to g + u.

When a = identity, L = Ju - V(x,t) corresponds to an action integral

in classical mechanics with time-dependent potential V(x,t).

3. Upper estimates for S(x,t). In this section we obtain the following

upper estimates for the growth of S(x,t) as JxJ + o in terms of the

constants m > 1, Z > 0 in (2.4), (2.5).

Theorem 3.1 Let S be a solution oof class C ' n r, with

S(x,0) = SO(x). Then there exist positive M1, M2 such that:

(i) For (x,t)E Q, S(x,t) < M1(l+ JxlJ) with p = max(m+l,).

(ii) Let 0 < t0 < t1 , m > 1. For (x,t) E Rn x [t0,tl],

S(x,t) < l 2(l+xm +l).
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In the hypotheses of this theorem, S(x,t) is assumed to have

polynomial growth as Ixj + - with some degree r. The theorem states

that r can be replaced by P , or indeed by m+l provided t > t0 > 0.

Purely formal arguments suggest that m+l is best possible, and this is

confirmed by the lower estimate for S(x,t) made in §5.

Proof of Theorem 3.1. We first consider m > 1. By (2.3)-(2.6)

and (2.9),

(3.1) L(x,t,u) < Bl(l+lx 2m+1u12)

so (x) < Bl(l+xlt)

for some B1. Given x E R we choose the following open loop control

u(T), O < T < t. Let u(T) = n(T), where the components ni(T), satisfy

the differential equation

(3.2) i = -(sgn Xi)lni m i = 1,---,n,

with (0O) = x. From (2.7)

i(l) = ln() + C(T) , 0 < T < t,

·
_

C ) = f at[(6)]dw(G).
Since a is bounded, E|[|[r |< ' for each r. By explicitly integrating

(3.2) we find, since m > 1, that

n( 2md < 1 IIm+l < 1 I m+l

ft i() O2m d < m+ E f m d )
E (T)I2, ds_< 22m [ )2mdT + E I <

I T1 I -. ~-·T I ~ds <3s·l+]x
0 0 0~~~~~~~~ t)2
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for some M3

2 2 2m
Since u. = n= i

2 n m+1

-.u(T)I2dT < Xl mxl

Since In(t)j < Ixi,

EJ[(t)[! < E(Ixj +li(t)) <_ (1 + Ix1l )

for some K . From (2.10.), (3.1) we get

J(x,t,u) < Mi(l+lxlP), p = max(m+l, ')

for some M1. By part (a) of the Verification Theorem, S(x,t) < J(x,t,u),

which implies (i) when m > 1.

For t > t> 0, n(t)[ is bounded by a constant not depending on

x = p(0). Since i(t) = (t) + C(t), and EXl(t)Il is bounded, this

bounds EXSO[ (t)] by a constant not depending on x . The estimates above

and part (a) of the Verification Theorem then give (ii).

It remains to prove (i) when m = 1. Consider the "trivial" control

u(T _E O. When m = 1 , g grows at most linearly and V at most

2 2
quadratically as lxi - . Moreover, E 11 t K(l+x) for some K

Using again (a) of the Verification Theorem, we get again (i) with p =

max(2,e). [When m = 1, this is a known result, obtained without using

stochastic control arguments.]

4. An existence theorem. In this section we give a stochastic control

proof of a theorem asserting that the dynamic programming equation (2.2) with
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the initial data S O. has a solution S . The argument is essentially

taken from [4, p. 222 and top p. 223.] Since (2.2) is equivalent to

0
the linear equation (2.1), with positive initial data p , one could get

existence of S from other results which give existence of positive solutions

to (2.1), see [10][11]. However, the stochastic control proof gives a

polynomial growth condition on S used in the Verification Theorem (§2).

Let 0 < a < 1. We say that a function $ with domain .Q is of class

Ca if the following holds. For any compact r c Q, there exists M such

that (x,t), (x',t') E r imply

(4.1) .P(x',t') -- (x,t)l < M[It'-tlI/2 + x'?-xi ].

2,1
We say that $ is of class C~' if c, i x are of classX. x.x.'St are of class

1 3

Ca , i, j=l, , n.

In this section the following assumptions are made. The matrix a(x)

is assumed constant. By a change of variables in Rn we may take

(4-.2) = identity

For fixed t , g(.,t), V(-,t) are of class C on Rn and

g gXi ' V, Vxi, i 1= l,--,n, are of class Ca for some c E (0,1].

Moreover,

(4.3) Ig(x,t)l < ¥1 + 2 1x m , m > 1,

with Y2 small enough that (4.8) below holds. (If g ECJ~ with P < m,

then we can take Y2 arbitrarily small.)---- Weassume that

(4.4) alxlm a2_ < -V(x,t) < A( + Ix 2m )
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for some positive al, a2, A and that

(4.5) gx E m' V x E 2m

0 3
We assume that S E C n A for some > 0, and

(4.6) im . S (x) = + o

0 0
(4.7) IS < CS + C2

for some positive C1, C2

Example. Suppose that V(x,t) = -kV (x) + V1 (x,t) with V (x) a

positive, homogeneous polynomial of degree 2m, k > 0, and Vl(x,t) a

polynomial in x of degree <2m-1 with coefficients I61lder continuous

functions of t . Suppose that g(x,t) is a polynomial of degree

< m-l in x , with coefficients if6lder continuous in t , and S (x)

is a polynomial of degree £ satisfying (4.6). Then all of the above

assumptions hold.

From (2.9), (4.2), L = lu-g - V . If Y2 in (4.3) is small

enough, then

(4.8) 1 (lul +xl 2 )2 2 < L(x,t,u) < B(1 lul2 +x12m)

for suitable positive 81, B2, B. Mdreover,

Lx = -g (u-g) - Vg

1 2 2 1 2ILx < 2 lul + I 2g + IVx

where Igxl denotes the operator norm of gx regarded as a linear trans-

formation on Rn . From (4.3), (4.5), (4.8)



(4.9) ILx < ClL + C2

for some positive C1,C2 (which we may take the same as in (4.7).)

Theorem 4.1 Let r = max (2m,Z). Then equation (2.2) with initial

0 2,1rdata S(x,O) = S (x) has a unique solution S(x,t) of class C ' n

such that S(x,t) e as jxj _- uniformly for 0 < t < t .

Proof. We follow [4, §5]. For k = 1,2,---, let us impose the

constraint Mu. < k on the feedback controls admitted-as drifts in (2.7 ).

L~t

(4.10) Sk(x,t) = min J(x,t; u)

kul<k
2,1Then Sk is a C 21 solution to the corresponding dynamic;.programming

.equation

(4.11) (Sk) t = A Sk + Hk(x,t,(Sk) ),

Hk(x,t,(Sk)x) = min [L(x,t,u)+(Sk)xu]].

j u_<k

The initial data are again Sk(x,O) = S (x). The minimum in (4.10) is

attained by an admissible ukP. See [7, p. 172].

Now S1 > S2 > --- ; and Sk is bounded below since L and SO are

bounded below by (4.6), (4.9). Let S = lim Sk. Let us show that (S)x
k-K

is bounded uniformly for (x,t) in any compact set. Once this is established

standard argunients in the theory of parabolic partial differential equations

2,1
imply that S -E C21 and S satisfies (2.2). For (Sk)x there is the

probabilistic representatior
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(4.12) (S k) x(x,t) = Ext Lx[ik(),t-- ,uk (T)]drT x+ k 

where 5k is the'solution to (2.7) with u = k (O) = x, and

uk () = UkP(k(g ),T).

This can be proved exactly as in [4, Lemma 3]. Another proof, based on

differentiating (4.10) with respect to x, i=l,---, n, is given in

[5, Lemma 5.3]. From (4.7), (4.9), (4.12)

(Sk)x(x,t)l < C1E x 0 L[ k(T),t-T , uk(l()]d + C (t+l)[

or since ukP is optimal

(4.13) (S k)x(X,t)j < C1Sk(x,t) + C2(t+l)

Since Sk(x,t) is bounded uniformly on compact sets, (4.12) gives the

required bound for I(Sk )x uniformly on compact sets.

For the "trivial" control O, we have by (4.8) and. SO e 

J(x,t,O) < B(1 + Ex li||t) , r = max(2m,; )

for suitable B1 . When u(T) - O, o = I, we have i(T) = x + w(T).

For suitable M we have

Sk(x,t) < J(x,t,O) <M(l + Ixir), k = 1,2,---.

Hence S(x,t) satisfies the same inequality. Since S is bounded below,

this implies S C · -r

Let us show that S(x,t)-+ as -l x + - , uniformly-for 0 <-t <--t 1.

Since Sk(x,t) = J(x,t; ukP), (4.8) implies
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Sk(x,t) > lEx [ [Uk(T) [ +[ik(T)[ ]d- B2 t + ES.[ k(t)]

0

Given X > 0 there exists R1 such that IxI > R1 implies S (x) > X

by (4.6). Let R2 > R1 and consider the events

A1 = {ik - x It <R R2 - R1 }

A2 = {IIvkllt > (R2 - R1)} , vk(T) = i uk(O)dO

A3 = ll WI lt > (R2 - R1)}

with II lit the sup norm on [O,t]. Since

k ( T ) - x = vkT) + w(T), 0 < T < t,

Al cA 2 U A . For R2 -R 1 large enough, P(A3) < and hence

3
P(A1) + P(A2) > . From Cauchy-Schwarz

4 (R2 R1) P(A2) < tEx IUk(0) I2dO

Let IxI >R 2 On A1, Kk(t) I >R 1 and hence S0[5k(t)] > A For Ixl>R 2

EB1 ~2
Sk(x,t) > 4t (R2 - R1) P(A2) + XP(A 1) - ( t + 3)

with 3 a lower bound for S (x) on Rn . Since the right side does not

depend on k , S satisfies the same inequality. This implies that

S(x,t') - m as Ix] + , uniformly for 0 < t < t

2,1
To obtain uniqueness, p = exp(-S) is a C21 solution of (2.1), with

p(x,t) + 0 as Ix -I uniformly for 0 < t < t . Since V(x,t) is bounded
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above, the maximum principle for linear parabolic equations implies that

p(x,t) is unique among solutions to (2.1) with these properties, and

;O 0
with initial data p(x,O) = p (x) = exp [-S (x)]. Hence, S is also

unique, proving theorem 4.1.

It would be interesting to remove the restriction that c = constant

made in this section.

5. A lower estimate for S(x,t) . To complement the upper estimates

in Theorem 3.1, let us give conditions under which S(x,t) -+ 4+ as

x| -* Xc at least as fast as (xf , m > 1. This is done by establishing

a corresponding exponential rate of decay to 0 for p(x,t).-In this

section we make the following assumptions. We take a E C2 with

(5.1) , U ' a x.bounded, a i, j=l, *,n,
X.X. r

1 j

for some r > O. For each t , g(.,t) E C2 . Moreover,

(5.2) g E , < m gxr ' gx.x
Q. For each t V t1 j

and go gx.' gx are continuous on Q. For each t , V( ,t) E C
i i j

Moreover, V satisfies (4.4),

(5.3) V E f v V,
i r X

and V, Vx, Vx.x. are continuous on Q . We assume that P0 E C2
X. X. .

1 1 j

and that there exist positive B--; M-such that



(5.4) exp [xixlm+l][p (x) + Jp.O (X)l + Ip () I] M

2,1
Theorem 5.1. Let p(x,t) be a C solution to (2.1) such that

p(x,t) - 0 as Jx| - o , uniformly for 0 < t < tl . Then there exists

6 > 0 such that exp[61fxm+l]p(x,t) is bounded on Q .

Proof. Let
m+l

P(x) = (1+1x2) 2 , (x,t) = exp [6P(x)]p(x,t).

Then f is a solution to.

(5.5) 'at = 2 tr axx + g . x + V'

g = g - 6a x

V= V - 6g · ( + ( a
x 2 x 

Following an argument in [10], equation (5.5) with initial data

0 = exp(6P)p0 has for small enough 6> 0 the probabilistic solution

(s.6) It 1 Co-1-1 2
(5.6) 1(x,t) = Ex{ 0 [X(t)]exp [- lgdw - d + ,VdT]

where X(t) satisfies

(5.7) dX = Q[X(T)]dw, T > 0,

wit X(0O) = x. In the integrands a g and V are evaluated at (X(T),T).

This solution i is bounded and C2'1 We sketch the proof of these facts

2,1
below. Then p = exp(-6)ir is a C 1 solution to (2.1), with initial

data p , and with p(x,t) tending to 0 as Ixl + o uniformly for
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O < t < t . By the maximum principle, p = p which implies that

exp [6ixim+l]p is bounded on' Q

It remains to indicate why i is a solution to (5.5) with the required

properties. We have *x E e -1 . By assumption V satisfies
1 1j

(4.4), a is bounded, and gE E9 , ' p < m . Hence, for 6 small enough

there exist positive al, a2 such that

2m

V(X,t) < a 2 - all 2mXI

Moreover, for some K

1 2
|(5 (x)g(x,t)l < K(1 + jxlj 2), < m .

From these inequalities one can get a bound

E(exp , - gdw la g- dl2dt + Vd t) ]

for any j > 0. This gives a uniform integrability condition from which

2,1one gets that ir is a bounded C2 ' solution of (5.5) by the usual

technique of differentiating. (5.6) twice with respect to the components

x 1 ,---,xn of the initial state x = X(0O). This proves Theorem 5.1.

Since S = -log p, we get by taking logarithms:

Corollary. For some positive 6 , 6

(5.8) S(x,t) > 61 x i+l -

6. Connection with the pathwise filter equation. The generator ---A- of-the---- -,-

signal process in (1.1) satisfies for ~ E C
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= tr a(Cx)xx + b(x)-.x
xx x

The pathwise filter equation. (1.5) for p = pY is

(6.1) Pt = (Ay )p + VY p, where

AY = AQ - y(t)a(x)hx(x) ·xx

2 1 2
VY(x,t) .i h(x) - y(t)Ah(x) + 2 y(t) II (x) 'a(x)hlx().

Hence, in (1.5) we should take

n Da..
(6.2) gY -b + y(t)ahx + Y, Yj = ax. 

i=1 j

xa

(6.3) vY = vY div(b - y(t)ahx) + axax
,j= axi ax

To satisfy the various assumptions about g = gY, V = VY made

above, suitable conditions on cr, b, and h must be imposed. To obtain

the local Ho3lder conditions needed in §4 we assume that y(-) is HI'lder

continuous on [O,t]. This is no real restriction, since almost all

observation trajectories y(.) are H6older continuous.

To avoid unduly complicating the exposition let us consider only

the following special case. We take a = identity, an assumption already

3made for the existence theorem in §4. We assume that b E C with

b, bx bounded, and all second, third order partial derivatives of b

of class 2 for some r. Let h be a polynomial of degree m and Sr

a polynomial of degree L , with

(6.4) liirm h(x)[ = , lim S (x) = +c.
IXIc IXIfIc



Then all of the hypotheses in § 's 2-4 hold. In (6.2), gY has

polynomial growth of degree m-l as Ix + X , while in (6.3)

2Vy is the sum of the degree' 2m polynomial - h2(x) and terms with

polynomial growth of degree < 2m.

Let SY = -log pY . From Theorem 3.1 we get the upper bounds

(i) SY(x,t) < M(l+]x[P), O < t< t , P = max(m+l,£)

(ii) SY(x,t) < M2 (l+Ixlm+), 0 < t < t < t 1, m > 1

where M1 ,M2 depend on y . For p = exp(-S ) to satisfy (5.4)

we need t > m+l . The Corollary to Theorem 5.1 then gives the lower

bound

(6.6) SY(x,t)-> 6xlm+ - 61 0 < t < t1

From (6.5)(ii) and (6.6) we see that SY(x,t) increases to + X like

Ix m + l , at least for m > 1 and t bounded away from O , and for

0 < t< t, in case £ = m+l

Finally, q = exp(y(t)h)p is a solution to the Zakai equation. For

any ~ E Cb (i.e., Pcontinuous and bounded on Rn) let

At(+) : = (x)q(x,t)dx

Rn

At(+) = E [x(t)]exp (h[x()]dy - - lh[x(T)] dT)l (y) ,

0 o
where E denotes expectation with respect to the probability measure P

obtained by eliminating the drift term in (1.2) by a Girsanov transformation.

The measure At is the unnormalized conditional distribution of x(t)t



By a result of Sheu [10] At=At and hence q(',t)is the density of At .

In fact, both. At , At are weak solutions to the Zakai equation. Moreover,
t o ot

0 0-

EAt(1) = 1, EAt ( l) < 1

The inequality is seen by approximating h by bounded hk with

corresponding density qk(x,t) of the unnormalized conditional distribution

Akt . Then (see [10])

EA.t(l) 1, Akt()+ At ( ) as k + o ,

for any continuous P with compact support. Hence, EAt ( 1) <1 . The

uniqueness theorem in [10] for weak solutions to the Zakai equation implies

A =A
t t
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